1
|
Mo Y, Nie J, Zhang Y, Zhang Y, Yuan J, Zhang Q. HDAC6-Mediated NLRP3 Inflammasome Activation Is Involved in Nickel Nanoparticle-Induced Pulmonary Inflammation and Fibrosis. Chem Res Toxicol 2025; 38:877-891. [PMID: 40298147 DOI: 10.1021/acs.chemrestox.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Nickel nanoparticles (Nano-Ni) are increasingly utilized in industrial and biomedical applications, drawing growing attention to their potential adverse health effects. Our previous studies have demonstrated that Nano-Ni exposure induces severe, widespread, and persistent pulmonary inflammation and fibrosis. However, the underlying mechanisms are still unclear. The NLRP3 inflammasome is a vital component of the innate immune system and inflammatory signaling. In this study, we investigated whether Nano-Ni exposure activated the NLRP3 inflammasome and also examined its role in Nano-Ni-induced pulmonary inflammation and fibrosis. Our findings demonstrated that intratracheal instillation of wild-type mice (C57BL/6J) with 50 μg Nano-Ni per mouse resulted in NLRP3 inflammasome activation, IL-1β production, and extensive pulmonary inflammation and fibrosis. In contrast, Nano-Ni exposure induced only mild pulmonary inflammation and fibrosis in Nlrp3-/- mice (lacking functional NLRP3 inflammasome) or Il-1r1-/- mice (unresponsive to IL-1), highlighting the critical role of NLRP3 inflammasome activation in Nano-Ni-induced pulmonary damage. Further investigations using mouse alveolar macrophages (MH-S) revealed that Nano-Ni acts as a secondary activation signal for the NLRP3 inflammasome, triggering its activation in LPS-primed but not unprimed cells. Moreover, siRNA-mediated knockdown experiments demonstrated that this activation depended on Nano-Ni-induced upregulation of HDAC6. These findings suggest that Nano-Ni activates the NLRP3 inflammasome via HDAC6 as a second activation signal, leading to IL-1β production and subsequent pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky 40292, United States
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China
| | - Yue Zhang
- Department of Internal Medicine and Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky 40292, United States
| | - Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky 40292, United States
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
2
|
Usman K, Fouadi M, Nwozor KO, Aminazadeh F, Nair P, Luo H, Sin DD, Osei ET, Hackett TL. Interleukin-1α inhibits transforming growth factor-β1 and β2-induced extracellular matrix production, remodeling and signaling in human lung fibroblasts: Master regulator in lung mucosal repair. Matrix Biol 2024; 132:47-58. [PMID: 39147560 DOI: 10.1016/j.matbio.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Lung fibroblasts play a central role in maintaining lung homeostasis and facilitating repair through the synthesis and organization of the extracellular matrix (ECM). This study investigated the cross-talk between interleukin-1 alpha (IL-1α) and transforming growth factor-β (TGF-β) signaling, two key regulators in tissue repair and fibrosis, in the context of lung fibroblast repair in the healthy lung. RESULTS Stimulation of lung fibroblasts with TGF-β1 and TGF-β2 induced collagen-I and fibronectin protein expression (p < 0.05), a response inhibited with co-treatment with IL-1α (p < 0.05). Additionally, TGF-β1 and TGF-β2 induced myofibroblast differentiation, and collagen-I gel contraction, which were both suppressed by IL-1α (p < 0.05). In contrast, interleukin (IL)-6, IL-8 and thymic stromal lymphopoietin induced by IL-1α, were unaffected by TGF-β1 or TGF-β2. Mechanistically, IL-1α administration led to the suppression of TGF-β1 and TGF-β2 signaling, through downregulation of mRNA and protein for TGF-β receptor II and the downstream adaptor protein TRAF6, but not through miR-146a that is known to be induced by IL-1α. DISCUSSION IL-1α acts as a master regulator, modulating TGF-β1 and TGF-β2-induced ECM production, remodeling, and myofibroblast differentiation in human lung fibroblasts, playing a vital role in balancing tissue repair versus fibrosis. Further research is required to understand the dysregulated cross-talk between IL-1α and TGF-β signaling in chronic lung diseases and the exploration of therapeutic opportunities. METHODS Primary human lung fibroblasts (PHLF) were treated with media control, or 1 ng/ml IL-1α with or without 50 ng/ml TGF-β1 or TGF-β2 for 1, 6 and 72 h. Cell lysates were assessed for the expression of ECM proteins and signaling molecules by western blot, miRNA by qPCR, mRNA by RNA sequencing and cell supernatants for cytokine production by ELISA. PHLFs were also seeded in non-tethered collagen-I gels to measure contraction, and myofibroblast differentiation using confocal microscopy.
Collapse
Affiliation(s)
- Kauna Usman
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - May Fouadi
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kingsley Okechukwu Nwozor
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Fatemeh Aminazadeh
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Parameswaran Nair
- Division of Respirology, St Joseph's Healthcare Hamilton & McMaster University, ON L8N 4A6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Emmanuel Twumasi Osei
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Biology, University of British Columbia, Okanagan, BC V1V 1V7, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
3
|
Britton WR, Cioffi I, Stonebraker C, Spence M, Okolo O, Martin C, Henick B, Nakagawa H, Parikh AS. Advancements in TGF-β Targeting Therapies for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3047. [PMID: 39272905 PMCID: PMC11394608 DOI: 10.3390/cancers16173047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer worldwide according to GLOBOCAN estimates from 2022. Current therapy options for recurrent or metastatic disease are limited to conventional cytotoxic chemotherapy and immunotherapy, with few targeted therapy options readily available. Recent single-cell transcriptomic analyses identified TGF-β signaling as an important mediator of functional interplays between cancer-associated fibroblasts and a subset of mesenchymal cancer cells. This signaling was shown to drive invasiveness, treatment resistance, and immune evasion. These data provide renewed interest in the TGF-β pathway as an alternative therapeutic target, prompting a critical review of previous clinical data which suggest a lack of benefit from TGF-β inhibitors. While preclinical data have demonstrated the great anti-tumorigenic potential of TGF-β inhibitors, the underwhelming results of ongoing and completed clinical trials highlight the difficulty actualizing these benefits into clinical practice. This topical review will discuss the relevant preclinical and clinical findings for TGF-β inhibitors in HNSCC and will explore the potential role of patient stratification in the development of this therapeutic strategy.
Collapse
Affiliation(s)
- William R Britton
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Isabel Cioffi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Corinne Stonebraker
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Matthew Spence
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ogoegbunam Okolo
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Cecilia Martin
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
| | - Brian Henick
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Anuraag S Parikh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Connolly LM, McFalls CM, McMahon IG, Bhat AM, Artlett CM. Caspase 1 Enhances Transport and Golgi Organization Protein 1 Expression to Promote Procollagen Export From the Endoplasmic Reticulum in Systemic Sclerosis Contributing to Fibrosis. Arthritis Rheumatol 2023; 75:1831-1841. [PMID: 37067501 PMCID: PMC10543382 DOI: 10.1002/art.42535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
OBJECTIVE Transport and Golgi Organization protein 1 (TANGO1) is a protein that regulates the export of procollagen from the endoplasmic reticulum and has a role in the organization of exit sites for general protein export. What regulates the expression of TANGO1 and the role of TANGO1 in fibrosis is poorly understood and has never been studied in the setting of systemic sclerosis (SSc). We undertook this study to determine the role of TANGO1 in SSc fibrosis. METHODS SSc (n = 15) and healthy (n = 12) primary fibroblast lung cell lines were investigated for the expression of TANGO1. Histologic analyses for TANGO1 were performed on lung biopsy samples (n = 12 SSc patient samples and n = 8 healthy control samples). RESULTS SSc fibroblasts showed increased expression of TANGO1 protein in cultured fibroblasts. TANGO1 colocalizes with α-smooth muscle actin (α-SMA)-positive cells in SSc lung tissue and is highly up-regulated in the neointima of SSc vessels. TANGO1 expression was dependent on the inflammasome activation of caspase 1. It was also dependent on signaling from the interleukin-1 (IL-1) and transforming growth factor β (TGFβ) receptors. The decrease in TANGO1 down-regulated export of larger cargos including collagen and laminin. Reduced TANGO1 protein had no effect on smaller molecular weight cargoes; however, the secretion of elastin was significantly reduced. CONCLUSION TANGO1 is markedly increased in SSc fibroblasts and was found to be elevated in lung tissue in association with α-SMA-positive cells. TANGO1 expression is driven by inflammasome-dependent caspase 1 activation and is mediated by IL-1 and TGFβ downstream signaling. These observations suggest that during fibrosis, caspase 1 promotes the up-regulation of TANGO1 and the organization of endoplasmic reticulum exits sites, ultimately contributing to procollagen export and fibrosis.
Collapse
Affiliation(s)
- Lianne M Connolly
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Caya M McFalls
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Isabelle G McMahon
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Akash M Bhat
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Carol M Artlett
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Repici A, Ardizzone A, Filippone A, Colarossi C, Mare M, Raciti G, Mannino D, Cuzzocrea S, Paterniti I, Esposito E. Interleukin-21 Influences Glioblastoma Course: Biological Mechanisms and Therapeutic Potential. Cells 2023; 12:2284. [PMID: 37759505 PMCID: PMC10526836 DOI: 10.3390/cells12182284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain tumors represent a heterogeneous group of neoplasms involving the brain or nearby tissues, affecting populations of all ages with a high incidence worldwide. Among the primary brain tumors, the most aggressive and also the most common is glioblastoma (GB), a type of glioma that falls into the category of IV-grade astrocytoma. GB often leads to death within a few months after diagnosis, even if the patient is treated with available therapies; for this reason, it is important to continue to discover new therapeutic approaches to allow for a better survival rate of these patients. Immunotherapy, today, seems to be one of the most innovative types of treatment, based on the ability of the immune system to counteract various pathologies, including cancer. In this context, interleukin 21 (IL-21), a type I cytokine produced by natural killer (NK) cells and CD4+ T lymphocytes, appears to be a valid target for new therapies since this cytokine is involved in the activation of innate and adaptive immunity. To match this purpose, our review deeply evaluated how IL-21 could influence the progression of GB, analyzing its main biological processes and mechanisms while evaluating the potential use of the latest available therapies.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | - Marzia Mare
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | - Gabriele Raciti
- IOM Ricerca, Via Penninazzo 11, 95029 Viagrande, Italy;
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| |
Collapse
|
6
|
Mechanisms underlying impaired spermatogenic function in orchitis induced by busulfan. Reprod Toxicol 2023; 115:1-7. [PMID: 36372306 DOI: 10.1016/j.reprotox.2022.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Busulfan is an alkylating agent commonly used in cancer chemotherapy. It is also an ideal agent for preparing transplant recipients of spermatogonial stem cells because of its high efficiency in destroying endogenous germ cells in the testis. However, its toxicity mechanism remains unclear, affecting its clinical use and applications. Based on reports of busulfan causing orchitis and a previous study by our team, this article summarizes the relationship between busulfan and orchitis, cytokines, the blood-testis barrier, and the cytoskeleton, unravels the regulatory pathways and mechanism behind busulfan-induced orchitis, and reveals the molecular mechanism underlying impaired spermatogenic function in orchitis, providing new ideas for the clinical application of busulfan while reducing its testicular toxicity.
Collapse
|
7
|
Sun Z, Zhao H, Fang D, Davis CT, Shi DS, Lei K, Rich BE, Winter JM, Guo L, Sorensen LK, Pryor RJ, Zhu N, Lu S, Dickey LL, Doty DJ, Tong Z, Thomas KR, Mueller AL, Grossmann AH, Zhang B, Lane TE, Fujinami RS, Odelberg SJ, Zhu W. Neuroinflammatory disease disrupts the blood-CNS barrier via crosstalk between proinflammatory and endothelial-to-mesenchymal-transition signaling. Neuron 2022; 110:3106-3120.e7. [PMID: 35961320 PMCID: PMC9547934 DOI: 10.1016/j.neuron.2022.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/09/2022] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
Abstract
Breakdown of the blood-central nervous system barrier (BCNSB) is a hallmark of many neuroinflammatory disorders, such as multiple sclerosis (MS). Using a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), we show that endothelial-to-mesenchymal transition (EndoMT) occurs in the CNS before the onset of clinical symptoms and plays a major role in the breakdown of BCNSB function. EndoMT can be induced by an IL-1β-stimulated signaling pathway in which activation of the small GTPase ADP ribosylation factor 6 (ARF6) leads to crosstalk with the activin receptor-like kinase (ALK)-SMAD1/5 pathway. Inhibiting the activation of ARF6 both prevents and reverses EndoMT, stabilizes BCNSB function, reduces demyelination, and attenuates symptoms even after the establishment of severe EAE, without immunocompromising the host. Pan-inhibition of ALKs also reduces disease severity in the EAE model. Therefore, multiple components of the IL-1β-ARF6-ALK-SMAD1/5 pathway could be targeted for the treatment of a variety of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Zhonglou Sun
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Helong Zhao
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel Fang
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Chadwick T Davis
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Dallas S Shi
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kachon Lei
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Bianca E Rich
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob M Winter
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Li Guo
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Lise K Sorensen
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert J Pryor
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Nina Zhu
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Samuel Lu
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Laura L Dickey
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel J Doty
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Zongzhong Tong
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Kirk R Thomas
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230039, China
| | - Thomas E Lane
- Navigen Inc., Salt Lake City, UT 84112, USA; Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Shannon J Odelberg
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| | - Weiquan Zhu
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
Mamun AA, Uddin MS, Perveen A, Jha NK, Alghamdi BS, Jeandet P, Zhang HJ, Ashraf GM. Inflammation-targeted nanomedicine against brain cancer: From design strategies to future developments. Semin Cancer Biol 2022; 86:101-116. [PMID: 36084815 DOI: 10.1016/j.semcancer.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023]
Abstract
Brain cancer is an aggressive type of cancer with poor prognosis. While the immune system protects against cancer in the early stages, the tumor exploits the healing arm of inflammatory reactions to accelerate its growth and spread. Various immune cells penetrate the developing tumor region, establishing a pro-inflammatory tumor milieu. Additionally, tumor cells may release chemokines and cytokines to attract immune cells and promote cancer growth. Inflammation and its associated mechanisms in the progression of cancer have been extensively studied in the majority of solid tumors, especially brain tumors. However, treatment of the malignant brain cancer is hindered by several obstacles, such as the blood-brain barrier, transportation inside the brain interstitium, inflammatory mediators that promote tumor growth and invasiveness, complications in administering therapies to tumor cells specifically, the highly invasive nature of gliomas, and the resistance to drugs. To resolve these obstacles, nanomedicine could be a potential strategy that has facilitated advancements in diagnosing and treating brain cancer. Due to the numerous benefits provided by their small size and other features, nanoparticles have been a prominent focus of research in the drug-delivery field. The purpose of this article is to discuss the role of inflammatory mediators and signaling pathways in brain cancer as well as the recent advances in understanding the nano-carrier approaches for enhancing drug delivery to the brain in the treatment of brain cancer.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687 Reims Cedex 2, France
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
9
|
Hills KE, Kostarelos K, Wykes RC. Converging Mechanisms of Epileptogenesis and Their Insight in Glioblastoma. Front Mol Neurosci 2022; 15:903115. [PMID: 35832394 PMCID: PMC9271928 DOI: 10.3389/fnmol.2022.903115] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and advanced form of primary malignant tumor occurring in the adult central nervous system, and it is frequently associated with epilepsy, a debilitating comorbidity. Seizures are observed both pre- and post-surgical resection, indicating that several pathophysiological mechanisms are shared but also prompting questions about how the process of epileptogenesis evolves throughout GBM progression. Molecular mutations commonly seen in primary GBM, i.e., in PTEN and p53, and their associated downstream effects are known to influence seizure likelihood. Similarly, various intratumoral mechanisms, such as GBM-induced blood-brain barrier breakdown and glioma-immune cell interactions within the tumor microenvironment are also cited as contributing to network hyperexcitability. Substantial alterations to peri-tumoral glutamate and chloride transporter expressions, as well as widespread dysregulation of GABAergic signaling are known to confer increased epileptogenicity and excitotoxicity. The abnormal characteristics of GBM alter neuronal network function to result in metabolically vulnerable and hyperexcitable peri-tumoral tissue, properties the tumor then exploits to favor its own growth even post-resection. It is evident that there is a complex, dynamic interplay between GBM and epilepsy that promotes the progression of both pathologies. This interaction is only more complicated by the concomitant presence of spreading depolarization (SD). The spontaneous, high-frequency nature of GBM-associated epileptiform activity and SD-associated direct current (DC) shifts require technologies capable of recording brain signals over a wide bandwidth, presenting major challenges for comprehensive electrophysiological investigations. This review will initially provide a detailed examination of the underlying mechanisms that promote network hyperexcitability in GBM. We will then discuss how an investigation of these pathologies from a network level, and utilization of novel electrophysiological tools, will yield a more-effective, clinically-relevant understanding of GBM-related epileptogenesis. Further to this, we will evaluate the clinical relevance of current preclinical research and consider how future therapeutic advancements may impact the bidirectional relationship between GBM, SDs, and seizures.
Collapse
Affiliation(s)
- Kate E. Hills
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Catalan Institute for Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, Barcelona, Spain
| | - Robert C. Wykes
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- *Correspondence: Robert C. Wykes
| |
Collapse
|
10
|
Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Glioblastoma Multiforme-Literature Review. Cancers (Basel) 2022; 14:2412. [PMID: 35626018 PMCID: PMC9139611 DOI: 10.3390/cancers14102412] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive malignancies, with a median overall survival of approximately 15 months. In this review, we analyze the pathogenesis of GBM, as well as epidemiological data, by age, gender, and tumor location. The data indicate that GBM is the higher-grade primary brain tumor and is significantly more common in men. The risk of being diagnosed with glioma increases with age, and median survival remains low, despite medical advances. In addition, it is difficult to determine clearly how GBM is influenced by stimulants, certain medications (e.g., NSAIDs), cell phone use, and exposure to heavy metals.
Collapse
Affiliation(s)
- Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Anna Maria Cybulska
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska 48 St., 71-210 Szczecin, Poland
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 St., 71-281 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| |
Collapse
|
11
|
Phenethyl Isothiocyanate Suppresses the Proinflammatory Cytokines in Human Glioblastoma Cells through the PI3K/Akt/NF-κB Signaling Pathway In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2108289. [PMID: 35368876 PMCID: PMC8975692 DOI: 10.1155/2022/2108289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Phenethyl isothiocyanate (PEITC), extracted from cruciferous vegetables, showed anticancer activity in many human cancer cells. Our previous studies disclosed the anticancer activity of PEITC in human glioblastoma multiforme (GBM) 8401 cells, including suppressing the cell proliferation, inducing apoptotic cell death, and suppressing cell migration and invasion. Furthermore, PEITC also inhibited the growth of xenograft tumors of human glioblastoma cells. We are the first to investigate PEITC effects on the receptor tyrosine kinase (RTK) signaling pathway and the effects of proinflammatory cytokines on glioblastoma. The cell viability was analyzed by flow cytometric assay. The protein levels and mRNA expressions of cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), were determined by enzyme-linked immunosorbent assay (ELISA) reader and real-time polymerase chain reaction (PCR) analysis, respectively. Furthermore, nuclear factor-kappa B- (NF-κB-) associated proteins were evaluated by western blotting. NF-κB expression and nuclear translocation were confirmed by confocal laser microscopy. NF-κB binding to the DNA was examined by electrophoretic mobility shift assay (EMSA). Our results indicated that PEITC decreased the cell viability and inhibited the protein levels and expressions of IL-1β, IL-6, and TNF-α genes at the transcriptional level in GBM 8401 cells. PEITC inhibited the binding of NF-κB on promoter site of DNA in GBM 8401 cells. PEITC also altered the protein expressions of protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and NF-κB signaling pathways. The inflammatory responses in human glioblastoma cells may be suppressed by PEITC through the phosphoinositide 3-kinase (PI3K)/Akt/NF-κB signaling pathway. Thus, PEITC may have the potential to be an anti-inflammatory agent for human glioblastoma in the future.
Collapse
|
12
|
Cilek MZ, de Vega S, Shiozawa J, Yoshinaga C, Miyamae Y, Chijiiwa M, Mochizuki S, Ito M, Kaneko H, Kaneko K, Ishijima M, Okada Y. Synergistic upregulation of ADAMTS4 (aggrecanase-1) by cytokines and its suppression in knee osteoarthritic synovial fibroblasts. J Transl Med 2022; 102:102-111. [PMID: 34718343 DOI: 10.1038/s41374-021-00685-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family includes nine members with aggrecan-degrading activity, i.e., ADAMTS1, 4, 5, 8, 9, 15, 16, 18, and 20. However, their systematic expression profile in knee osteoarthritis (OA) synovium and effects of cytokines and growth factors on the expression in OA synovial fibroblasts remain elusive. In this study, expression of all nine aggrecanolytic ADAMTS species was assessed by quantitative real-time PCR in OA and control normal synovial tissues. OA synovial fibroblasts were treated with interleukin-1α (IL-1α), IL-1β, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), vascular endothelial growth factor165, and heparin-binding epidermal growth factor, and analyzed for the expression of the ADAMTS species. The signaling pathways and inhibition of ADAMTS4 expression by high-molecular-weight hyaluronan, adalimumab, tocilizumab, and signaling molecule inhibitors were studied. ADAMTS1, 4, 5, 9, and 16 were expressed in OA synovium, but only ADAMTS4 expression was significantly higher in OA as compared to normal synovium. IL-1α, TNF-α, and TGF-β markedly increased ADAMTS4 expression, while their effects were minimal for the other ADAMTS species. ADAMTS4 was synergistically upregulated by treatment with IL-1α and TNF-α, IL-1α and TGF-β, or IL-1α, TNF-α and TGF-β. The signaling molecules' inhibitors demonstrated that IL-1α-induced ADAMTS4 expression is predominantly through TGF-β-associated kinase 1 (TAK1), and the TNF-α-stimulated expression is via TAK1 and nuclear factor-κB (NF-κB). The TGF-β-promoted expression was through the activin receptor-like kinase 5 (ALK5)/Smad2/3, TAK1, and non-TAK1 pathways. Adalimumab blocked TNF-α-stimulated expression. ADAMTS4 expression co-stimulated with IL-1α, TNF-α and TGF-β was abolished by treatment with adalimumab, TAK1 inhibitor, and ALK5/Smad2/3 inhibitor. These data demonstrate marked and synergistic upregulation of ADAMTS4 by IL-1α, TNF-α and TGF-β in OA synovial fibroblasts, and suggest that concurrent therapy with an anti-TNF-α drug and inhibitor(s) may be useful for prevention against aggrecan degradation in OA.
Collapse
Affiliation(s)
- Mehmet Zeynel Cilek
- Sportology Center, Juntendo University, Tokyo, Japan
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susana de Vega
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jun Shiozawa
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chiho Yoshinaga
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Miyamae
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Miyuki Chijiiwa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Satsuki Mochizuki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Ito
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Haruka Kaneko
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Sportology Center, Juntendo University, Tokyo, Japan
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Sportology Center, Juntendo University, Tokyo, Japan
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
13
|
Ji YR, Cheng CC, Lee AL, Shieh JCC, Wu HJ, Huang APH, Hsu YH, Young TH. Poly(allylguanidine)-Coated Surfaces Regulate TGF-β in Glioblastoma Cells to Induce Apoptosis via NF-κB Pathway Activation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59400-59410. [PMID: 34846137 DOI: 10.1021/acsami.1c21027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polycationic biomaterials are currently widely applied in neuronal cell cultures to promote cell adhesion and viability. However, polycations generally have cytotoxic properties that limit their application in the field of biomaterials. In this study, we examined the use of a novel polycation poly(allylguanidine) (PAG), which contains a guanidine group in the side chain and a structure similar to poly(allylamine hydrochloride) (PAH), an example of another commonly used polycation. Our findings showed that exposure to PAG induced apoptosis in glioblastoma (GBM) cells, while exposure to PAH induced necrosis. Compared to control groups, the PAG coating significantly limited the proliferation of GBM8901 in vitro and in vivo. Furthermore, GBM8901 cells exposed to the PAG coating exhibited increased levels of phospho-p65 and phosphor-IκB, implying that GBM8901 cells underwent apoptotic cell death via the NF-κB pathway by the regulation of TGF-β. This result was further confirmed to be consistent with the experimental results from western blot protein analysis and apoptosis/necrosis assays. These findings indicate that the polycation PAG has the potential to not only suppress the proliferation of GBM8901 cancer cells but also improve the neural viability and promote the differentiation of neural stem/precursor cells into mature neurons. In conclusion, biomaterials such as PAG act as extremely potent options for applications in the treatment of pathological conditions such as brain cancer.
Collapse
Affiliation(s)
- You-Ren Ji
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Ching-Chia Cheng
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - An-Li Lee
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
- Division of Plastic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | | | - Hsin-Ju Wu
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Abel Po-Hao Huang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Yi-Hua Hsu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
- Department of Biomedical Engineering, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
14
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
15
|
Chao M, Liu N, Sun Z, Jiang Y, Jiang T, Xv M, Jia L, Tu Y, Wang L. TGF-β Signaling Promotes Glioma Progression Through Stabilizing Sox9. Front Immunol 2021; 11:592080. [PMID: 33613515 PMCID: PMC7886799 DOI: 10.3389/fimmu.2020.592080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
Gliomas are brain and spinal cord malignancies characterized by high malignancy, high recurrence and poor prognosis, the underlying mechanisms of which remain largely elusive. Here, we found that the Sry-related high mobility group box (Sox) family transcription factor, Sox9, was upregulated and correlated with poor prognosis of clinical gliomas. Sox9 promotes migration and invasion of glioma cells and in vivo development of xenograft tumors from inoculated glioma cells. Sox9 functions downstream of the transforming growth factor-β (TGF-β) pathway, in which TGF-β signaling prevent proteasomal degradation of the Sox9 protein in glioma cells. These findings provide novel insight into the wide interplay between TGF-β signaling and oncogenic transcription factors, and have implications for targeted therapy and prognostic assessment of gliomas.
Collapse
Affiliation(s)
- Min Chao
- Departments of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Nan Liu
- Departments of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhichuan Sun
- Departments of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongli Jiang
- Departments of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tongtong Jiang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Meng Xv
- Departments of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Yanyang Tu
- Departments of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Liang Wang
- Departments of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Pearson JRD, Cuzzubbo S, McArthur S, Durrant LG, Adhikaree J, Tinsley CJ, Pockley AG, McArdle SEB. Immune Escape in Glioblastoma Multiforme and the Adaptation of Immunotherapies for Treatment. Front Immunol 2020; 11:582106. [PMID: 33178210 PMCID: PMC7594513 DOI: 10.3389/fimmu.2020.582106] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequently occurring primary brain tumor and has a very poor prognosis, with only around 5% of patients surviving for a period of 5 years or more after diagnosis. Despite aggressive multimodal therapy, consisting mostly of a combination of surgery, radiotherapy, and temozolomide chemotherapy, tumors nearly always recur close to the site of resection. For the past 15 years, very little progress has been made with regards to improving patient survival. Although immunotherapy represents an attractive therapy modality due to the promising pre-clinical results observed, many of these potential immunotherapeutic approaches fail during clinical trials, and to date no immunotherapeutic treatments for GBM have been approved. As for many other difficult to treat cancers, GBM combines a lack of immunogenicity with few mutations and a highly immunosuppressive tumor microenvironment (TME). Unfortunately, both tumor and immune cells have been shown to contribute towards this immunosuppressive phenotype. In addition, current therapeutics also exacerbate this immunosuppression which might explain the failure of immunotherapy-based clinical trials in the GBM setting. Understanding how these mechanisms interact with one another, as well as how one can increase the anti-tumor immune response by addressing local immunosuppression will lead to better clinical results for immune-based therapeutics. Improving therapeutic delivery across the blood brain barrier also presents a challenge for immunotherapy and future therapies will need to consider this. This review highlights the immunosuppressive mechanisms employed by GBM cancers and examines potential immunotherapeutic treatments that can overcome these significant immunosuppressive hurdles.
Collapse
Affiliation(s)
- Joshua R. D. Pearson
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stefania Cuzzubbo
- Université de Paris, PARCC, INSERM U970, Paris, France
- Laboratoire de Recherches Biochirurgicales (Fondation Carpentier), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Simon McArthur
- Institute of Dentistry, Barts & the London School of Medicine & Dentistry, Blizard Institute, Queen Mary, University of London, London, United Kingdom
| | - Lindy G. Durrant
- Scancell Ltd, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Jason Adhikaree
- Academic Oncology, Nottingham University NHS Trusts, City Hospital Campus, Nottingham, United Kingdom
| | - Chris J. Tinsley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - A. Graham Pockley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephanie E. B. McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
17
|
Mencke P, Hanss Z, Boussaad I, Sugier PE, Elbaz A, Krüger R. Bidirectional Relation Between Parkinson's Disease and Glioblastoma Multiforme. Front Neurol 2020; 11:898. [PMID: 32973662 PMCID: PMC7468383 DOI: 10.3389/fneur.2020.00898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer and Parkinson's disease (PD) define two disease entities that include opposite concepts. Indeed, the involved mechanisms are at different ends of a spectrum related to cell survival - one due to enhanced cellular proliferation and the other due to premature cell death. There is increasing evidence indicating that patients with neurodegenerative diseases like PD have a reduced incidence for most cancers. In support, epidemiological studies demonstrate an inverse association between PD and cancer. Both conditions apparently can involve the same set of genes, however, in affected tissues the expression was inversely regulated: genes that are down-regulated in PD were found to be up-regulated in cancer and vice versa, for example p53 or PARK7. When comparing glioblastoma multiforme (GBM), a malignant brain tumor with poor overall survival, with PD, astrocytes are dysregulated in both diseases in opposite ways. In addition, common genes, that are involved in both diseases and share common key pathways of cell proliferation and metabolism, were shown to be oppositely deregulated in PD and GBM. Here, we provide an overview of the involvement of PD- and GBM-associated genes in common pathways that are dysregulated in both conditions. Moreover, we illustrate why the simultaneous study of PD and GBM regarding the role of common pathways may lead to a deeper understanding of these still incurable conditions. Eventually, considering the inverse regulation of certain genes in PD and GBM will help to understand their mechanistic basis, and thus to define novel target-based strategies for causative treatments.
Collapse
Affiliation(s)
- Pauline Mencke
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Zoé Hanss
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | | | - Alexis Elbaz
- Institut de Statistique de l'Université de Paris, Paris, France
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
18
|
Birch JL, Coull BJ, Spender LC, Watt C, Willison A, Syed N, Chalmers AJ, Hossain-Ibrahim MK, Inman GJ. Multifaceted transforming growth factor-beta (TGFβ) signalling in glioblastoma. Cell Signal 2020; 72:109638. [PMID: 32320860 DOI: 10.1016/j.cellsig.2020.109638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is an aggressive and devastating primary brain cancer which responds very poorly to treatment. The average survival time of patients is only 14-15 months from diagnosis so there is a clear and unmet need for the development of novel targeted therapies to improve patient outcomes. The multifunctional cytokine TGFβ plays fundamental roles in development, adult tissue homeostasis, tissue wound repair and immune responses. Dysfunction of TGFβ signalling has been implicated in both the development and progression of many tumour types including GBM, thereby potentially providing an actionable target for its treatment. This review will examine TGFβ signalling mechanisms and their role in the development and progression of GBM. The targeting of TGFβ signalling using a variety of approaches including the TGFβ binding protein Decorin will be highlighted as attractive therapeutic strategies.
Collapse
Affiliation(s)
| | - Barry J Coull
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Lindsay C Spender
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Courtney Watt
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Alice Willison
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Nelofer Syed
- The John Fulcher Molecular Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | | | - M Kismet Hossain-Ibrahim
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Neurosurgery, Ninewells Hospital and Medical School, NHS Tayside, Dundee, UK
| | - Gareth J Inman
- CRUK Beatson Institute, Glasgow, UK; Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
19
|
What Have In Vitro Co-Culture Models Taught Us about the Contribution of Epithelial-Mesenchymal Interactions to Airway Inflammation and Remodeling in Asthma? Cells 2020; 9:cells9071694. [PMID: 32679790 PMCID: PMC7408556 DOI: 10.3390/cells9071694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
As the lung develops, epithelial-mesenchymal crosstalk is essential for the developmental processes that drive cell proliferation, differentiation, and extracellular matrix (ECM) production within the lung epithelial-mesenchymal trophic unit (EMTU). In asthma, a number of the lung EMTU developmental signals have been associated with airway inflammation and remodeling, which has led to the hypothesis that aberrant activation of the asthmatic EMTU may lead to disease pathogenesis. Monoculture studies have aided in the understanding of the altered phenotype of airway epithelial and mesenchymal cells and their contribution to the pathogenesis of asthma. However, 3-dimensional (3D) co-culture models are needed to enable the study of epithelial-mesenchymal crosstalk in the setting of the in vivo environment. In this review, we summarize studies using 3D co-culture models to assess how defective epithelial-mesenchymal communication contributes to chronic airway inflammation and remodeling within the asthmatic EMTU.
Collapse
|
20
|
Hübner M, Effinger D, Wu T, Strauß G, Pogoda K, Kreth FW, Kreth S. The IL-1 Antagonist Anakinra Attenuates Glioblastoma Aggressiveness by Dampening Tumor-Associated Inflammation. Cancers (Basel) 2020; 12:E433. [PMID: 32069807 PMCID: PMC7072290 DOI: 10.3390/cancers12020433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The recombinant IL-1 receptor antagonist anakinra-currently approved for the treatment of autoinflammatory diseases-blocks IL-1β-mediated inflammatory signaling. As inflammation is a major driver of cancer, we hypothesized that anakinra might be able to mitigate glioblastoma (GBM) aggressiveness. METHODS Primary GBM or T98G cells were incubated alone or with peripheral blood mononuclear cells (PBMCs) and were subsequently treated with IL-1β and/or anakinra. T cells were obtained by magnetic bead isolation. Protein and mRNA expression were quantified by SDS-PAGE, qRT-PCR, and ELISA, respectively. Cell proliferation and apoptosis were analyzed via flow cytometry. Chemotaxis was studied via time-lapse microscopy. RESULTS Upon IL-1β stimulation, anakinra attenuated proinflammatory gene expression in both GBM cells and PBMCs, and mitigated tumor migration and proliferation. In a more lifelike model replacing IL-1β stimulation by GBM-PBMC co-culture, sole presence of PBMCs proved sufficient to induce a proinflammatory phenotype in GBM cells with enhanced proliferation and migration rates and attenuated apoptosis. Anakinra antagonized these pro-tumorigenic effects and, moreover, reduced inflammatory signaling in T cells without compromising anti-tumor effector molecules. CONCLUSION By dampening the inflammatory crosstalk between GBM and immune cells, anakinra mitigated GBM aggressiveness. Hence, counteracting IL-1β-mediated inflammation might be a promising strategy to pursue.
Collapse
Affiliation(s)
- Max Hübner
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - David Effinger
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Tingting Wu
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Gabriele Strauß
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Kristin Pogoda
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
- Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg, Germany
| | | | - Simone Kreth
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| |
Collapse
|
21
|
Riboni L, Abdel Hadi L, Navone SE, Guarnaccia L, Campanella R, Marfia G. Sphingosine-1-Phosphate in the Tumor Microenvironment: A Signaling Hub Regulating Cancer Hallmarks. Cells 2020; 9:E337. [PMID: 32024090 PMCID: PMC7072483 DOI: 10.3390/cells9020337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
As a key hub of malignant properties, the cancer microenvironment plays a crucial role intimately connected to tumor properties. Accumulating evidence supports that the lysophospholipid sphingosine-1-phosphate acts as a key signal in the cancer extracellular milieu. In this review, we have a particular focus on glioblastoma, representative of a highly aggressive and deleterious neoplasm in humans. First, we highlight recent advances and emerging concepts for how tumor cells and different recruited normal cells contribute to the sphingosine-1-phosphate enrichment in the cancer microenvironment. Then, we describe and discuss how sphingosine-1-phosphate signaling contributes to favor cancer hallmarks including enhancement of proliferation, stemness, invasion, death resistance, angiogenesis, immune evasion and, possibly, aberrant metabolism. We also discuss the potential of how sphingosine-1-phosphate control mechanisms are coordinated across distinct cancer microenvironments. Further progress in understanding the role of S1P signaling in cancer will depend crucially on increasing knowledge of its participation in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Loubna Abdel Hadi
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| |
Collapse
|
22
|
Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells 2019; 8:cells8101143. [PMID: 31557902 PMCID: PMC6829508 DOI: 10.3390/cells8101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The neoplastic transformation of normal to metastatic cancer cells is a complex multistep process involving the progressive accumulation of interacting genetic and epigenetic changes that alter gene function and affect cell physiology and homeostasis. Epigenetic changes including DNA methylation, histone modifications and changes in noncoding RNA expression, and deregulation of epigenetic processes can alter gene expression during the multistep process of carcinogenesis. Cancer progression and metastasis through an ‘invasion–metastasis cascade’ involving an epithelial-to-mesenchymal cell transition (EMT), the generation of cancer stem cells (CSCs), invasion of adjacent tissues, and dissemination are fueled by inflammation, which is considered a hallmark of cancer. Chronic inflammation is generated by inflammatory cytokines secreted by the tumor and the tumor-associated cells within the tumor microenvironment. Inflammatory cytokine signaling initiates signaling pathways leading to the activation of master transcription factors (TFs) such as Smads, STAT3, and NF-κB. Moreover, the same inflammatory responses also activate EMT-inducing TF (EMT-TF) families such as Snail, Twist, and Zeb, and epigenetic regulators including DNA and histone modifying enzymes and micoRNAs, through complex interconnected positive and negative feedback loops to regulate EMT and CSC generation. Here, we review the molecular regulatory feedback loops and networks involved in inflammatory cytokine-induced EMT and CSC generation.
Collapse
|
23
|
TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 2018; 52:112-120. [PMID: 30184463 DOI: 10.1016/j.cellsig.2018.09.002] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor β (TGF-β) plays an important role in normal development and homeostasis. Dysregulation of TGF-β responsiveness and its downstream signaling pathways contribute to many diseases, including cancer initiation, progression, and metastasis. TGF-β ligands bind to three isoforms of the TGF-β receptor (TGFBR) with different affinities. TGFBR1 and 2 are both serine/threonine and tyrosine kinases, but TGFBR3 does not have any kinase activity. They are necessary for activating canonical or noncanonical signaling pathways, as well as for regulating the activation of other signaling pathways. Another prominent feature of TGF-β signaling is its context-dependent effects, temporally and spatially. The diverse effects and context dependency are either achieved by fine-tuning the downstream components or by regulating the expressions and activities of the ligands or receptors. Focusing on the receptors in events in and beyond TGF-β signaling, we review the membrane trafficking of TGFBRs, the kinase activity of TGFBR1 and 2, the direct interactions between TGFBR2 and other receptors, and the novel roles of TGFBR3.
Collapse
|
24
|
Gao P, Wu W, Ye J, Lu YW, Adam AP, Singer HA, Long X. Transforming growth factor β1 suppresses proinflammatory gene program independent of its regulation on vascular smooth muscle differentiation and autophagy. Cell Signal 2018; 50:160-170. [PMID: 30006123 DOI: 10.1016/j.cellsig.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/19/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β (TGFβ) signaling plays crucial roles in maintaining vascular integrity and homeostasis, and is established as a strong activator of vascular smooth muscle cell (VSMC) differentiation. Chronic inflammation is a hallmark of various vascular diseases. Although TGFβ signaling has been suggested to be protective against inflammatory aortic aneurysm progression, its exact effects on VSMC inflammatory process and the underlying mechanisms are not fully unraveled. Here we revealed that TGFβ1 suppressed the expression of a broad array of proinflammatory genes while potently induced the expression of contractile genes in cultured primary human coronary artery SMCs (HCASMCs). The regulation of TGFβ1 on VSMC contractile and proinflammatory gene programs appeared to occur in parallel and both processes were through a SMAD4-dependent canonical pathway. We also showed evidence that the suppression of TGFβ1 on VSMC proinflammatory genes was mediated, at least partially through the blockade of signal transducer and activator of transcription 3 (STAT3) and NF-κB pathways. Interestingly, our RNA-seq data also revealed that TGFβ1 suppressed gene expression of a battery of autophagy mediators, which was validated by western blot for the conversion of microtubule-associated protein light chain 3 (LC3) and by immunofluo-rescence staining for LC3 puncta. However, impairment of VSMC autophagy by ATG5 deletion failed to rescue TGFβ1 influence on both VSMC contractile and proinflammatory gene programs, suggesting that TGFβ1-regulated VSMC differentiation and inflammation are not attributed to TGFβ1 suppression on autophagy. In summary, our results demonstrated an important role of TGFβ signaling in suppressing proinflammatory gene program in cultured primary human VSMCs via the blockade on STAT3 and NF-κB pathway, therefore providing novel insights into the mechanisms underlying the protective role of TGFβ signaling in vascular diseases.
Collapse
Affiliation(s)
- Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Wen Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Jiemei Ye
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Yao Wei Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States; Department of Ophthalmology, Albany Medical College, Albany, NY, United States
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
25
|
Farajzadeh Valilou S, Keshavarz-Fathi M, Silvestris N, Argentiero A, Rezaei N. The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer. Cytokine Growth Factor Rev 2018; 39:46-61. [PMID: 29373197 DOI: 10.1016/j.cytogfr.2018.01.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/24/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is considered as one of the most lethal types of cancer due to its poor prognosis and lack of effective therapeutic approaches. Although many studies have been done on pancreatic cancer, the current treatment methods did not exhibit successful results. Hence, novel strategies are needed for treatment of pancreatic cancer. The microenvironment of pancreatic cancer contains many factors such as inflammatory cytokines and tumor associated macrophages (TAMs), which influence the tumor's status. These factors can be upregulated and consequently lead to exacerbation of tumor progression. Understanding the role of pro- and anti-inflammatory cytokines and the function of TAMs in the pancreatic cancer microenvironment might lead to development and improvement of novel strategies in the diagnosis and treatment of pancreatic cancer and may result in promising treatments for this type of cancer.
Collapse
Affiliation(s)
- Saeed Farajzadeh Valilou
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nicola Silvestris
- Medical Oncology Unit and Scientific Directorate, National Cancer Institute IRCCS "Giovanni Paolo II", Bari, Italy; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Bari, Italy
| | - Antonella Argentiero
- Medical Oncology Unit, National Cancer Institute IRCCS "Giovanni Paolo II", Bari, Italy; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Bari, Italy
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
26
|
Shinriki S, Jono H, Maeshiro M, Nakamura T, Guo J, Li JD, Ueda M, Yoshida R, Shinohara M, Nakayama H, Matsui H, Ando Y. Loss of CYLD promotes cell invasion via ALK5 stabilization in oral squamous cell carcinoma. J Pathol 2018; 244:367-379. [PMID: 29235674 DOI: 10.1002/path.5019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
Oral squamous cell carcinoma (OSCC) has a very poor prognosis because of its highly invasive nature, and the 5-year survival rate has not changed appreciably for the past 30 years. Although cylindromatosis (CYLD), a deubiquitinating enzyme, is thought to be a potent tumour suppressor, its biological and clinical significance in OSCC is largely unknown. This study aimed to clarify the roles of CYLD in OSCC progression. Our immunohistochemical analyses revealed significantly reduced CYLD expression in invasive areas in OSCC tissues, whereas CYLD expression was conserved in normal epithelium and carcinoma in situ. Furthermore, downregulation of CYLD by siRNA led to the acquisition of mesenchymal features and increased migratory and invasive properties in OSCC cells and HaCaT keratinocytes. It is interesting that CYLD knockdown promoted transforming growth factor-β (TGF-β) signalling by inducing stabilization of TGF-β receptor I (ALK5) in a cell autonomous fashion. In addition, the response to exogenous TGF-β stimulation was enhanced by CYLD downregulation. The invasive phenotypes induced by CYLD knockdown were completely blocked by an ALK5 inhibitor. In addition, lower expression of CYLD was significantly associated with the clinical features of deep invasion and poor overall survival, and also with increased phosphorylation of Smad3, which is an indicator of activation of TGF-β signalling in invasive OSCC. These findings suggest that downregulation of CYLD promotes invasion with mesenchymal transition via ALK5 stabilization in OSCC cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Satoru Shinriki
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Manabu Maeshiro
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Nakamura
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jianying Guo
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection and Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
27
|
Sangpairoj K, Vivithanaporn P, Apisawetakan S, Chongthammakun S, Sobhon P, Chaithirayanon K. RUNX1 Regulates Migration, Invasion, and Angiogenesis via p38 MAPK Pathway in Human Glioblastoma. Cell Mol Neurobiol 2017; 37:1243-1255. [PMID: 28012022 PMCID: PMC11482080 DOI: 10.1007/s10571-016-0456-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
Abstract
Runt-related transcription factor 1 (RUNX1) is essential for the establishment of fetal and adult hematopoiesis and neuronal development. Aberrant expression of RUNX1 led to proliferation and metastasis of several cancers. The aim of the present study was to investigate the role of RUNX1 in migration, invasion, and angiogenesis of human glioblastoma using IL-1β-treated U-87 MG human glioblastoma cells as a model. IL-1β at 10 ng/ml stimulated translocation of RUNX1 into the nucleus with increased expressions of RUNX1, MMP-1, MMP-2, MMP-9, MMP-19, and VEGFA in U-87 MG cells. In addition, silencing of RUNX1 gene significantly suppressed U-87 MG cell migration and invasion abilities. Moreover, knockdown of RUNX1 mRNA in U-87 MG cells reduced the tube formation of human umbilical vein endothelial cells. Further investigation revealed that IL-1β-induced RUNX1 expression might be mediated via the p38 mitogen-activated protein kinase (MAPK) signaling molecule for the expression of these invasion- and angiogenic-related molecules. Together with an inhibitor of p38 MAPK (SB203580) could decrease RUNX1 mRNA expression. Thus, RUNX1 may be one of the putative molecular targeted therapies against glioma metastasis and angiogenesis through the activation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Kant Sangpairoj
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornpun Vivithanaporn
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Somjai Apisawetakan
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Wattana, Bangkok, 10110, Thailand
| | - Sukumal Chongthammakun
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
- Faculty of Allied Health Sciences, Burapha University, Mueang District, Chonburi, 20131, Thailand
| | - Kulathida Chaithirayanon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
28
|
Cantelli G, Crosas-Molist E, Georgouli M, Sanz-Moreno V. TGFΒ-induced transcription in cancer. Semin Cancer Biol 2017; 42:60-69. [PMID: 27586372 PMCID: PMC6137079 DOI: 10.1016/j.semcancer.2016.08.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022]
Abstract
The Transforming Growth Factor-beta (TGFβ) pathway mediates a broad spectrum of cellular processes and is involved in several diseases, including cancer. TGFβ has a dual role in tumours, acting as a tumour suppressor in the early phase of tumorigenesis and as a tumour promoter in more advanced stages. In this review, we discuss the effects of TGFβ-driven transcription on all stages of tumour progression, with special focus on lung cancer. Since some TGFβ target genes are specifically involved in promoting metastasis, we speculate that these genes might be good targets to block tumour progression without compromising the tumour suppressor effects of the TGFβ pathway.
Collapse
Affiliation(s)
- Gaia Cantelli
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Eva Crosas-Molist
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Mirella Georgouli
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
29
|
Orlova NN, Lebedev TD, Spirin PV, Prassolov VS. Key molecular mechanisms associated with cell malignant transformation in acute myeloid leukemia. Mol Biol 2016. [DOI: 10.1134/s0026893316020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Koskela von Sydow A, Janbaz C, Kardeby C, Repsilber D, Ivarsson M. IL-1α Counteract TGF-β Regulated Genes and Pathways in Human Fibroblasts. J Cell Biochem 2015; 117:1622-32. [DOI: 10.1002/jcb.25455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/01/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Anita Koskela von Sydow
- Faculty of Medicine and Health; Örebro University; Örebro Sweden
- Department of Clinical Research Laboratory; University Hospital; Örebro Sweden
| | - Chris Janbaz
- Faculty of Medicine and Health; Örebro University; Örebro Sweden
- Department of Plastic and Reconstructive Surgery; University Hospital; Örebro Sweden
| | - Caroline Kardeby
- Faculty of Medicine and Health; Örebro University; Örebro Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health; Örebro University; Örebro Sweden
| | - Mikael Ivarsson
- Faculty of Medicine and Health; Örebro University; Örebro Sweden
| |
Collapse
|
31
|
Xu D, Li D, Lu Z, Dong X, Wang X. Type III TGF-β receptor inhibits cell proliferation and migration in salivary glands adenoid cystic carcinoma by suppressing NF-κB signaling. Oncol Rep 2015; 35:267-74. [PMID: 26531330 DOI: 10.3892/or.2015.4390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/26/2015] [Indexed: 11/05/2022] Open
Abstract
It is known that the TGF-β superfamily receptors act as master regulators of cancer progression. However, alteration and role of type III TGF-β receptor (TβRIII, or betaglycan) as the most abundant of the TGF-β receptor has not been explored in salivary gland adenoid cystic carcinoma (ACC). Here, we reported that tumor biopsies and matched normal human salivary glands from patients with ACC were examined for the expression of TβRIII. The expression of TβRIII protein is significantly decreased in ACC patients based on immunohistochemistry and western blot analysis. In vitro, a transient overexpression of TβRIII markedly induced apoptosis and cell cycle arrest in the G2/M phase, thereby inhibited cell viability and migration of ACC-M cells. Co-immunoprecipitation revealed that TβRIII, scaffolding protein-arrestin2 (β-arrestin2) and IκBα formed a complex. Transient overexpression of TβRIII decreased p-p65 expression and increased IκBα expression, which was abolished by knockdown of β-arrestin2. The present study defines TβRIII as a biomarker exerting antitumor action on ACC progression.Gene therapy of TβRIII may be a powerful new approach for ACC disease.
Collapse
Affiliation(s)
- Dongyang Xu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Duo Li
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhiyong Lu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xingli Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaofeng Wang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
32
|
Prabhu L, Mundade R, Korc M, Loehrer PJ, Lu T. Critical role of NF-κB in pancreatic cancer. Oncotarget 2015; 5:10969-75. [PMID: 25473891 PMCID: PMC4294354 DOI: 10.18632/oncotarget.2624] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/23/2014] [Indexed: 01/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, and in spite of intense efforts there are limited therapeutic options for patients with PDAC. PDACs harbor a high frequency of Kras mutations and other driver mutations that lead to altered signaling pathways and contribute to therapeutic resistance. Importantly, constitutive activation of nuclear factor κB (NF-κB) is frequently observed in PDAC. An increasing body of evidence suggests that both classical and non-classical NF-κB pathways play a crucial role in PDAC development and progression. In this review, we update the most recent advances regarding different aspects of NF-κB involvement in PDAC development and progression, emphasizing its potential as a therapeutic target and the need to discover pathway-specific cytosolic NF-κB regulators which could be used to design novel therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Lakshmi Prabhu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Rasika Mundade
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Murray Korc
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN USA. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Patrick J Loehrer
- Division of Hematology and Oncology, Indiana Cancer Pavilion, Indianapolis, IN USA
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN USA. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
33
|
Luzina IG, Todd NW, Sundararajan S, Atamas SP. The cytokines of pulmonary fibrosis: Much learned, much more to learn. Cytokine 2015; 74:88-100. [DOI: 10.1016/j.cyto.2014.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
|
34
|
Massaro M, Martinelli R, Gatta V, Scoditti E, Pellegrino M, Carluccio MA, Calabriso N, Buonomo T, Stuppia L, Storelli C, De Caterina R. Transcriptome-based identification of new anti-inflammatory and vasodilating properties of the n-3 fatty acid docosahexaenoic acid in vascular endothelial cell under proinflammatory conditions [corrected]. PLoS One 2015; 10:e0129652. [PMID: 26114549 PMCID: PMC4482638 DOI: 10.1371/journal.pone.0129652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 05/12/2015] [Indexed: 01/01/2023] Open
Abstract
Scope High intakes of n-3 fatty acids exert anti-inflammatory effects and cardiovascular protection, but the underlying molecular basis is incompletely defined. By genome-wide analysis we searched for novel effects of docosahexaenoic acid (DHA) on gene expression and pathways in human vascular endothelium under pro-inflammatory conditions. Methods and Results Human umbilical vein endothelial cells were treated with DHA and then stimulated with interleukin(IL)-1β. Total RNA was extracted, and gene expression examined by DNA microarray. DHA alone altered the expression of 188 genes, decreasing 92 and increasing 96. IL-1β changed the expression of 2031 genes, decreasing 997 and increasing 1034. Treatment with DHA before stimulation significantly affected the expression of 116 IL-1β-deregulated genes, counter-regulating the expression of 55 genes among those decreased and of 61 among those increased. Functional and network analyses identified immunological, inflammatory and metabolic pathways as the most affected. Newly identified DHA-regulated genes are involved in stemness, cellular growth, cardiovascular system function and cancer, and included cytochrome p450 4F2(CYP4F2), transforming growth factor(TGF)-β2, Cluster of Differentiation (CD)47, caspase recruitment domain(CARD)11 and phosphodiesterase(PDE)5α. Conclusions Endothelial exposure to DHA regulates novel genes and related pathways. Such unbiased identification should increase our understanding of mechanisms by which n-3 fatty acids affect human diseases.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | - Rosanna Martinelli
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Department of Medicine and Surgery of Salerno University, Salerno, Italy
| | - Valentina Gatta
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | - Mariangela Pellegrino
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
- Department of Biological and Environmental Science and Technology (Disteba), University of Salento, Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | | | - Liborio Stuppia
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
| | - Carlo Storelli
- Department of Biological and Environmental Science and Technology (Disteba), University of Salento, Lecce, Italy
| | - Raffaele De Caterina
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
- Fondazione Toscana “Gabriele Monasterio”, Pisa, Italy
- * E-mail:
| |
Collapse
|
35
|
Suzuki T, Iwamoto N, Yamasaki S, Nishino A, Nakashima Y, Horai Y, Kawashiri SY, Ichinose K, Arima K, Tamai M, Nakamura H, Origuchi T, Miyamoto C, Osaki M, Ohyama K, Kuroda N, Kawakami A. Upregulation of Thrombospondin 1 Expression in Synovial Tissues and Plasma of Rheumatoid Arthritis: Role of Transforming Growth Factor-β1 toward Fibroblast-like Synovial Cells. J Rheumatol 2015; 42:943-7. [PMID: 25934826 DOI: 10.3899/jrheum.141292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To investigate the role of thrombospondin 1 (TSP-1) in RA. METHODS Expression of TSP-1 in synovial tissues was determined by immunohistochemistry. Expression of TSP-1 in rheumatoid fibroblast-like synovial cells (FLS) was investigated by quantitative real-time PCR and ELISA. Correlations among the plasma TSP-1 and other variables in patients with RA were examined. RESULTS Expression of TSP-1 was increased in rheumatoid synovial tissues. Transforming growth factor-β1 (TGF-β1) clearly increased TSP-1 expression in FLS on both mRNA and protein levels. Changes in plasma TSP-1 were associated with those in 28-joint Disease Activity Score-erythrocyte sedimentation rate and plasma TGF-β1. CONCLUSION TSP-1 might be critically involved in the disease process of RA through the TGF-β1/TSP-1 axis.
Collapse
Affiliation(s)
- Takahisa Suzuki
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Naoki Iwamoto
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences.
| | - Satoshi Yamasaki
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Ayako Nishino
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Yoshikazu Nakashima
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Yoshiro Horai
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Shin-Ya Kawashiri
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kunihiro Ichinose
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kazuhiko Arima
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Mami Tamai
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Hideki Nakamura
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Tomoki Origuchi
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Chikara Miyamoto
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Makoto Osaki
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kaname Ohyama
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Naotaka Kuroda
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsushi Kawakami
- From the Department of Immunology and Rheumatology, Department of Public Health, Department of Health Sciences, Department of Orthopedic Surgery, and Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki; and Department of Clinical Immunology and Rheumatology, Hiroshima University, Hiroshima, Japan.T. Suzuki, MD; N. Iwamoto, MD, PhD, Assistant Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S. Yamasaki, MD, PhD, Department of Clinical Immunology and Rheumatology, Hiroshima University; A. Nishino, MD; Y. Nakashima, MD; Y. Horai, MD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; S.Y. Kawashiri, MD, PhD, Department of Immunology and Rheumatology, and Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; K. Ichinose, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; K. Arima, MD, PhD, Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences; M. Tamai, MD, PhD; H. Nakamura, MD, PhD, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences; T. Origuchi, MD, PhD, Professor, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences; C. Miyamoto, MD, PhD; M. Osaki, MD, PhD, Professor, Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences; K. Ohyama, PhD; N. Kuroda, PhD, Professor, Department of Environmental and Pharmaceutical Sciences, Nagasaki University Graduate School of Biomedical Sciences; A. Kawakami, MD, PhD, Professor, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
36
|
Yang X, Wei H, Qin L, Zhang S, Wang X, Zhang A, Du L, Zhou H. Reciprocal interaction between fish TGF-β1 and IL-1β is responsible for restraining IL-1β signaling activity in grass carp head kidney leukocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:197-204. [PMID: 25092146 DOI: 10.1016/j.dci.2014.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
In the present study, we found that recombinant grass carp IL-1β (rgcIL-1β) simultaneously up-regulated grass carp IL-1β (gcIL-1β) and TGF-β1 (gcTGF-β1) expression via NF-κB and MAPK signaling in grass carp head kidney leukocytes (HKLs), promoting us to clarify whether TGF-β1 is an effective antagonist in IL-1β expression and activity. Our results showed that a stimulation of gcIL-1β on its own expression was noted within 6 h, but gcTGF-β1 neutralizing antibody prolonged gcIL-1β autostimulation up to 12 h, indicating a possible inhibitory role of gcTGF-β1 in regulating gcIL-1β effect. This notion was reinforced by the fact that recombinant grass carp TGF-β1 (rgcTGF-β1) could impede rgcIL-1β-induced gcIL-1β gene expression and secretion in a reciprocal manner. Further studies revealed that rgcTGF-β1 was able to attenuate rgcIL-1β-induced mRNA expression of its own receptor signaling molecules and the activation of NF-κB. By contrast, rgcIL-1β significantly amplified rgcTGF-β1-mediated gcTGF-β1 type I receptor (ALK5) expression and Smad2 phosphorylation in the same cell model. Taken together, these data shed light on an intrinsic mechanism for controlling inflammatory response by the reciprocal interaction between TGF-β1 and IL-1β in teleost.
Collapse
Affiliation(s)
- Xiao Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengnan Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
37
|
Nguyen DN, Sangild PT, Ostergaard MV, Bering SB, Chatterton DEW. Transforming growth factor-β2 and endotoxin interact to regulate homeostasis via interleukin-8 levels in the immature intestine. Am J Physiol Gastrointest Liver Physiol 2014; 307:G689-99. [PMID: 25147235 DOI: 10.1152/ajpgi.00193.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A balance between pro- and anti-inflammatory signals from milk and microbiota controls intestinal homeostasis just after birth, and an optimal balance is particularly important for preterm neonates that are sensitive to necrotizing enterocolitis (NEC). We suggest that the intestinal cytokine IL-8 plays an important role and hypothesize that transforming growth factor-β2 (TGF-β2) acts in synergy with bacterial lipopolysaccharide (LPS) to control IL-8 levels, thereby supporting intestinal homeostasis. Preterm pigs were fed colostrum (containing TGF-β2) or infant formula (IF) with or without antibiotics (COLOS, n = 27; ANTI, n = 11; IF, n = 40). Intestinal IL-8 levels and NEC incidence were much higher in IF than in COLOS and ANTI pigs (P < 0.001), but IL-8 levels did not correlate with NEC severity. Intestinal TGF-β2 levels were high in COLOS but low in IF and ANTI pigs. Based on these observations, the interplay among IL-8, TGF-β2, and LPS was investigated in a porcine intestinal epithelial cell line. TGF-β2 attenuated LPS-induced IL-6, IL-1β, and TNF-α release by reducing early ERK activation, whereas IL-8 secretion was synergistically induced by LPS and TGF-β2 via NF-κB. The TGF-β2/LPS-induced IL-8 levels stimulated cell proliferation and migration following epithelial injury, without continuous NF-κB activation and cyclooxygenase-2 expression. We suggest that a combined TGF-β2-LPS induction of IL-8 stimulates epithelial repair just after birth when the intestine is first exposed to colonizing bacteria and TGF-β2-containing milk. Moderate IL-8 levels may act to control intestinal inflammation, whereas excessive IL-8 production may enhance the damaging proinflammatory cascade leading to NEC.
Collapse
Affiliation(s)
- Duc Ninh Nguyen
- Faculty of Science, Department of Food Science, University of Copenhagen, Copenhagen, Denmark; and
| | - Per T Sangild
- Faculty of Science, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mette V Ostergaard
- Faculty of Science, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Stine B Bering
- Faculty of Science, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Dereck E W Chatterton
- Faculty of Science, Department of Food Science, University of Copenhagen, Copenhagen, Denmark; and Faculty of Science, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Yang L, Karin M. Roles of tumor suppressors in regulating tumor-associated inflammation. Cell Death Differ 2014. [PMID: 25190145 DOI: 10.1038/cdd.2014.131.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Loss or silencing of tumor suppressors (TSs) promotes neoplastic transformation and malignant progression. To date, most work on TS has focused on their cell autonomous effects. Recent evidence, however, demonstrates an important noncell autonomous role for TS in the control of tumor-associated inflammation. We review evidence from clinical data sets and mouse model studies demonstrating enhanced inflammation and altered tumor microenvironment (TME) upon TS inactivation. We discuss clinical correlations between tumor-associated inflammation and inactivation of TS, and their therapeutic implications. This review sets forth the concept that TS can also suppress tumor-associated inflammation, a concept that provides new insights into tumor-host interactions. We also propose that in some cases the loss of TS function in cancer can be overcome through inhibition of the resulting inflammatory response, regardless whether it is a direct or an indirect consequence of TS loss.
Collapse
Affiliation(s)
- L Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, USA
| | - M Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| |
Collapse
|
39
|
Yang L, Karin M. Roles of tumor suppressors in regulating tumor-associated inflammation. Cell Death Differ 2014; 21:1677-86. [PMID: 25190145 PMCID: PMC4211367 DOI: 10.1038/cdd.2014.131] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022] Open
Abstract
Loss or silencing of tumor suppressors (TSs) promotes neoplastic transformation and malignant progression. To date, most work on TS has focused on their cell autonomous effects. Recent evidence, however, demonstrates an important noncell autonomous role for TS in the control of tumor-associated inflammation. We review evidence from clinical data sets and mouse model studies demonstrating enhanced inflammation and altered tumor microenvironment (TME) upon TS inactivation. We discuss clinical correlations between tumor-associated inflammation and inactivation of TS, and their therapeutic implications. This review sets forth the concept that TS can also suppress tumor-associated inflammation, a concept that provides new insights into tumor-host interactions. We also propose that in some cases the loss of TS function in cancer can be overcome through inhibition of the resulting inflammatory response, regardless whether it is a direct or an indirect consequence of TS loss.
Collapse
Affiliation(s)
- L Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, USA
| | - M Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| |
Collapse
|
40
|
Caja F, Vannucci L. TGFβ: A player on multiple fronts in the tumor microenvironment. J Immunotoxicol 2014; 12:300-7. [DOI: 10.3109/1547691x.2014.945667] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
Fathima Hurmath K, Ramaswamy P, Nandakumar DN. IL-1β microenvironment promotes proliferation, migration, and invasion of human glioma cells. Cell Biol Int 2014; 38:1415-22. [DOI: 10.1002/cbin.10353] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 06/09/2014] [Indexed: 12/11/2022]
Affiliation(s)
- K. Fathima Hurmath
- Department of Neurochemistry; National Institute of Mental Health and Neuro Sciences (NIMHANS); Bengaluru 560029 India
| | - Palaniswamy Ramaswamy
- Department of Neurochemistry; National Institute of Mental Health and Neuro Sciences (NIMHANS); Bengaluru 560029 India
| | | |
Collapse
|
42
|
Tarassishin L, Casper D, Lee SC. Aberrant expression of interleukin-1β and inflammasome activation in human malignant gliomas. PLoS One 2014; 9:e103432. [PMID: 25054228 PMCID: PMC4108401 DOI: 10.1371/journal.pone.0103432] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
Objective Glioblastoma is the most frequent and malignant form of primary brain tumor with grave prognosis. Mounting evidence supports that chronic inflammation (such as chronic overactivation of IL-1 system) is a crucial event in carcinogenesis and tumor progression. IL-1 also is an important cytokine with species-dependent regulations and roles in CNS cell activation. While much attention is paid to specific anti-tumor immunity, little is known about the role of chronic inflammation/innate immunity in glioma pathogenesis. In this study, we examined whether human astrocytic cells (including malignant gliomas) can produce IL-1 and its role in glioma progression. Methods We used a combination of cell culture, real-time PCR, ELISA, western blot, immunocytochemistry, siRNA and plasmid transfection, micro-RNA analysis, angiogenesis (tube formation) assay, and neurotoxicity assay. Results Glioblastoma cells produced large quantities of IL-1 when activated, resembling macrophages/microglia. The activation signal was provided by IL-1 but not the pathogenic components LPS or poly IC. Glioblastoma cells were highly sensitive to IL-1 stimulation, suggesting its relevance in vivo. In human astrocytes, IL-1β mRNA was not translated to protein. Plasmid transfection also failed to produce IL-1 protein, suggesting active repression. Suppression of microRNAs that can target IL-1α/β did not induce IL-1 protein. Glioblastoma IL-1β processing occurred by the NLRP3 inflammasome, and ATP and nigericin increased IL-1β processing by upregulating NLRP3 expression, similar to macrophages. RNAi of annexin A2, a protein strongly implicated in glioma progression, prevented IL-1 induction, demonstrating its new role in innate immune activation. IL-1 also activated Stat3, a transcription factor crucial in glioma progression. IL-1 activated glioblastoma-conditioned media enhanced angiogenesis and neurotoxicity. Conclusions Our results demonstrate unique, species-dependent immune activation mechanisms involving human astrocytes and astrogliomas. Specifically, the ability to produce IL-1 by glioblastoma cells may confer them a mesenchymal phenotype including increased migratory capacity, unique gene signature and proinflammatory signaling.
Collapse
Affiliation(s)
- Leonid Tarassishin
- Department of Pathology (Neuropathology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Diana Casper
- Department of Neurosurgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Sunhee C Lee
- Department of Pathology (Neuropathology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| |
Collapse
|
43
|
Tumors as organs: biologically augmenting radiation therapy by inhibiting transforming growth factor β activity in carcinomas. Semin Radiat Oncol 2014; 23:242-51. [PMID: 24012338 DOI: 10.1016/j.semradonc.2013.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transforming growth factor β (TGFβ) plays critical roles in regulating a plethora of physiological processes in normal organs, including morphogenesis, embryonic development, stem cell differentiation, immune regulation, and wound healing. Though considered a tumor suppressor, TGFβ is a critical mediator of tumor microenvironment, in which it likewise mediates tumor and stromal cell phenotype, recruitment, inflammation, immune function, and angiogenesis. The fact that activation of TGFβ is an early and persistent event in irradiated tissues and that TGFβ signaling controls effective DNA damage response provides a new means to manipulate tumor response to radiation. Here we discuss preclinical studies unraveling TGFβ effects in cancer treatment and review TGFβ biology in lung cancer as an example of the opportunities for TGFβ pathway inhibition as a pharmaceutical approach to augment radiation therapy.
Collapse
|
44
|
Tarassishin L, Lim J, Weatherly DB, Angeletti RH, Lee SC. Interleukin-1-induced changes in the glioblastoma secretome suggest its role in tumor progression. J Proteomics 2014; 99:152-168. [PMID: 24503185 DOI: 10.1016/j.jprot.2014.01.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/02/2014] [Accepted: 01/23/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED The tumor microenvironment including glial cells and their inflammatory products regulates brain tumor development and progression. We have previously established that human glioma cells are exquisitely sensitive to IL-1 stimulation leading us to undertake a comparative analysis of the secretome of unstimulated and cytokine (IL-1)-stimulated glioblastoma cells. We performed label-free quantitative proteomic analysis and detected 190 proteins which included cytokines, chemokines, growth factors, proteases, cell adhesion molecules, extracellular matrix (ECM) and related proteins. Measuring area under the curve (AUC) of peptides for quantitation, the IL-1-induced secretome contained 13 upregulated and 5 downregulated extracellular proteins (p<0.05) compared to controls. Of these, IL-8, CCL2, TNC, Gal-1 and PTX3 were validated as upregulated and SERPINE1, STC2, CTGF and COL4A2 were validated as downregulated factors by immunochemical methods. A major representation of the ECM and related proteins in the glioblastoma secretome and their modulation by IL-1 suggested that IL-1 induces its effect in part by altering TGFβ expression, activity and signaling. These findings enhance our understanding of IL-1-induced modulation of glioma microenvironment, with implications for increased tumor invasion, migration and angiogenesis. They further provide novel targets for the glioblastoma intervention. BIOLOGICAL SIGNIFICANCE Present study is on an unbiased screening of the glioblastoma secretome stimulated by IL-1 which triggers neuroinflammatory cascades in the central nervous system. Network of secreted proteins were shown to be regulated revealing their possible contribution to glioma progression. Label free quantitative proteomics has provided unique novel targets for potential glioblastoma intervention.
Collapse
Affiliation(s)
- Leonid Tarassishin
- Department of Pathology, Albert Einstein College of Medicine, Bronx NY 10461
| | - Jihyeon Lim
- Department of Pathology, Albert Einstein College of Medicine, Bronx NY 10461.,Laboratory for Macromolecular Analysis & Proteomics, Albert Einstein College of Medicine, Bronx NY 10461
| | - D Brent Weatherly
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Ruth H Angeletti
- Laboratory for Macromolecular Analysis & Proteomics, Albert Einstein College of Medicine, Bronx NY 10461.,Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx NY 10461
| | - Sunhee C Lee
- Department of Pathology, Albert Einstein College of Medicine, Bronx NY 10461
| |
Collapse
|
45
|
Olar A, Aldape KD. Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol 2014; 232:165-77. [PMID: 24114756 PMCID: PMC4138801 DOI: 10.1002/path.4282] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 08/23/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most common and most aggressive diffuse glioma, associated with short survival and uniformly fatal outcome, irrespective of treatment. It is characterized by morphological, genetic and gene-expression heterogeneity. The current standard of treatment is maximal surgical resection, followed by radiation, with concurrent and adjuvant chemotherapy. Due to the heterogeneity, most tumours develop resistance to treatment and shortly recur. Following recurrence, glioblastoma is quickly fatal in the majority of cases. Recent genetic molecular advances have contributed to a better understanding of glioblastoma pathophysiology and disease stratification. In this paper we review basic glioblastoma pathophysiology, with emphasis on clinically relevant genetic molecular alterations and potential targets for further drug development.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | | |
Collapse
|
46
|
TGF-β signaling in stem cells and tumorigenesis. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
47
|
The long pentraxin PTX3 as a correlate of cancer-related inflammation and prognosis of malignancy in gliomas. J Neuroimmunol 2013; 260:99-106. [DOI: 10.1016/j.jneuroim.2013.04.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 02/01/2023]
|
48
|
Yeung YT, McDonald KL, Grewal T, Munoz L. Interleukins in glioblastoma pathophysiology: implications for therapy. Br J Pharmacol 2013; 168:591-606. [PMID: 23062197 PMCID: PMC3579281 DOI: 10.1111/bph.12008] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/18/2012] [Accepted: 09/26/2012] [Indexed: 12/14/2022] Open
Abstract
Despite considerable amount of research, the poor prognosis of patients diagnosed with glioblastoma multiforme (GBM) critically needs new drug development to improve clinical outcomes. The development of an inflammatory microenvironment has long been considered important in the initiation and progression of glioblastoma; however, the success of developing therapeutic approaches to target inflammation for GBM therapy has yet been limited. Here, we summarize the accumulating evidence supporting a role for inflammation in the pathogenesis of glioblastoma, discuss anti-inflammatory targets that could be relevant for GBM treatment and provide a perspective on the challenges faced in the development of drugs that target GBM inflammation. In particular, we will review the function of IL-1β, IL-6 and IL-8 as well as the potential of kinase inhibitors targeting key players in inflammatory cell signalling cascades such as JAK, JNK and p38 MAPK.
Collapse
Affiliation(s)
- Y T Yeung
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
49
|
Bioprospecting in the Berkeley Pit. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-444-62615-8.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
50
|
Xu Y, Feng L, Wang S, Zhu Q, Lin J, Lou C, Xiang P, He B, Zheng Z, Tang D, Zuo G. Phytoestrogen calycosin-7-O-β-D-glucopyranoside ameliorates advanced glycation end products-induced HUVEC damage. J Cell Biochem 2012; 112:2953-65. [PMID: 21647942 DOI: 10.1002/jcb.23212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vasculopathy including endothelial cell (EC) apoptosis and inflammation contributes to the high incidence of stroke and myocardial infarction in diabetic patients. The aim of the present study was to investigate the effect of calycosin-7-O-β-D-glucopyranoside (CG), a phytoestrogen, on advanced glycation end products (AGEs)-induced HUVEC damage. We observed that CG can significantly ameliorate AGEs-induced HUVEC oxidative stress and apoptosis. The ratio of SOD/MDA was significantly increased to the normal level by CG pretreatment. CG preincubation dramatically increased anti-apoptotic Bcl-2 while decreased pro-apoptotic Bax and Bad expressions as detected by immunocytochemistry. Moreover, CG ameliorated macrophage migration and adhesion to HUVEC; the monocyte chemotactic protein-1 and interleukin-6 levels in the culture supernatant were dramatically reduced by CG as determined by ELISA; the expressions of inflammatory proteins including ICAM-1, TGF-β1, and RAGE in both protein and mRNA levels were significantly reduced to the normal level by CG pretreatment as determined by immunocytochemistry and real-time RT-PCR. The intracellular investigation suggests that CG can reverse AGEs-activated ERK1/2 and NF-κB phosphorylation, in which estrogen receptors were involved in. Our results strongly indicate that CG can modulate EC dysfunction by ameliorating AGEs-induced cell apoptosis and inflammation.
Collapse
Affiliation(s)
- Youhua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|