1
|
Zhang J, Li Y, Li L, Li Y, Cao Y, Lei H. Methionine-Specific Bioconjugation for Single-Molecule Force Spectroscopy of Cell Surface Proteins. ACS NANO 2025; 19:14177-14186. [PMID: 40173012 DOI: 10.1021/acsnano.5c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cell surface proteins play crucial roles in various cellular processes, including intercellular communication, adhesion, and immune responses. However, investigating these proteins using single-molecule force spectroscopy (SMFS) has been hindered by challenges in site-specific protein modification while preserving their native state. Here, we introduce a methionine-specific bioconjugation strategy utilizing a bespoke hypervalent iodine reagent for highly selective, rapid, and robust methionine labeling. Since methionine is often the first amino acid incorporated into proteins via initiator tRNA, this approach enables precise N-terminal labeling and attachment, facilitating more reliable SMFS studies. The resulting covalent linkage remains intact during mechanical unfolding or conformational changes of proteins, with a mechanical stability exceeding 600 pN, allowing accurate measurements before detachment from AFM cantilever tips or cell surfaces. Additionally, this method improves sampling rates and data quality. We successfully applied this technique to light-induced protein printing and natural surface protein studies, demonstrating its potential for advancing protein mechanics research in living cells. This strategy provides significant advantages for SMFS in the study of complex cellular systems.
Collapse
Affiliation(s)
- Junsheng Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yang Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Luofei Li
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Yi Cao
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Hai Lei
- School of Physics, Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Hang JT, Gao H, Xu GK. Characteristic frequencies of localized stress relaxation in scaling-law rheology of living cells. Biophys J 2025; 124:125-133. [PMID: 39563036 PMCID: PMC11739877 DOI: 10.1016/j.bpj.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Living cells are known to exhibit power-law viscoelastic responses and localized stress relaxation behaviors in the frequency spectrum. However, the precise interplay between molecular-scale cytoskeletal dynamics and macroscale dynamical rheological responses remains elusive. Here, we propose a mechanism-based general theoretical model showing that cytoskeleton dissociation generates a peak in the loss modulus as a function of frequency, while the cytoplasmic viscosity promotes its recovery, producing a subsequent trough. We define two characteristic frequencies (ωc1 and ωc2) related to the dissociation rate of crosslinkers and the viscosity of the cytoplasm, where the loss modulus 1) exhibits peak and trough values for ωc1<ωc2 and 2) monotonically increases with frequency for ωc1>ωc2. Furthermore, the characteristic frequency ωc1 exhibits a biphasic stress-dependent behavior, with a local minimum at sufficiently high stress due to the stress-dependent dissociation rate. Moreover, the characteristic frequency ωc2 evolves with age, following a power-law relationship. The predictions of the dissociation-based multiscale theoretical mechanical model align well with experimental observations. Our model provides a comprehensive description of the dynamical viscoelastic behaviors of cells and cell-like materials.
Collapse
Affiliation(s)
- Jiu-Tao Hang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Huajian Gao
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Mallis RJ, Brazin KN, Duke‐Cohan JS, Akitsu A, Stephens HM, Chang‐Gonzalez AC, Masi DJ, Kirkpatrick EH, Holliday EL, Feng Y, Zienkiewicz KJ, Lee JJ, Cinella V, Uberoy KI, Tan K, Wagner G, Arthanari H, Hwang W, Lang MJ, Reinherz EL. Biophysical and Structural Features of αβT-Cell Receptor Mechanosensing: A Paradigmatic Shift in Understanding T-Cell Activation. Immunol Rev 2025; 329:e13432. [PMID: 39745432 PMCID: PMC11744257 DOI: 10.1111/imr.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 01/21/2025]
Abstract
αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination. Under load, the αβTCR undergoes reversible structural transitions involving partial unfolding of its clonotypic immunoglobulin-like (Ig) domains and coupled rearrangements of associated CD3 subunits and structural elements. We postulate that transitions provide critical energy to initiate the signaling cascade via induction of αβTCR quaternary structural rearrangements, associated membrane perturbations, exposure of CD3 ITAMs to phosphorylation by non-receptor tyrosine kinases, and phase separation of signaling molecules. Understanding force-mediated signaling by the αβTCR clarifies long-standing questions regarding αβTCR antigen recognition, specificity and affinity, providing a basis for continued investigation. Future directions include examining atomistic mechanisms of αβTCR signal initiation, performance quality, tissue compliance adaptability, and T-cell memory fate. The mechanotransduction paradigm will foster improved rational design of T-cell based vaccines, CAR-Ts, and adoptive therapies.
Collapse
Affiliation(s)
- Robert J. Mallis
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Department of DermatologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Kristine N. Brazin
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan S. Duke‐Cohan
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Aoi Akitsu
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Hanna M. Stephens
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Daniel J. Masi
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Evan H. Kirkpatrick
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Elizabeth L. Holliday
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Yinnian Feng
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Jonathan J. Lee
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Vincenzo Cinella
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Kaveri I. Uberoy
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Kemin Tan
- Structural Biology Center, X‐Ray Science Division, Advanced Photon SourceArgonne National LaboratoryLemontIllinoisUSA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Wonmuk Hwang
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Materials Science and EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Physics and AstronomyTexas A&M UniversityCollege StationTexasUSA
- Center for AI and Natural SciencesKorea Institute for Advanced StudySeoulRepublic of Korea
| | - Matthew J. Lang
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Ellis L. Reinherz
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Ham H, Kim KS, Lee JH, Kim DN, Choi HJ, Yoh JJ. Acoustic deep brain modulation: Enhancing neuronal activation and neurogenesis. Brain Stimul 2024; 17:1060-1075. [PMID: 39218349 DOI: 10.1016/j.brs.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-invasive deep brain modulation (DBM) stands as a promising therapeutic avenue to treat brain diseases. Acoustic DBM represents an innovative and targeted approach to modulate the deep brain, employing techniques such as focused ultrasound and shock waves. Despite its potential, the optimal mechanistic parameters, the effect in the brain and behavioral outcomes of acoustic DBM remains poorly understood. OBJECTIVE To establish a robust protocol for the shock wave DBM by optimizing its mechanistic profile of external stimulation, and to assess its efficacy in preclinical settings. METHODS We used shockwaves due to their capacity to leverage a broader spectrum of peak intensity (10-127 W/mm2) in contrast to ultrasound (0.1-5.0 W/mm2), thereby enabling a more extensive range of neuromodulation effects. We established various types of shockwave pressure profiles of DBM and compared neural and behavioral responses. To ascertain the anticipated cause of the heightened neural activity response, numerical analysis was employed to examine the mechanical dynamics within the brain. RESULTS An optimized profile led to an enhancement in neuronal activity within the hypothalamus of mouse models. The optimized profile in the hippocampus elicited a marked increase in neurogenesis without neuronal damage. Behavioral analyses uncovered a noteworthy reduction in locomotion without significant effects on spatial memory function. CONCLUSIONS The present study provides an optimized shock wave stimulation protocol for non-invasive DBM. Our optimized stimulation profile selectively triggers neural functions in the deep brain. Our protocol paves the way for new non-invasive DBM devices to treat brain diseases.
Collapse
Affiliation(s)
- Hwichan Ham
- Department of Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jee-Hwan Lee
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyung-Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do, 25159, South Korea.
| | - Jack J Yoh
- Department of Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
5
|
Katsuta H, Sokabe M, Hirata H. From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission. Front Cell Dev Biol 2024; 12:1444827. [PMID: 39193363 PMCID: PMC11347286 DOI: 10.3389/fcell.2024.1444827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
The contractile apparatus, stress fiber (SF), is connected to the cell adhesion machinery, focal adhesion (FA), at the termini of SF. The SF-FA complex is essential for various mechanical activities of cells, including cell adhesion to the extracellular matrix (ECM), ECM rigidity sensing, and cell migration. This mini-review highlights the importance of SF mechanics in these cellular activities. Actin-crosslinking proteins solidify SFs by attenuating myosin-driven flows of actin and myosin filaments within the SF. In the solidified SFs, viscous slippage between actin filaments in SFs and between the filaments and the surrounding cytosol is reduced, leading to efficient transmission of myosin-generated contractile force along the SFs. Hence, SF solidification via actin crosslinking ensures exertion of a large force to FAs, enabling FA maturation, ECM rigidity sensing and cell migration. We further discuss intracellular mechanisms for tuning crosslinker-modulated SF mechanics and the potential relationship between the aberrance of SF mechanics and pathology including cancer.
Collapse
Affiliation(s)
- Hiroki Katsuta
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Sokabe
- Human Information Systems Laboratories, Kanazawa Institute of Technology, Hakusan, Japan
| | - Hiroaki Hirata
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan, Japan
| |
Collapse
|
6
|
Hu Y, Li H, Zhang C, Feng J, Wang W, Chen W, Yu M, Liu X, Zhang X, Liu Z. DNA-based ForceChrono probes for deciphering single-molecule force dynamics in living cells. Cell 2024; 187:3445-3459.e15. [PMID: 38838668 DOI: 10.1016/j.cell.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.
Collapse
Affiliation(s)
- Yuru Hu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Hongyun Li
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China.
| | - Chen Zhang
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Jingjing Feng
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Wenxu Wang
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Wei Chen
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Miao Yu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xinping Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xinghua Zhang
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China.
| | - Zheng Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
7
|
Teng T, Bernal‐Chanchavac J, Stephanopoulos N, Castro CE. Construction of Reconfigurable and Polymorphic DNA Origami Assemblies with Coiled-Coil Patches and Patterns. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307257. [PMID: 38459678 PMCID: PMC11132032 DOI: 10.1002/advs.202307257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Indexed: 03/10/2024]
Abstract
DNA origami nanodevices achieve programmable structure and tunable mechanical and dynamic properties by leveraging the sequence-specific interactions of nucleic acids. Previous advances have also established DNA origami as a useful building block to make well-defined micron-scale structures through hierarchical self-assembly, but these efforts have largely leveraged the structural features of DNA origami. The tunable dynamic and mechanical properties also provide an opportunity to make assemblies with adaptive structures and properties. Here the integration of DNA origami hinge nanodevices and coiled-coil peptides are reported into hybrid reconfigurable assemblies. With the same dynamic device and peptide interaction, it is made multiple higher-order assemblies (i.e., polymorphic assembly) by organizing clusters of peptides into patches or arranging single peptides into patterns on the surfaces of DNA origami to control the relative orientation of devices. The coiled-coil interactions are used to construct circular and linear assemblies whose structure and mechanical properties can be modulated with DNA-based reconfiguration. Reconfiguration of linear assemblies leads to micron scale motions and ≈2.5-10-fold increase in bending stiffness. The results provide a foundation for stimulus-responsive hybrid assemblies that can adapt their structure and properties in response to nucleic acid, peptide, protein, or other triggers.
Collapse
Affiliation(s)
- Teng Teng
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Julio Bernal‐Chanchavac
- School of Molecular SciencesArizona State UniversityTempeAZ85287USA
- Center for Molecular Design and BiomimeticsThe Biodesign Institute, Arizona State UniversityTempeAZ85287USA
| | - Nicholas Stephanopoulos
- School of Molecular SciencesArizona State UniversityTempeAZ85287USA
- Center for Molecular Design and BiomimeticsThe Biodesign Institute, Arizona State UniversityTempeAZ85287USA
| | - Carlos E. Castro
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOH43210USA
| |
Collapse
|
8
|
Mierke CT. Magnetic tweezers in cell mechanics. Methods Enzymol 2024; 694:321-354. [PMID: 38492957 DOI: 10.1016/bs.mie.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The chapter provides an overview of the applications of magnetic tweezers in living cells. It discusses the advantages and disadvantages of magnetic tweezers technology with a focus on individual magnetic tweezers configurations, such as electromagnetic tweezers. Solutions to the disadvantages identified are also outlined. The specific role of magnetic tweezers in the field of mechanobiology, such as mechanosensitivity, mechano-allostery and mechanotransduction are also emphasized. The specific usage of magnetic tweezers in mechanically probing cells via specific cell surface receptors, such as mechanosensitive channels is discussed and why mechanical probing has revealed the opening and closing of the channels. Finally, the future direction of magnetic tweezers is presented.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute for Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
| |
Collapse
|
9
|
Shoyer TC, Gates EM, Cabe JI, Urs AN, Conway DE, Hoffman BD. Coupling during collective cell migration is controlled by a vinculin mechanochemical switch. Proc Natl Acad Sci U S A 2023; 120:e2316456120. [PMID: 38055737 PMCID: PMC10722971 DOI: 10.1073/pnas.2316456120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023] Open
Abstract
The ability of cells to move in a mechanically coupled, coordinated manner, referred to as collective cell migration, is central to many developmental, physiological, and pathophysiological processes. Limited understanding of how mechanical forces and biochemical regulation interact to affect coupling has been a major obstacle to unravelling the underlying mechanisms. Focusing on the linker protein vinculin, we use a suite of Förster resonance energy transfer-based biosensors to probe its mechanical functions and biochemical regulation, revealing a switch that toggles vinculin between loadable and unloadable states. Perturbation of the switch causes covarying changes in cell speed and coordination, suggesting alteration of the friction within the system. Molecular scale modelling reveals that increasing levels of loadable vinculin increases friction, due to engagement of self-stabilizing catch bonds. Together, this work reveals a regulatory switch for controlling cell coupling and describes a paradigm for relating biochemical regulation, altered mechanical properties, and changes in cell behaviors.
Collapse
Affiliation(s)
- T. Curtis Shoyer
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Evan M. Gates
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Jolene I. Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA23284
| | - Aarti N. Urs
- Department of Cell Biology, Duke University, Durham, NC27710
| | - Daniel E. Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH43210
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Cell Biology, Duke University, Durham, NC27710
| |
Collapse
|
10
|
Li SH, Xu GK. Topological mechanism in the nonlinear power-law relaxation of cell cortex. Phys Rev E 2023; 108:064408. [PMID: 38243511 DOI: 10.1103/physreve.108.064408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Different types of cells exhibit a universal power-law rheology, but the mechanism underneath is still unclear. Based on the exponential distribution of actin filament length, we treat the cell cortex as a collection of chains of crosslinkers with exponentially distributed binding energy, and show that the power-law exponent of its stress relaxation should scale with the chain length. Through this model, we are able to explain how the exponent can be regulated by the crosslinker number and imposed strain during cortex relaxation. Network statistics show that the average length of filament-crosslinker chains decreases with the crosslinker number, which endows a denser network with lower exponent. Due to gradual molecular alignment with the stretch direction, the number of effectively stretched crosslinkers in the network is found to increase with the imposed strain. This effective growth in network density diminishes the exponent under large strain. By incorporating the inclined angle of crosslinkers into the model without in-series structure, we show that the exponent cannot be altered by crosslinker rotation directly, refining our previous conjectures. This work may help to understand cellular mechanics from the molecular perspective.
Collapse
Affiliation(s)
- Shao-Heng Li
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Teng T, Bernal-Chanchavac J, Stephanopoulos N, Castro CE. Construction and reconfiguration of dynamic DNA origami assemblies with coiled-coil patches and patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559112. [PMID: 37790447 PMCID: PMC10542533 DOI: 10.1101/2023.09.23.559112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
DNA origami nanodevices achieve programmable structure and tunable mechanical and dynamic properties by leveraging the sequence specific interactions of nucleic acids. Previous advances have also established DNA origami as a useful building block to make well-defined micron-scale structures through hierarchical self-assembly, but these efforts have largely leveraged the structural features of DNA origami. The tunable dynamic and mechanical properties also provide an opportunity to make assemblies with adaptive structure and properties. Here we report the integration of DNA origami hinge nanodevices and coiled-coil peptides into hybrid reconfigurable assemblies. With the same dynamic device and peptide interaction, we make multiple higher order assemblies by organizing clusters of peptides (i.e. patches) or arranging single peptides (i.e. patterns) on the surfaces of DNA origami to control the relative orientation of devices. We use coiled-coil interactions to construct circular and linear assemblies whose structure and mechanical properties can be modulated with DNA-based actuation. Actuation of linear assemblies leads to micron scale motions and ~2.5-10-fold increase in bending stiffness. Our results provide a foundation for stimulus responsive hybrid assemblies that can adapt their structure and properties in response to nucleic acid, peptide, protein, or other triggers.
Collapse
Affiliation(s)
- T Teng
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - J Bernal-Chanchavac
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - N Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - C E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
12
|
Kumar HS, Yi Z, Tong S, Annamalai RT. Magnetic nanocomplexes coupled with an external magnetic field modulate macrophage phenotype - a non-invasive strategy for bone regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.02.556050. [PMID: 37732259 PMCID: PMC10508738 DOI: 10.1101/2023.09.02.556050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chronic inflammation is a major cause for the pathogenesis of musculoskeletal diseases such as fragility fracture, and nonunion. Studies have shown that modulating the immune phenotype of macrophages from proinflammatory to prohealing mode can heal recalcitrant bone defects. Current therapeutic strategies predominantly apply biochemical cues, which often lack target specificity and controlling their release kinetics in vivo is challenging spatially and temporally. We show a magnetic iron-oxide nanocomplexes (MNC)-based strategy to resolve chronic inflammation in the context of promoting fracture healing. MNC internalized pro-inflammatory macrophages, when coupled with an external magnetic field, exert an intracellular magnetic force on the cytoskeleton, which promotes a prohealing phenotype switch. Mechanistically, the intracellular magnetic force perturbs actin polymerization, thereby significantly reducing nuclear to cytoplasm redistribution of MRTF-A and HDAC3, major drivers of inflammatory and osteogenic gene expressions. This significantly reduces Nos2 gene expression and subsequently downregulates the inflammatory response, as confirmed by quantitative PCR analysis. These findings are a proof of concept to develop MNC-based resolution-centric therapeutic intervention to direct macrophage phenotype and function towards healing and can be translated either to supplement or replace the currently used anti-inflammatory therapies for fracture healing.
Collapse
|
13
|
Ni H, Ni Q, Papoian GA, Trache A, Jiang Y. Myosin and [Formula: see text]-actinin regulation of stress fiber contractility under tensile stress. Sci Rep 2023; 13:8662. [PMID: 37248294 PMCID: PMC10227020 DOI: 10.1038/s41598-023-35675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023] Open
Abstract
Stress fibers are actomyosin bundles that regulate cellular mechanosensation and force transduction. Interacting with the extracellular matrix through focal adhesion complexes, stress fibers are highly dynamic structures regulated by myosin motors and crosslinking proteins. Under external mechanical stimuli such as tensile forces, the stress fiber remodels its architecture to adapt to external cues, displaying properties of viscoelastic materials. How the structural remodeling of stress fibers is related to the generation of contractile force is not well understood. In this work, we simulate mechanochemical dynamics and force generation of stress fibers using the molecular simulation platform MEDYAN. We model stress fiber as two connecting bipolar bundles attached at the ends to focal adhesion complexes. The simulated stress fibers generate contractile force that is regulated by myosin motors and [Formula: see text]-actinin crosslinkers. We find that stress fibers enhance contractility by reducing the distance between actin filaments to increase crosslinker binding, and this structural remodeling ability depends on the crosslinker turnover rate. Under tensile pulling force, the stress fiber shows an instantaneous increase of the contractile forces followed by a slow relaxation into a new steady state. While the new steady state contractility after pulling depends only on the overlap between actin bundles, the short-term contractility enhancement is sensitive to the tensile pulling distance. We further show that this mechanical response is also sensitive to the crosslinker turnover rate. Our results provide new insights into the stress fiber mechanics that have significant implications for understanding cellular adaptation to mechanical signaling.
Collapse
Affiliation(s)
- Haoran Ni
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Qin Ni
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Garegin A. Papoian
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Andreea Trache
- Department of Medical Physiology, Texas A &M University Health Science Center, Bryan, TX, USA
- Department of Biomedical Engineering, Texas A &M University, College Station, TX, USA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
14
|
Beedle AEM, Garcia-Manyes S. The role of single protein elasticity in mechanobiology. NATURE REVIEWS. MATERIALS 2023; 8:10-24. [PMID: 37469679 PMCID: PMC7614781 DOI: 10.1038/s41578-022-00488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 07/21/2023]
Abstract
In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. Yet the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are comparatively not so well understood. With the advent, development and refining of single molecule nanomechanical techniques, enabling to exquisitely probe the conformational dynamics of individual proteins under the effect of a calibrated force, we have begun to acquire a comprehensive knowledge on the rich plethora of physicochemical principles that regulate the elasticity of single proteins. Here we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of such a prolific and burgeoning field.
Collapse
Affiliation(s)
- Amy EM Beedle
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
| |
Collapse
|
15
|
Wu X, Xu LY, Li EM, Dong G. Molecular dynamics simulation study on the structures of fascin mutants. J Mol Recognit 2023; 36:e2998. [PMID: 36225126 DOI: 10.1002/jmr.2998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
Fascin is a filamentous actin (F-actin) bundling protein, which cross-links F-actin into bundles and becomes an important component of filopodia on the cell surface. Fascin is overexpressed in many types of cancers. The mutation of fascin affects its ability to bind to F-actin and the progress of cancer. In this paper, we have studied the effects of residues of K22, K41, K43, K241, K358, K399, and K471 using molecular dynamics (MD) simulation. For the strong-effect residues, that is, K22, K41, K43, K358, and K471, our results show that the mutation of K to A leads to large values of root mean square fluctuation (RMSF) around the mutated residues, indicating those residues are important for the flexibility and thermal stability. On the other hand, based on residue cross-correlation analysis, alanine mutations of these residues reinforce the correlation between residues. Together with the RMSF data, the local flexibility is extended to the entire protein by the strong correlations to influence the dynamics and function of fascin. By contrast, for the mutants of K241A and K399A those do not affect the function of fascin, the RMSF data do not show significant differences compared with wild-type fascin. These findings are in a good agreement with experimental studies.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People's Republic of China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, People's Republic of China
- Cancer Research Center, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People's Republic of China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, People's Republic of China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
16
|
Dwyer ME, Robertson-Anderson RM, Gurmessa BJ. Nonlinear Microscale Mechanics of Actin Networks Governed by Coupling of Filament Crosslinking and Stabilization. Polymers (Basel) 2022; 14:polym14224980. [PMID: 36433106 PMCID: PMC9696012 DOI: 10.3390/polym14224980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Actin plays a vital role in maintaining the stability and rigidity of biological cells while allowing for cell motility and shape change. The semiflexible nature of actin filaments-along with the myriad actin-binding proteins (ABPs) that serve to crosslink, bundle, and stabilize filaments-are central to this multifunctionality. The effect of ABPs on the structural and mechanical properties of actin networks has been the topic of fervent investigation over the past few decades. Yet, the combined impact of filament stabilization, stiffening and crosslinking via ABPs on the mechanical response of actin networks has yet to be explored. Here, we perform optical tweezers microrheology measurements to characterize the nonlinear force response and relaxation dynamics of actin networks in the presence of varying concentrations of α-actinin, which transiently crosslinks actin filaments, and phalloidin, which stabilizes filamentous actin and increases its persistence length. We show that crosslinking and stabilization can act both synergistically and antagonistically to tune the network resistance to nonlinear straining. For example, phalloidin stabilization leads to enhanced elastic response and reduced dissipation at large strains and timescales, while the initial microscale force response is reduced compared to networks without phalloidin. Moreover, we find that stabilization switches this initial response from that of stress stiffening to softening despite the increased filament stiffness that phalloidin confers. Finally, we show that both crosslinking and stabilization are necessary to elicit these emergent features, while the effect of stabilization on networks without crosslinkers is much more subdued. We suggest that these intriguing mechanical properties arise from the competition and cooperation between filament connectivity, bundling, and rigidification, shedding light on how ABPs with distinct roles can act in concert to mediate diverse mechanical properties of the cytoskeleton and bio-inspired polymeric materials.
Collapse
Affiliation(s)
- Mike E. Dwyer
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA
| | | | - Bekele J. Gurmessa
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA
- Correspondence:
| |
Collapse
|
17
|
Tseng CC, Zheng RH, Lin TW, Chou CC, Shih YC, Liang SW, Lee HH. α-Actinin-4 recruits Shp2 into focal adhesions to potentiate ROCK2 activation in podocytes. Life Sci Alliance 2022; 5:5/11/e202201557. [PMID: 36096674 PMCID: PMC9468603 DOI: 10.26508/lsa.202201557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
α-Actinin-4 is crucial in the regulation of Shp2 FA targeting to enhance ROCK2-mediated actomyosin contractility and thereby strengthening cell adhesion and cytoskeletal architecture in podocytes. Cell–matrix adhesions are mainly provided by integrin-mediated focal adhesions (FAs). We previously found that Shp2 is essential for FA maturation by promoting ROCK2 activation at FAs. In this study, we further delineated the role of α-actinin-4 in the FA recruitment and activation of Shp2. We used the conditional immortalized mouse podocytes to examine the role of α-actinin-4 in the regulation of Shp2 and ROCK2 signaling. After the induction of podocyte differentiation, Shp2 and ROCK2 were strongly activated, concomitant with the formation of matured FAs, stress fibers, and interdigitating intracellular junctions in a ROCK-dependent manner. Gene knockout of α-actinin-4 abolished the Shp2 activation and subsequently reduced matured FAs in podocytes. We also demonstrated that gene knockout of ROCK2 impaired the generation of contractility and interdigitating intercellular junctions. Our results reveal the role of α-actinin-4 in the recruitment of Shp2 at FAs to potentiate ROCK2 activation for the maintenance of cellular contractility and cytoskeletal architecture in the cultured podocytes.
Collapse
Affiliation(s)
- Chien-Chun Tseng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ru-Hsuan Zheng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Wei Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chiang Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chia Shih
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shao-Wei Liang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Hui Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
18
|
Li SH, Gao H, Xu GK. Network dynamics of the nonlinear power-law relaxation of cell cortex. Biophys J 2022; 121:4091-4098. [PMID: 36171727 PMCID: PMC9675028 DOI: 10.1016/j.bpj.2022.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Living cells are known to exhibit universal power-law rheological behaviors, but their underlying biomechanical principles are still not fully understood. Here, we present a network dynamics picture to decipher the nonlinear power-law relaxation of cortical cytoskeleton. Under step strains, we present a scaling relation between instantaneous differential stiffness and external stress as a result of chain reorientation. Then, during the relaxation, we show how the scaling law theoretically originates from an exponential form of cortical disorder, with the scaling exponent decreased by the imposed strain or crosslinker density in the nonlinear regime. We attribute this exponent variation to the molecular realignment along the stretch direction or the transition of network structure from in-series to in-parallel modes, both solidifying the network toward our one-dimensional theoretical limit. In addition, the rebinding of crosslinkers is found to be crucial for moderating the relaxation speed under small strains. Together with the disorder nature, we demonstrate that the structural effects of networks provide a unified interpretation for the nonlinear power-law relaxation of cell cortex, and may help to understand cell mechanics from the molecular scale.
Collapse
Affiliation(s)
- Shao-Heng Li
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore; Institute of High Performance Computing, A(∗)STAR, Singapore, Singapore.
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
19
|
Zhao Y, Ding S, Todoh M. Validate the force-velocity relation of the Hill's muscle model from a molecular perspective. Front Bioeng Biotechnol 2022; 10:1006571. [PMID: 36312549 PMCID: PMC9614041 DOI: 10.3389/fbioe.2022.1006571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 07/30/2023] Open
Affiliation(s)
- Yongkun Zhao
- Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shihang Ding
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Masahiro Todoh
- Division of Mechanical and Aerospace Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Lei H, Zhang J, Li Y, Wang X, Qin M, Wang W, Cao Y. Histidine-Specific Bioconjugation for Single-Molecule Force Spectroscopy. ACS NANO 2022; 16:15440-15449. [PMID: 35980082 DOI: 10.1021/acsnano.2c07298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic force microscopy (AFM) based single-molecule force spectroscopy (SMFS) is a powerful tool to study the mechanical properties of proteins. In these experiments, site-specific immobilization of proteins is critical, as the tether determines the direction and amplitude of forces applied to the protein of interest. However, existing methods are mainly based on thiol chemistry or specific protein tags, which cannot meet the need of many challenging experiments. Here, we developed a histidine-specific phosphorylation strategy to covalently anchor proteins to an AFM cantilever tip or the substrate via their histidine tag or surface-exposed histidine residues. The formed covalent linkage was mechanically stable with rupture forces of over 1.3 nN. This protein immobilization method considerably improved the pickup rate and data quality of SMFS experiments. We further demonstrated the use of this method to explore the pulling-direction-dependent mechanical stability of green fluorescent protein and the unfolding of the membrane protein archaerhodopsin-3.
Collapse
Affiliation(s)
- Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University 22 Hankou Road, Nanjing 210093, People's Republic of China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 163 Xianlin Road, Nanjing 210023, People's Republic of China
| | - Junsheng Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University 22 Hankou Road, Nanjing 210093, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology 219 Ningliu Road, Nanjing, 210044, People's Republic of China
| | - Xin Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University 22 Hankou Road, Nanjing 210093, People's Republic of China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University 22 Hankou Road, Nanjing 210093, People's Republic of China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University 22 Hankou Road, Nanjing 210093, People's Republic of China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 163 Xianlin Road, Nanjing 210023, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, People's Republic of China
| |
Collapse
|
21
|
Chandrasekaran A, Clarke A, McQueen P, Fang HY, Papoian GA, Giniger E. Computational simulations reveal that Abl activity controls cohesiveness of actin networks in growth cones. Mol Biol Cell 2022; 33:ar92. [PMID: 35857718 PMCID: PMC9582807 DOI: 10.1091/mbc.e21-11-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive studies of growing axons have revealed many individual components and protein interactions that guide neuronal morphogenesis. Despite this, however, we lack any clear picture of the emergent mechanism by which this nanometer-scale biochemistry generates the multimicron-scale morphology and cell biology of axon growth and guidance in vivo. To address this, we studied the downstream effects of the Abl signaling pathway using a computer simulation software (MEDYAN) that accounts for mechanochemical dynamics of active polymers. Previous studies implicate two Abl effectors, Arp2/3 and Enabled, in Abl-dependent axon guidance decisions. We now find that Abl alters actin architecture primarily by activating Arp2/3, while Enabled plays a more limited role. Our simulations show that simulations mimicking modest levels of Abl activity bear striking similarity to actin profiles obtained experimentally from live imaging of actin in wild-type axons in vivo. Using a graph theoretical filament-filament contact analysis, moreover, we find that networks mimicking hyperactivity of Abl (enhanced Arp2/3) are fragmented into smaller domains of actin that interact weakly with each other, consistent with the pattern of actin fragmentation observed upon Abl overexpression in vivo. Two perturbative simulations further confirm that high-Arp2/3 actin networks are mechanically disconnected and fail to mount a cohesive response to perturbation. Taken together, these data provide a molecular-level picture of how the large-scale organization of the axonal cytoskeleton arises from the biophysics of actin networks.
Collapse
Affiliation(s)
- Aravind Chandrasekaran
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| | - Akanni Clarke
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine/National Institutes of Health Graduate Partnerships Program, Washington, DC 20037
| | - Philip McQueen
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Hsiao Yu Fang
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Edward Giniger
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| |
Collapse
|
22
|
Mondal A, Morrison G. Compression-induced buckling of a semiflexible filament in two and three dimensions. J Chem Phys 2022; 157:104903. [DOI: 10.1063/5.0104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability of biomolecules to exert forces on their surroundings or resist compression from the environment is essential in a variety of biologically relevant contexts. For filaments in the low-temperature limit and under a constant compressive force, Euler buckling theory predicts a sudden transition from a compressed to a bent state in these slender rods. In this paper, we use a mean-field theory to show that if a semiflexible chain is compressed at a finite temperature with a fixed end-to-end distance (permitting fluctuations in the compressive forces), it exhibits a continuous phase transition to a buckled state at a critical level of compression. We determine a quantitatively accurate prediction of the transverse position distribution function of the midpoint of the chain that indicates this transition. We find the mean compressive forces are non-monotonic as the extension of the filament varies, consistent with the observation that strongly buckled filaments are less able to bear an external load. We also find that for the fixed extension (isometric) ensemble, the buckling transition does not coincide with the local minimum of the mean force (in contrast to Euler buckling). We also show the theory is highly sensitive to fluctuations in length in two dimensions, and that the buckling transition can still be accurately recovered by accounting for those fluctuations. These predictions may be useful in understanding the behavior of filamentous biomolecules compressed by fluctuating forces, relevant in a variety of biological contexts.
Collapse
Affiliation(s)
- Ananya Mondal
- Physics, University of Houston, United States of America
| | - Greg Morrison
- Physics, University of Houston, United States of America
| |
Collapse
|
23
|
Costache V, Prigent Garcia S, Plancke CN, Li J, Begnaud S, Suman SK, Reymann AC, Kim T, Robin FB. Rapid assembly of a polar network architecture drives efficient actomyosin contractility. Cell Rep 2022; 39:110868. [PMID: 35649363 PMCID: PMC9210446 DOI: 10.1016/j.celrep.2022.110868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Actin network architecture and dynamics play a central role in cell contractility and tissue morphogenesis. RhoA-driven pulsed contractions are a generic mode of actomyosin contractility, but the mechanisms underlying how their specific architecture emerges and how this architecture supports the contractile function of the network remain unclear. Here we show that, during pulsed contractions, the actin network is assembled by two subpopulations of formins: a functionally inactive population (recruited) and formins actively participating in actin filament elongation (elongating). We then show that elongating formins assemble a polar actin network, with barbed ends pointing out of the pulse. Numerical simulations demonstrate that this geometry favors rapid network contraction. Our results show that formins convert a local RhoA activity gradient into a polar network architecture, causing efficient network contractility, underlying the key function of kinetic controls in the assembly and mechanics of cortical network architectures. RhoA-driven actomyosin contractility plays a key role in driving cell and tissue contractility during morphogenesis. Tracking individual formins, Costache et al. show that the network assembled downstream of RhoA displays a polar architecture, barbed ends pointing outward, a feature that supports efficient contractility and force transmission during pulsed contractions.
Collapse
Affiliation(s)
- Vlad Costache
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Serena Prigent Garcia
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Camille N Plancke
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Simon Begnaud
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Shashi Kumar Suman
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Anne-Cécile Reymann
- IGBMC, CNRS UMR7104, INSERM U1258, and Université de Strasbourg, Illkirch, France
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - François B Robin
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France.
| |
Collapse
|
24
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
25
|
Yang T, Park C, Rah SH, Shon MJ. Nano-Precision Tweezers for Mechanosensitive Proteins and Beyond. Mol Cells 2022; 45:16-25. [PMID: 35114644 PMCID: PMC8819490 DOI: 10.14348/molcells.2022.2026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Mechanical forces play pivotal roles in regulating cell shape, function, and fate. Key players that govern the mechanobiological interplay are the mechanosensitive proteins found on cell membranes and in cytoskeleton. Their unique nanomechanics can be interrogated using single-molecule tweezers, which can apply controlled forces to the proteins and simultaneously measure the ensuing structural changes. Breakthroughs in high-resolution tweezers have enabled the routine monitoring of nanometer-scale, millisecond dynamics as a function of force. Undoubtedly, the advancement of structural biology will be further fueled by integrating static atomic-resolution structures and their dynamic changes and interactions observed with the force application techniques. In this minireview, we will introduce the general principles of single-molecule tweezers and their recent applications to the studies of force-bearing proteins, including the synaptic proteins that need to be categorized as mechanosensitive in a broad sense. We anticipate that the impact of nano-precision approaches in mechanobiology research will continue to grow in the future.
Collapse
Affiliation(s)
- Taehyun Yang
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Celine Park
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sang-Hyun Rah
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Min Ju Shon
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
26
|
Kim MC, Li R, Abeyaratne R, Kamm RD, Asada HH. A computational modeling of invadopodia protrusion into an extracellular matrix fiber network. Sci Rep 2022; 12:1231. [PMID: 35075179 PMCID: PMC8786978 DOI: 10.1038/s41598-022-05224-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Invadopodia are dynamic actin-rich membrane protrusions that have been implicated in cancer cell invasion and metastasis. In addition, invasiveness of cancer cells is strongly correlated with invadopodia formation, which are observed during extravasation and colonization of metastatic cancer cells at secondary sites. However, quantitative understanding of the interaction of invadopodia with extracellular matrix (ECM) is lacking, and how invadopodia protrusion speed is associated with the frequency of protrusion-retraction cycles remains unknown. Here, we present a computational framework for the characterization of invadopodia protrusions which allows two way interactions between intracellular branched actin network and ECM fibers network. We have applied this approach to predicting the invasiveness of cancer cells by computationally knocking out actin-crosslinking molecules, such as α-actinin, filamin and fascin. The resulting simulations reveal distinct invadopodia dynamics with cycles of protrusion and retraction. Specifically, we found that (1) increasing accumulation of MT1-MMP at tips of invadopodia as the duration of protrusive phase is increased, and (2) the movement of nucleus toward the leading edge of the cell becomes unstable as duration of the retractile phase (or myosin turnover time) is longer than 1 min.
Collapse
Affiliation(s)
- Min-Cheol Kim
- Departments of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Ran Li
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
| | - Rohan Abeyaratne
- Departments of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Roger D Kamm
- Departments of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - H Harry Asada
- Departments of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
27
|
Wei X, Fang C, Gong B, Yao J, Qian J, Lin Y. Viscoelasticity of 3D actin networks dictated by the mechanochemical characteristics of cross-linkers. SOFT MATTER 2021; 17:10177-10185. [PMID: 33646227 DOI: 10.1039/d0sm01558j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we report a computational investigation on how the mechanochemical characteristics of crosslinking molecules influence the viscoelasticity of three dimensional F-actin networks, an issue of key interest in analyzing the behavior of living cells and biological gels. In particular, it was found that the continuous breakage and rebinding of cross-linkers result in a locally peaked loss modulus in the rheology spectrum of the network, reflecting the fact that maximum energy dissipation is achieved when the driving frequency of the applied oscillating shear becomes comparable to the dissociation/association rate of crosslinking molecules. In addition, we showed that when subjected to constant rate of shear, an actin network can exhibit either strain hardening or softening depending on the ratio between the loading rate and unbinding speed of cross-linkers. A criterion for predicting the transition from softening to hardening was also obtained, in agreement with recent experiments. Finally, significant structural evolution was found to occur in random networks undergoing mechanical "training" (i.e. under a constant applied shear stress over a period of time), eventually leading to a pronounced anisotropic response of the network afterward which again is consistent with experimental observations.
Collapse
Affiliation(s)
- X Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Guangdong, China
| | - C Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Guangdong, China
| | - B Gong
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China.
| | - J Yao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Guangdong, China
| | - J Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Y Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Guangdong, China
| |
Collapse
|
28
|
Barai A, Mukherjee A, Das A, Saxena N, Sen S. α-actinin-4 drives invasiveness by regulating myosin IIB expression and myosin IIA localization. J Cell Sci 2021; 134:272699. [PMID: 34730180 DOI: 10.1242/jcs.258581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which the mechanoresponsive actin crosslinking protein α-actinin-4 (ACTN4) regulates cell motility and invasiveness remains incompletely understood. Here we show that in addition to regulating protrusion dynamics and focal adhesion formation, ACTN4 transcriptionally regulates expression of non-muscle myosin IIB (NMM IIB), which is essential for mediating nuclear translocation during 3D invasion. We further show that an indirect association between ACTN4 and NMM IIA mediated by a functional F-actin cytoskeleton is essential for retention of NMM IIA at the cell periphery and modulation of focal adhesion dynamics. A protrusion-dependent model of confined migration recapitulating experimental observations predicts a dependence of protrusion forces on the degree of confinement and on the ratio of nucleus to matrix stiffness. Together, our results suggest that ACTN4 is a master regulator of cancer invasion that regulates invasiveness by controlling NMM IIB expression and NMM IIA localization.
Collapse
Affiliation(s)
- Amlan Barai
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Abhishek Mukherjee
- IITB-Monash Research Academy, Mumbai, India.,Dept. of Mechanical Engineering, IIT Bombay, Mumbai, India
| | - Alakesh Das
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India.,Dept. of Biological Regulation, Weizmann Institute of Science, Israel
| | - Neha Saxena
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Shamik Sen
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
29
|
Sim T, Choi B, Kwon SW, Kim KS, Choi H, Ross A, Kim DH. Magneto-Activation and Magnetic Resonance Imaging of Natural Killer Cells Labeled with Magnetic Nanocomplexes for the Treatment of Solid Tumors. ACS NANO 2021; 15:12780-12793. [PMID: 34165964 DOI: 10.1021/acsnano.1c01889] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural killer (NK) cell-based immunotherapy has been considered a promising cell-based cancer treatment strategy with low side effects for early tumors and metastasis. However, the therapeutic efficacy is generally low in established solid tumors. Ex vivo activation of NK cells with exogenous cytokines is often essential but ineffective to generate high doses of functional NK cells for cancer treatment. Image-guided local delivery of NK cells is also suggested for the therapy. However, there is a lack of noninvasive tools for monitoring NK cells. Herein, magnetic nanocomplexes are fabricated with clinically available materials (hyaluronic acid, protamine, and ferumoxytol; HAPF) for labeling NK cells. The prepared HAPF-nanocomplexes effectively attach to the NK cells (HAPF-NK). An exogenous magnetic field application effectively achieves magneto-activation of NK cells, promoting the generation and secretion of lytic granules of NK cells. The magneto-activated HAPF-NK cells also allow an MR image-guided NK cell therapy to treat hepatocellular carcinoma (HCC) solid tumors via transcatheter intra-arterial infusion. Suppressed tumor growth after the treatment of IA infused magneto-activated NK cells demonstrated a potential enhanced therapeutic efficacy of image guided local delivery of magneto-activated HAPF-NK cells. Given the potential challenges of NK cell cancer immunotherapy against established solid tumors, the effective NK cell labeling with HAPF, magneto-activation, and MRI contrast effect of NK cells will be beneficial to enhance the NK cell-therapeutic efficacy in various cancers.
Collapse
Affiliation(s)
- Taehoon Sim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Bongseo Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Soon Woo Kwon
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Kwang-Soo Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Alexander Ross
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| |
Collapse
|
30
|
Protein friction and filament bending facilitate contraction of disordered actomyosin networks. Biophys J 2021; 120:4029-4040. [PMID: 34390686 DOI: 10.1016/j.bpj.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022] Open
Abstract
We use mathematical modeling and computation to investigate how protein friction facilitates contraction of disordered actomyosin networks. We simulate two-dimensional networks using an agent-based model, consisting of a system of force-balance equations for myosin motor proteins and semiflexible actin filaments. A major advantage of our approach is that it enables direct calculation of the network stress tensor, which provides a quantitative measure of contractility. Exploiting this, we use repeated simulations of disordered networks to confirm that both protein friction and actin filament bending are required for contraction. We then use simulations of elementary two-filament systems to show that filament bending flexibility can facilitate contraction on the microscopic scale. Finally, we show that actin filament turnover is necessary to sustain contraction and prevent filament aggregation. Simulations with and without turnover also exhibit contractile pulses. However, these pulses are aperiodic, suggesting that periodic pulsation can only arise because of additional regulatory mechanisms or more complex mechanical behavior.
Collapse
|
31
|
Vedula P, Kurosaka S, MacTaggart B, Ni Q, Papoian G, Jiang Y, Dong DW, Kashina A. Different translation dynamics of β- and γ-actin regulates cell migration. eLife 2021; 10:68712. [PMID: 34165080 PMCID: PMC8328520 DOI: 10.7554/elife.68712] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
β- and γ-cytoplasmic actins are ubiquitously expressed in every cell type and are nearly identical at the amino acid level but play vastly different roles in vivo. Their essential roles in embryogenesis and mesenchymal cell migration critically depend on the nucleotide sequences of their genes, rather than their amino acid sequences; however, it is unclear which gene elements underlie this effect. Here we address the specific role of the coding sequence in β- and γ-cytoplasmic actins’ intracellular functions, using stable polyclonal populations of immortalized mouse embryonic fibroblasts with exogenously expressed actin isoforms and their ‘codon-switched’ variants. When targeted to the cell periphery using β-actin 3′UTR; β-actin and γ-actin have differential effects on cell migration. These effects directly depend on the coding sequence. Single-molecule measurements of actin isoform translation, combined with fluorescence recovery after photobleaching, demonstrate a pronounced difference in β- and γ-actins’ translation elongation rates in cells, leading to changes in their dynamics at focal adhesions, impairments in actin bundle formation, and reduced cell anchoring to the substrate during migration. Our results demonstrate that coding sequence-mediated differences in actin translation play a key role in cell migration. Most mammalian cells make both β- and γ-actin, two proteins which shape the cell’s internal skeleton and its ability to migrate. The molecules share over 99% of their sequence, yet they play distinct roles. In fact, deleting the β-actin gene in mice causes death in the womb, while the animals can survive with comparatively milder issues without their γ-actin gene. How two similar proteins can have such different biological roles is a long-standing mystery. A closer look could hold some clues: β- and γ-actin may contain the same blocks (or amino acids), but the genetic sequences that encode these proteins differ by about 13%. This is because different units of genetic information – known as synonymous codons – can encode the same amino acid. These ‘silent substitutions’ have no effect on the sequence of the proteins, yet a cell reads synonymous codons (and therefore produces proteins) at different speeds. To find out the impact of silent substitutions, Vedula et al. swapped the codons for the two proteins, forcing mouse cells to produce β-actin using γ-actin codons, and vice versa. Cells with non-manipulated γ-actin and those with β-actin made using γ-actin codons could move much faster than cells with β-actin. This suggested that silent substitutions were indeed affecting the role of the protein. Vedula et al. found that cells read γ-codons – and therefore made γ-actin – much more slowly than β-codons: this also affected how quickly the protein could be dispatched where it was needed in the cell. Slower production meant that bundles of γ-actin were shorter, which allowed cells to move faster by providing a weaker anchoring system. Overall, this work provides new links between silent substitutions and protein behavior, a relatively new research area which is likely to shed light on other protein families.
Collapse
Affiliation(s)
- Pavan Vedula
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Satoshi Kurosaka
- Institute of Advanced Technology, Kindai University, Kainan, Wakayama, Japan
| | - Brittany MacTaggart
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Qin Ni
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, United States
| | - Garegin Papoian
- Department of Chemistry, University of Maryland, College Park, United States
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, United States
| | - Dawei W Dong
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
32
|
Tabatabai AP, Seara DS, Tibbs J, Yadav V, Linsmeier I, Murrell MP. Detailed Balance Broken by Catch Bond Kinetics Enables Mechanical-Adaptation in Active Materials. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006745. [PMID: 34393691 PMCID: PMC8357268 DOI: 10.1002/adfm.202006745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 05/04/2023]
Abstract
Unlike nearly all engineered materials which contain bonds that weaken under load, biological materials contain "catch" bonds which are reinforced under load. Consequently, materials, such as the cell cytoskeleton, can adapt their mechanical properties in response to their state of internal, non-equilibrium (active) stress. However, how large-scale material properties vary with the distance from equilibrium is unknown, as are the relative roles of active stress and binding kinetics in establishing this distance. Through course-grained molecular dynamics simulations, the effect of breaking of detailed balance by catch bonds on the accumulation and dissipation of energy within a model of the actomyosin cytoskeleton is explored. It is found that the extent to which detailed balance is broken uniquely determines a large-scale fluid-solid transition with characteristic time-reversal symmetries. The transition depends critically on the strength of the catch bond, suggesting that active stress is necessary but insufficient to mount an adaptive mechanical response.
Collapse
Affiliation(s)
- Alan Pasha Tabatabai
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Daniel S Seara
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
| | - Joseph Tibbs
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Vikrant Yadav
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Ian Linsmeier
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
| |
Collapse
|
33
|
Parajón E, Surcel A, Robinson DN. The mechanobiome: a goldmine for cancer therapeutics. Am J Physiol Cell Physiol 2020; 320:C306-C323. [PMID: 33175572 DOI: 10.1152/ajpcell.00409.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer progression is dependent on heightened mechanical adaptation, both for the cells' ability to change shape and to interact with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is the larger network that constitutes the cell's mechanical systems that are also highly integrated with many other cellular systems, such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here, we review the biochemistry of key mechanoresponsive proteins, specifically nonmuscle myosin II, α-actinins, and filamins, as well as the partnering proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Eleana Parajón
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
34
|
Predictive assembling model reveals the self-adaptive elastic properties of lamellipodial actin networks for cell migration. Commun Biol 2020; 3:616. [PMID: 33106551 PMCID: PMC7588425 DOI: 10.1038/s42003-020-01335-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Branched actin network supports cell migration through extracellular microenvironments. However, it is unknown how intracellular proteins adapt the elastic properties of the network to the highly varying extracellular resistance. Here we develop a three-dimensional assembling model to simulate the realistic self-assembling process of the network by encompassing intracellular proteins and their dynamic interactions. Combining this multiscale model with finite element method, we reveal that the network can not only sense the variation of extracellular resistance but also self-adapt its elastic properties through remodeling with intracellular proteins. Such resistance-adaptive elastic behaviours are versatile and essential in supporting cell migration through varying extracellular microenvironments. The bending deformation mechanism and anisotropic Poisson's ratios determine why lamellipodia persistently evolve into sheet-like structures. Our predictions are confirmed by published experiments. The revealed self-adaptive elastic properties of the networks are also applicable to the endocytosis, phagocytosis, vesicle trafficking, intracellular pathogen transport and dendritic spine formation.
Collapse
|
35
|
Hosseini K, Sbosny L, Poser I, Fischer-Friedrich E. Binding Dynamics of α-Actinin-4 in Dependence of Actin Cortex Tension. Biophys J 2020; 119:1091-1107. [PMID: 32853564 PMCID: PMC7499067 DOI: 10.1016/j.bpj.2020.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mechanosensation of cells is an important prerequisite for cellular function, e.g., in the context of cell migration, tissue organization, and morphogenesis. An important mechanochemical transducer is the actin cytoskeleton. In fact, previous studies have shown that actin cross-linkers such as α-actinin-4 exhibit mechanosensitive properties in their binding dynamics to actin polymers. However, to date, a quantitative analysis of tension-dependent binding dynamics in live cells is lacking. Here, we present a, to our knowledge, new technique that allows us to quantitatively characterize the dependence of cross-linking lifetime of actin cross-linkers on mechanical tension in the actin cortex of live cells. We use an approach that combines parallel plate confinement of round cells, fluorescence recovery after photobleaching, and a mathematical mean-field model of cross-linker binding. We apply our approach to the actin cross-linker α-actinin-4 and show that the cross-linking time of α-actinin-4 homodimers increases approximately twofold within the cellular range of cortical mechanical tension, rendering α-actinin-4 a catch bond in physiological tension ranges.
Collapse
Affiliation(s)
- Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Leon Sbosny
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Ina Poser
- Max-Planck-Institut für Zellbiologie und Genetik, Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
36
|
Pecorari I, Mestroni L, Sbaizero O. Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies. Int J Mol Sci 2020; 21:E5865. [PMID: 32824180 PMCID: PMC7461563 DOI: 10.3390/ijms21165865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
37
|
Abstract
Mechanotransduction, a conversion of mechanical forces into biochemical signals, is essential for human development and physiology. It is observable at all levels ranging from the whole body, organs, tissues, organelles down to molecules. Dysregulation results in various diseases such as muscular dystrophies, hypertension-induced vascular and cardiac hypertrophy, altered bone repair and cell deaths. Since mechanotransduction occurs at nanoscale, nanosciences and applied nanotechnology are powerful for studying molecular mechanisms and pathways of mechanotransduction. Atomic force microscopy, magnetic and optical tweezers are commonly used for force measurement and manipulation at the single molecular level. Force is also used to control cells, topographically and mechanically by specific types of nano materials for tissue engineering. Mechanotransduction research will become increasingly important as a sub-discipline under nanomedicine. Here we review nanotechnology approaches using force measurements and manipulations at the molecular and cellular levels during mechanotransduction, which has been increasingly play important role in the advancement of nanomedicine.
Collapse
Affiliation(s)
- Xiaowei Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
38
|
Borin D, Peña B, Taylor MR, Mestroni L, Lapasin R, Sbaizero O. Viscoelastic behavior of cardiomyocytes carrying LMNA mutations. Biorheology 2020; 57:1-14. [DOI: 10.3233/bir-190229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Brisa Peña
- University of Colorado Anschutz Medical Campus - Aurora, CO, , USA
| | | | - Luisa Mestroni
- University of Colorado Anschutz Medical Campus - Aurora, CO, , USA
| | | | | |
Collapse
|
39
|
Li X, Ni Q, He X, Kong J, Lim SM, Papoian GA, Trzeciakowski JP, Trache A, Jiang Y. Tensile force-induced cytoskeletal remodeling: Mechanics before chemistry. PLoS Comput Biol 2020; 16:e1007693. [PMID: 32520928 PMCID: PMC7326277 DOI: 10.1371/journal.pcbi.1007693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/30/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Abstract
Understanding cellular remodeling in response to mechanical stimuli is a critical step in elucidating mechanical activation of biochemical signaling pathways. Experimental evidence indicates that external stress-induced subcellular adaptation is accomplished through dynamic cytoskeletal reorganization. To study the interactions between subcellular structures involved in transducing mechanical signals, we combined experimental data and computational simulations to evaluate real-time mechanical adaptation of the actin cytoskeletal network. Actin cytoskeleton was imaged at the same time as an external tensile force was applied to live vascular smooth muscle cells using a fibronectin-functionalized atomic force microscope probe. Moreover, we performed computational simulations of active cytoskeletal networks under an external tensile force. The experimental data and simulation results suggest that mechanical structural adaptation occurs before chemical adaptation during filament bundle formation: actin filaments first align in the direction of the external force by initializing anisotropic filament orientations, then the chemical evolution of the network follows the anisotropic structures to further develop the bundle-like geometry. Our findings present an alternative two-step explanation for the formation of actin bundles due to mechanical stimulation and provide new insights into the mechanism of mechanotransduction. Remodeling the cytoskeletal network in response to external force is key to cellular mechanotransduction. Despite much focus on cytoskeletal remodeling in recent years, a comprehensive understanding of actin remodeling in real-time in cells under mechanical stimuli is still lacking. We integrated tensile stress-induced 3D actin remodeling and 3D computational simulations of actin cytoskeleton to study how the actin cytoskeleton form bundles and how these bundles evolve over time upon external tensile stress. We found that actin network remodels through a two-step process in which rapid alignment of actin filaments is followed by slower actin bundling. Based on these results, we propose a “mechanics before chemistry” model of actin cytoskeleton remodeling under external tensile force.
Collapse
Affiliation(s)
- Xiaona Li
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
| | - Qin Ni
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland, United States of America
| | - Xiuxiu He
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
| | - Jun Kong
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
| | - Soon-Mi Lim
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Garegin A. Papoian
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Jerome P. Trzeciakowski
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci 2020; 21:ijms21082696. [PMID: 32295012 PMCID: PMC7216277 DOI: 10.3390/ijms21082696] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Filamin C (FLNC) is one of three filamin proteins (Filamin A (FLNA), Filamin B (FLNB), and FLNC) that cross-link actin filaments and interact with numerous binding partners. FLNC consists of a N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats with two intervening calpain-sensitive hinges separating R15 and R16 (hinge 1) and R23 and R24 (hinge-2). The FLNC subunit is dimerized through R24 and calpain cleaves off the dimerization domain to regulate mobility of the FLNC subunit. FLNC is localized in the Z-disc due to the unique insertion of 82 amino acid residues in repeat 20 and necessary for normal Z-disc formation that connect sarcomeres. Since phosphorylation of FLNC by PKC diminishes the calpain sensitivity, assembly, and disassembly of the Z-disc may be regulated by phosphorylation of FLNC. Mutations of FLNC result in cardiomyopathy and muscle weakness. Although this review will focus on the current understanding of FLNC structure and functions in muscle, we will also discuss other filamins because they share high sequence similarity and are better characterized. We will also discuss a possible role of FLNC as a mechanosensor during muscle contraction.
Collapse
|
41
|
Bender P, Marcano L, Orue I, Alba Venero D, Honecker D, Fernández Barquín L, Muela A, Fdez-Gubieda ML. Probing the stability and magnetic properties of magnetosome chains in freeze-dried magnetotactic bacteria. NANOSCALE ADVANCES 2020; 2:1115-1121. [PMID: 36133039 PMCID: PMC9419280 DOI: 10.1039/c9na00434c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/26/2020] [Indexed: 05/03/2023]
Abstract
Magnetospirillum gryphiswaldense biosynthesize high-quality magnetite nanoparticles, called magnetosomes, and arrange them into a chain that behaves like a magnetic compass. Here we perform magnetometry and polarized small-angle neutron scattering (SANS) experiments on a powder of freeze-dried and immobilized M. gryphiswaldense. We confirm that the individual magnetosomes are single-domain nanoparticles and that an alignment of the particle moments along the magnetic field direction occurs exclusively by an internal, coherent rotation. Our magnetometry results of the bacteria powder indicate an absence of dipolar interactions between the particle chains and a dominant uniaxial magnetic anisotropy. Finally, we can verify by SANS that the chain structure within the immobilized, freeze-dried bacteria is preserved also after application of large magnetic fields up to 1 T.
Collapse
Affiliation(s)
- Philipp Bender
- Department of Physics and Materials Science, University of Luxembourg 1511 Luxembourg Grand Duchy of Luxembourg +352 46 66 44 36521 +352 46 66 44 6521
| | - Lourdes Marcano
- Helmholtz-Zentrum Berlin für Materialien und Energie 12489 Berlin Germany
- Dpto. Electricidad y Electrónica, Universidad Del País Vasco - UPV/EHU 48940 Leioa Spain
| | - Iñaki Orue
- SGIker, Universidad Del País Vasco - UPV/EHU 48940 Leioa Spain
| | - Diego Alba Venero
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Chilton OX11 0QX UK
| | - Dirk Honecker
- Large Scale Structures Group, Institut Laue-Langevin 38042 Grenoble France
| | | | - Alicia Muela
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Spain
- Dpto. Immunologia, Microbiologia y Parasitologia, Universidad Del País Vasco - UPV/EHU 48940 Leioa Spain
| | - M Luisa Fdez-Gubieda
- Dpto. Electricidad y Electrónica, Universidad Del País Vasco - UPV/EHU 48940 Leioa Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Spain
| |
Collapse
|
42
|
Fei X, Bell TA, Jenni S, Stinson BM, Baker TA, Harrison SC, Sauer RT. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. eLife 2020; 9:52774. [PMID: 32108573 PMCID: PMC7112951 DOI: 10.7554/elife.52774] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/27/2020] [Indexed: 01/11/2023] Open
Abstract
ClpXP is an ATP-dependent protease in which the ClpX AAA+ motor binds, unfolds, and translocates specific protein substrates into the degradation chamber of ClpP. We present cryo-EM studies of the E. coli enzyme that show how asymmetric hexameric rings of ClpX bind symmetric heptameric rings of ClpP and interact with protein substrates. Subunits in the ClpX hexamer assume a spiral conformation and interact with two-residue segments of substrate in the axial channel, as observed for other AAA+ proteases and protein-remodeling machines. Strictly sequential models of ATP hydrolysis and a power stroke that moves two residues of the substrate per translocation step have been inferred from these structural features for other AAA+ unfoldases, but biochemical and single-molecule biophysical studies indicate that ClpXP operates by a probabilistic mechanism in which five to eight residues are translocated for each ATP hydrolyzed. We propose structure-based models that could account for the functional results.
Collapse
Affiliation(s)
- Xue Fei
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tristan A Bell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Benjamin M Stinson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
43
|
Jung W, Fillenwarth LA, Matsuda A, Li J, Inoue Y, Kim T. Collective and contractile filament motions in the myosin motility assay. SOFT MATTER 2020; 16:1548-1559. [PMID: 31942899 PMCID: PMC7342887 DOI: 10.1039/c9sm02082a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cells require mechanical forces for their physiological functions. The forces are generated mainly from molecular interactions between actin filaments, cross-linking proteins, and myosin motors in the actin cytoskeleton. To better understand the molecular interactions, many studies employed myosin motility assays with actin filaments propelled by myosin heads fixed on a surface. Various interesting behaviors of actin filaments have been observed in the motility assay experiments. Despite the popularity of the motility assays, there were only a few computational models designed for simulating the motility assay systems. Most of the previous models have limitations which precluded full understanding of molecular origins for behaviors of actin filaments. In this study, we used an agent-based computational model based on Brownian dynamics for simulating the motility assay system. Our model rigorously describes the mechanics, dynamics, and interactions of actin filaments, cross-linking proteins, and molecular motors. Using the model, we first investigated how properties of actin filaments and motors affect gliding motions of actin filaments without volume-exclusion effects as a base study. We found that actin filaments can continuously glide at relative fast speed only when they are sufficiently longer than the average spacing between neighboring motors and that the gliding speed of F-actins shows a biphasic dependence on processivity of motors. Then, we showed that volume-exclusion effects between actin filaments can induce diverse collective movements and alignment of actin filaments, thus creating thick bundles and ring-like structures in the absence of cross-linking proteins. Lastly, we demonstrated that cross-linking proteins can lead to distinct contractile behaviors of actin networks depending on the density and kinetics of the cross-linking proteins. Results from our study show the ability of our model to simulate the motility assay system under various conditions and provide insights into understanding of different behaviors of actin filaments.
Collapse
Affiliation(s)
- Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
44
|
The in vivo mechanics of the magnetotactic backbone as revealed by correlative FLIM-FRET and STED microscopy. Sci Rep 2019; 9:19615. [PMID: 31873083 PMCID: PMC6928011 DOI: 10.1038/s41598-019-55804-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022] Open
Abstract
Protein interaction and protein imaging strongly benefit from the advancements in time-resolved and superresolution fluorescence microscopic techniques. However, the techniques were typically applied separately and ex vivo because of technical challenges and the absence of suitable fluorescent protein pairs. Here, we show correlative in vivo fluorescence lifetime imaging microscopy Förster resonance energy transfer (FLIM-FRET) and stimulated emission depletion (STED) microscopy to unravel protein mechanics and structure in living cells. We use magnetotactic bacteria as a model system where two proteins, MamJ and MamK, are used to assemble magnetic particles called magnetosomes. The filament polymerizes out of MamK and the magnetosomes are connected via the linker MamJ. Our system reveals that bacterial filamentous structures are more fragile than the connection of biomineralized particles to this filament. More importantly, we anticipate the technique to find wide applicability for the study and quantification of biological processes in living cells and at high resolution.
Collapse
|
45
|
Jung W, Tabatabai AP, Thomas JJ, Tabei SMA, Murrell MP, Kim T. Dynamic motions of molecular motors in the actin cytoskeleton. Cytoskeleton (Hoboken) 2019; 76:517-531. [PMID: 31758841 DOI: 10.1002/cm.21582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022]
Abstract
During intracellular transport, cellular cargos, such as organelles, vesicles, and proteins, are transported within cells. Intracellular transport plays an important role in diverse cellular functions. Molecular motors walking on the cytoskeleton facilitate active intracellular transport, which is more efficient than diffusion-based passive transport. Active transport driven by kinesin and dynein walking on microtubules has been studied well during recent decades. However, mechanisms of active transport occurring in disorganized actin networks via myosin motors remain elusive. To provide physiologically relevant insights, we probed motions of myosin motors in actin networks under various conditions using our well-established computational model that rigorously accounts for the mechanical and dynamical behaviors of the actin cytoskeleton. We demonstrated that myosin motions can be confined due to three different reasons in the absence of F-actin turnover. We verified mechanisms of motor stalling using in vitro reconstituted actomyosin networks. We also found that with F-actin turnover, motors consistently move for a long time without significant confinement. Our study sheds light on the importance of F-actin turnover for effective active transport in the actin cytoskeleton.
Collapse
Affiliation(s)
- Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - A Pasha Tabatabai
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut
| | - Jacob J Thomas
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, 215 Begeman Hall, Cedar Falls, Iowa
| | - Michael P Murrell
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut.,Department of Physics, Yale University. 217 Prospect Street, New Haven, Connecticut
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| |
Collapse
|
46
|
Ma G, Hu C, Li S, Gao X, Li H, Hu X. Simultaneous, hybrid single-molecule method by optical tweezers and fluorescence. NANOTECHNOLOGY AND PRECISION ENGINEERING 2019. [DOI: 10.1016/j.npe.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Lopez-Menendez H. A mesoscopic theory to describe the flexibility regulation in F-actin networks: An approach of phase transitions with nonlinear elasticity. J Mech Behav Biomed Mater 2019; 101:103432. [PMID: 31542571 DOI: 10.1016/j.jmbbm.2019.103432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
Abstract
The synthetic actin network arouses great interest as bio-material due to its soft and wet nature that mimics many biological scaffolding structures. Inside the cell, the actin network is regulated by tens of actin-binding proteins (ABP's), which make for a highly complex system with several emergent behaviors. In particular, calponin is an ABP that was identified as an actin stabiliser, but whose mechanism is still poorly understood. Recent experiments using an in vitro model system of cross-linked actin with calponin and large deformation bulk rheology, found that networks with exhibited a delayed onset and were able to withstand a higher maximal strain before softening. In this work, we show that at network scale the actin network with calponin furthermore the reduction of the persistence length allows: (i) The reduction in the network pre-strain. (ii) The increment of the crosslinks adhesion energy. We verify these effects theoretically using nonlinear continuum mechanics for the semiflexible and crosslinked network. In addition, the alterations over the microstructure are described by the definition of an interaction parameter Γ according the formalism of Landau for phase transitions. According to this model we demonstrates that the interaction parameter can describe the experimental observations following a scaling exponent as Γ~|c-ccr|1/2, where c is the ratio between concentration of calponin and actin. This result provides interesting feedback to improve our understanding of several mechano-biological pathways.
Collapse
|
48
|
Aufderhorst-Roberts A, Koenderink GH. Stiffening and inelastic fluidization in vimentin intermediate filament networks. SOFT MATTER 2019; 15:7127-7136. [PMID: 31334536 DOI: 10.1039/c9sm00590k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intermediate filaments are cytoskeletal proteins that are key regulators of cell mechanics, a role which is intrinsically tied to their hierarchical structure and their unique ability to accommodate large axial strains. However, how the single-filament response to applied strains translates to networks remains unclear, particularly with regards to the crosslinking role played by the filaments' disordered "tail" domains. Here we test the role of these noncovalent crosslinks in the nonlinear rheology of reconstituted networks of the intermediate filament protein vimentin, probing their stress- and rate-dependent mechanics. Similarly to previous studies we observe elastic stress-stiffening but unlike previous work we identify a characteristic yield stress σ*, above which the networks exhibit rate-dependent softening of the network, referred to as inelastic fluidization. By investigating networks formed from tail-truncated vimentin, in which noncovalent crosslinking is suppressed, and glutaraldehyde-treated vimentin, in which crosslinking is made permanent, we show that rate-dependent inelastic fluidization is a direct consequence of vimentin's transient crosslinking. Surprisingly, although the tail-tail crosslinks are individually weak, the effective timescale for stress relaxation of the network exceeds 1000 s at σ*. Vimentin networks can therefore maintain their integrity over a large range of strains (up to ∼1000%) and loading rates (10-3 to 10-1 s-1). Our results provide insight into how the hierarchical structure of vimentin networks contributes to the cell's ability to be deformable yet strong.
Collapse
|
49
|
Ricketts SN, Francis ML, Farhadi L, Rust MJ, Das M, Ross JL, Robertson-Anderson RM. Varying crosslinking motifs drive the mesoscale mechanics of actin-microtubule composites. Sci Rep 2019; 9:12831. [PMID: 31492892 PMCID: PMC6731314 DOI: 10.1038/s41598-019-49236-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
The cytoskeleton precisely tunes its mechanics by altering interactions between semiflexible actin filaments, rigid microtubules, and crosslinking proteins. We use optical tweezers microrheology and confocal microscopy to characterize how varying crosslinking motifs impact the mesoscale mechanics and mobility of actin-microtubule composites. We show that, upon subtle changes in crosslinking patterns, composites can exhibit two distinct classes of force response - primarily elastic versus more viscous. For example, a composite in which actin and microtubules are crosslinked to each other but not to themselves is markedly more elastic than one in which both filaments are independently crosslinked. Notably, this distinction only emerges at mesoscopic scales in response to nonlinear forcing, whereas varying crosslinking motifs have little impact on the microscale mechanics and mobility. Our unexpected scale-dependent results not only inform the physics underlying key cytoskeleton processes and structures, but, more generally, provide valuable perspective to materials engineering endeavors focused on polymer composites.
Collapse
Affiliation(s)
- Shea N Ricketts
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Madison L Francis
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Leila Farhadi
- Department of Physics, University of Massachusetts, Amherst, 666N. Pleasant St., Amherst, MA, 01003, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, 900 E 57th St., Chicago, IL, 60637, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts, Amherst, 666N. Pleasant St., Amherst, MA, 01003, USA
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA.
| |
Collapse
|
50
|
Spreading of perturbations in myosin group kinetics along actin filaments. Proc Natl Acad Sci U S A 2019; 116:17336-17344. [PMID: 31405981 DOI: 10.1073/pnas.1904164116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global changes in the state of spatially distributed systems can often be traced back to perturbations that arise locally. Whether such local perturbations grow into global changes depends on the system geometry and the spatial spreading of these perturbations. Here, we investigate how different spreading behaviors of local perturbations determine their global impact in 1-dimensional systems of different size. Specifically, we assessed sliding arrest events in in vitro motility assays where myosins propel actin, and simulated the underlying mechanochemistry of myosins that bind along the actin filament. We observed spontaneous sliding arrest events that occurred more frequently for shorter actin filaments. This observation could be explained by spontaneous local arrest of myosin kinetics that stabilizes once it spreads throughout an entire actin filament. When we introduced intermediate concentrations of the actin cross-linker filamin, longer actin was arrested more frequently. This observation was reproduced by simulations where filamin binding induces persistent local arrest of myosin kinetics, which subsequently spreads throughout the actin filament. A spin chain model with nearest-neighbor coupling reproduced key features of our experiments and simulations, thus extending to other linear systems with nearest-neighbor coupling the following conclusions: 1) perturbations that are persistent only once they spread throughout the system are more effective in smaller systems, and 2) perturbations that are persistent upon their establishment are more effective in larger systems. Beyond these general conclusions, our work also provides a theoretical model of collective myosin kinetics with a finite range of mechanical coupling along the actin filament.
Collapse
|