1
|
Prydz K, Simm R, Davydova E, Aasheim HC. Ephrin-B1 regulates cell surface residency of heparan sulfate proteoglycans (HSPGs) and complexes with the HSPG CD44V3-10 and fibroblast growth factor receptors. Glycobiology 2025; 35:cwaf020. [PMID: 40294072 PMCID: PMC12036661 DOI: 10.1093/glycob/cwaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
The ephrin family of membrane proteins mediate intracellular signalling as ligands of transmembrane Eph tyrosine kinase receptors during cell-cell interactions. Ephrin/Eph signalling regulates processes like cell migration and angiogenesis and is of particular importance during embryonic development. Ephrins-A3 and -B3 can also bind to cell surface-associated and soluble heparan sulfate proteoglycans (HSPGs) that also play important roles during early development. Here we show that ephrins-B1, -B2, and -B3 all can bind in cis to cell surface HSPGs, while only ephrin-B1 interacts with cell surface HSPGs in a way that retards HSPG endocytosis. Expressing ephrin-B1 in HEK293T cells, using polyethyleneimine (PEI) as transfection agent, increased cell surface levels of HSPGs which were detected by an anti-heparan sulfate (HS) antibody or by ephrin-B3-Fc binding. Ephrin-B1 in the plasma membrane seemed to retard PEI-induced HSPG internalisation and degradation. Binding of HSPGs by ephrin-B1 was observed for the human, mouse, xenopus, and zebrafish homologs, and did not require the cytoplasmic tail of ephrin-B1 that contains tyrosines shown to be involved in intracellular signalling. Furthermore, ephrin-B1 could bind the HSPG variant of CD44 (CD44V3-10), a complex that could further associate with fibroblast growth factor receptors (1 and 4) after co-expression with one of these receptors. In summary, our data indicate that ephrin-B1 can regulate cellular HSPG turnover and is able to form complexes of potential biological importance with CD44V3-10 and fibroblast growth factor receptors.
Collapse
Affiliation(s)
- Kristian Prydz
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
| | - Roger Simm
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
| | - Erna Davydova
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
| | - Hans-Christian Aasheim
- School of Health Sciences, University College Kristiania, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo 0153, Norway
| |
Collapse
|
2
|
Schelker RC, Fioravanti J, Mastrogiovanni F, Baldwin JG, Rana N, Li P, Chen P, Vadász T, Spolski R, Heuser-Loy C, Slavkovic-Lukic D, Noronha P, Damiano G, Raccosta L, Maggioni D, Pullugula S, Lin JX, Oh J, Grandinetti P, Lecce M, Hesse L, Kocks E, Martín-Santos A, Gebhard C, Telford WG, Ji Y, Restifo NP, Russo V, Rehli M, Herr W, Leonard WJ, Gattinoni L. LIM-domain-only 4 (LMO4) enhances CD8 + T-cell stemness and tumor rejection by boosting IL-21-STAT3 signaling. Signal Transduct Target Ther 2024; 9:199. [PMID: 39117617 PMCID: PMC11310520 DOI: 10.1038/s41392-024-01915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
High frequencies of stem-like memory T cells in infusion products correlate with superior patient outcomes across multiple T cell therapy trials. Herein, we analyzed a published CRISPR activation screening to identify transcriptional regulators that could be harnessed to augment stem-like behavior in CD8+ T cells. Using IFN-γ production as a proxy for CD8+ T cell terminal differentiation, LMO4 emerged among the top hits inhibiting the development of effectors cells. Consistently, we found that Lmo4 was downregulated upon CD8+ T cell activation but maintained under culture conditions facilitating the formation of stem-like T cells. By employing a synthetic biology approach to ectopically express LMO4 in antitumor CD8+ T cells, we enabled selective expansion and enhanced persistence of transduced cells, while limiting their terminal differentiation and senescence. LMO4 overexpression promoted transcriptional programs regulating stemness, increasing the numbers of stem-like CD8+ memory T cells and enhancing their polyfunctionality and recall capacity. When tested in syngeneic and xenograft tumor models, LMO4 overexpression boosted CD8+ T cell antitumor immunity, resulting in enhanced tumor regression. Rather than directly modulating gene transcription, LMO4 bound to JAK1 and potentiated STAT3 signaling in response to IL-21, inducing the expression of target genes (Tcf7, Socs3, Junb, and Zfp36) crucial for memory responses. CRISPR/Cas9-deletion of Stat3 nullified the enhanced memory signature conferred by LMO4, thereby abrogating the therapeutic benefit of LMO4 overexpression. These results establish LMO4 overexpression as an effective strategy to boost CD8+ T cell stemness, providing a new synthetic biology tool to bolster the efficacy of T cell-based immunotherapies.
Collapse
Affiliation(s)
- Roland C Schelker
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Jessica Fioravanti
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fabio Mastrogiovanni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jeremy G Baldwin
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nisha Rana
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ping Chen
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timea Vadász
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Heuser-Loy
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Pedro Noronha
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Giuseppe Damiano
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Raccosta
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Daniela Maggioni
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Sree Pullugula
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Grandinetti
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario Lecce
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Leo Hesse
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Emilia Kocks
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Azucena Martín-Santos
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Claudia Gebhard
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - William G Telford
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yun Ji
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vincenzo Russo
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- National Center for Tumor Diseases, WERA Site, Würzburg-Erlangen-Regensburg-Augsburg, Germany
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- University of Regensburg, Regensburg, Germany.
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Sasine JP, Kozlova NY, Valicente L, Dukov J, Tran DH, Himburg HA, Kumar S, Khorsandi S, Chan A, Grohe S, Li M, Kan J, Sehl ME, Schiller GJ, Reinhardt B, Singh BK, Ho R, Yue P, Pasquale EB, Chute JP. Inhibition of Ephrin B2 Reverse Signaling Abolishes Multiple Myeloma Pathogenesis. Cancer Res 2024; 84:919-934. [PMID: 38231476 PMCID: PMC10940855 DOI: 10.1158/0008-5472.can-23-1950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Bone marrow vascular endothelial cells (BM EC) regulate multiple myeloma pathogenesis. Identification of the mechanisms underlying this interaction could lead to the development of improved strategies for treating multiple myeloma. Here, we performed a transcriptomic analysis of human ECs with high capacity to promote multiple myeloma growth, revealing overexpression of the receptor tyrosine kinases, EPHB1 and EPHB4, in multiple myeloma-supportive ECs. Expression of ephrin B2 (EFNB2), the binding partner for EPHB1 and EPHB4, was significantly increased in multiple myeloma cells. Silencing EPHB1 or EPHB4 in ECs suppressed multiple myeloma growth in coculture. Similarly, loss of EFNB2 in multiple myeloma cells blocked multiple myeloma proliferation and survival in vitro, abrogated multiple myeloma engraftment in immune-deficient mice, and increased multiple myeloma sensitivity to chemotherapy. Administration of an EFNB2-targeted single-chain variable fragment also suppressed multiple myeloma growth in vivo. In contrast, overexpression of EFNB2 in multiple myeloma cells increased STAT5 activation, increased multiple myeloma cell survival and proliferation, and decreased multiple myeloma sensitivity to chemotherapy. Conversely, expression of mutant EFNB2 lacking reverse signaling capacity in multiple myeloma cells increased multiple myeloma cell death and sensitivity to chemotherapy and abolished multiple myeloma growth in vivo. Complementary analysis of multiple myeloma patient data revealed that increased EFNB2 expression is associated with adverse-risk disease and decreased survival. This study suggests that EFNB2 reverse signaling controls multiple myeloma pathogenesis and can be therapeutically targeted to improve multiple myeloma outcomes. SIGNIFICANCE Ephrin B2 reverse signaling mediated by endothelial cells directly regulates multiple myeloma progression and treatment resistance, which can be overcome through targeted inhibition of ephrin B2 to abolish myeloma.
Collapse
Affiliation(s)
- Joshua P. Sasine
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Natalia Y. Kozlova
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Lisa Valicente
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Jennifer Dukov
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Dana H. Tran
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sanjeev Kumar
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Sarah Khorsandi
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aldi Chan
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Samantha Grohe
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Mary E. Sehl
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Gary J. Schiller
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Bryanna Reinhardt
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brijesh Kumar Singh
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California
| | - Ritchie Ho
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California
| | - Peibin Yue
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Elena B. Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California
| | - John P. Chute
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| |
Collapse
|
4
|
Stergiou IE, Papadakos SP, Karyda A, Tsitsilonis OE, Dimopoulos MA, Theocharis S. EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets. Cancers (Basel) 2023; 15:3963. [PMID: 37568780 PMCID: PMC10417178 DOI: 10.3390/cancers15153963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma receptors (EPHs) represent the largest family of receptor tyrosine kinases (RTKs). EPH interaction with ephrins, their membrane-bound ligands, holds a pivotal role in embryonic development, while, though less active, it is also implicated in various physiological functions during adult life. In normal hematopoiesis, different patterns of EPH/ephrin expression have been correlated with hematopoietic stem cell (HSC) maintenance and lineage-committed hematopoietic progenitor cell (HPC) differentiation, as well as with the functional properties of their mature offspring. Research in the field of hematologic malignancies has unveiled a rather complex involvement of the EPH/ephrinsignaling pathway in the pathophysiology of these neoplasms. Aberrations in genetic, epigenetic, and protein levels have been identified as possible players implicated both in tumor progression and suppression, while correlations have also been highlighted regarding prognosis and response to treatment. Initial efforts to therapeutically target the EPH/ephrin axis have been undertaken in the setting of hematologic neoplasia but are mainly confined to the preclinical level. To this end, deciphering the complexity of this signaling pathway both in normal and malignant hematopoiesis is necessary.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Anna Karyda
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| |
Collapse
|
5
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Topological Distribution of Wound Stiffness Modulates Wound-Induced Hair Follicle Neogenesis. Pharmaceutics 2022; 14:pharmaceutics14091926. [PMID: 36145674 PMCID: PMC9504897 DOI: 10.3390/pharmaceutics14091926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
In the large full-thickness mouse skin regeneration model, wound-induced hair neogenesis (WIHN) occurs in the wound center. This implies a spatial regulation of hair regeneration. The role of mechanotransduction during tissue regeneration is poorly understood. Here, we created wounds with equal area but different shapes to understand if perturbing mechanical forces change the area and quantity of de novo hair regeneration. Atomic force microscopy of wound stiffness demonstrated a stiffness gradient across the wound with the wound center softer than the margin. Reducing mechanotransduction signals using FAK or myosin II inhibitors significantly increased WIHN and, conversely, enhancing these signals with an actin stabilizer reduced WIHN. Here, α-SMA was downregulated in FAK inhibitor-treated wounds and lowered wound stiffness. Wound center epithelial cells exhibited a spherical morphology relative to wound margin cells. Differential gene expression analysis of FAK inhibitor-treated wound RNAseq data showed that cytoskeleton-, integrin-, and matrix-associated genes were downregulated, while hair follicular neogenesis, cell proliferation, and cell signaling genes were upregulated. Immunohistochemistry staining showed that FAK inhibition increased pSTAT3 nuclear staining in the regenerative wound center, implying enhanced signaling for hair follicular neogenesis. These findings suggest that controlling wound stiffness modulates tissue regeneration encompassing epithelial competence, tissue patterning, and regeneration during wound healing.
Collapse
|
7
|
EphrinB2-EphB4 Signaling in Neurooncological Disease. Int J Mol Sci 2022; 23:ijms23031679. [PMID: 35163601 PMCID: PMC8836162 DOI: 10.3390/ijms23031679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
EphrinB2-EphB4 signaling is critical during embryogenesis for cardiovascular formation and neuronal guidance. Intriguingly, critical expression patterns have been discovered in cancer pathologies over the last two decades. Multiple connections to tumor migration, growth, angiogenesis, apoptosis, and metastasis have been identified in vitro and in vivo. However, the molecular signaling pathways are manifold and signaling of the EphB4 receptor or the ephrinB2 ligand is cancer type specific. Here we explore the impact of these signaling pathways in neurooncological disease, including glioma, brain metastasis, and spinal bone metastasis. We identify potential downstream pathways that mediate cancer suppression or progression and seek to understand it´s role in antiangiogenic therapy resistance in glioma. Despite the Janus-faced functions of ephrinB2-EphB4 signaling in cancer Eph signaling remains a promising clinical target.
Collapse
|
8
|
Du E, Li X, He S, Li X, He S. The critical role of the interplays of EphrinB2/EphB4 and VEGF in the induction of angiogenesis. Mol Biol Rep 2020; 47:4681-4690. [PMID: 32488576 DOI: 10.1007/s11033-020-05470-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
The significant role of VEGF (vascular endothelial growth factor) as an angiogenesis inducer is well recognized. Besides VEGF, EphrinB2/EphB4 also plays essential roles in vascular development and postnatal angiogenesis. Compared with classical proangiogenic factors, not only does EphrinB2/EphB4 promote sprouting of new vessels, it is also involved in the vessel maturation. Given their involvement in many physiologic and pathological conditions, EphB4 and EphrinB2 are increasingly recognized as attractive therapeutic targets for angiogenesis-related diseases through modulating their expression and function. Previous works mainly focused on the individual role of VEGF and EphrinB2/EphB4 in angiogenesis, respectively, but the correlation between EphrinB2/EphB4 and VEGF in angiogenesis has not been fully disclosed. Here, we summarize the structure and bidirectional signaling of EphrinB2/EphB4, provide an overview on the relationship between EphrinB2/EphB4 signaling and VEGF pathway in angiogenesis and highlight the associated potential usefulness in anti-angiogenetic therapy.
Collapse
Affiliation(s)
- Enming Du
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xue Li
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Siyu He
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiaohua Li
- Henan Eye Institute, Zhengzhou, 450003, Henan, China. .,Henan Eye Hospital, Zhengzhou, 450003, Henan, China. .,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China. .,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China. .,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China. .,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Shikun He
- Henan Eye Institute, Zhengzhou, 450003, Henan, China. .,Henan Eye Hospital, Zhengzhou, 450003, Henan, China. .,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China. .,Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, USC Roski Eye Institute, Los Angeles, CA, 90033, USA.
| |
Collapse
|
9
|
Elgebaly MM. Ephrin-Eph Signaling as a Novel Neuroprotection Path in Ischemic Stroke. J Mol Neurosci 2020; 70:2001-2006. [PMID: 32488844 DOI: 10.1007/s12031-020-01603-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
The search for novel neuroprotection strategies in ischemic stroke continues, as revascularization using tissue-plasminogen activator is the only pharmacological method currently available to patients. The purpose of this review article is to summarize research findings regarding the erythropoietin-producing hepatocellular receptor pathway as an emerging novel molecular target for neuroprotection in ischemic stroke. Ephrin-Eph interactions represent a new strategy in neuroprotection. Potential therapeutic targets include the different cellular locations within the neurovascular unit (e.g. astrocytes and neurons) and the different ephrin receptor subtypes. In particular, ephrin-B2/EphB4 receptor stimulation seems to exert neuroprotective effects, while stimulation of other ligands/receptors results in deleterious effects, during the post-ischemic stroke recovery phase. Neuroprotection, assessed by either a decrease in neurovascular unit injury markers or improvement in motor function tests, can be achieved by modulating the activity of different ephrin-Eph receptor subtypes. These novel molecular targets provide multiple potential neuroprotective therapeutic benefits, with meaningful clinical outcomes.
Collapse
Affiliation(s)
- Mostafa M Elgebaly
- College of Pharmacy, Pharmaceutical Sciences Department, Larkin University, 18301 N Miami ave, Miami, FL, 33169, USA.
| |
Collapse
|
10
|
Mencucci MV, Lapyckyj L, Rosso M, Besso MJ, Belgorosky D, Isola M, Vanzulli S, Lodillinsky C, Eiján AM, Tejerizo JC, Gonzalez MI, Zubieta ME, Vazquez-Levin MH. Ephrin-B1 Is a Novel Biomarker of Bladder Cancer Aggressiveness. Studies in Murine Models and in Human Samples. Front Oncol 2020; 10:283. [PMID: 32292715 PMCID: PMC7119101 DOI: 10.3389/fonc.2020.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BC) is the ninth most common cancer worldwide, but molecular changes are still under study. During tumor progression, Epithelial cadherin (E-cadherin) expression is altered and β-catenin may be translocated to the nucleus, where it acts as co-transcription factor of tumor invasion associated genes. This investigation further characterizes E-cadherin and β-catenin associated changes in BC, by combining bioinformatics, an experimental murine cell model (MB49/MB49-I) and human BC samples. In in silico studies, a DisGeNET (gene-disease associations database) analysis identified CDH1 (E-cadherin gene) as one with highest score among 130 BC related-genes. COSMIC mutation analysis revealed CDH1 low mutations rates. Compared to MB49 control BC cells, MB49-I invasive cells showed decreased E-cadherin expression, E- to P-cadherin switch, higher β-catenin nuclear signal and lower cytoplasmic p-Ser33-β-catenin signal, higher Ephrin-B1 ligand and EphB2 receptor expression, higher Phospho-Stat3 and Urokinase-type Plasminogen Activator (UPA), and UPA receptor expression. MB49-I cells transfected with Ephrin-B1 siRNA showed lower migratory and invasive capacity than control cells (scramble siRNA). By immunohistochemistry, orthotopic MB49-I tumors had lower E-cadherin, increased nuclear β-catenin, lower pSer33-β-catenin cytoplasmic signal, and higher Ephrin-B1 expression than MB49 tumors. Similar changes were found in human BC tumors, and 83% of infiltrating tumors depicted a high Ephrin-B1 stain. An association between higher Ephrin-B1 expression and higher stage and tumor grade was found. No association was found between abnormal E-cadherin signal, Ephrin-B1 expression or clinical-pathological parameter. This study thoroughly analyzed E-cadherin and associated changes in BC, and reports Ephrin-B1 as a new marker of tumor aggressiveness.
Collapse
Affiliation(s)
- María Victoria Mencucci
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Lara Lapyckyj
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Marina Rosso
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - María José Besso
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| | - Denise Belgorosky
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Isola
- Departamento de Anatomía Patológica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Catalina Lodillinsky
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana María Eiján
- Research Area, Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Tejerizo
- Departamento de Urología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - María Ercilia Zubieta
- Departamento de Urología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Hebe Vazquez-Levin
- Laboratorio de Estudios de la Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Buenos Aires, Argentina
| |
Collapse
|
11
|
Alibardi L. Immunodetection of ephrin receptors in the regenerating tail of the lizard Podarcis muralis suggests stimulation of differentiation and muscle segmentation. Zool Res 2019; 40:416-426. [PMID: 31111695 PMCID: PMC6755122 DOI: 10.24272/j.issn.2095-8137.2019.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ephrin receptors are the most common tyrosine kinase effectors operating during development. Ephrin receptor genes are reported to be up-regulated in the regenerating tail of the Podarcis muralis lizard. Thus, in the current study, we investigated immunolocalization of ephrin receptors in the Podarcis muralis tail during regeneration. Weak immunolabelled bands for ephrin receptors were detected at 15-17 kDa, with a stronger band also detected at 60-65 kDa. Labelled cells and nuclei were seen in the basal layer of the apical wound epidermis and ependyma, two key tissues stimulating tail regeneration. Strong nuclear and cytoplasmic labelling were present in the segmental muscles of the regenerating tail, sparse blood vessels, and perichondrium of regenerating cartilage. The immunolocalization of ephrin receptors in muscle that gives rise to large portions of new tail tissue was correlated with their segmentation. This study suggests that the high localization of ephrin receptors in differentiating epidermis, ependyma, muscle, and cartilaginous cells is connected to the regulation of cell proliferation through the activation of programs for cell differentiation in the proximal regions of the regenerating tail. The lower immunolabelling of ephrin receptors in the apical blastema, where signaling proteins stimulating cell proliferation are instead present, helps maintain the continuous growth of this region.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna 40126, Italy; E-mail:
| |
Collapse
|
12
|
Wislet S, Vandervelden G, Rogister B. From Neural Crest Development to Cancer and Vice Versa: How p75 NTR and (Pro)neurotrophins Could Act on Cell Migration and Invasion? Front Mol Neurosci 2018; 11:244. [PMID: 30190671 PMCID: PMC6115613 DOI: 10.3389/fnmol.2018.00244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR), also known as low-affinity nerve growth factor, belongs to the tumor necrosis factor family of receptors. p75NTR is widely expressed in the nervous system during the development, as well as, in the neural crest population, since p75NTR has been described as ubiquitously expressed and considered as a neural crest marker. Neural crest cells (NCCs) constitute an transient population accurately migrating and invading, with precision, defined sites of the embryo. During migration, NCCs are guided along distinct migratory pathways by specialized molecules present in the extracellular matrix or on the surfaces of those cells. Two main processes direct NCC migration during the development: (1) an epithelial-to-mesenchymal transition and (2) a process known as contact inhibition of locomotion. In adults, p75NTR remains expressed by NCCs and has been identified in an increasing number of cancer cells. Nonetheless, the regulation of the expression of p75NTR and the underlying mechanisms in stem cell biology or cancer cells have not yet been sufficiently addressed. The main objective of this review is therefore to analyze elements of our actual knowledge regarding p75NTR roles during the development (mainly focusing on neural crest development) and see how we can transpose that information from development to cancer (and vice versa) to better understand the link between p75NTR and cell migration and invasion. In this review, we successively analyzed the molecular mechanisms of p75NTR when it interacts with several coreceptors and/or effectors. We then analyzed which signaling pathways are the most activated or linked to NCC migration during the development. Regarding cancer, we analyzed the described molecular pathways underlying cancer cell migration when p75NTR was correlated to cancer cell migration and invasion. From those diverse sources of information, we finally summarized potential molecular mechanisms underlying p75NTR activation in cell migration and invasion that could lead to new research areas to develop new therapeutic protocols.
Collapse
Affiliation(s)
- Sabine Wislet
- GIGA-Neurosciences, University of Liège, Liège, Belgium
| | | | - Bernard Rogister
- GIGA-Neurosciences, University of Liège, Liège, Belgium.,Department of Neurology, University of Liège, Liège, Belgium
| |
Collapse
|
13
|
Abstract
Craniosynostosis refers to a condition during early development in which one or more of the fibrous sutures of the skull prematurely fuse by turning into bone, which produces recognizable patterns of cranial shape malformations depending on which suture(s) are affected. In addition to cases with isolated cranial dysmorphologies, craniosynostosis appears in syndromes that include skeletal features of the eyes, nose, palate, hands, and feet as well as impairment of vision, hearing, and intellectual development. Approximately 85% of the cases are nonsyndromic sporadic and emerge after de novo structural genome rearrangements or single nucleotide variation, while the remainders consist of syndromic cases following mendelian inheritance. By karyotyping, genome wide linkage, and CNV analyses as well as by whole exome and whole genome sequencing, numerous candidate genes for craniosynostosis belonging to the FGF, Wnt, BMP, Ras/ERK, ephrin, hedgehog, STAT, and retinoic acid signaling pathways have been identified. Many of the craniosynostosis-related candidate genes form a functional network based upon protein-protein or protein-DNA interactions. Depending on which node of this craniosynostosis-related network is affected by a gene mutation or a change in gene expression pattern, a distinct craniosynostosis syndrome or set of phenotypes ensues. Structural variations may alter the dosage of one or several genes or disrupt the genomic architecture of genes and their regulatory elements within topologically associated chromatin domains. These may exert dominant effects by either haploinsufficiency, dominant negative partial loss of function, gain of function, epistatic interaction, or alteration of levels and patterns of gene expression during development. Molecular mechanisms of dominant modes of action of these mutations may include loss of one or several binding sites for cognate protein partners or transcription factor binding sequences. Such losses affect interactions within functional networks governing development and consequently result in phenotypes such as craniosynostosis. Many of the novel variants identified by genome wide CNV analyses, whole exome and whole genome sequencing are incorporated in recently developed diagnostic algorithms for craniosynostosis.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus. J Neurosci 2018; 38:5710-5726. [PMID: 29793972 DOI: 10.1523/jneurosci.3618-17.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 01/22/2023] Open
Abstract
Astrocyte-derived factors can control synapse formation and functions, making astrocytes an attractive target for regulating neuronal circuits and associated behaviors. Abnormal astrocyte-neuronal interactions are also implicated in neurodevelopmental disorders and neurodegenerative diseases associated with impaired learning and memory. However, little is known about astrocyte-mediated mechanisms that regulate learning and memory. Here, we propose astrocytic ephrin-B1 as a regulator of synaptogenesis in adult hippocampus and mouse learning behaviors. We found that astrocyte-specific ablation of ephrin-B1 in male mice triggers an increase in the density of immature dendritic spines and excitatory synaptic sites in the adult CA1 hippocampus. However, the prevalence of immature dendritic spines is associated with decreased evoked postsynaptic firing responses in CA1 pyramidal neurons, suggesting impaired maturation of these newly formed and potentially silent synapses or increased excitatory drive on the inhibitory neurons resulting in the overall decreased postsynaptic firing. Nevertheless, astrocyte-specific ephrin-B1 knock-out male mice exhibit normal acquisition of fear memory but enhanced contextual fear memory recall. In contrast, overexpression of astrocytic ephrin-B1 in the adult CA1 hippocampus leads to the loss of dendritic spines, reduced excitatory input, and impaired contextual memory retention. Our results suggest that astrocytic ephrin-B1 may compete with neuronal ephrin-B1 and mediate excitatory synapse elimination through its interactions with neuronal EphB receptors. Indeed, a deletion of neuronal EphB receptors impairs the ability of astrocytes expressing functional ephrin-B1 to engulf synaptosomes in vitro Our findings demonstrate that astrocytic ephrin-B1 regulates long-term contextual memory by restricting new synapse formation in the adult hippocampus.SIGNIFICANCE STATEMENT These studies address a gap in our knowledge of astrocyte-mediated regulation of learning and memory by unveiling a new role for ephrin-B1 in astrocytes and elucidating new mechanisms by which astrocytes regulate learning. Our studies explore the mechanisms underlying astrocyte regulation of hippocampal circuit remodeling during learning using new genetic tools that target ephrin-B signaling in astrocytes in vivo On a subcellular level, astrocytic ephrin-B1 may compete with neuronal ephrin-B1 and trigger astrocyte-mediated elimination of EphB receptor-containing synapses. Given the role EphB receptors play in neurodevelopmental disorders and neurodegenerative diseases, these findings establish a foundation for future studies of astrocyte-mediated synaptogenesis in clinically relevant conditions that can help to guide the development of clinical applications for a variety of neurological disorders.
Collapse
|
15
|
Tyzack GE, Hall CE, Sibley CR, Cymes T, Forostyak S, Carlino G, Meyer IF, Schiavo G, Zhang SC, Gibbons GM, Newcombe J, Patani R, Lakatos A. A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models. Nat Commun 2017; 8:1164. [PMID: 29079839 PMCID: PMC5660125 DOI: 10.1038/s41467-017-01283-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/06/2017] [Indexed: 12/25/2022] Open
Abstract
Astrocyte responses to neuronal injury may be beneficial or detrimental to neuronal recovery, but the mechanisms that determine these different responses are poorly understood. Here we show that ephrin type-B receptor 1 (EphB1) is upregulated in injured motor neurons, which in turn can activate astrocytes through ephrin-B1-mediated stimulation of signal transducer and activator of transcription-3 (STAT3). Transcriptional analysis shows that EphB1 induces a protective and anti-inflammatory signature in astrocytes, partially linked to the STAT3 network. This is distinct from the response evoked by interleukin (IL)-6 that is known to induce both pro inflammatory and anti-inflammatory processes. Finally, we demonstrate that the EphB1-ephrin-B1 pathway is disrupted in human stem cell derived astrocyte and mouse models of amyotrophic lateral sclerosis (ALS). Our work identifies an early neuronal help-me signal that activates a neuroprotective astrocytic response, which fails in ALS, and therefore represents an attractive therapeutic target.
Collapse
Affiliation(s)
- Giulia E Tyzack
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Claire E Hall
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Christopher R Sibley
- Division of Brain Sciences, Imperial College London, Burlington Danes Building Du Cane Road, London, W12 0NN, UK
| | - Tomasz Cymes
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Serhiy Forostyak
- Institute of Experimental Medicine ASCR and Charles University in Prague, Department of Neuroscience, Videnská 1083, Prague 4, 142 20, Czech Republic
| | - Giulia Carlino
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Ione F Meyer
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - George M Gibbons
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Jia Newcombe
- Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, WC1N 1PJ, UK
| | - Rickie Patani
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - András Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
- Addenbrooke's Hospital, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
16
|
Cho HJ, Hwang YS, Yoon J, Lee M, Lee HG, Daar IO. EphrinB1 promotes cancer cell migration and invasion through the interaction with RhoGDI1. Oncogene 2017; 37:861-872. [PMID: 29059157 PMCID: PMC5814325 DOI: 10.1038/onc.2017.386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Eph receptors and their corresponding ephrin ligands have been associated with regulating cell–cell adhesion and motility, and thus have a critical role in various biological processes including tissue morphogenesis and homeostasis, as well as pathogenesis of several diseases. Aberrant regulation of Eph/ephrin signaling pathways is implicated in tumor progression of various human cancers. Here, we show that a Rho family GTPase regulator, Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1), can interact with ephrinB1, and this interaction is enhanced upon binding the extracellular domain of the cognate EphB2 receptor. Deletion mutagenesis revealed that amino acids 327–334 of the ephrinB1 intracellular domain are critical for the interaction with RhoGDI1. Stimulation with an EphB2 extracellular domain-Fc fusion protein (EphB2-Fc) induces RhoA activation and enhances the motility as well as invasiveness of wild-type ephrinB1-expressing cells. These Eph-Fc-induced effects were markedly diminished in cells expressing the mutant ephrinB1 construct (Δ327–334) that is ineffective at interacting with RhoGDI1. Furthermore, ephrinB1 depletion by siRNA suppresses EphB2-Fc-induced RhoA activation, and reduces motility and invasiveness of the SW480 and Hs578T human cancer cell lines. Our study connects the interaction between RhoGDI1 and ephrinB1 to the promotion of cancer cell behavior associated with tumor progression. This interaction may represent a therapeutic target in cancers that express ephrinB1.
Collapse
Affiliation(s)
- H J Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea.,Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Y-S Hwang
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - J Yoon
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - M Lee
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - H G Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - I O Daar
- Cancer & Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
17
|
Ventrella R, Kaplan N, Getsios S. Asymmetry at cell-cell interfaces direct cell sorting, boundary formation, and tissue morphogenesis. Exp Cell Res 2017; 358:58-64. [PMID: 28322822 PMCID: PMC5544567 DOI: 10.1016/j.yexcr.2017.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Abstract
During development, cells of seemingly homogenous character sort themselves out into distinct compartments in order to generate cell types with specialized features that support tissue morphogenesis and function. This process is often driven by receptors at the cell membrane that probe the extracellular microenvironment for specific ligands and alter downstream signaling pathways impacting transcription, cytoskeletal organization, and cell adhesion to regulate cell sorting and subsequent boundary formation. This review will focus on two of these receptor families, Eph and Notch, both of which are intrinsically non-adhesive and are activated by a unique set of ligands that are asymmetrically distributed from their receptor on neighboring cells. Understanding the requirement of asymmetric ligand-receptor signaling at the membrane under homeostatic conditions gives insight into how misregulation of these pathways contributes to boundary disruption in diseases like cancer.
Collapse
Affiliation(s)
- Rosa Ventrella
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Spiro Getsios
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
18
|
Tosato G. Ephrin ligands and Eph receptors contribution to hematopoiesis. Cell Mol Life Sci 2017; 74:3377-3394. [PMID: 28589441 PMCID: PMC11107787 DOI: 10.1007/s00018-017-2566-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem and progenitor cells reside predominantly in the bone marrow. They supply billions of mature blood cells every day during life through maturation into multilineage progenitors and self-renewal. Newly produced mature cells serve to replenish the pool of circulating blood cells at the end of their life-span. These mature blood cells and a few hematopoietic progenitors normally exit the bone marrow through the sinusoidal vessels, a specialized venous vascular system that spreads throughout the bone marrow. Many signals regulate the coordinated mobilization of hematopoietic cells from the bone marrow to the circulation. In this review, we present recent advances on hematopoiesis and hematopoietic cell mobilization with a focus on the role of Ephrin ligands and their Eph receptors. These constitute a large family of transmembrane ligands and receptors that play critical roles in development and postnatally. New insights point to distinct roles of ephrin and Eph in different aspects of hematopoiesis.
Collapse
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 4124, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Su SA, Yang D, Wu Y, Xie Y, Zhu W, Cai Z, Shen J, Fu Z, Wang Y, Jia L, Wang Y, Wang JA, Xiang M. EphrinB2 Regulates Cardiac Fibrosis Through Modulating the Interaction of Stat3 and TGF-β/Smad3 Signaling. Circ Res 2017; 121:617-627. [PMID: 28743805 DOI: 10.1161/circresaha.117.311045] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Cardiac fibrosis is a common feature in left ventricular remodeling that leads to heart failure, regardless of the cause. EphrinB2 (erythropoietin-producing hepatoma interactor B2), a pivotal bidirectional signaling molecule ubiquitously expressed in mammals, is crucial in angiogenesis during development and disease progression. Recently, EphrinB2 was reported to protect kidneys from injury-induced fibrogenesis. However, its role in cardiac fibrosis remains to be clarified. OBJECTIVE We sought to determine the role of EphrinB2 in cardiac fibrosis and the underlying mechanisms during the pathological remodeling process. METHODS AND RESULTS EphrinB2 was highly expressed in the myocardium of patients with advanced heart failure, as well as in mouse models of myocardial infarction and cardiac hypertrophy induced by angiotensin II infusion, which was accompanied by myofibroblast activation and collagen fiber deposition. In contrast, intramyocardial injection of lentiviruses carrying EphrinB2-shRNA ameliorated cardiac fibrosis and improved cardiac function in mouse model of myocardial infarction. Furthermore, in vitro studies in cultured cardiac fibroblasts demonstrated that EphrinB2 promoted the differentiation of cardiac fibroblasts into myofibroblasts in normoxic and hypoxic conditions. Mechanistically, the profibrotic effect of EphrinB2 on cardiac fibroblast was determined via activating the Stat3 (signal transducer and activator of transcription 3) and TGF-β (transforming growth factor-β)/Smad3 (mothers against decapentaplegic homolog 3) signaling. We further determined that EphrinB2 modulated the interaction between Stat3 and Smad3 and identified that the MAD homology 2 domain of Smad3 and the coil-coil domain and DNA-binding domain of Stat3 mediated the interaction. CONCLUSIONS This study uncovered a previously unrecognized profibrotic role of EphrinB2 in cardiac fibrosis, which is achieved through the interaction of Stat3 with TGF-β/Smad3 signaling, implying a promising therapeutic target in fibrotic diseases and heart failure.
Collapse
Affiliation(s)
- Sheng-An Su
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Du Yang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Yue Wu
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Yao Xie
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Wei Zhu
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Zhejun Cai
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Jian Shen
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Zurong Fu
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Yaping Wang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Liangliang Jia
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Yidong Wang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Jian-An Wang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Meixiang Xiang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.).
| |
Collapse
|
20
|
EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease. Angiogenesis 2016; 19:297-309. [PMID: 27216867 DOI: 10.1007/s10456-016-9514-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/13/2016] [Indexed: 01/12/2023]
Abstract
Ischemic cardiovascular disease remains one of the leading causes of morbidity and mortality in the world. Proangiogenic therapy appears to be a promising and feasible strategy for the patients with ischemic cardiovascular disease, but the results of preclinical and clinical trials are limited due to the complicated mechanisms of angiogenesis. Facilitating the formation of functional vessels is important in rescuing the ischemic cardiomyocytes. EphrinB2/EphB4, a novel pathway in angiogenesis, plays a critical role in both microvascular growth and neovascular maturation. Hence, investigating the mechanisms of EphrinB2/EphB4 pathway in angiogenesis may contribute to the development of novel therapeutics for ischemic cardiovascular disease. Previous reviews mainly focused on the role of EphrinB2/EphB4 pathway in embryo vascular development, but their role in postnatal angiogenesis in ischemic heart disease has not been fully illustrated. Here, we summarized the current knowledge of EphrinB2/EphB4 in angiogenesis and their interaction with other angiogenic pathways in ischemic cardiovascular disease.
Collapse
|
21
|
Luo H, Broux B, Wang X, Hu Y, Ghannam S, Jin W, Larochelle C, Prat A, Wu J. EphrinB1 and EphrinB2 regulate T cell chemotaxis and migration in experimental autoimmune encephalomyelitis and multiple sclerosis. Neurobiol Dis 2016; 91:292-306. [PMID: 27039370 DOI: 10.1016/j.nbd.2016.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/27/2022] Open
Abstract
T cells are believed to be key effector cells in multiple sclerosis (MS). In this study, we examined the roles of T cell ephrinB1 (EFNB1) and ephrinB2 (EFNB2) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and MS. We provide evidence that animals with T cell specific double deletion of EFNB1 and EFNB2 (dKO) have reduced proliferation in response to MOG35-55, defective Th1 and Th17 differentiations and significantly lower scores of MOG-induced EAE. We further demonstrate that dKO T cells are compromised in their ability to migrate into the CNS of EAE animals in vivo and towards multiple chemokines in vitro. Using deletion mutations, we identified a critical 11-aa EFNB1 intracellular domain segment that controls T cell chemotaxis towards CCL21. In humans, EFNB1 and EFNB2 are highly expressed in Th1 and Th17 cells and EFNB1- and EFNB2-expressing T cells are found among immune cell infiltrates in MS lesions. Reverse signaling through EFNB1 and EFNB2 in human Th17 cells enhances their migration through a monolayer of blood brain barrier endothelial cells. Our study demonstrates that expression of EFNB1 and EFNB2 is implicated in Th cell differentiation and migration to inflammatory sites in both EAE and MS.
Collapse
Affiliation(s)
- Hongyu Luo
- The Research Center of the University of Montreal Hospital Center e (CRCHUM), 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada
| | - Bieke Broux
- The Research Center of the University of Montreal Hospital Center e (CRCHUM), 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada; Department of Neuroscience, Faculty of Medicine, Université de Montréal, 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada; Hasselt University, Biomedical Research Institute and transnationale Universiteit Limburg, School of Life Sciences, Agoralaan building C, 3590 Diepenbeek, Belgium
| | - Xuehai Wang
- The Research Center of the University of Montreal Hospital Center e (CRCHUM), 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada
| | - Yan Hu
- The Research Center of the University of Montreal Hospital Center e (CRCHUM), 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada
| | - Soufiane Ghannam
- The Research Center of the University of Montreal Hospital Center e (CRCHUM), 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada; Department of Neuroscience, Faculty of Medicine, Université de Montréal, 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada
| | - Wei Jin
- The Research Center of the University of Montreal Hospital Center e (CRCHUM), 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada
| | - Catherine Larochelle
- The Research Center of the University of Montreal Hospital Center e (CRCHUM), 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada; Department of Neuroscience, Faculty of Medicine, Université de Montréal, 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada
| | - Alexandre Prat
- The Research Center of the University of Montreal Hospital Center e (CRCHUM), 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada; Department of Neuroscience, Faculty of Medicine, Université de Montréal, 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada.
| | - Jiangping Wu
- The Research Center of the University of Montreal Hospital Center e (CRCHUM), 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada; Division of Nephrology, Department of Medicine, Faculty of Medicine, Université de Montréal, 900 Rue Saint-Denis, Montréal H2X 0A9, Québec, Canada.
| |
Collapse
|
22
|
Eph/ephrin signaling in the kidney and lower urinary tract. Pediatr Nephrol 2016; 31:359-71. [PMID: 25903642 DOI: 10.1007/s00467-015-3112-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Development and homeostasis of the highly specialized cell types and tissues that constitute the organs of the urinary system, the kidneys and ureters, the bladder, and the urethra, require the tightly regulated exchange of signals in and between these tissues. Eph/ephrin signaling is a bidirectional signaling pathway that has been functionally implicated in many developmental and homeostatic contexts, most prominently in the vascular and neural system. Expression and knockout analyses have now provided evidence that Eph/ephrin signaling is of crucial relevance for cell and tissue interactions in the urinary system as well. A clear requirement has emerged in the formation of the vesicoureteric junction, in urorectal septation and glomerulogenesis during embryonic development, in maintenance of medullary tubular cells and podocytes in homeostasis, and in podocyte and glomerular injury responses. Deregulation of Eph/ephrin signaling may also contribute to the formation and progression of tumors in the urinary system, most prominently bladder and renal cell carcinoma. While in the embryonic contexts Eph/ephrin signaling regulates adhesion of epithelial cells, in the adult setting, cell-shape changes and cell survival seem to be the primary cellular processes mediated by this signaling module. With progression of the genetic analyses of mice conditionally mutant for compound alleles of Eph receptor and ephrin ligand genes, additional essential functions are likely to arise in the urinary system.
Collapse
|
23
|
Nikolakopoulou AM, Koeppen J, Garcia M, Leish J, Obenaus A, Ethell IM. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury. ASN Neuro 2016; 8:1-18. [PMID: 26928051 PMCID: PMC4774052 DOI: 10.1177/1759091416630220] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/31/2015] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in injury-induced synapse remodeling. Our studies suggest a new role of ephrin-B1, which is known to regulate synapse development in neurons, in astrocyte-mediated synapse remodeling following TBI. Indeed, we observed a transient upregulation of ephrin-B1 immunoreactivity in hippocampal astrocytes following moderate controlled cortical impact model of TBI. The upregulation of ephrin-B1 levels in hippocampal astrocytes coincided with a decline in the number of vGlut1-positive glutamatergic input to CA1 neurons at 3 days post injury even in the absence of hippocampal neuron loss. In contrast, tamoxifen-induced ablation of ephrin-B1 from adult astrocytes in ephrin-B1loxP/yERT2-CreGFAP mice accelerated the recovery of vGlut1-positive glutamatergic input to CA1 neurons after TBI. Finally, our studies suggest that astrocytic ephrin-B1 may play an active role in injury-induced synapse remodeling through the activation of STAT3-mediated signaling in astrocytes. TBI-induced upregulation of STAT3 phosphorylation within the hippocampus was suppressed by astrocyte-specific ablation of ephrin-B1 in vivo, whereas the activation of ephrin-B1 in astrocytes triggered an increase in STAT3 phosphorylation in vitro. Thus, regulation of ephrin-B1 signaling in astrocytes may provide new therapeutic opportunities to aid functional recovery after TBI.
Collapse
Affiliation(s)
| | - Jordan Koeppen
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| | - Michael Garcia
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Joshua Leish
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, Loma Linda University, CA, USA
| | - Iryna M Ethell
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| |
Collapse
|
24
|
Serrano MJ, Liu J, Svoboda KKH, Nawshad A, Benson MD. Ephrin reverse signaling mediates palatal fusion and epithelial-to-mesenchymal transition independently of Tgfß3. J Cell Physiol 2015; 230:2961-72. [PMID: 25893671 DOI: 10.1002/jcp.25025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 01/02/2023]
Abstract
The mammalian secondary palate forms from shelves of epithelia-covered mesenchyme that meet at midline and fuse. The midline epithelial seam (MES) is thought to degrade by apoptosis, epithelial-to-mesenchymal transition (EMT), or both. Failure to degrade the MES blocks fusion and causes cleft palate. It was previously thought that transforming growth factor ß3 (Tgfß3) is required to initiate fusion. Members of the Eph tyrosine kinase receptor family and their membrane-bound ephrin ligands are expressed on the MES. We demonstrated that treatment of mouse palates with recombinant EphB2/Fc to activate ephrin reverse signaling (where the ephrin acts as a receptor and transduces signals from its cytodomain) was sufficient to cause mouse palatal fusion when Tgfß3 signaling was blocked by an antibody against Tgfß3 or by an inhibitor of the TgfßrI serine/threonine receptor kinase. Cultured palatal epithelial cells traded their expression of epithelial cell markers for that of mesenchymal cells and became motile after treatment with EphB2/Fc. They concurrently increased their expression of the EMT-associated transcription factors Snail, Sip1, and Twist1. EphB2/Fc did not cause apoptosis in these cells. These data reveal that ephrin reverse signaling directs palatal fusion in mammals through a mechanism that involves EMT but not apoptosis and activates a gene expression program not previously associated with ephrin reverse signaling.
Collapse
Affiliation(s)
- Maria J Serrano
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | - Jingpeng Liu
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | - Ali Nawshad
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska
| | - M Douglas Benson
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| |
Collapse
|
25
|
Alam SK, Yadav VK, Bajaj S, Datta A, Dutta SK, Bhattacharyya M, Bhattacharya S, Debnath S, Roy S, Boardman LA, Smyrk TC, Molina JR, Chakrabarti S, Chowdhury S, Mukhopadhyay D, Roychoudhury S. DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53. Cell Death Differ 2015; 23:707-22. [PMID: 26494468 DOI: 10.1038/cdd.2015.133] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 07/31/2015] [Accepted: 08/25/2015] [Indexed: 01/13/2023] Open
Abstract
Mutation in the TP53 gene positively correlates with increased incidence of chemoresistance in different cancers. In this study, we investigated the mechanism of chemoresistance and epithelial-to-mesenchymal transition (EMT) in colorectal cancer involving the gain-of-function (GOF) mutant p53/ephrin-B2 signaling axis. Bioinformatic analysis of the NCI-60 data set and subsequent hub prediction identified EFNB2 as a possible GOF mutant p53 target gene, responsible for chemoresistance. We show that the mutant p53-NF-Y complex transcriptionally upregulates EFNB2 expression in response to DNA damage. Moreover, the acetylated form of mutant p53 protein is recruited on the EFNB2 promoter and positively regulates its expression in conjunction with coactivator p300. In vitro cell line and in vivo nude mice data show that EFNB2 silencing restores chemosensitivity in mutant p53-harboring tumors. In addition, we observed high expression of EFNB2 in patients having neoadjuvant non-responder colorectal carcinoma compared with those having responder version of the disease. In the course of deciphering the drug resistance mechanism, we also show that ephrin-B2 reverse signaling induces ABCG2 expression after drug treatment that involves JNK-c-Jun signaling in mutant p53 cells. Moreover, 5-fluorouracil-induced ephrin-B2 reverse signaling promotes tumorigenesis through the Src-ERK pathway, and drives EMT via the Src-FAK pathway. We thus conclude that targeting ephrin-B2 might enhance the therapeutic potential of DNA-damaging chemotherapeutic agents in mutant p53-bearing human tumors.
Collapse
Affiliation(s)
- S K Alam
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - V K Yadav
- G.N.R. Knowledge Centre for Genome Informatics, Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - S Bajaj
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Hospital/The Ontario Cancer Institute, Toronto, ON, Canada
| | - A Datta
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - S K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - M Bhattacharyya
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - S Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - S Debnath
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - S Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - L A Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - T C Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - J R Molina
- Division of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - S Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - S Chowdhury
- G.N.R. Knowledge Centre for Genome Informatics, Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India.,Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - D Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - S Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
26
|
Terriente J, Pujades C. Cell segregation in the vertebrate hindbrain: a matter of boundaries. Cell Mol Life Sci 2015; 72:3721-30. [PMID: 26089248 PMCID: PMC11113478 DOI: 10.1007/s00018-015-1953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/06/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023]
Abstract
Segregating cells into compartments during embryonic development is essential for growth and pattern formation. In the developing hindbrain, boundaries separate molecularly, physically and neuroanatomically distinct segments called rhombomeres. After rhombomeric cells have acquired their identity, interhombomeric boundaries restrict cell intermingling between adjacent rhombomeres and act as signaling centers to pattern the surrounding tissue. Several works have stressed the relevance of Eph/ephrin signaling in rhombomeric cell sorting. Recent data have unveiled the role of this pathway in the assembly of actomyosin cables as an important mechanism for keeping cells from different rhombomeres segregated. In this Review, we will provide a short summary of recent evidences gathered in different systems suggesting that physical actomyosin barriers can be a general mechanism for tissue separation. We will discuss current evidences supporting a model where cell-cell signaling pathways, such as Eph/ephrin, govern compartmental cell sorting through modulation of the actomyosin cytoskeleton and cell adhesive properties to prevent cell intermingling.
Collapse
Affiliation(s)
- Javier Terriente
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Dr Aiguader 88, 08003, Barcelona, Spain.
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Dr Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
27
|
Hu Y, Wang X, Wu Y, Jin W, Cheng B, Fang X, Martel-Pelletier J, Kapoor M, Peng J, Qi S, Shi G, Wu J, Luo H. Role of EFNB1 and EFNB2 in Mouse Collagen-Induced Arthritis and Human Rheumatoid Arthritis. Arthritis Rheumatol 2015; 67:1778-88. [PMID: 25779027 DOI: 10.1002/art.39116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 03/10/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVE EFNB1 and EFNB2 are ligands for Eph receptor tyrosine kinases. This study was undertaken to investigate how the expression of Efnb1 and Efnb2 on murine T cells influences the pathogenesis of collagen-induced arthritis (CIA) and to assess correlations between the T cell expression of these 2 molecules and measures of disease activity in patients with rheumatoid arthritis (RA). METHODS CIA was studied in mice with T cell-specific deletion (double gene knockout [dKO]) of both Efnb1 and Efnb2. Expression of EFNB1 and EFNB2 messenger RNA (mRNA) in peripheral blood T cells from patients with RA was determined by quantitative reverse transcription- polymerase chain reaction. RESULTS In dKO mice, clinical scores of arthritis were reduced compared to those in wild-type (WT) control mice. Serum collagen-specific antibody titers in dKO mice were lower than those in WT mice. In analyses based on equal cell numbers, dKO mouse T cells, as compared to WT mouse T cells, provided vastly inferior help to B cells in the production of collagen-specific antibodies in vitro. T cells from dKO mice were compromised in their ability to migrate to the arthritic paws in vivo and in their ability to undergo chemotaxis toward CXCL12 in vitro. Deletion mutation of Efnb1 and Efnb2 intracellular tails revealed critical regions in controlling T cell chemotaxis. T cells from RA patients expressed higher EFNB1 mRNA levels, which correlated with RA symptoms and laboratory findings. CONCLUSION Efnb1 and Efnb2 in T cells are essential for pathogenic antibody production and for T cell migration to the inflamed paws in mice with CIA. These findings suggest that the expression of EFNB1 in T cells might be a useful parameter for monitoring RA disease activity and treatment responses.
Collapse
Affiliation(s)
- Yan Hu
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Xuehai Wang
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Yongqiang Wu
- West China Hospital of Sichuan University, Chengdu, China
| | - Wei Jin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Baoli Cheng
- First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiangming Fang
- First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | | | - Mohit Kapoor
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Junzheng Peng
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Shijie Qi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Guixiu Shi
- First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiangping Wu
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Hongyu Luo
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Abstract
There is increasing evidence that in addition to having major roles in morphogenesis, in some tissues Eph receptor and ephrin signaling regulates the differentiation of cells. In one mode of deployment, cell contact dependent Eph-ephrin activation induces a distinct fate of cells at the interface of their expression domains, for example in early ascidian embryos and in the vertebrate hindbrain. In another mode, overlapping Eph receptor and ephrin expression underlies activation within a cell population, which promotes or inhibits cell differentiation in bone remodelling, neural progenitors and keratinocytes. Eph-ephrin activation also contributes to formation of the appropriate number of progenitor cells by increasing or decreasing cell proliferation. These multiple roles of Eph receptor and ephrin signaling may enable a coupling between morphogenesis and the differentiation and proliferation of cells.
Collapse
Key Words
- Eph receptor
- Eph receptor, Erythropoietin-producing hepatocellular carcinoma cell receptor
- FGF, Fibroblast growth factor
- IGF-1, Insulin-like growth factor-1
- JNK, c-Jun N-terminal kinase
- MAPK, Mitogen activated protein kinase
- NFAT, Nuclear factor of activated T-cells
- RGS3, Regulator of G-protein signaling 3
- STAT3, Signal transducer and activator of transcription 3
- TAZ, Tafazzin
- TCR, T cell receptor
- TEC, Thymic epithelial cell
- TGF, Transforming growth factor
- ZHX2, Zinc fingers and homeoboxes 2
- ascidian development
- bone
- cell proliferation
- differentiation
- ephrin
- ephrin, Eph receptor interacting protein
- hindbrain
- keratinocytes
- neural progenitors
- p120GAP, GTPase activating protein
- thymocytes
Collapse
Affiliation(s)
- David G Wilkinson
- a Division of Developmental Neurobiology; MRC National Institute for Medical Research ; London , UK
| |
Collapse
|
29
|
Abstract
Eph:ephrin signaling plays an important role in embryonic development as well as tissue homeostasis in the adult. At the cellular level, this transduction pathway is best known for its role in the control of cell adhesion and repulsion, cell migration and morphogenesis. Yet, a number of publications have also implicated Eph:ephrin signaling in the control of adult and embryonic neurogenesis. As is the case for other biological processes, these studies have reported conflicting and sometimes opposite roles for Eph:ephrin signaling in neurogenesis. Herein, we review these studies and we discuss existing mathematical models of stem cell dynamics and neurogenesis that provide a coherent framework and may help reconcile conflicting results.
Collapse
Affiliation(s)
- J Laussu
- a Centre de Biologie du Développement; CNRS; Université de Toulouse ; Toulouse , France
| | | | | | | |
Collapse
|
30
|
EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun 2015; 6:6576. [PMID: 25807892 PMCID: PMC4377839 DOI: 10.1038/ncomms7576] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/09/2015] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis produces primitive vascular networks that need pruning to yield hierarchically organized and functional vessels. Despite the critical importance of vessel pruning to vessel patterning and function, the mechanisms regulating this process are not clear. Here we show that EphrinB2, a well-known player in angiogenesis, is an essential regulator of endothelial cell death and vessel pruning. This regulation depends upon phosphotyrosine-EphrinB2 signaling repressing JNK3 activity via STAT1. JNK3 activation causes endothelial cell death. In the absence of JNK3, hyaloid vessel physiological pruning is impaired, associated with abnormal persistence of hyaloid vessels, defective retinal vasculature and microphthalmia. This syndrome closely resembles human persistent hyperplastic primary vitreus (PHPV), attributed to failed involution of hyaloid vessels. Our results provide evidence that EphrinB2/STAT1/JNK3 signaling is essential for vessel pruning, and that defects in this pathway may contribute to PHPV.
Collapse
|
31
|
Park I, Lee HS. EphB/ephrinB signaling in cell adhesion and migration. Mol Cells 2015; 38:14-9. [PMID: 25475547 PMCID: PMC4314128 DOI: 10.14348/molcells.2015.2116] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 11/27/2022] Open
Abstract
Eph receptors and their ligands, ephrins, represent the largest group of the receptor tyrosine kinase (RTK) family, and they mediate numerous developmental processes in a variety of organisms. Ephrins are membrane-bound proteins that are mainly divided into two classes: A class ephrins, which are linked to the membrane by a glycosylphosphatidylinositol (GPI) linkage, and B class ephrins, which are transmembrane ligands. Based on their domain structures and affinities for ligand binding, the Eph receptors are also divided into two groups. Trans-dimerization of Eph receptors with their membrane-tethered ligands regulates cell-cell interactions and initiates bidirectional signaling pathways. These pathways are intimately involved in regulating cytoskeleton dynamics, cell migration, and alterations in cellular dynamics and shapes. The EphBs and ephrinBs are specifically localized and modified to promote higher-order clustering and initiate of bidirectional signaling. In this review, we present an in-depth overview of the structure, mechanisms, cell signaling, and functions of EphB/ephrinB in cell adhesion and migration.
Collapse
Affiliation(s)
- Inji Park
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701,
Korea
| | - Hyun-Shik Lee
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
32
|
McKinney N, Yuan L, Zhang H, Liu J, Cho YJ, Rushing E, Schniederjan M, MacDonald TJ. EphrinB1 expression is dysregulated and promotes oncogenic signaling in medulloblastoma. J Neurooncol 2014; 121:109-18. [PMID: 25258252 DOI: 10.1007/s11060-014-1618-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
Abstract
Eph receptors and ephrin ligands are master regulators of oncogenic signaling required for proliferation, migration, and metastasis. Yet, Eph/ephrin expression and activity in medulloblastoma (MB), the most common malignant brain tumor of childhood, remains poorly defined. We hypothesized that Eph/ephrins are differentially expressed by sonic hedgehog (SHH) and non-SHH MB and that specific members contribute to the aggressive phenotype. Affymetrix gene expression profiling of 29 childhood MB, separated into SHH (N = 11) and non-SHH (N = 18), was performed followed by protein validation of selected Eph/ephrins in another 60 MB and two MB cell lines (DAOY, D556). Functional assays were performed using MB cells overexpressing or deleted for selected ephrins. We found EPHB4 and EFNA4 almost exclusively expressed by SHH MB, whereas EPHA2, EPHA8, EFNA1 and EFNA3 are predominantly expressed by non-SHH MB. The remaining family members, except EFNB1, are ubiquitously expressed by over 70-90 % MB, irrespective of subgroup. EFNB1 is the only member differentially expressed by 28 % of SHH and non-SHH MB. Corresponding protein expression for EphB/ephrinB1 and B2 was validated in MB. Only ephrinB2 was also detected in fetal cerebellum, indicating that EphB/ephrinB1 expression is MB-specific. EphrinB1 immunopositivity localizes to tumor cells within MB with the highest proliferative index. EphrinB1 overexpression promotes EphB activation, alters F-actin distribution and morphology, decreases adhesion, and significantly promotes proliferation. Either silencing or overexpression of ephrinB1 impairs migration. These results indicate that EphrinB1 is uniquely dysregulated in MB and promotes oncogenic responses in MB cells, implicating ephrinB1 as a potential target.
Collapse
Affiliation(s)
- Nicole McKinney
- Department of Pediatrics, Emory Children's Center, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, 2015 Uppergate Drive NE, 4th Floor, Atlanta, GA, 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cho HJ, Hwang YS, Mood K, Ji YJ, Lim J, Morrison DK, Daar IO. EphrinB1 interacts with CNK1 and promotes cell migration through c-Jun N-terminal kinase (JNK) activation. J Biol Chem 2014; 289:18556-68. [PMID: 24825906 DOI: 10.1074/jbc.m114.558809] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Eph receptors and their membrane-bound ligands, ephrins, play important roles in various biological processes such as cell adhesion and movement. The transmembrane ephrinBs transduce reverse signaling in a tyrosine phosphorylation-dependent or -independent, as well as PDZ-dependent manner. Here, we show that ephrinB1 interacts with Connector Enhancer of KSR1 (CNK1) in an EphB receptor-independent manner. In cultured cells, cotransfection of ephrinB1 with CNK1 increases JNK phosphorylation. EphrinB1/CNK1-mediated JNK activation is reduced by overexpression of dominant-negative RhoA. Overexpression of CNK1 alone is sufficient for activation of RhoA; however, both ephrinB1 and CNK1 are required for JNK phosphorylation. Co-immunoprecipitation data showed that ephrinB1 and CNK1 act as scaffold proteins that connect RhoA and JNK signaling components, such as p115RhoGEF and MKK4. Furthermore, adhesion to fibronectin or active Src overexpression increases ephrinB1/CNK1 binding, whereas blocking Src activity by a pharmacological inhibitor decreases not only ephrinB1/CNK1 binding, but also JNK activation. EphrinB1 overexpression increases cell motility, however, CNK1 depletion by siRNA abrogates ephrinB1-mediated cell migration and JNK activation. Moreover, Rho kinase inhibitor or JNK inhibitor treatment suppresses ephrinB1-mediated cell migration. Taken together, our findings suggest that CNK1 is required for ephrinB1-induced JNK activation and cell migration.
Collapse
Affiliation(s)
- Hee Jun Cho
- From the Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yoo-Seok Hwang
- From the Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Kathleen Mood
- From the Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yon Ju Ji
- From the Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Junghwa Lim
- From the Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Deborah K Morrison
- From the Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Ira O Daar
- From the Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702
| |
Collapse
|
34
|
|
35
|
The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling. J Neurosci 2013; 33:12647-55. [PMID: 23904601 DOI: 10.1523/jneurosci.0746-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) counteracts leptin signaling and is a therapeutic target for obesity and diabetes. Here we found that LIM domain only 4 (LMO4) inhibits PTP1B activity by increasing the oxidized inactive form of PTP1B. Mice with neuronal ablation of LMO4 have elevated PTP1B activity and impaired hypothalamic leptin signaling, and a PTP1B inhibitor normalized PTP1B activity and restored leptin control of circulating insulin levels. LMO4 is palmitoylated at its C-terminal cysteine, and deletion of this residue prevented palmitoylation and retention of LMO4 at the endoplasmic reticulum and abolished its inhibitory effect on PTP1B. Importantly, LMO4 palmitoylation is sensitive to metabolic stress; mice challenged with a brief high-fat diet or acute intracerebroventricular infusion of saturated fatty acid had less palmitoylated LMO4, less oxidized PTP1B, and increased PTP1B activity in the hypothalamus. Thus, unleashed PTP1B activity attributable to loss of LMO4 palmitoylation may account for rapid loss of central leptin signaling after acute exposure to saturated fat.
Collapse
|
36
|
Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol 2013; 5:5/9/a009159. [PMID: 24003208 DOI: 10.1101/cshperspect.a009159] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Eph receptors are the largest of the RTK families. Like other RTKs, they transduce signals from the cell exterior to the interior through ligand-induced activation of their kinase domain. However, the Eph receptors also have distinctive features. Instead of binding soluble ligands, they generally mediate contact-dependent cell-cell communication by interacting with surface-associated ligands-the ephrins-on neighboring cells. Eph receptor-ephrin complexes emanate bidirectional signals that affect both receptor- and ephrin-expressing cells. Intriguingly, ephrins can also attenuate signaling by Eph receptors coexpressed in the same cell. Additionally, Eph receptors can modulate cell behavior independently of ephrin binding and kinase activity. The Eph/ephrin system regulates many developmental processes and adult tissue homeostasis. Its abnormal function has been implicated in various diseases, including cancer. Thus, Eph receptors represent promising therapeutic targets. However, more research is needed to better understand the many aspects of their complex biology that remain mysterious.
Collapse
Affiliation(s)
- Erika M Lisabeth
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
37
|
Kim Y, Park E, Noh H, Park S. Expression of EphA8-Fc in transgenic mouse embryos induces apoptosis of neural epithelial cells during brain development. Dev Neurobiol 2013; 73:702-12. [PMID: 23696555 DOI: 10.1002/dneu.22092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/04/2013] [Accepted: 05/13/2013] [Indexed: 12/17/2022]
Abstract
EphAs and ephrin-As are expressed in multiple regions of the developing brain and have been implicated in regulating brain size. Here, we report the identification of a novel mechanism in which reverse signaling through ephrin-As controls neural epithelial cell number in the developing brain. Ectopic expression of EphA8-Fc in transgenic embryos induced apoptosis of neural epithelial cells, which was accompanied by a dramatic decrease in brain size. The number of ephrin-A5-expressing cells was significantly reduced in the brain region where EphA8-Fc was ectopically expressed. Furthermore, in vitro culture of the dissociated neuroepithelial cells revealed that EphA8-Fc enhanced apoptotic cell death of the ephrinA5-expressing cells in a caspase-dependent manner. Thus, our results suggest that reverse signaling through ephrin-As is biochemically linked with caspase-dependent proapoptotic signaling during early brain development.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Biological Science, Sookmyung Women's University, Yongsan-gu, Seoul 140-742, Korea
| | | | | | | |
Collapse
|
38
|
Cho KH, Jeong KJ, Shin SC, Kang J, Park CG, Lee HY. STAT3 mediates TGF-β1-induced TWIST1 expression and prostate cancer invasion. Cancer Lett 2013; 336:167-73. [PMID: 23623921 DOI: 10.1016/j.canlet.2013.04.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/12/2013] [Accepted: 04/22/2013] [Indexed: 12/13/2022]
Abstract
TGF-β1 induces epithelial-mesenchymal transition (EMT) to stimulate cancer cell progression, and TWIST1 is a critical regulator of EMT. In the present study, we determined the underlying mechanisms of TGF-β1-induced TWIST1 expression and its effect on prostate cancer cell invasion. TGF-β1 stimulated STAT3 phosphorylation and HIF-1α expression. Silencing either STAT3 or HIF-1α efficiently attenuated TGF-β1-induced TWIST1 expression. Further ectopic expression of a dominant negative mutant of STAT3 reduced TGF-β1-induced TWIST1 expression. In addition, STAT3 and HIF-1α up-regulated TWIST1 expression by direct binding to a TWIST1 promoter. Strikingly, STAT3 also enhanced TGF-β1-induced TWIST1 expression through HIF-1α stabilization. Collectively, we demonstrate a mechanistic cascade of TGF-β1 up-regulating STAT3 activation and HIF-1α stabilization and subsequent TWIST1 expression, leading to prostate cancer invasion.
Collapse
Affiliation(s)
- Kyung Hwa Cho
- Department of Pharmacology, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Benson MD, Serrano MJ. Ephrin regulation of palate development. Front Physiol 2012; 3:376. [PMID: 23055980 PMCID: PMC3458271 DOI: 10.3389/fphys.2012.00376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/02/2012] [Indexed: 11/17/2022] Open
Abstract
Studies of palate development are motivated by the all too common incidence of cleft palate, a birth defect that imposes a tremendous health burden and can leave lasting disfigurement. Although, mechanistic studies of palate growth and fusion have focused on growth factors such as Transforming Growth Factor ß-3 (Tgfß3), recent studies have revealed that the ephrin family of membrane bound ligands and their receptors, the Ephs, play central roles in palatal morphogenesis, growth, and fusion. In this mini-review, we will discuss the recent findings by our group and others on the functions of ephrins in palatal development.
Collapse
Affiliation(s)
- M Douglas Benson
- Department of Biomedical Sciences, Texas A&M Health Science Center Baylor College of Dentistry Dallas, TX, USA
| | | |
Collapse
|
40
|
Salvucci O, Tosato G. Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Adv Cancer Res 2012; 114:21-57. [PMID: 22588055 DOI: 10.1016/b978-0-12-386503-8.00002-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eph receptor tyrosine kinases and their Ephrin ligands represent an important signaling system with widespread roles in cell physiology and disease. Receptors and ligands in this family are anchored to the cell surface; thus Eph/Ephrin interactions mainly occur at sites of cell-to-cell contact. EphB4 and EphrinB2 are the Eph/Ephrin molecules that play essential roles in vascular development and postnatal angiogenesis. Analysis of expression patterns and function has linked EphB4/EphrinB2 to endothelial cell growth, survival, migration, assembly, and angiogenesis. Signaling from these molecules is complex, with the potential for being bidirectional, emanating both from the Eph receptors (forward signaling) and from the Ephrin ligands (reverse signaling). In this review, we describe recent advances on the roles of EphB/EphrinB protein family in endothelial cell function and outline potential approaches to inhibit pathological angiogenesis based on this understanding.
Collapse
Affiliation(s)
- Ombretta Salvucci
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
41
|
Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem 2012; 287:31674-80. [PMID: 22822058 DOI: 10.1074/jbc.r112.384982] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular free Ca(2+) ions regulate many cellular functions, and in turn, the cell devotes many genes/proteins to keep tight control of the level of intracellular free Ca(2+). Here, we review recent work on Ca(2+)-dependent mechanisms and effectors that regulate the transcription of genes encoding proteins involved in the maintenance of the homeostasis of Ca(2+) in the cell.
Collapse
Affiliation(s)
- Jose R Naranjo
- National Center of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC) and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.
| | | |
Collapse
|
42
|
EphrinA1 is released in three forms from cancer cells by matrix metalloproteases. Mol Cell Biol 2012; 32:3253-64. [PMID: 22688511 DOI: 10.1128/mcb.06791-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
EphrinA1 is a glycosylphosphatidylinositol (GPI)-linked ligand for the EphA2 receptor, which is overexpressed in glioblastoma (GBM), among other cancers. Activation of the receptor by ephrinA1 leads to a suppression of oncogenic properties of GBM cells. We documented that a monomeric functional form of ephrinA1 is released from cancer cells and thus explored the mechanism of ephrinA1 release and the primary protein sequence. We demonstrate here that multiple metalloproteases (MMPs) are able to cleave ephrinA1, most notably MMP-1, -2, -9, and -13. The proteolytic cleavage that releases ephrinA1 occurs at three positions near the C terminus, producing three forms ending in valine-175, histidine-177, or serine-178. Moreover, deletion of amino acids 174 to 181 or 175 to 181 yields ephrinA1 that is still GPI linked but not released by proteolysis, underlining the necessity of amino acids 175 to 181 for release from the membrane. Furthermore, recombinant ephrinA1 ending at residue 175 retains activity toward the EphA2 receptor. These findings suggest a mechanism of release and provide evidence for the existence of several forms of monomeric ephrinA1. Moreover, ephrinA1 should be truncated at a minimum at amino acid 175 in fusions or conjugates with other molecules in order to prevent likely proteolysis within physiological and pathobiological environments.
Collapse
|
43
|
LIM domain only 4 (LMO4) regulates calcium-induced calcium release and synaptic plasticity in the hippocampus. J Neurosci 2012; 32:4271-83. [PMID: 22442089 DOI: 10.1523/jneurosci.6271-11.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The LIM domain only 4 (LMO4) transcription cofactor activates gene expression in neurons and regulates key aspects of network formation, but the mechanisms are poorly understood. Here, we show that LMO4 positively regulates ryanodine receptor type 2 (RyR2) expression, thereby suggesting that LMO4 regulates calcium-induced calcium release (CICR) in central neurons. We found that CICR modulation of the afterhyperpolarization in CA3 neurons from mice carrying a forebrain-specific deletion of LMO4 (LMO4 KO) was severely compromised but could be restored by single-cell overexpression of LMO4. In line with these findings, two-photon calcium imaging experiments showed that the potentiation of RyR-mediated calcium release from internal stores by caffeine was absent in LMO4 KO neurons. The overall facilitatory effect of CICR on glutamate release induced during trains of action potentials was likewise defective in LMO4 KO, confirming that CICR machinery is severely compromised in these neurons. Moreover, the magnitude of CA3-CA1 long-term potentiation was reduced in LMO4 KO mice, a defect that appears to be secondary to an overall reduced glutamate release probability. These cellular phenotypes in LMO4 KO mice were accompanied with deficits in hippocampus-dependent spatial learning as determined by the Morris water maze test. Thus, our results establish LMO4 as a key regulator of CICR in central neurons, providing a mechanism for LMO4 to modulate a wide range of neuronal functions and behavior.
Collapse
|
44
|
Walsh R, Blumenberg M. Eph-2B, acting as an extracellular ligand, induces differentiation markers in epidermal keratinocytes. J Cell Physiol 2012; 227:2330-40. [PMID: 21809346 DOI: 10.1002/jcp.22968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the bi-directional signaling system comprising ephrins (EFNs) and ephrin receptors (Ephs), both EFNs and Ephs simultaneously function both as ligands and as receptors. Importantly, the EFN/Eph system is deregulated in human cancers and has been implicated in the metastatic processes because of its effects on the adhesion and migration of epithelial cells. The idiosyncratic function of Ephs, membrane-bound receptor kinases, as extracellular signaling ligands, has not been extensively studied. This prompted us to explore the transcriptional targets regulated by Ephs acting solely as ligands. To define the ligand function of EphB2 in human epidermal keratinocytes, we treated these cells with EphB2 as Fc-conjugate dimmers, which thus act exclusively as extracellular ligands. We compared the EphB2 and EFNA4 effects during a 48 h time course, using transcriptional profiling. We found that EphB2, acting as a ligand, promotes epidermal differentiation. For example, EphB2 induces expression of markers of epidermal differentiation, including keratins KRT1 and KRT10, SPRRs, desmosomal proteins and cell cycle inhibitors, while suppressing basal layer markers, integrins and cell cycle proteins. The effects of EphB2 are delayed relative to those of EFNA4. Unlike EFNA4, EphB2 did not induce lipid metabolism proteins, this particular aspect of epidermal differentiation seems not to be regulated by EphB2. Our results define the transcriptional targets of the reverse signaling by EphB2 acting exclusively as a ligand and begin to characterize this intriguing function of Ephs.
Collapse
Affiliation(s)
- Rebecca Walsh
- The Department of Dermatology, NYU Cancer Institute, NYU School of Medicine, New York 10016, USA
| | | |
Collapse
|
45
|
Cheng S, Zhao SL, Nelson B, Kesavan C, Qin X, Wergedal J, Mohan S, Xing W. Targeted disruption of ephrin B1 in cells of myeloid lineage increases osteoclast differentiation and bone resorption in mice. PLoS One 2012; 7:e32887. [PMID: 22403721 PMCID: PMC3293909 DOI: 10.1371/journal.pone.0032887] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/01/2012] [Indexed: 11/18/2022] Open
Abstract
Disruption of ephrin B1 in collagen I producing cells in mice results in severe skull defects and reduced bone formation. Because ephrin B1 is also expressed during osteoclast differentiation and because little is known on the role of ephrin B1 reverse signaling in bone resorption, we examined the bone phenotypes in ephrin B1 conditional knockout mice, and studied the function of ephrin B1 reverse signaling on osteoclast differentiation and resorptive activity. Targeted deletion of ephrin B1 gene in myeloid lineage cells resulted in reduced trabecular bone volume, trabecular number and trabecular thickness caused by increased TRAP positive osteoclasts and bone resorption. Histomorphometric analyses found bone formation parameters were not changed in ephrin B1 knockout mice. Treatment of wild-type precursors with clustered soluble EphB2-Fc inhibited RANKL induced formation of multinucleated osteoclasts, and bone resorption pits. The same treatment of ephrin B1 deficient precursors had little effect on osteoclast differentiation and pit formation. Similarly, activation of ephrin B1 reverse signaling by EphB2-Fc treatment led to inhibition of TRAP, cathepsin K and NFATc1 mRNA expression in osteoclasts derived from wild-type mice but not conditional knockout mice. Immunoprecipitation with NHERF1 antibody revealed ephrin B1 interacted with NHERF1 in differentiated osteoclasts. Treatment of osteoclasts with exogenous EphB2-Fc resulted in reduced phosphorylation of ezrin/radixin/moesin. We conclude that myeloid lineage produced ephrin B1 is a negative regulator of bone resorption in vivo, and that activation of ephrin B1 reverse signaling inhibits osteoclast differentiation in vitro in part via a mechanism that involves inhibition of NFATc1 expression and modulation of phosphorylation status of ezrin/radixin/moesin.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
| | - Shien Lucy Zhao
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
| | - Brittany Nelson
- Department of Physiology, Loma Linda University, Loma Linda, California, United States of America
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Xuezhong Qin
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Jon Wergedal
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Department of Biochemistry, Loma Linda University, Loma Linda, California, United States of America
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Department of Biochemistry, Loma Linda University, Loma Linda, California, United States of America
- Department of Physiology, Loma Linda University, Loma Linda, California, United States of America
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
Great strides have been made regarding our understanding of the processes and signaling events influenced by Eph/ephrin signaling that play a role in cell adhesion and cell movement. However, the precise mechanisms by which these signaling events regulate cell and tissue architecture still need further resolution. The Eph/ephrin signaling pathways and the ability to regulate cell-cell adhesion and motility constitutes an impressive system for regulating tissue separation and morphogenesis (Pasquale, 2005, 2008 [1,2]). Moreover, the de-regulation of this signaling system is linked to the promotion of aggressive and metastatic tumors in humans [2]. In the following section, we discuss some of the interesting mechanisms by which ephrins can signal through their own intracellular domains (reverse signaling) either independent of forward signaling or in addition to forward signaling through a cognate receptor. In this review we discuss how ephrins (Eph ligands) "reverse signal" through their intracellular domains to affect cell adhesion and movement, but the focus is on modes of action that are independent of SH2 and PDZ interactions.
Collapse
Affiliation(s)
- Ira O Daar
- Laboratory of Cell & Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
47
|
Singh A, Winterbottom E, Daar IO. Eph/ephrin signaling in cell-cell and cell-substrate adhesion. Front Biosci (Landmark Ed) 2012; 17:473-97. [PMID: 22201756 DOI: 10.2741/3939] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-cell and cell-matrix adhesion are critical processes for the formation and maintenance of tissue patterns during development, as well as control of invasion and metastasis of cancer cells. Although great strides have been made regarding our understanding of the processes that play a role in cell adhesion and cell movement, the precise mechanisms by which diverse signaling events regulate cell and tissue architecture are poorly understood. One group of cell surface molecules, Eph receptor tyrosine kinases, and their membrane-bound ligands, ephrins, are key regulators in these processes. It is the ability of Eph/ephrin signaling pathways to regulate cell-cell adhesion and motility that establishes this family as a formidable system for regulating tissue separation and morphogenesis. Moreover, the de-regulation of this signaling system is linked to the promotion of more aggressive and metastatic tumors in humans.
Collapse
Affiliation(s)
- Arvinder Singh
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
48
|
Luo H, Charpentier T, Wang X, Qi S, Han B, Wu T, Terra R, Lamarre A, Wu J. Efnb1 and Efnb2 proteins regulate thymocyte development, peripheral T cell differentiation, and antiviral immune responses and are essential for interleukin-6 (IL-6) signaling. J Biol Chem 2011; 286:41135-41152. [PMID: 21976681 DOI: 10.1074/jbc.m111.302596] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin-producing hepatocellular kinases (Eph kinases) constitute the largest family of cell membrane receptor tyrosine kinases, and their ligand ephrins are also cell surface molecules. Because of promiscuous interaction between Ephs and ephrins, there is considerable redundancy in this system, reflecting the essential roles of these molecules in the biological system through evolution. In this study, both Efnb1 and Efnb2 were null-mutated in the T cell compartment of mice through loxP-mediated gene deletion. Mice with this double conditional mutation (double KO mice) showed reduced thymus and spleen size and cellularity. There was a significant decrease in the DN4, double positive, and single positive thymocyte subpopulations and mature CD4 and CD8 cells in the periphery. dKO thymocytes and peripheral T cells failed to compete with their WT counterparts in irradiated recipients, and the T cells showed compromised ability of homeostatic expansion. dKO naive T cells were inferior in differentiating into Th1 and Th17 effectors in vitro. The dKO mice showed diminished immune response against LCMV infection. Mechanistic studies revealed that IL-6 signaling in dKO T cells was compromised, in terms of abated induction of STAT3 phosphorylation upon IL-6 stimulation. This defect likely contributed to the observed in vitro and in vivo phenotype in dKO mice. This study revealed novel roles of Efnb1 and Efnb2 in T cell development and function.
Collapse
Affiliation(s)
- Hongyu Luo
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada
| | - Tania Charpentier
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Xuehai Wang
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada
| | - Shijie Qi
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada
| | - Bing Han
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada
| | - Tao Wu
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada; Institute of Cardiology, First Affiliated Hospital, Medical College, Zhejiang University, 310003 Hangzhou, China
| | - Rafik Terra
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada
| | - Alain Lamarre
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Jiangping Wu
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada; Service Nephrologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada.
| |
Collapse
|
49
|
Okamoto W, Okamoto I, Arao T, Yanagihara K, Nishio K, Nakagawa K. Differential roles of STAT3 depending on the mechanism of STAT3 activation in gastric cancer cells. Br J Cancer 2011; 105:407-12. [PMID: 21730976 PMCID: PMC3172904 DOI: 10.1038/bjc.2011.246] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is activated in response to growth factors and cytokines, and which contributes to the regulation of cell proliferation, apoptosis, and motility in many human tumour types. Methods: We investigated the mechanisms of STAT3 activation and the function of STAT3 depending on its mechanism of activation in gastric cancer cells. Results: The MET-tyrosine kinase inhibitor (TKI) and cell transfection with a small interfering RNA (siRNA) specific for MET mRNA inhibited STAT3 phosphorylation in MET-activated cells, indicating that STAT3 activation is linked to MET signalling. Forced expression of a constitutively active form of STAT3 also attenuated MET-TKI-induced apoptosis, suggesting that inhibition of STAT3 activity contributes to MET-TKI-induced apoptosis. MKN1 and MKN7 cells, both of which are negative for MET activation, produced interleukin-6 (IL-6) that activated STAT3 through the Janus kinase pathway. Depletion of STAT3 by siRNA inhibited migration and invasion of these cells, suggesting that STAT3 activated by IL-6 contributes to regulation of cell motility. Conclusion: Our data thus show that activated STAT3 contributes to either cell survival or motility in gastric cancer cells, and that these actions are related to different mechanisms of STAT3 activation.
Collapse
Affiliation(s)
- W Okamoto
- Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Kamata T, Bong YS, Mood K, Park MJ, Nishanian TG, Lee HS. EphrinB1 interacts with the transcriptional co-repressor Groucho/xTLE4. BMB Rep 2011; 44:199-204. [PMID: 21429299 DOI: 10.5483/bmbrep.2011.44.3.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ephrin signaling is involved in various morphogenetic events, such as axon guidance, hindbrain segmentation, and angiogenesis. We conducted a yeast two-hybrid screen using the intracellular domain (ICD) of EphrinB1 to gain biochemical insightinto the function of the EphrinB1 ICD. We identified the transcriptional co-repressor xTLE1/Groucho as an EphrinB1 interacting protein. Whole-mount in situ hybridization of Xenopus embryos confirmed the co-localization of EphrinB1 and a Xenopus counterpart to TLE1, xTLE4, during various stages of development. The EphrinB1/xTLE4 interaction was confirmed by co-immunoprecipitation experiments. Further characterization of the interaction revealed that the carboxy-terminal PDZ binding motif of EphrinB1 and the SP domain of xTLE4 are required for binding. Additionally, phosphorylation of EphrinB1 by a constitutively activated fibroblast growth factor receptor resulted in loss of the interaction, suggesting that the interaction is modulated by tyrosine phosphorylation of the EphrinB1 ICD.
Collapse
Affiliation(s)
- Teddy Kamata
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|