1
|
Gong Z, Peng Y, Zhao S, Lin Z, Tang Z, Wang H. A signal peptide variant in SLURP1 with dominant-negative effect causes progressive symmetric erythrokeratodermia. J Dermatol Sci 2025; 118:38-44. [PMID: 40023748 DOI: 10.1016/j.jdermsci.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Progressive symmetric erythrokeratodermia (PSEK) is a group of hereditary cornification disorders characterized by symmetrical, progressive erythroderma and hyperkeratosis over the body. Loss-of-function variants in SLURP1, encoding secreted Ly-6/uPAR-related protein 1, is known to cause Mal de Meleda, an autosomal recessive palmoplantar keratoderma. OBJECTIVE To identify the genetic basis and the pathogenesis of a sporadic patient with PSEK. METHODS Whole-exome sequencing and Sanger sequencing were performed to identify the pathogenic variant(s). The expression of SLURP1 was assessed on the patient's skin tissue by immunofluorescence. Western blotting (WB) and immunofluorescence (IF) were performed on eukaryotic overexpression systems to evaluate the signal peptide (SP) cleavage, subcellular localization and secretion of the mutant SLURP1. Combined WB and IF analyses were conducted on cells co-transfected with FLAG-tagged wild-type SLURP1 and untagged SLURP1-Ala22Asp. RESULTS We identified a de novo heterozygous variant in SLURP1 (c.65A > C, p.Ala22Asp) affecting the first residue before SP cleavage site in a patient with PSEK. This variant abolished the cleavage site of SP, resulting in translocation deficiency to the Golgi apparatus and decreased secretion of the mutant SLURP1. We also found that the SLURP1-Ala22Asp exerted a dominant-negative effect by impeding the SP cleavage of the wild-type SLURP1 and affecting its subcellular localization and secretion in a dose-dependent manner. CONCLUSION We reported the first autosomal-dominant variant in SLURP1 associated with a new phenotype of PSEK in a patient, emphasizing the genetic and clinical heterogeneity of SLURP1-associated genodermatoses.
Collapse
Affiliation(s)
- Zhuoqing Gong
- Dermatology Hospital, Southern Medical University, Guangzhou, China; Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yunran Peng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Sisi Zhao
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhimiao Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhanli Tang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China.
| | - Huijun Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Dubois MD, Pierre-Louis ON, Pierre-Louis S, Boisseau P, Denis CV, Dupont A, Goudemand J, Casari C, Jeanpierre E, Zawadzki C, Ferrey B, Rabout J, Fuseau P, Chonville E, Michel F, Yerro MN, Gruel Y, Christophe O, Lenting PJ, Janky E, Susen S, Neviere R. Clinical, Phenotypic and Genotypic Characteristics of Von Willebrand Disease in Afro-Caribbeans: Results From a Study in Martinique Island, French West Indies. Haemophilia 2025. [PMID: 40123275 DOI: 10.1111/hae.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Several cohort studies have investigated the molecular basis of von Willebrand disease (VWD); very few have focused on the Afro-Caribbean population. OBJECTIVES To determine the genotypic and phenotypic characterization of VWD in a large cohort of Afro-Caribbean patients living in Martinique. MATERIALS AND METHODS A total of 31 families comprising 63 Afro-Caribbean patients with VWD were enrolled. A standardized questionnaire and blood samples were collected for biological and molecular genetic analyses of von Willebrand factor (VWF). The impact of new missense variants has been predicted by in silico studies. RESULTS The median age of patients was 53 years (range 9-99). The most frequent symptoms were menorrhagia (49%), easy bruising (44%) and prolonged bleeding after tooth extraction (42%). Fifteen patients (24%) had quantitative deficiencies of VWF, of whom 13 (21%) were assigned as VWD-type 1, 1 (1%) as VWD-type 1C and 1 (2%) as VWD-type 3. Forty-five patients were diagnosed with VWD-type 2 (qualitative defects of VWF) (71%). VWD-type 2A was the most frequent, with 36 patients. Seven patients had VWD-type 2M and two patients had VWD-type 2B. Three patients (5%) had an indeterminate effect of the VWF defect due to ISTH BAT at 0. Forty-eight different VWF variants, including 4 novel variants, were identified in 63 patients. The variants consisted of 34 (71%) missense, 7 (15%) synonymous, 3 (6%) frameshifts, 2 (4%) small deletions and 2 (4%) gene conversions. CONCLUSIONS This study emphasizes the unique distribution of genotypes in our cohort of Afro-Caribbean VWD patients living in Martinique. ESSENTIALS Genotype-phenotype correlation was assessed in VWD Afro-Caribbean patients with one or more VWF variants. Menorrhagia, easy bruising and prolonged bleeding after tooth extraction are common in VWD patients. Efforts to increase the awareness and diagnosis of VWD have contributed to a better identification of patients with bleeding disorders.
Collapse
Affiliation(s)
- Marie-Daniéla Dubois
- UR5_3 Pathologie Cardiaque, toxicité Environnementale et Envenimations (PC2E), CHU de Martinique (University Hospital of Martinique), Fort de France, France
| | - Olivier Nicolas Pierre-Louis
- UR5_3 Pathologie Cardiaque, toxicité Environnementale et Envenimations (PC2E), CHU de Martinique (University Hospital of Martinique), Fort de France, France
| | - Serge Pierre-Louis
- Centre de Ressources et de Compétences Maladies Hémorragiques Constitutionnelles, CHU de Martinique, Fort-de-France, France
| | - Pierre Boisseau
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Cécile V Denis
- Laboratory for Hemostasis, Inflammation & Thrombosis (HITh), Unité Mixte de Recherche 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Annabelle Dupont
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | | | - Caterina Casari
- Laboratory for Hemostasis, Inflammation & Thrombosis (HITh), Unité Mixte de Recherche 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | | | - Béatrice Ferrey
- Centre de Ressources et de Compétences Maladies Hémorragiques Constitutionnelles, CHU de Martinique, Fort-de-France, France
| | - Johalène Rabout
- Centre de Ressources et de Compétences Maladies Hémorragiques Constitutionnelles, CHU de Martinique, Fort-de-France, France
| | - Pascal Fuseau
- Service d'Hématologie Biologique, CHU de Martinique, Fort-de-France, France
| | - Emelyne Chonville
- Centre de Ressources et de Compétences Maladies Hémorragiques Constitutionnelles, CHU de Martinique, Fort-de-France, France
| | | | - Marie-Nadiège Yerro
- Centre de Ressources et de Compétences Maladies Hémorragiques Constitutionnelles, CHU de Martinique, Fort-de-France, France
| | - Yves Gruel
- Laboratoire d'Hématologie-Hémostase, CHRU de Tours, Hôpital Trousseau, Tours Cedex, France
| | - Olivier Christophe
- Laboratory for Hemostasis, Inflammation & Thrombosis (HITh), Unité Mixte de Recherche 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- Laboratory for Hemostasis, Inflammation & Thrombosis (HITh), Unité Mixte de Recherche 1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Eustase Janky
- Gynaecology, Obstetrics Department, University Hospital of Guadeloupe, Pointe-à-Pitre, France
| | - Sophie Susen
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Rémi Neviere
- UR5_3 Pathologie Cardiaque, toxicité Environnementale et Envenimations (PC2E), CHU de Martinique (University Hospital of Martinique), Fort de France, France
- Department of Cardiology, CHU Martinique, Fort de France, France
| |
Collapse
|
3
|
Ehrencrona E, Gallego P, Trillo‐Muyo S, Garcia‐Bonete M, Recktenwald CV, Hansson GC, Johansson MEV. The structure of FCGBP is formed as a disulfide-mediated homodimer between its C-terminal domains. FEBS J 2025; 292:582-601. [PMID: 39754272 PMCID: PMC11796319 DOI: 10.1111/febs.17383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025]
Abstract
Mucus in the colon is crucial for intestinal homeostasis by forming a barrier that separates microbes from the epithelium. This is achieved by the structural arrangement of the major mucus proteins, such as MUC2 and FCGBP, both of which are comprised of several von Willebrand D domains (vWD) and assemblies. Numerous disulfide bonds stabilise these domains, and intermolecular bonds generate multimers of MUC2. The oligomeric nature of FCGBP is not known. Human hFCGBP contains 13 vWD domains whereas mouse mFCGBP consists of only 7. We found unpaired cysteines in the vWD1 (human and mouse) and vWD5 (mouse)/vWD11 (human) assemblies which were not involved in disulfide bonds. However, the most C-terminal vWD domains, vWD7 (mouse)/vWD13 (human), formed disulfide-linked dimers. The intermolecular bond between C5284 and C5403 of human hFCGBP was observed by using mass spectrometry to generate the dimer. Cryo-EM structure analysis of recombinant mouse mFCGBP revealed a compact dimer with two symmetric intermolecular disulfide bonds between C2462 and C2581, corresponding to the dimerising cysteines in the human hFCGBP. This compact conformation involves interactions between the vWD assemblies, but although the domains involved at the interface are the same, the nature of the interactions differ. Mouse mFCGBP was also found to exist in a semi-extended conformation. These different interactions offer insights into the dynamic nature of the FCGBP homodimer.
Collapse
Affiliation(s)
- Erik Ehrencrona
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Pablo Gallego
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Sergio Trillo‐Muyo
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Maria‐Jose Garcia‐Bonete
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Christian V. Recktenwald
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| | - Malin E. V. Johansson
- Department of Medical Biochemistry and Cell BiologyInstitute of Biomedicine, University of GothenburgSweden
| |
Collapse
|
4
|
Lenting PJ, Denis CV, Christophe OD. How unique structural adaptations support and coordinate the complex function of von Willebrand factor. Blood 2024; 144:2174-2184. [PMID: 38968155 DOI: 10.1182/blood.2023023277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT von Willebrand factor (VWF) is a multimeric protein consisting of covalently linked monomers, which share an identical domain architecture. Although involved in processes such as inflammation, angiogenesis, and cancer metastasis, VWF is mostly known for its role in hemostasis, by acting as a chaperone protein for coagulation factor VIII (FVIII) and by contributing to the recruitment of platelets during thrombus formation. To serve its role in hemostasis, VWF needs to bind a variety of ligands, including FVIII, platelet-receptor glycoprotein Ib-α, VWF-cleaving protease ADAMTS13, subendothelial collagen, and integrin α-IIb/β-3. Importantly, interactions are differently regulated for each of these ligands. How are these binding events accomplished and coordinated? The basic structures of the domains that constitute the VWF protein are found in hundreds of other proteins of prokaryotic and eukaryotic organisms. However, the determination of the 3-dimensional structures of these domains within the VWF context and especially in complex with its ligands reveals that exclusive, VWF-specific structural adaptations have been incorporated in its domains. They provide an explanation of how VWF binds its ligands in a synchronized and timely fashion. In this review, we have focused on the domains that interact with the main ligands of VWF and discuss how elucidating the 3-dimensional structures of these domains has contributed to our understanding of how VWF function is controlled. We further detail how mutations in these domains that are associated with von Willebrand disease modulate the interaction between VWF and its ligands.
Collapse
Affiliation(s)
- Peter J Lenting
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| |
Collapse
|
5
|
Liang Q, Zhang Z, Ding B, Shao Y, Ding Q, Dai J, Hu X, Wu W, Wang X. A noncanonical splicing variant c.875-5 T > G in von Willebrand factor causes in-frame exon skipping and type 2A von Willebrand disease. Thromb Res 2024; 236:51-60. [PMID: 38387303 DOI: 10.1016/j.thromres.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
INTRODUCTION A novel variant involving noncanonical splicing acceptor site (c.875-5 T > G) in propeptide coding region of von Willebrand factor (VWF) was identified in a patient with type 2A von Willebrand disease (VWD), who co-inherited with a null variant (p.Tyr271*) and presented characteristic discrepancy of plasma level of VWF antigen and activity, and a selective reduction of both intermediate-molecular-weight (IMWMs) and high-molecular-weight VWF multimers (HMWMs). MATERIALS AND METHODS VWF mRNA transcripts obtained from peripheral leukocytes and platelets of the patients were investigated to analyze the consequence of c.875-5 T > G on splicing. The impact of the variant on expression and multimer assembly was further analyzed by in vitro expression studies in AtT-20 cells. The intracellular processing of VWF mutant and the Weibel-Palade bodies (WPBs) formation was evaluated by immunofluorescence staining and electron microscopy. RESULTS The mRNA transcript analysis revealed that c.875-5 T > G variant led to exon 8 skipping and an in-frame deletion of 41 amino acids in the D1 domain of VWF (p.Ser292_Glu333delinsLys), yielding a truncated propeptide. Consistent with the patient's laboratory manifestations, the AtT-20 cells transfected with mutant secreted less VWF, with the VWF antigen level in conditioned medium 47 % of wild-type. A slight retention in the endoplasmic reticulum was observed for the mutant. Almost complete loss of IMWMs and HMWMs in the medium and impaired WPBs formation in the cell, indicating truncated VWF propeptide lost its chaperon-like function for VWF multimerization and tubular storage. CONCLUSIONS The VWF splicing site variant (c.875-5 T > G) causes propeptide truncation, severely compromising VWF multimer assembly and tubular storage.
Collapse
Affiliation(s)
- Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ziqi Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Biying Ding
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Shao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaobo Hu
- Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, China.
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Bian X, Si Z, Wang Q, Liu L, Shi Z, Tian C, Lee W, Zhang Y. IgG Fc-binding protein positively regulates the assembly of pore-forming protein complex βγ-CAT evolved to drive cell vesicular delivery and transport. J Biol Chem 2023; 299:104717. [PMID: 37068610 DOI: 10.1016/j.jbc.2023.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
Cell membranes form barriers for molecule exchange between the cytosol and the extracellular environments. βγ-CAT, a complex of pore-forming protein (PFP) BmALP1 (two βγ-crystallin domains with an aerolysin pore-forming domain) and the trefoil factor BmTFF3, has been identified in toad Bombina maxima. It plays pivotal roles, via inducing channel formation in various intra- or extra- cellular vesicles, as well as in nutrient acquisition, maintaining water balance, and antigen presentation. Thus, such a protein machine should be tightly regulated. Indeed, BmALP3 (a paralog of BmALP1) oxidizes BmALP1 to form a water-soluble polymer, leading to dissociation of the βγ-CAT complex and loss of biological activity. Here, we found that the B. maxima IgG Fc-binding protein (FCGBP), a well-conserved vertebrate mucin-like protein with unknown functions, acted as a positive regulator for βγ-CAT complex assembly. The interactions among FCGBP, BmALP1, and BmTFF3 were revealed by co-immunoprecipitation assays. Interestingly, FCGBP reversed the inhibitory effect of BmALP3 on the βγ-CAT complex. Furthermore, FCGBP reduced BmALP1 polymers and facilitated the assembly of βγ-CAT with the biological pore-forming activity in the presence of BmTFF3. Our findings define the role of FCGBP in mediating the assembly of a PFP machine evolved to drive cell vesicular delivery and transport.
Collapse
Affiliation(s)
- Xianling Bian
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ziru Si
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiquan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Lingzhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhihong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
7
|
Seidizadeh O, Baronciani L, Pagliari MT, Cozzi G, Colpani P, Cairo A, Siboni SM, Biguzzi E, Peyvandi F. Genetic determinants of enhanced von Willebrand factor clearance from plasma. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:1112-1122. [PMID: 36754679 DOI: 10.1016/j.jtha.2023.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Enhanced von Willebrand factor (VWF) clearance from plasma is associated with von Willebrand disease (VWD). However, the genetic background of this disease mechanism is not well defined. OBJECTIVE To determine VWF variants that are associated with reduced VWF survival. METHODS Two hundred fifty-four patients with VWD (type 1 = 50 and type 2 = 204) were investigated, and the results were compared with 120 healthy controls. The patients were comprehensively characterized for phenotypic and genetic features. The ratio of VWF propeptide (VWFpp)/VWF antigen (VWFpp ratio) was used to establish in each patient the VWF clearance state. RESULTS Out of 92 variants associated with type 1 (7 were novel) and type 2 VWD, 19 had a VWFpp ratio ranging from 1.7 to 2.2, 24 had a VWFpp ratio between 2.3 and 2.9, and 24 variants had a ratio of ≥3. The VWFpp median ratio in healthy controls was 0.98 (0.55-1.6) so that a cut-off value of >1.6 was considered an indicator of accelerated VWF clearance from plasma. An enhanced VWF clearance was observed in 34% of type 1 cases, 100% of type 1 Vicenza cases, 81% of 2A cases, 77% of 2B cases, 88% of 2M cases, and 36% of 2N cases. CONCLUSIONS An accelerated VWF clearance was found in most patients with type 2A, 2B, and 2M VWD, with a lower proportion of type 1 and 2N. Sixty-seven different variants alone or in combination with other variants were associated with an increased VWFpp ratio. The variants with the highest VWFpp ratio were mostly located in the D3-A1 VWF domains.
Collapse
Affiliation(s)
- Omid Seidizadeh
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy; Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Luciano Baronciani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Maria Teresa Pagliari
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Giovanna Cozzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Paola Colpani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Andrea Cairo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Simona Maria Siboni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Eugenia Biguzzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy; Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy.
| |
Collapse
|
8
|
Li RS, Wen C, Huang CZ, Li N. Functional molecules and nano-materials for the Golgi apparatus-targeted imaging and therapy. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Anderson JR, Li J, Springer TA, Brown A. Structures of VWF tubules before and after concatemerization reveal a mechanism of disulfide bond exchange. Blood 2022; 140:1419-1430. [PMID: 35776905 PMCID: PMC9507011 DOI: 10.1182/blood.2022016467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) is an adhesive glycoprotein that circulates in the blood as disulfide-linked concatemers and functions in primary hemostasis. The loss of long VWF concatemers is associated with the excessive bleeding of type 2A von Willebrand disease (VWD). Formation of the disulfide bonds that concatemerize VWF requires VWF to self-associate into helical tubules, yet how the helical tubules template intermolecular disulfide bonds is not known. Here, we report electron cryomicroscopy (cryo-EM) structures of VWF tubules before and after intermolecular disulfide bond formation. The structures provide evidence that VWF tubulates through a charge-neutralization mechanism and that the A1 domain enhances tubule length by crosslinking successive helical turns. In addition, the structures reveal disulfide states before and after disulfide bond-mediated concatemerization. The structures and proposed assembly mechanism provide a foundation to rationalize VWD-causing mutations.
Collapse
Affiliation(s)
- Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jing Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA; and
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
A conformational transition of the D'D3 domain primes von Willebrand factor for multimerization. Blood Adv 2022; 6:5198-5209. [PMID: 36069828 PMCID: PMC9631632 DOI: 10.1182/bloodadvances.2022006978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
Magnetic tweezers reveal a pH-dependent destabilization of the D3 interface priming VWF for multimerization by exposing Cys1099 and Cys1142. The stability of the D3 interface is increased by FVIII, suggesting a binding site within the D3 submodules.
Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the trans-Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D′D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose 2 buried cysteines, Cys1099 and Cys1142, that are vital for multimerization. By characterizing the conformational change at varying levels of force, we can quantify the kinetics of the transition and stability of the interface. We find a pronounced destabilization of the interface on lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D′D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII, providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D′D3 domain in VWF biosynthesis and function, and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond.
Collapse
|
11
|
Okamoto S, Tamura S, Sanda N, Odaira K, Hayakawa Y, Mukaide M, Suzuki A, Kanematsu T, Hayakawa F, Katsumi A, Kiyoi H, Kojima T, Matsushita T, Suzuki N. VWF-Gly2752Ser, a novel non-cysteine substitution variant in the CK domain, exhibits severe secretory impairment by hampering C-terminal dimer formation. J Thromb Haemost 2022; 20:1784-1796. [PMID: 35491445 DOI: 10.1111/jth.15746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 08/31/2023]
Abstract
BACKGROUND Von Willebrand factor (VWF) is a multimeric glycoprotein that plays important roles in hemostasis and thrombosis. C-terminal interchain-disulfide bonds in the cystine knot (CK) domain are essential for VWF dimerization. Previous studies have reported that missense variants of cysteine in the CK domain disrupt the intrachain-disulfide bond and cause type 3 von Willebrand disease (VWD). However, type 3 VWD-associated noncysteine substitution variants in the CK domain have not been reported. OBJECTIVE To investigate the molecular mechanism of a novel non-cysteine variant in the CK domain, VWF c.8254 G>A (p.Gly2752Ser), which was identified in a patient with type 3 VWD as homozygous. METHODS Genetic analysis was performed by whole exome sequencing and Sanger sequencing. VWF multimer analysis was performed using SDS-agarose electrophoresis. VWF production and subcellular localization were analyzed using ex vivo endothelial colony forming cells (ECFCs) and an in vitro recombinant VWF (rVWF) expression system. RESULTS The patient was homozygous for VWF-Gly2752Ser. Plasma VWF enzyme-linked immunosorbent assay showed that the VWF antigen level of the patient was 1.2% compared with healthy subjects. A tiny amount of VWF was identified in the patient's ECFC. Multimer analysis revealed that the circulating VWF-Gly2752Ser presented only low molecular weight multimers. Subcellular localization analysis of VWF-Gly2752Ser-transfected cell lines showed that rVWF-Gly2752Ser was severely impaired in its ER-to-Golgi trafficking. CONCLUSION VWF-Gly2752Ser causes severe secretory impairment because of its dimerization failure. This is the first report of a VWF variant with a noncysteine substitution in the CK domain that causes type 3 VWD.
Collapse
Affiliation(s)
- Shuichi Okamoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Tamura
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naomi Sanda
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuri Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Mukaide
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuo Suzuki
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan
| | - Takeshi Kanematsu
- Department of Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Katsumi
- Department of Hematology, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuhito Kojima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Aichi Health Promotion Foundation, Nagoya, Japan
| | - Tadashi Matsushita
- Department of Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Nobuaki Suzuki
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
12
|
Zeng J, Shu Z, Liang Q, Zhang J, Wu W, Wang X, Zhou A. Structural basis of von Willebrand factor multimerization and tubular storage. Blood 2022; 139:3314-3324. [PMID: 35148377 PMCID: PMC11022981 DOI: 10.1182/blood.2021014729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
The von Willebrand factor (VWF) propeptide (domains D1D2) is essential for the assembly of VWF multimers and its tubular storage in Weibel-Palade bodies. However, detailed molecular mechanism underlying this propeptide dependence is unclear. Here, we prepared Weibel-Palade body-like tubules using the N-terminal fragment of VWF and solved the cryo-electron microscopy structures of the tubule at atomic resolution. Detailed structural and biochemical analysis indicate that the propeptide forms a homodimer at acidic pH through the D2:D2 binding interface and then recruits 2 D'D3 domains, forming an intertwined D1D2D'D3 homodimer in essence. Stacking of these homodimers by the intermolecular D1:D2 interfaces brings 2 D3 domains face-to-face and facilitates their disulfide linkages and multimerization of VWF. Sequential stacking of these homodimers leads to a right-hand helical tubule for VWF storage. The clinically identified VWF mutations in the propeptide disrupted different steps of the assembling process, leading to diminished VWF multimers in von Willebrand diseases (VWD). Overall, these results indicate that the propeptide serves as a pH-sensing template for VWF multimerization and tubular storage. This sheds light on delivering normal propeptide as a template to rectify the defects in multimerization of VWD mutants.
Collapse
Affiliation(s)
- Jianwei Zeng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zimei Shu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aiwu Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Naveed MA, Abid A, Ali N, Hassan Y, Amar A, Javed A, Qamar K, Mustafa G, Raza A, Saleem U, Hussain S, Shakoor M, Khaliq S, Mohsin S. Genetic Alterations, DNA Methylation, Alloantibodies and Phenotypic Heterogeneity in Type III von Willebrand Disease. Genes (Basel) 2022; 13:971. [PMID: 35741733 PMCID: PMC9222927 DOI: 10.3390/genes13060971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Type III von Willebrand disease is present in the Punjab province of Pakistan along with other inherited bleeding disorders like hemophilia. Cousin marriages are very common in Pakistan so genetic studies help to establish protocols for screening, especially at the antenatal level. Factors behind the phenotypic variation of the severity of bleeding in type III vWD are largely unknown. The study was conducted to determine Mutations/genetic alterations in type III von Willebrand disease and also to determine the association of different mutations, methylation status, ITGA2B/B3 mutations and alloimmunization with the severity of type III vWD. After informed consent and detailed history of the patients, routine tests and DNA extraction from blood, mutational analysis was performed by Next Generation Sequencing on Ion Torrent PGM. DNA methylation status was also checked with the help of PCR. In our cohort, 55 cases were detected with pathogenic mutations. A total of 27 different mutations were identified in 55 solved cases; 16 (59.2%) were novel. The mean bleeding score in truncating mutations and essential splice site mutations was relatively higher than weak and strong missense mutations. The mean bleeding score showed insignificant variation for different DNA methylation statuses of the VWF gene at the cg23551979 CpG site. Mutations in exons 7,10, 25, 28, 31, 43, and intron 41 splice site account for 75% of the mutations.
Collapse
Affiliation(s)
- Muhammad Asif Naveed
- Department of Haematology, University of Health Sciences, Khayaban Jamia Punjab, Lahore 52600, Pakistan; (K.Q.); (G.M.); (S.M.)
| | - Aiysha Abid
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology Transplantation, Karachi 42000, Pakistan; (A.A.); (A.R.)
| | - Nadir Ali
- Kulsoom International Hospital, 2020 Jinnah Ave, G 6/2 Blue Area, Islamabad 53000, Pakistan;
| | - Yaqoob Hassan
- Chughtai’s Lahore Lab, 42300 Jail Road, Lahore 52600, Pakistan;
| | - Ali Amar
- Human Genetics and Molecular Biology, University of Health Sciences, Khayaban Jamia Punjab, Lahore 52600, Pakistan; (A.A.); (M.S.); (S.K.)
| | - Aymen Javed
- Department of Obstetrics and Gynaecology Services Hospital Jail Road, Lahore 42500, Pakistan;
| | - Khansa Qamar
- Department of Haematology, University of Health Sciences, Khayaban Jamia Punjab, Lahore 52600, Pakistan; (K.Q.); (G.M.); (S.M.)
| | - Ghulam Mustafa
- Department of Haematology, University of Health Sciences, Khayaban Jamia Punjab, Lahore 52600, Pakistan; (K.Q.); (G.M.); (S.M.)
| | - Ali Raza
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology Transplantation, Karachi 42000, Pakistan; (A.A.); (A.R.)
| | - Umera Saleem
- Department of Pathology, Nishter Medical University, Nishter Road, Multan 32003, Pakistan;
| | - Shabbir Hussain
- Department of Biochemistry, University of Health Sciences, Khayaban Jamia Punjab, Lahore 52600, Pakistan;
| | - Madiha Shakoor
- Human Genetics and Molecular Biology, University of Health Sciences, Khayaban Jamia Punjab, Lahore 52600, Pakistan; (A.A.); (M.S.); (S.K.)
| | - Shagufta Khaliq
- Human Genetics and Molecular Biology, University of Health Sciences, Khayaban Jamia Punjab, Lahore 52600, Pakistan; (A.A.); (M.S.); (S.K.)
| | - Shahida Mohsin
- Department of Haematology, University of Health Sciences, Khayaban Jamia Punjab, Lahore 52600, Pakistan; (K.Q.); (G.M.); (S.M.)
| |
Collapse
|
14
|
Rawley O, Swystun LL, Brown C, Nesbitt K, Rand M, Hossain T, Klaassen R, James PD, Carcao MD, Lillicrap D. Novel cysteine substitution p.(Cys1084Tyr) causes variable expressivity of qualitative and quantitative VWF defects. Blood Adv 2022; 6:2908-2919. [PMID: 35020809 PMCID: PMC9092401 DOI: 10.1182/bloodadvances.2021005928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) is an extremely cysteine-rich multimeric protein that is essential for maintaining normal hemostasis. The cysteine residues of VWF monomers form intra- and intermolecular disulfide bonds that regulate its structural conformation, multimer distribution, and ultimately its hemostatic activity. In this study, we investigated and characterized the molecular and pathogenic mechanisms through which a novel cysteine variant p.(Cys1084Tyr) causes an unusual, mixed phenotype form of von Willebrand disease (VWD). Phenotypic data including bleeding scores, laboratory values, VWF multimer distribution, and desmopressin response kinetics were investigated in 5 members (2 parents and 3 daughters) of a consanguineous family. VWF synthesis and secretion were also assessed in a heterologous expression system and in a transient transgenic mouse model. Heterozygosity for p.(Cys1084Tyr) was associated with variable expressivity of qualitative VWF defects. Heterozygous individuals had reduced VWF:GPIbM (<0.40 IU/mL) and VWF:CB (<0.35 IU/mL), as well as relative reductions in high-molecular-weight multimers, consistent with type 2A VWD. In addition to these qualitative defects, homozygous individuals also displayed reduced factor VIII (FVIII):C/VWF:Ag, leading to very low FVIII levels (0.03-0.1 IU/mL) and reduced VWF:Ag (<0.40 IU/mL) and VWF:GPIbM (<0.30 IU/mL). Accelerated VWF clearance and impaired VWF secretion contributed to the fully expressed homozygous phenotype with impaired secretion arising because of disordered disulfide connectivity.
Collapse
Affiliation(s)
- Orla Rawley
- Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Laura L. Swystun
- Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Christine Brown
- Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Kate Nesbitt
- Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Margaret Rand
- Division of Hematology/Oncology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Taneya Hossain
- Division of Hematology/Oncology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Robert Klaassen
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada; and
| | - Paula D. James
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Manuel D. Carcao
- Division of Hematology/Oncology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - David Lillicrap
- Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
15
|
|
16
|
Disulfide exchange in multimerization of von Willebrand factor and gel-forming mucins. Blood 2021; 137:1263-1267. [PMID: 32961556 DOI: 10.1182/blood.2020005989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 01/20/2023] Open
|
17
|
Yadegari H, Biswas A, Ahmed S, Naz A, Oldenburg J. von Willebrand factor propeptide missense variants affect anterograde transport to Golgi resulting in ER retention. Hum Mutat 2021; 42:731-744. [PMID: 33942438 DOI: 10.1002/humu.24204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 11/07/2022]
Abstract
von Willebrand disease (VWD), the most prevalent congenital bleeding disorder, arises from a deficiency in von Willebrand factor (VWF), which has crucial roles in hemostasis. The present study investigated functional consequences and underlying pathomolecular mechanisms of several VWF propeptide (VWFpp) missense variants detected in our cohort of VWD patients for the first time. Transient expression experiments in HEK293T cells demonstrated that four out of the six investigated missense variants (p.Gly55Glu, p.Val86Glu, p.Trp191Arg, and p.Cys608Trp) severely impaired secretion. Their cotransfections with the wild-type partly corrected VWF secretion, displaying loss of large/intermediate multimers. Immunostaining of the transfected HEK293 cells illustrated the endoplasmic reticulum (ER) retention of the VWF variants. Docking of the COP I and COP II cargo recruitment proteins, ADP-ribosylation factor 1 and Sec24, onto the N-terminal VWF model (D1D2D'D3) revealed that these variants occur at VWFpp putative interfaces, which can hinder VWF loading at the ER exit quality control. Furthermore, quantitative and automated morphometric exploration of the three-dimensional immunofluorescence images showed changes in the number/size of the VWF storage organelles, Weibel-Palade body (WPB)-like vesicles. The result of this study highlighted the significance of the VWFpp variants on anterograde ER-Golgi trafficking of VWF as well as the biogenesis of WPB-like vesicles.
Collapse
Affiliation(s)
- Hamideh Yadegari
- Institute of Experimental Haematology and Transfusion Medicine, University Clinics Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinics Bonn, Bonn, Germany
| | - Shariq Ahmed
- National Institute of Blood Disease & Bone Marrow Transplantation, Karachi, Pakistan
| | - Arshi Naz
- National Institute of Blood Disease & Bone Marrow Transplantation, Karachi, Pakistan
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinics Bonn, Bonn, Germany
| |
Collapse
|
18
|
Karampini E, Bürgisser PE, Olins J, Mulder AA, Jost CR, Geerts D, Voorberg J, Bierings R. Sec22b determines Weibel-Palade body length by controlling anterograde ER-Golgi transport. Haematologica 2021; 106:1138-1147. [PMID: 32336681 PMCID: PMC8018124 DOI: 10.3324/haematol.2019.242727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 01/07/2023] Open
Abstract
Von Willebrand factor (VWF) is a multimeric hemostatic protein that is synthesized in endothelial cells, where it is stored for secretion in elongated secretory organelles called Weibel-Palade bodies (WPB). The hemostatic activity of VWF is strongly related to the length of these bodies, but how endothelial cells control the dimensions of their WPB is unclear. In this study, using a targeted short hairpin RNA screen, we identified longin-SNARE Sec22b as a novel determinant of WPB size and VWF trafficking. We found that Sec22b depletion resulted in loss of the typically elongated WPB morphology together with disintegration of the Golgi and dilation of rough endoplasmic reticulum cisternae. This was accompanied by reduced proteolytic processing of VWF, accumulation of VWF in the dilated rough endoplasmic reticulum and reduced basal and stimulated VWF secretion. Our data demonstrate that the elongation of WPB, and thus adhesive activity of their cargo VWF, is determined by the rate of anterograde transport between endoplasmic reticulum and Golgi, which depends on Sec22b-containing SNARE complexes.
Collapse
Affiliation(s)
- Ellie Karampini
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Petra E Bürgisser
- Dept. of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jenny Olins
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Aat A Mulder
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolina R Jost
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk Geerts
- Medical Biology, Amsterdam University Medical Center, University of Amsterdam, The Netherlands
| | - Jan Voorberg
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Ruben Bierings
- Dept. of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Abstract
During biofilm formation, the opportunistic pathogen Pseudomonas aeruginosa uses its type IV pili (TFP) to sense a surface, eliciting increased second-messenger production and regulating target pathways required to adapt to a surface lifestyle. The mechanisms whereby TFP detect surface contact are still poorly understood, although mechanosensing is often invoked, with few data supporting this claim. Using a combination of molecular genetics and single-cell analysis, with biophysical, biochemical, and genomics techniques, we show that force-induced changes mediated by the von Willebrand A (vWA) domain-containing, TFP tip-associated protein PilY1 are required for surface sensing. Atomic force microscopy shows that TFP/PilY1 can undergo force-induced, sustained conformational changes akin to those observed for mechanosensitive proteins like titin. We show that mutation of a single cysteine residue in the vWA domain of PilY1 results in modestly lower surface adhesion forces, reduced sustained conformational changes, and increased nanospring-like properties, as well as reduced c-di-GMP signaling and biofilm formation. Mutating this cysteine has allowed us to genetically separate a role for TFP in twitching motility from surface-sensing signaling. The conservation of this Cys residue in all P. aeruginosa PA14 strains and its absence in the ∼720 sequenced strains of P. aeruginosa PAO1 may contribute to explaining the observed differences in surface colonization strategies observed for PA14 versus PAO1. IMPORTANCE Most bacteria live on abiotic and biotic surfaces in surface-attached communities known as biofilms. Surface sensing and increased levels of the second-messenger molecule c-di-GMP are crucial to the transition from planktonic to biofilm growth. The mechanism(s) underlying TFP-mediated surface detection that triggers this c-di-GMP signaling cascade is unclear. Here, we provide key insight into this question; we show that the eukaryote-like vWA domain of the TFP tip-associated protein PilY1 responds to mechanical force, which in turn drives the production of a key second messenger needed to regulate surface behaviors. Our studies highlight a potential mechanism that may account for differing surface colonization strategies.
Collapse
|
20
|
Saito T, Kurazumi H, Suzuki R, Matsuno Y, Mikamo A, Hamano K. Preserving the endothelium in saphenous vein graft with both conventional and no-touch preparation. J Cardiothorac Surg 2020; 15:317. [PMID: 33059713 PMCID: PMC7566069 DOI: 10.1186/s13019-020-01352-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/28/2020] [Indexed: 01/21/2023] Open
Abstract
Background Despite the inferior patency compared to arterial grafts, a saphenous vein graft (SVG) is widely used for coronary artery bypass grafting (CABG). A lower atherosclerosis rate and higher patency have been reported for SVG obtained via the no-touch technique (NT) than via conventional preparation (CV). Although CV-mediated endothelial dysfunction is implied, the precise mechanism underlying the higher patency with NT is poorly understood. Methods Human residual SVGs during CABG and SVG sections after autopsy were analyzed. The endothelial surface was observed using scanning electron microscopy (SEM) and blindly compared between CV and NT. The endothelial integrity was also analyzed with immunohistochemistry. Results Unexpectedly, the hyperfine structure on SEM was comparable between CV and NT before grafting, and microvillus, a characteristic of endothelium, was indistinguishable between them. Von Willebrand Factor, an endothelial marker, was equally detected throughout the vascular wall in both groups from residual and postmortem sections. Conclusions The morphological integrity of the endothelium was successfully preserved in SVG with CV, even at an ultrastructural level. Although its functionality remains to be addressed, other factors than the endothelium may be involved in the high patency obtained by NT. The present findings suggest that the characteristics of NT and surgical methodology should be reconsidered.
Collapse
Affiliation(s)
- Toshiro Saito
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi, 755-8505, Japan
| | - Hiroshi Kurazumi
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi, 755-8505, Japan
| | - Ryo Suzuki
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi, 755-8505, Japan
| | - Yutaro Matsuno
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi, 755-8505, Japan
| | - Akihito Mikamo
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi, 755-8505, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
21
|
Karampini E, Bierings R, Voorberg J. Orchestration of Primary Hemostasis by Platelet and Endothelial Lysosome-Related Organelles. Arterioscler Thromb Vasc Biol 2020; 40:1441-1453. [PMID: 32375545 DOI: 10.1161/atvbaha.120.314245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Megakaryocyte-derived platelets and endothelial cells store their hemostatic cargo in α- and δ-granules and Weibel-Palade bodies, respectively. These storage granules belong to the lysosome-related organelles (LROs), a heterogeneous group of organelles that are rapidly released following agonist-induced triggering of intracellular signaling pathways. Following vascular injury, endothelial Weibel-Palade bodies release their content into the vascular lumen and promote the formation of long VWF (von Willebrand factor) strings that form an adhesive platform for platelets. Binding to VWF strings as well as exposed subendothelial collagen activates platelets resulting in the release of α- and δ-granules, which are crucial events in formation of a primary hemostatic plug. Biogenesis and secretion of these LROs are pivotal for the maintenance of proper hemostasis. Several bleeding disorders have been linked to abnormal generation of LROs in megakaryocytes and endothelial cells. Recent reviews have emphasized common pathways in the biogenesis and biological properties of LROs, focusing mainly on melanosomes. Despite many similarities, LROs in platelet and endothelial cells clearly possess distinct properties that allow them to provide a highly coordinated and synergistic contribution to primary hemostasis by sequentially releasing hemostatic cargo. In this brief review, we discuss in depth the known regulators of α- and δ-granules in megakaryocytes/platelets and Weibel-Palade bodies in endothelial cells, starting from transcription factors that have been associated with granule formation to protein complexes that promote granule maturation. In addition, we provide a detailed view on the interplay between platelet and endothelial LROs in controlling hemostasis as well as their dysfunction in LRO related bleeding disorders.
Collapse
Affiliation(s)
- Ellie Karampini
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Ruben Bierings
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands (R.B.)
| | - Jan Voorberg
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Experimental Vascular Medicine (J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
22
|
Przeradzka MA, van Galen J, Ebberink EHTM, Hoogendijk AJ, van der Zwaan C, Mertens K, van den Biggelaar M, Meijer AB. D' domain region Arg782-Cys799 of von Willebrand factor contributes to factor VIII binding. Haematologica 2019; 105:1695-1703. [PMID: 31558672 PMCID: PMC7271574 DOI: 10.3324/haematol.2019.221994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
In the complex with von Willebrand factor (VWF) factor VIII (FVIII) is protected from rapid clearance from circulation. Although it has been established that the FVIII binding site resides in the N-terminal D'-D3 domains of VWF, detailed information about the amino acid regions that contribute to FVIII binding is still lacking. In the present study, hydrogen-deuterium exchange mass spectrometry was employed to gain insight into the FVIII binding region on VWF. To this end, time-dependent deuterium incorporation was assessed in D'-D3 and the FVIII-D'-D3 complex. Data showed reduced deuterium incorporation in the D' region Arg782-Cys799 in the FVIII-D'-D3 complex compared to D'-D3. This implies that this region interacts with FVIII. Site-directed mutagenesis of the six charged amino acids in Arg782-Cys799 into alanine residues followed by surface plasmon resonance analysis and solid phase binding studies revealed that replacement of Asp796 affected FVIII binding. A marked decrease in FVIII binding was observed for the D'-D3 Glu787Ala variant. The same was observed for D'-D3 variants in which Asp796 and Glu787 were replaced by Asn796 and Gln787. Site-directed mutagenesis of Leu786, which together with Glu787 and Cys789 forms a short helical region in the crystal structure of D'-D3, also had a marked impact on FVIII binding. The combined results show that the amino acid region Arg782-Cys799 is part of a FVIII binding surface. Our study provides new insight into FVIII-VWF complex formation and defects therein that may be associated with bleeding caused by markedly reduced levels of FVIII.
Collapse
Affiliation(s)
| | - Josse van Galen
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam
| | | | - Arie J Hoogendijk
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam
| | | | - Koen Mertens
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam
| | | | - Alexander B Meijer
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam .,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
23
|
Javitt G, Calvo MLG, Albert L, Reznik N, Ilani T, Diskin R, Fass D. Intestinal Gel-Forming Mucins Polymerize by Disulfide-Mediated Dimerization of D3 Domains. J Mol Biol 2019; 431:3740-3752. [PMID: 31310764 PMCID: PMC6739602 DOI: 10.1016/j.jmb.2019.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023]
Abstract
The mucin 2 glycoprotein assembles into a complex hydrogel that protects intestinal epithelia and houses the gut microbiome. A major step in mucin 2 assembly is further multimerization of preformed mucin dimers, thought to produce a honeycomb-like arrangement upon hydrogel expansion. Important open questions are how multiple mucin 2 dimers become covalently linked to one another and how mucin 2 multimerization compares with analogous processes in related polymers such as respiratory tract mucins and the hemostasis protein von Willebrand factor. Here we report the x-ray crystal structure of the mucin 2 multimerization module, found to form a dimer linked by two intersubunit disulfide bonds. The dimer structure calls into question the current model for intestinal mucin assembly, which proposes disulfide-mediated trimerization of the same module. Key residues making interactions across the dimer interface are highly conserved in intestinal mucin orthologs, supporting the physiological relevance of the observed quaternary structure. With knowledge of the interface residues, it can be demonstrated that many of these amino acids are also present in other mucins and in von Willebrand factor, further indicating that the stable dimer arrangement reported herein is likely to be shared across this functionally broad protein family. The mucin 2 module structure thus reveals the manner by which both mucins and von Willebrand factor polymerize, drawing deep structural parallels between macromolecular assemblies critical to mucosal epithelia and the vasculature.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Lis Albert
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nava Reznik
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
24
|
Dong X, Leksa NC, Chhabra ES, Arndt JW, Lu Q, Knockenhauer KE, Peters RT, Springer TA. The von Willebrand factor D'D3 assembly and structural principles for factor VIII binding and concatemer biogenesis. Blood 2019; 133:1523-1533. [PMID: 30642920 PMCID: PMC6450429 DOI: 10.1182/blood-2018-10-876300] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
D assemblies make up half of the von Willebrand factor (VWF), yet are of unknown structure. D1 and D2 in the prodomain and D'D3 in mature VWF at Golgi pH form helical VWF tubules in Weibel Palade bodies and template dimerization of D3 through disulfides to form ultralong VWF concatemers. D'D3 forms the binding site for factor VIII. The crystal structure of monomeric D'D3 with cysteine residues required for dimerization mutated to alanine was determined at an endoplasmic reticulum (ER)-like pH. The smaller C8-3, TIL3 (trypsin inhibitor-like 3), and E3 modules pack through specific interfaces as they wind around the larger, N-terminal, Ca2+-binding von Willebrand D domain (VWD) 3 module to form a wedge shape. D' with its TIL' and E' modules projects away from D3. The 2 mutated cysteines implicated in D3 dimerization are buried, providing a mechanism for protecting them against premature disulfide linkage in the ER, where intrachain disulfide linkages are formed. D3 dimerization requires co-association with D1 and D2, Ca2+, and Golgi-like acidic pH. Associated structural rearrangements in the C8-3 and TIL3 modules are required to expose cysteine residues for disulfide linkage. Our structure provides insight into many von Willebrand disease mutations, including those that diminish factor VIII binding, which suggest that factor VIII binds not only to the N-terminal TIL' domain of D' distal from D3 but also extends across 1 side of D3. The organizing principle for the D3 assembly has implications for other D assemblies and the construction of higher-order, disulfide-linked assemblies in the Golgi in both VWF and mucins.
Collapse
Affiliation(s)
- Xianchi Dong
- Children's Hospital Boston, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | | | | | | | - Qi Lu
- Bioverativ, a Sanofi company, Waltham, MA; and
| | | | | | - Timothy A Springer
- Children's Hospital Boston, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Advancing multimer analysis of von Willebrand factor by single-molecule AFM imaging. PLoS One 2019; 14:e0210963. [PMID: 30645640 PMCID: PMC6333368 DOI: 10.1371/journal.pone.0210963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/06/2019] [Indexed: 11/19/2022] Open
Abstract
The formation of hemostatic plugs at sites of vascular injury crucially involves the multimeric glycoprotein von Willebrand factor (VWF). VWF multimers are linear chains of N-terminally linked dimers. The latter are formed from monomers via formation of the C-terminal disulfide bonds Cys2771-Cys2773', Cys2773-Cys2771', and Cys2811-Cys2811'. Mutations in VWF that impair multimerization can lead to subtype 2A of the bleeding disorder von Willebrand Disease (VWD). Commonly, the multimer size distribution of VWF is assessed by electrophoretic multimer analysis. Here, we present atomic force microscopy (AFM) imaging as a method to determine the size distribution of VWF variants by direct visualization at the single-molecule level. We first validated our approach by investigating recombinant wildtype VWF and a previously studied mutant (p.Cys1099Tyr) that impairs N-terminal multimerization. We obtained excellent quantitative agreement with results from earlier studies and with electrophoretic multimer analysis. We then imaged specific mutants that are known to exhibit disturbed C-terminal dimerization. For the mutants p.Cys2771Arg and p.Cys2773Arg, we found the majority of monomers (87 ± 5% and 73 ± 4%, respectively) not to be C-terminally dimerized. While these results confirm that Cys2771 and Cys2773 are crucial for dimerization, they additionally provide quantitative information on the mutants' different abilities to form alternative C-terminal disulfides for residual dimerization. We further mutated Cys2811 to Ala and found that only 23 ± 3% of monomers are not C-terminally dimerized, indicating that Cys2811 is structurally less important for dimerization. Furthermore, for mutants p.Cys2771Arg, p.Cys2773Arg, and p.Cys2811Ala we found 'even-numbered' non-native multimers, i.e. multimers with monomers attached on both termini; a multimer species that cannot be distinguished from native multimers by conventional multimer analysis. Summarizing, we demonstrate that AFM imaging can provide unique insights into VWF processing defects at the single-molecule level that cannot be gained from established methods of multimer analysis.
Collapse
|
26
|
The D' domain of von Willebrand factor requires the presence of the D3 domain for optimal factor VIII binding. Biochem J 2018; 475:2819-2830. [PMID: 30111575 DOI: 10.1042/bcj20180431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 11/17/2022]
Abstract
The D'-D3 fragment of von Willebrand factor (VWF) can be divided into TIL'-E'-VWD3-C8_3-TIL3-E3 subdomains of which TIL'-E'-VWD3 comprises the main factor VIII (FVIII)-binding region. Yet, von Willebrand disease (VWD) Type 2 Normandy (2N) mutations, associated with impaired FVIII interaction, have been identified in C8_3-TIL3-E3. We now assessed the role of the VWF (sub)domains for FVIII binding using isolated D', D3 and monomeric C-terminal subdomain truncation variants of D'-D3. Competitive binding assays and surface plasmon resonance analysis revealed that D' requires the presence of D3 for effective interaction with FVIII. The isolated D3 domain, however, did not show any FVIII binding. Results indicated that the E3 subdomain is dispensable for FVIII binding. Subsequent deletion of the other subdomains from D3 resulted in a progressive decrease in FVIII-binding affinity. Chemical footprinting mass spectrometry suggested increased conformational changes at the N-terminal side of D3 upon subsequent subdomain deletions at the C-terminal side of the D3. A D'-D3 variant with a VWD type 2N mutation in VWD3 (D879N) or C8_3 (C1060R) also revealed conformational changes in D3, which were proportional to a decrease in FVIII-binding affinity. A D'-D3 variant with a putative VWD type 2N mutation in the E3 subdomain (C1225G) showed, however, normal binding. This implies that the designation VWD type 2N is incorrect for this variant. Results together imply that a structurally intact D3 in D'-D3 is indispensable for effective interaction between D' and FVIII explaining why specific mutations in D3 can impair FVIII binding.
Collapse
|
27
|
Lynch CJ, Cawte AD, Millar CM, Rueda D, Lane DA. A common mechanism by which type 2A von Willebrand disease mutations enhance ADAMTS13 proteolysis revealed with a von Willebrand factor A2 domain FRET construct. PLoS One 2017; 12:e0188405. [PMID: 29186156 PMCID: PMC5706690 DOI: 10.1371/journal.pone.0188405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
Rheological forces in the blood trigger the unfolding of von Willebrand factor (VWF) and its A2 domain, exposing the scissile bond for proteolysis by ADAMTS13. Under quiescent conditions, the scissile bond is hidden by the folded structure due to the stabilisation provided by the structural specialisations of the VWF A2 domain, a vicinal disulphide bond, a calcium binding site and a N1574-glycan.The reduced circulating high MW multimers of VWF in patients with type 2A von Willebrand disease (VWD) may be associated with mutations within the VWF A2 domain and this is attributed to enhanced ADAMTS13 proteolysis. We investigated 11 VWF A2 domain variants identified in patients with type 2A VWD. In recombinant full-length VWF, enhanced ADAMTS13 proteolysis was detected for all of the expressed variants in the presence of urea-induced denaturation. A subset of the FLVWF variants displayed enhanced proteolysis in the absence of urea. The mechanism of enhancement was investigated using a novel VWF A2 domain FRET construct. In the absence of induced unfolding, 7/8 of the expressed mutants exhibited a disrupted domain fold, causing spatial separation of the N- and C- termini. Three of the type 2A mutants were not secreted when studied within the VWF A2 domain FRET construct. Urea denaturation revealed for all 8 secreted mutants reduced unfolding cooperativity and stability of the VWF A2 domain. As folding stability was progressively disrupted, proteolysis by ADAMTS13 increased. Due to the range of folding stabilities and wide distribution of VWF A2 domain mutations studied, we conclude that these mutations disrupt regulated folding of the VWF A2 domain. They enhance unfolding by inducing separation of N- and C-termini, thereby promoting a more open conformation that reveals its binding sites for ADAMTS13 and the scissile bond.
Collapse
Affiliation(s)
- Christopher J. Lynch
- Department of Medicine, Centre for Haematology, Imperial College London, United Kingdom
| | - Adam D. Cawte
- Department of Medicine, Molecular Virology, Imperial College, London, United Kingdom
- MRC London Institute of Medical Science, Single-Molecule Imaging Group, Imperial College, London, United Kingdom
| | - Carolyn M. Millar
- Department of Medicine, Centre for Haematology, Imperial College London, United Kingdom
- Imperial College Healthcare NHS Trust, Du Cane Road, London, United Kingdom
| | - David Rueda
- Department of Medicine, Molecular Virology, Imperial College, London, United Kingdom
- MRC London Institute of Medical Science, Single-Molecule Imaging Group, Imperial College, London, United Kingdom
| | - David A. Lane
- Department of Medicine, Centre for Haematology, Imperial College London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
de Jong A, Eikenboom J. Von Willebrand disease mutation spectrum and associated mutation mechanisms. Thromb Res 2017; 159:65-75. [PMID: 28987708 DOI: 10.1016/j.thromres.2017.09.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 01/24/2023]
Abstract
Von Willebrand disease (VWD) is a bleeding disorder that is mainly caused by mutations in the multimeric protein von Willebrand factor (VWF). These mutations may lead to deficiencies in plasma VWF or dysfunctional VWF. VWF is a heterogeneous protein and over the past three decades, hundreds of VWF mutations have been identified. In this review we have organized all reported mutations, spanning a timeline from the late eighties until early 2017. This resulted in an overview of 750 unique mutations that are divided over the VWD types 1, 2A, 2B, 2M, 2N and 3. For many of these mutations the disease-causing effects have been characterized in vitro through expression studies, ex vivo by analysis of patient-derived endothelial cells, as well as in animal or (bio)physical models. Here we describe the mechanisms associated with the VWF mutations per VWD type.
Collapse
Affiliation(s)
- Annika de Jong
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
29
|
Identification of extant vertebrate Myxine glutinosa VWF: evolutionary conservation of primary hemostasis. Blood 2017; 130:2548-2558. [PMID: 28899852 DOI: 10.1182/blood-2017-02-770792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Hemostasis in vertebrates involves both a cellular and a protein component. Previous studies in jawless vertebrates (cyclostomes) suggest that the protein response, which involves thrombin-catalyzed conversion of a soluble plasma protein, fibrinogen, into a polymeric fibrin clot, is conserved in all vertebrates. However, similar data are lacking for the cellular response, which in gnathostomes is regulated by von Willebrand factor (VWF), a glycoprotein that mediates the adhesion of platelets to the subendothelial matrix of injured blood vessels. To gain evolutionary insights into the cellular phase of coagulation, we asked whether a functional vwf gene is present in the Atlantic hagfish, Myxine glutinosa We found a single vwf transcript that encodes a simpler protein compared with higher vertebrates, the most striking difference being the absence of an A3 domain, which otherwise binds collagen under high-flow conditions. Immunohistochemical analyses of hagfish tissues and blood revealed Vwf expression in endothelial cells and thrombocytes. Electron microscopic studies of hagfish tissues demonstrated the presence of Weibel-Palade bodies in the endothelium. Hagfish Vwf formed high-molecular-weight multimers in hagfish plasma and in stably transfected CHO cells. In functional assays, botrocetin promoted VWF-dependent thrombocyte aggregation. A search for vwf sequences in the genome of sea squirts, the closest invertebrate relatives of hagfish, failed to reveal evidence of an intact vwf gene. Together, our findings suggest that VWF evolved in the ancestral vertebrate following the divergence of the urochordates some 500 million years ago and that it acquired increasing complexity though sequential insertion of functional modules.
Collapse
|
30
|
Brehm MA. Von Willebrand factor processing. Hamostaseologie 2016; 37:59-72. [PMID: 28139814 DOI: 10.5482/hamo-16-06-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/03/2016] [Indexed: 11/05/2022] Open
Abstract
Von Willebrand factor (VWF) is a multimeric glycoprotein essential for primary haemostasis that is produced only in endothelial cells and megakaryocytes. Key to VWF's function in recruitment of platelets to the site of vascular injury is its multimeric structure. The individual steps of VWF multimer biosynthesis rely on distinct posttranslational modifications at specific pH conditions, which are realized by spatial separation of the involved processes to different cell organelles. Production of multimers starts with translocation and modification of the VWF prepropolypeptide in the endoplasmic reticulum to produce dimers primed for glycosylation. In the Golgi apparatus they are further processed to multimers that carry more than 300 complex glycan structures functionalized by sialylation, sulfation and blood group determinants. Of special importance is the sequential formation of disulfide bonds with different functions in structural support of VWF multimers, which are packaged, stored and further processed after secretion. Here, all these processes are being reviewed in detail including background information on the occurring biochemical reactions.
Collapse
Affiliation(s)
- Maria A Brehm
- PD Dr. Maria A. Brehm, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22399 Hamburg, Germany, Tel.: +49 40 7410 58523, Fax: +49 40 7410 54601, E-Mail:
| |
Collapse
|
31
|
T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation. PLoS One 2016; 11:e0149391. [PMID: 26890638 PMCID: PMC4758715 DOI: 10.1371/journal.pone.0149391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/01/2016] [Indexed: 01/10/2023] Open
Abstract
Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO’s single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO’s unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO.
Collapse
|
32
|
Solecka BA, Weise C, Fuchs B, Kannicht C. Free thiol groups in von Willebrand factor (VWF) are required for its full function under physiological flow conditions. Thromb Res 2016; 137:202-210. [DOI: 10.1016/j.thromres.2015.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 01/24/2023]
|
33
|
Abstract
von Willebrand factor (VWF) is a large multimeric glycoprotein that mediates the attachment of platelets to damaged endothelium and also serves as the carrier protein for coagulation factor VIII (FVIII), protecting it from proteolytic degradation. Quantitative or qualitative defects in VWF result in von Willebrand disease (VWD), a common inherited bleeding disorder. VWF is synthesized with a very large propeptide (VWFpp) that is critical for intracellular processing of VWF. VWFpp actively participates in the process of VWF multimerization and is essential for trafficking of VWF to the regulated storage pathway. Mutations identified within VWFpp in VWD patients are associated with altered VWF structure and function. The assay of plasma VWFpp has clinical utility in assessing acute and chronic vascular perturbation associated with diseases such as thrombotic thrombocytopenic purpura, sepsis, and diabetes among others. VWFpp assay also has clear utility in the diagnosis of VWD subtypes, particularly in discriminating true type 3 subjects from type 1C (reduced plasma survival of VWF), which is clinically important and has implications for therapeutic treatment.
Collapse
|
34
|
Hoffmann W. TFF2, a MUC6-binding lectin stabilizing the gastric mucus barrier and more (Review). Int J Oncol 2015. [PMID: 26201258 DOI: 10.3892/ijo.2015.3090] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptide TFF2 (formerly 'spasmolytic polypeptide'), a member of the trefoil factor family (TFF) containing two TFF domains, is mainly expressed together with the mucin MUC6 in the gastric epithelium and duodenal Brunner's glands. Pathologically, TFF2 expression is observed ectopically during stone diseases, chronic inflammatory conditions and in several metaplastic and neoplastic epithelia; most prominent being the 'spasmolytic polypeptide-expressing metaplasia' (SPEM), which is an established gastric precancerous lesion. TFF2 plays a critical role in maintaining gastric mucosal integrity and appears to restrain tumorigenesis in the stomach. Recently, porcine TFF2 has been shown to interact with the gastric mucin MUC6 and thus stabilize the gastric mucus barrier. On the one hand, TFF2 binds to MUC6 via non-covalent lectin interactions with the glycotope GlcNAcα1→4Galβ1→R. On the other hand, TFF2 is probably also covalently bound to MUC6 via disulfide bridges. Thus, implications for the complex multimeric assembly, cross-linking, and packaging of MUC6 as well as the rheology of gastric mucus are discussed in detail in this review. Furthermore, TFF2 is also expressed in minor amounts in the immune and nervous systems. Thus, similar to galectins, its lectin activity would perfectly enable TFF2 to form multivalent complexes and cross-linked lattices with a plethora of transmembrane glycoproteins and thus modulate different signal transduction processes. This could explain the multiple and diverse biological effects of TFF2 [e.g., motogenic, (anti)apoptotic, and angiogenic effects]. Finally, a function during fertilization is also possible for TFF domains because they occur as shuffled modules in certain zona pellucida proteins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany
| |
Collapse
|
35
|
Visualization of an N-terminal fragment of von Willebrand factor in complex with factor VIII. Blood 2015; 126:939-42. [PMID: 26065653 DOI: 10.1182/blood-2015-04-641696] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
Binding to the von Willebrand factor (VWF) D'D3 domains protects factor VIII (FVIII) from rapid clearance. We performed single-particle electron microscopy (EM) analysis of negatively stained specimens to examine the architecture of D'D3 alone and in complex with FVIII. The D'D3 dimer ([D'D3]2) comprises 2 antiparallel D3 monomers with flexibly attached protrusions of D'. FVIII-VWF association is primarily established between the FVIII C1 domain and the VWF D' domain, whereas weaker interactions appear to be mediated between both FVIII C domains and the VWF D3 core. Modeling the FVIII structure into the three-dimensional EM reconstructions of [D'D3]2-FVIII ternary and quaternary complexes indicates conformational rearrangements of the FVIII C domains compared with their disposition in the unbound state. These results illustrate the cooperative plasticity between VWF and FVIII that coordinate their high-affinity interaction.
Collapse
|
36
|
Hernández-Zamora E, Zavala-Hernández C, Quintana-González S, Reyes-Maldonado E. [Von Willebrand disease. Molecular biology and diagnosis]. CIR CIR 2015; 83:255-64. [PMID: 26055290 DOI: 10.1016/j.circir.2015.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/19/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Von Willebrand disease is the most common inherited disorder of the coagulation proteins in humans. There are three types: 1, 2A, 2B, 2N, 2M and 3. It is associated with mutations on chromosome 12 in the region p13.2, encoding the von Willebrand factor (VWF), which is synthesized in endothelial cells and megakaryocytes. DISCUSSION The VWF gene has been characterised using molecular biology techniques, which have acquired an important role in diagnosis von Willebrand disease, as well as in the investigation of alterations in other genes, which may be involved in regulating the synthesis, processing, and secretion of VWF. However, there are still no strategies to integrate the molecular biology diagnostic tests available. Analysis of VWF multimers is a methodology that meets the characteristics for diagnosis, but it is not easy to standardise. Considering that even in tertiary centres in our country, von Willebrand patients do not have a definitive diagnosis, it is necessary to implement these methodologies to study and improve diagnosis. CONCLUSIONS Von Willebrand disease is highly heterogeneous due to the molecular mechanisms that produce the various clinical and laboratory phenotypes. In Mexico there are few studies related to this disease; therefore it is essential to conduct a comprehensive study including clinical, basic, and special testing laboratory tests, in order to establish a correct diagnosis, develop new therapeutic approaches, and offer the appropriate medical care and genetic counselling.
Collapse
Affiliation(s)
- Edgar Hernández-Zamora
- Servicio de Genética, Instituto Nacional de Rehabilitación (INR), Secretaría de Salud (S.S.), México D.F., México.
| | | | - Sandra Quintana-González
- Banco Central de Sangre, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), México D.F., México
| | - Elba Reyes-Maldonado
- Laboratorio de Citología. Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
| |
Collapse
|
37
|
Two novel mutations identified in a type 3 von Willebrand disease patient. Blood Coagul Fibrinolysis 2014; 25:909-11. [PMID: 24914743 DOI: 10.1097/mbc.0000000000000157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
von Willebrand disease (VWD) is the most common inherited bleeding disorder in humans. Caused by mutations in the von Willebrand factor (VWF) gene, these defects result in qualitatively abnormal variants of VWF (classified as type 2 VWD) or a decrease in VWF levels (types 1 and 3 VWD). Type 3 VWD is the most severe type and usually presented with undetectable VWF level. In this report, we describe a type 3 VWD patient. Molecular analysis of the whole VWF gene reveals two novel mutations, c.2480G>A (p.C827Y) in exon 19 and c.3897delT in exon 28.
Collapse
|
38
|
A von Willebrand factor fragment containing the D'D3 domains is sufficient to stabilize coagulation factor VIII in mice. Blood 2014; 124:445-52. [PMID: 24850761 DOI: 10.1182/blood-2013-11-540534] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plasma factor VIII (FVIII) and von Willebrand factor (VWF) circulate together as a complex. We identify VWF fragments sufficient for FVIII stabilization in vivo and show that hepatic expression of the VWF D'D3 domains (S764-P1247), either as a monomer or a dimer, is sufficient to raise FVIII levels in Vwf(-/-) mice from a baseline of ∼5% to 10%, to ∼50% to 100%. These results demonstrate that a fragment containing only ∼20% of the VWF sequence is sufficient to support FVIII stability in vivo. Expression of the VWF D'D3 fragment fused at its C terminus to the Fc segment of immunoglobulin G1 results in markedly enhanced survival in the circulation (t1/2 > 7 days), concomitant with elevated plasma FVIII levels (>25% at 7 days) in Vwf(-/-) mice. Although the VWF D'D3-Fc chimera also exhibits markedly prolonged survival when transfused into FVIII-deficient mice, the cotransfused FVIII is rapidly cleared. Kinetic binding studies show that VWF propeptide processing of VWF D'D3 fragments is required for optimal FVIII affinity. The reduced affinity of VWF D'D3 and VWF D'D3-Fc for FVIII suggests that the shortened FVIII survival in FVIII-deficient mice transfused with FVIII and VWF D'D3/D'D3-Fc is due to ineffective competition of these fragments with endogenous VWF for FVIII binding.
Collapse
|
39
|
Mikhail S, Aldin ES, Streiff M, Zeidan A. An update on type 2B von Willebrand disease. Expert Rev Hematol 2014; 7:217-31. [PMID: 24521271 DOI: 10.1586/17474086.2014.868771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type 2B von Willebrand disease (VWD) accounts for fewer than 5% of all VWD patients. In this disease, mutations in the A1 domain result in increased von Willebrand factor (VWF) binding to platelet GPIbα receptors, causing increased platelet clearance and preferential loss of high molecular weight VWF multimers. Diagnosis is complicated because of significant clinical variations even among patients with identical mutations. Platelet transfusion often provides suboptimal results since transfused platelets may be aggregated by the patients' abnormal VWF. Desmopressin may cause a transient decrease in platelet count that could lead to an increased risk of bleeding. Replacement therapy with factor VIII/VWF concentrates is the most effective approach to prevention and treatment of bleeding in type 2B VWD.
Collapse
Affiliation(s)
- Sameh Mikhail
- Department of Hematology, Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | |
Collapse
|
40
|
Bäckström M, Ambort D, Thomsson E, Johansson MEV, Hansson GC. Increased understanding of the biochemistry and biosynthesis of MUC2 and other gel-forming mucins through the recombinant expression of their protein domains. Mol Biotechnol 2013; 54:250-6. [PMID: 23359125 DOI: 10.1007/s12033-012-9562-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The gel-forming mucins are large and heavily O-glycosylated proteins which build up mucus gels. The recombinant production of full-length gel-forming mucins has not been possible to date. In order to study mucin biosynthesis and biochemistry, we and others have taken the alternative approach of constructing different recombinant proteins consisting of one or several domains of these large proteins and expressing them separately in different cell lines. Using this approach, we have determined that MUC2, the intestinal gel-forming mucin, dimerizes via its C-terminal cysteine-knot domain and also trimerizes via one of the N-terminal von Willebrand D domains. Both of these interactions are disulfide bond mediated. Via this assembly, a molecular network is built by which the mucus gel is formed. Here we discuss not only the functional understanding obtained from studies of the recombinant proteins, but also highlight the difficulties encountered when these proteins were produced recombinantly. We often found an accumulation of the proteins in the ER and consequently no secretion. This was especially apparent when the cysteine-rich domains of the N- and C-terminal parts of the mucins were expressed. Other proteins that we constructed were either not secreted or not expressed at all. Despite these problems, the knowledge of mucin biosynthesis and assembly has advanced considerably through the studies of these recombinant proteins.
Collapse
Affiliation(s)
- Malin Bäckström
- Department of Medical Biochemistry, University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Cabrera AR, Shirk PD, Duehl AJ, Donohue KV, Grozinger CM, Evans JD, Teal PEA. Genomic organization and reproductive regulation of a large lipid transfer protein in the varroa mite, Varroa destructor (Anderson & Trueman). INSECT MOLECULAR BIOLOGY 2013; 22:505-522. [PMID: 23834736 DOI: 10.1111/imb.12040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The complete genomic region and corresponding transcript of the most abundant protein in phoretic varroa mites, Varroa destructor (Anderson & Trueman), were sequenced and have homology with acarine hemelipoglycoproteins and the large lipid transfer protein (LLTP) super family. The genomic sequence of VdLLTP included 14 introns and the mature transcript coded for a predicted polypeptide of 1575 amino acid residues. VdLLTP shared a minimum of 25% sequence identity with acarine LLTPs. Phylogenetic assessment showed VdLLTP was most closely related to Metaseiulus occidentalis vitellogenin and LLTP proteins of ticks; however, no heme binding by VdLLTP was detected. Analysis of lipids associated with VdLLTP showed that it was a carrier for free and esterified C12 -C22 fatty acids from triglycerides, diacylglycerides and monoacylglycerides. Additionally, cholesterol and β-sitosterol were found as cholesterol esters linked to common fatty acids. Transcript levels of VdLLTP were 42 and 310 times higher in phoretic female mites when compared with males and quiescent deutonymphs, respectively. Coincident with initiation of the reproductive phase, VdLLTP transcript levels declined to a third of those in phoretic female mites. VdLLTP functions as an important lipid transporter and should provide a significant RNA interference target for assessing the control of varroa mites.
Collapse
|
42
|
Abstract
Weibel-Palade bodies (WPBs) are the storage organelles for von Willebrand factor (VWF) in endothelial cells. VWF forms multimers that assemble into tubular structures in WPBs. Upon demand, VWF is secreted into the blood circulation, where it unfolds into strings that capture platelets during the onset of primary hemostasis. Numerous mutations affecting VWF lead to the bleeding disorder von Willebrand disease. This review reports the recent findings on the effects of VWF mutations on the biosynthetic pathway of VWF and its storage in WPBs. These new findings have deepened our understanding of VWF synthesis, storage, secretion, and function.
Collapse
Affiliation(s)
- K M Valentijn
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
43
|
Ahmad F, Budde U, Jan R, Oyen F, Kannan M, Saxena R, Schneppenheim R. Phenotypic and molecular characterisation of type 3 von Willebrand disease in a cohort of Indian patients. Thromb Haemost 2013; 109:652-60. [PMID: 23407766 DOI: 10.1160/th12-10-0737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/17/2013] [Indexed: 11/05/2022]
Abstract
Severe type 3 VWD (VWD3) is characterised by complete absence or presence of trace amounts of non-functional von Willebrand factor (VWF). The study was designed to evaluate the VWF mutations in VWD3 patients and characterise the breakpoints of two identified homozygous novel large deletions. Patients were diagnosed by conventional tests and VWF multimer analysis. Mutation screening was performed in 19 VWD3 patients by direct sequencing of VWF including flanking intronic sequence and multiplex ligation-dependent probe amplification (MLPA) analysis. Breakpoint characterisation of two identified novel large deletions was done using walking primers and long spanning PCR. A total of 21 different mutations including 15 (71.4%) novel ones were identified in 17 (89.5%) patients. Of these mutations, five (23.8%) were nonsense (p.R1659*, p.R1779*, p.R1853*, p.Q2470*, p.Q2520*), one was a putative splice site (p.M814I) and seven (33.3%) were deletions (p.L254fs*48, p.C849fs*60, p.L1871fs*6, p.E2720fs*24) including three novel large deletions of exon 14-15, 80,830bp (-41510_657+7928A*del) and 2,231bp [1534-2072T_c.1692G*del(p.512fs*terminus)] respectively. A patient carried gene conversion comprising of pseudogene harbouring mutations. The missense mutations (p.G19R, p.K355R, p.D437Y, p.C633R, p.M771V, p.G2044D, p.C2491R) appear to play a major role and were identified in seven (36.8%) patients. In conclusion, a high frequency of novel mutations suggests the high propensity of VWF for new mutations. Missense and deletion mutations found to be a common cause of VWD3 in cohort of Indian VWD3 patients. Breakpoints characterisation of two large deletions reveals the double strand break and non-homologous recombination as deletions mechanism.
Collapse
Affiliation(s)
- Firdos Ahmad
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | | | | | | | | | | | | |
Collapse
|
44
|
Fanélus I, Desrosiers RR. Mitochondrial uncoupler carbonyl cyanide M-chlorophenylhydrazone induces the multimer assembly and activity of repair enzyme protein L-isoaspartyl methyltransferase. J Mol Neurosci 2013; 50:411-23. [PMID: 23319267 DOI: 10.1007/s12031-012-9946-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/21/2012] [Indexed: 12/11/2022]
Abstract
The protein L-isoaspartyl methyltransferase (PIMT) repairs damaged aspartyl residues in proteins. It is commonly described as a cytosolic protein highly expressed in brain tissues. Here, we report that PIMT is an active monomeric as well as a multimeric protein in mitochondria isolated from neuroblastoma cells. Upon treatments with mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), PIMT monomers level decreased by half while that of PIMT multimers was higher. Gel electrophoresis under reducing conditions of CCCP-induced PIMT multimers led to PIMT monomers accumulation, indicating that multimers resulted from disulfide-linked PIMT monomers. The antioxidant ascorbic acid significantly lowered CCCP-induced formation of PIMT multimers, suggesting that reactive oxygen species contributed to PIMT multimerization. In addition, the elevation of PIMT multimers catalytic activity upon treatments with CCCP was severely inhibited by the reducing agent dithiothreitol. This indicated that PIMT monomers have lower enzymatic activity following CCCP treatments and that activation of PIMT multimers is essentially dependent on the formation of disulfide-linked monomers of PIMT. Furthermore, the perturbation of mitochondrial function by CCCP promoted the accumulation of damaged aspartyl residues in proteins with high molecular weights. Thus, this study demonstrates the formation of active PIMT multimers associated with mitochondria that could play a key role in repairing damaged proteins accumulating during mitochondrial dysfunction.
Collapse
Affiliation(s)
- Irvens Fanélus
- The Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | | |
Collapse
|
45
|
Zhou YF, Eng ET, Zhu J, Lu C, Walz T, Springer TA. Sequence and structure relationships within von Willebrand factor. Blood 2012; 120:449-58. [PMID: 22490677 PMCID: PMC3398765 DOI: 10.1182/blood-2012-01-405134] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/24/2012] [Indexed: 11/20/2022] Open
Abstract
In the present study, we re-annotated von Willebrand factor (VWF), assigned its entire sequence to specific modules, and related these modules to structure using electron microscopy (EM). The D domains are assemblies of smaller modules visible as lobes in EM. Modules in the D-domain assemblies include von Willebrand D, 8-cysteine, trypsin inhibitor-like, E or fibronectin type 1-like domains, and a unique D4N module in D4. The D1-D2 prodomain shows 2 large connected assemblies, each containing smaller lobes. The previous B and C regions of VWF are re-annotated as 6 tandem von Willebrand C (VWC) and VWC-like domains. These 6 VWC domains correspond to 6 elongated domains that associate in pairs at acidic pH in the stem region of VWF dimeric bouquets. This correspondence is demonstrated by binding of integrin α(IIb)β(3) to the fourth module seen in EM, VWC4, which bears the VWF Arg-Gly-Asp motif. The C-terminal cystine knot domain dimerizes end-to-end in a manner predicted by homology to TGF-β and orients approximately perpendicular to the VWC domains in dimeric bouquets. Homologies of domains in VWF to domains in other proteins allow many disulfide bonds to be tentatively assigned, which may have functional implications.
Collapse
Affiliation(s)
- Yan-Feng Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Immune Disease Institute and Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Intersection of mechanisms of type 2A VWD through defects in VWF multimerization, secretion, ADAMTS-13 susceptibility, and regulated storage. Blood 2012; 119:4543-53. [PMID: 22431572 DOI: 10.1182/blood-2011-06-360875] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type 2A VWD is characterized by the absence of large VWF multimers and decreased platelet-binding function. Historically, type 2A variants are subdivided into group 1, which have impaired assembly and secretion of VWF multimers, or group 2, which have normal secretion of VWF multimers and increased ADAMTS13 proteolysis. Type 2A VWD patients recruited through the T. S. Zimmerman Program for the Molecular and Clinical Biology of VWD study were characterized phenotypically and potential mutations identified in the VWF D2, D3, A1, and A2 domains. We examined type 2A variants and their interaction with WT-VWF through expression studies. We assessed secretion/intracellular retention, multimerization, regulated storage, and ADAMTS13 proteolysis. Whereas some variants fit into the traditional group 1 or 2 categories, others did not fall clearly into either category. We determined that loss of Weibel-Palade body formation is associated with markedly reduced secretion. Mutations involving cysteines were likely to cause abnormalities in multimer structure but not necessarily secretion. When coexpressed with wild-type VWF, type 2A variants negatively affected one or more mechanisms important for normal VWF processing. Type 2A VWD appears to result from a complex intersection of mechanisms that include: (1) intracellular retention or degradation of VWF, (2) defective multimerization, (3) loss of regulated storage, and (4) increased proteolysis by ADAMTS13.
Collapse
|
47
|
Wang JW, Groeneveld DJ, Cosemans G, Dirven RJ, Valentijn KM, Voorberg J, Reitsma PH, Eikenboom J. Biogenesis of Weibel-Palade bodies in von Willebrand's disease variants with impaired von Willebrand factor intrachain or interchain disulfide bond formation. Haematologica 2011; 97:859-66. [PMID: 22207689 DOI: 10.3324/haematol.2011.057216] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Mutations of cysteine residues in von Willebrand factor are known to reduce the storage and secretion of this factor, thus leading to reduced antigen levels. However, one cysteine mutation, p.Cys2773Ser, has been found in patients with type 2A(IID) von Willebrand's disease who have normal plasma levels of von Willebrand factor. We hypothesize that disruption of either intra- or interchain disulfide bonds by cysteine mutations in von Willebrand factor has different effects on the biogenesis of Weibel-Palade bodies. DESIGN AND METHODS The effect of specific cysteine mutations that either disrupt intrachain (p.Cys1130Phe and p.Cys2671Tyr) or interchain (p.Cys2773Ser) disulfide bonds on storage and secretion of von Willebrand factor was studied by transient transfection of human embryonic kidney cell line 293. Upon expression of von Willebrand factor these cells formed endothelial Weibel-Palade body-like organelles called pseudo-Weibel-Palade bodies. Storage of von Willebrand factor was analyzed with both confocal immunofluorescence and electron microscopy. Regulated secretion of von Willebrand factor was induced by phorbol 12-myristate 13-acetate. RESULTS p.Cys1130Phe and p.Cys2671Tyr reduced the storage of von Willebrand factor into pseudo-Weibel-Palade bodies with notable retention of von Willebrand factor in the endoplasmic reticulum, whereas p.Cys2773Ser-von Willebrand factor was stored normally. As expected, wild-type von Willebrand factor formed proteinaceous tubules that were seen under electron microscopy as longitudinal striations in pseudo-Weibel-Palade bodies. p.Cys2773Ser caused severe defects in von Willebrand factor multimerization but the factor formed normal tubules. Furthermore, the basal and regulated secretion of von Willebrand factor was drastically impaired by p.Cys1130Phe and p.Cys2671Tyr, but not by p.Cys2773Ser. CONCLUSIONS We postulate that natural mutations of cysteines involved in the formation of interchain disulfide bonds do not affect either the storage in Weibel-Palade bodies or secretion of von Willebrand factor, whereas mutations of cysteines forming intrachain disulfide bonds lead to reduced von Willebrand factor storage and secretion because the von Willebrand factor is retained in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Jiong-Wei Wang
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Casari C, Pinotti M, Lancellotti S, Adinolfi E, Casonato A, De Cristofaro R, Bernardi F. The dominant-negative von Willebrand factor gene deletion p.P1127_C1948delinsR: molecular mechanism and modulation. Blood 2010; 116:5371-6. [PMID: 20570857 DOI: 10.1182/blood-2010-02-268920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding molecular mechanisms in the dominant inheritance of von Willebrand disease would improve our knowledge of pathophysiologic processes underlying its prevalence. Cellular models of severe type 2 von Willebrand disease, caused by a heterozygous deletion in the von Willebrand factor (VWF) gene, were produced to investigate the altered biosynthesis. Coexpression of the wild-type and in-frame deleted (p.P1127_C1948delinsR) VWF forms impaired protein secretion, high molecular weight multimer formation and function (VWF collagen-binding 1.9% ± 0.5% of wild-type), which mimicked the patient's phenotype. mRNA, protein, and cellular studies delineated the highly efficient dominant-negative mechanism, based on the key role of heterodimers as multimer terminators. The altered VWF, synthesized in large amounts with the correctly encoded "cysteine knot" domain, formed heterodimers and heterotetramers with wild-type VWF, in addition to deleted homodimers. Impaired multimerization was associated with reduced amounts of VWF in late endosomes. Correction of the dominant-negative effect was explored by siRNAs targeting the mRNA breakpoint, which selectively inhibited the in-frame deleted VWF expression. Although the small amount of the deleted protein synthesized after inhibition still exerted dominant, even though weakened, negative effects, the siRNA treatment restored secretion of large multimers with improved function (VWF collagen-binding 28.0% ± 3.3% of wild-type).
Collapse
Affiliation(s)
- Caterina Casari
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | | | | | | | | | | | | |
Collapse
|
49
|
Vaidya D, Yanek LR, Herrera-Galeano JE, Mathias RA, Moy TF, Faraday N, Becker LC, Becker DM. A common variant in the Von Willebrand factor gene is associated with multiple functional consequences. Am J Hematol 2010; 85:971-3. [PMID: 20941784 PMCID: PMC2992080 DOI: 10.1002/ajh.21859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Von Willebrand Factor (vWF) is a plasma protein involved in thrombosis and hemostasis [1 ]. We examined whether common single nucleotide polymorphisms (SNPs) in the vWF gene were associated with vWF levels and platelet aggregation-related functional consequences in1230 Whites and 837 African Americans in a cross-sectional family based genetic study of platelet function. From a high-density scan, 28 SNPs with a minor allele frequency > 5% in both races were tested for association using age and sex adjusted variance components analysis in MERLIN. SNP rs216321, with the strongest association with vWF levels in biracial metaanalysis (p=9.5×10−6, Whites–p=8.1×10−4, African Americans–p=3.6×10−3), encoding a R852Q substitution in the D’D3 protein domain, demonstrated negative association with plasma vWF. The R852Q variant was recessively associated with 15.5% lower collagen-induced platelet aggregation adjusting for dose-response relationship (p=0.010, vWF-level adjusted p=0.003). Each copy of the R852Q variant was additively associated with 31% higher FVIII levels (p=0.039, vWF-adjusted p=0.033). In conclusion, this common missense polymorphism appears to have pleiotropic functional consequences.
Collapse
|
50
|
Kiskin NI, Hellen N, Babich V, Hewlett L, Knipe L, Hannah MJ, Carter T. Protein mobilities and P-selectin storage in Weibel-Palade bodies. J Cell Sci 2010; 123:2964-75. [PMID: 20720153 PMCID: PMC2923571 DOI: 10.1242/jcs.073593] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2010] [Indexed: 12/18/2022] Open
Abstract
Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel-Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P-selectin became immobilised, whereas small proteins (ssEGFP, eotaxin-3) became less mobile. WPB maturation led to further decreases in mobility of small proteins and CD63. Acute alkalinisation of mature WPBs selectively increased the mobilities of small soluble proteins without affecting larger molecules and the membrane proteins. Disruption of the Proregion-VWF paracrystalline core by prolonged incubation with NH(4)Cl rendered P-selectin mobile while VWF remained immobile. FRAP of P-selectin mutants revealed that immobilisation most probably involves steric entrapment of the P-selectin extracellular domain by the Proregion-VWF paracrystal. Significantly, immobilisation contributed to the enrichment of P-selectin in WPBs; a mutation of P-selectin preventing immobilisation led to a failure of enrichment. Together these data shed new light on the transitions that occur for soluble and membrane proteins following their entry and storage into post-Golgi-regulated secretory organelles.
Collapse
Affiliation(s)
- Nikolai I. Kiskin
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Nicola Hellen
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | - Lindsay Hewlett
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Laura Knipe
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Matthew J. Hannah
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Tom Carter
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| |
Collapse
|