1
|
Pérez-Lorente AI, Araujo-Garrido M, de Vicente A, Romero D, Molina-Santiago C. Engineering the T6SS of Pseudomonas for targeted delivery of antibacterial and antifungal effectors. J Biol Eng 2025; 19:28. [PMID: 40176102 PMCID: PMC11966926 DOI: 10.1186/s13036-025-00497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/26/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Bacteria employ diverse molecular systems, such as the type VI secretion system (T6SS) to outcompete other microorganisms and adapt to ecological niches. The T6SS is a versatile nanomachine capable of delivering toxic effectors into neighboring cells, providing advantages in bacterial interactions. In recent years, T6SSs have been proposed as promising tools for engineering selective antimicrobial platforms. RESULTS In this study, we successfully engineered Pseudomonas putida KT2440 to heterologously express and release T6SS effectors. The expression of Tse1, an effector from Pseudomonas chlororaphis, induced sporulation in plant-beneficial Bacillus strains via a T6SS-dependent mechanism, particularly when Tse1 was paired with a PAAR protein. Similarly, the engineered strain effectively inhibited Aeromonas hydrophila growth using the phospholipase toxin TplE from Pseudomonas aeruginosa. Furthermore, antifungal activity was achieved by coexpressing Tfe2, an effector from Serratia marcescens, with VgrGs, resulting in increased reactive oxygen species levels and cellular damage in Botrytis cinerea. Importantly, the T6SS was also employed to deliver non-T6SS effectors such as chitosanase, demonstrating its versatility in degrading fungal cell walls. CONCLUSIONS Our findings demonstrate that the T6SS can be engineered to deliver both canonical and noncanonical effectors, providing a robust platform for targeted antibacterial and antifungal applications. The modularity of the system enables precise pairing of effectors with structural components such as VgrG and PAAR proteins, optimizing delivery efficiency. These engineered systems provide new opportunities for the development of biocontrol strategies in agriculture, microbiome modulation, and potential therapeutic applications. Future advancements in bioinformatics and protein engineering will further increase the specificity and functionality of T6SS-based delivery systems, offering innovative tools for managing microbial ecosystems and addressing global challenges in health and agriculture.
Collapse
Affiliation(s)
- Alicia Isabel Pérez-Lorente
- Departamento de Microbiologia, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Cientificas (IHSM-UMA-CSIC), Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Mario Araujo-Garrido
- Departamento de Microbiologia, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Cientificas (IHSM-UMA-CSIC), Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Diego Romero
- Departamento de Microbiologia, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Cientificas (IHSM-UMA-CSIC), Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Carlos Molina-Santiago
- Departamento de Microbiologia, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Cientificas (IHSM-UMA-CSIC), Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain.
| |
Collapse
|
2
|
Dyrma S, Pei TT, Liang X, Dong T. Not just passengers: effectors contribute to the assembly of the type VI secretion system as structural building blocks. J Bacteriol 2025; 207:e0045524. [PMID: 39902958 PMCID: PMC11925235 DOI: 10.1128/jb.00455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Protein secretion systems are critical macromolecular machines employed by bacteria to interact with diverse environments and hosts during their life cycle. Cytosolically produced protein effectors are translocated across at least one membrane to the outside of the cells or directly into target cells. In most secretion systems, these effectors are mere passengers in unfolded or folded states. However, the type VI secretion system (T6SS) stands out as a powerful contractile device that requires some of its effectors as structural components. This review aims to provide an updated view of the diverse functions of effectors, especially focusing on their roles in T6SS assembly, the implications for T6SS engineering, and the potential of recently developed T6SS models to study effector-T6SS association.
Collapse
Affiliation(s)
- Sherina Dyrma
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tong-Tong Pei
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoye Liang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Wang ZH, An Y, Zhao T, Pei TT, Wang DY, Liang X, Qin W, Dong T. Amidase and lysozyme dual functions in TseP reveal a new family of chimeric effectors in the type VI secretion system. eLife 2025; 13:RP101125. [PMID: 40063082 PMCID: PMC11893102 DOI: 10.7554/elife.101125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Peptidoglycan (PG) serves as an essential target for antimicrobial development. An overlooked reservoir of antimicrobials lies in the form of PG-hydrolyzing enzymes naturally produced for polymicrobial competition, particularly those associated with the type VI secretion system (T6SS). Here, we report that a T6SS effector TseP, from Aeromonas dhakensis, represents a family of effectors with dual amidase-lysozyme activities. In vitro PG-digestion coupled with LC-MS analysis revealed the N-domain's amidase activity, which is neutralized by either catalytic mutations or the presence of the immunity protein TsiP. The N-domain, but not the C-domain, of TseP is sufficient to restore T6SS secretion in T6SS-defective mutants, underscoring its critical structural role. Using pull-down and secretion assays, we showed that these two domains interact directly with a carrier protein VgrG2 and can be secreted separately. Homologs in Aeromonas hydrophila and Pseudomonas syringae exhibited analogous dual functions. Additionally, N- and C-domains display distinctive GC contents, suggesting an evolutionary fusion event. By altering the surface charge through structural-guided design, we engineered the TsePC4+ effector that successfully lyses otherwise resistant Bacillus subtilis cells, enabling the T6SS to inhibit B. subtilis in a contact-independent manner. This research uncovers TseP as a new family of bifunctional chimeric effectors targeting PG, offering a potential strategy to harness these proteins in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiChina
- Department of Immunology and Microbiology, School of Life Sciences, Guangming Advanced Research Institute, Southern University of Science and TechnologyShenzhenChina
| | - Ying An
- Department of Immunology and Microbiology, School of Life Sciences, Guangming Advanced Research Institute, Southern University of Science and TechnologyShenzhenChina
| | - Ting Zhao
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
- School of Pharmaceutical Sciences, Wuhan UniversityWuhanChina
| | - Tong-Tong Pei
- Department of Immunology and Microbiology, School of Life Sciences, Guangming Advanced Research Institute, Southern University of Science and TechnologyShenzhenChina
| | - Dora Yuping Wang
- Department of Immunology and Microbiology, School of Life Sciences, Guangming Advanced Research Institute, Southern University of Science and TechnologyShenzhenChina
- Department of Physiology, University of TorontoTorontoCanada
| | - Xiaoye Liang
- Department of Immunology and Microbiology, School of Life Sciences, Guangming Advanced Research Institute, Southern University of Science and TechnologyShenzhenChina
| | - Wenming Qin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Guangming Advanced Research Institute, Southern University of Science and TechnologyShenzhenChina
| |
Collapse
|
4
|
Fridman CM, Keppel K, Rudenko V, Altuna-Alvarez J, Albesa-Jové D, Bosis E, Salomon D. A new class of type VI secretion system effectors can carry two toxic domains and are recognized through the WHIX motif for export. PLoS Biol 2025; 23:e3003053. [PMID: 40096082 DOI: 10.1371/journal.pbio.3003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/28/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Gram-negative bacteria employ the type VI secretion system (T6SS) to deliver toxic effectors into neighboring cells and outcompete rivals. Although many effectors have been identified, their secretion mechanism often remains unknown. Here, we describe WHIX, a domain sufficient to mediate the secretion of effectors via the T6SS. Remarkably, we find WHIX in T6SS effectors that contain a single toxic domain, as well as in effectors that contain two distinct toxic domains fused to either side of WHIX. We demonstrate that the latter, which we name double-blade effectors, require two cognate immunity proteins to antagonize their toxicity. Furthermore, we show that WHIX can be used as a chassis for T6SS-mediated secretion of multiple domains. Our findings reveal a new class of polymorphic T6SS cargo effectors with a unique secretion domain that can deploy two toxic domains in one shot, possibly reducing recipients' ability to defend themselves.
Collapse
Affiliation(s)
- Chaya Mushka Fridman
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kinga Keppel
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vladislav Rudenko
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jon Altuna-Alvarez
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Leioa, Spain
| | - David Albesa-Jové
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Bhowmik S, Pathak A, Pandey S, Devnath K, Sett A, Jyoti N, Bhando T, Akhter J, Chugh S, Singh R, Sharma TK, Pathania R. Acinetobacter baumannii represses type VI secretion system through a manganese-dependent small RNA-mediated regulation. mBio 2025; 16:e0302524. [PMID: 39704509 PMCID: PMC11796373 DOI: 10.1128/mbio.03025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Type VI secretion system (T6SS) is utilized by many Gram-negative bacteria to eliminate competing bacterial species and manipulate host cells. Acinetobacter baumannii ATCC 17978 utilizes T6SS at the expense of losing pAB3 plasmid to induce contact-dependent killing of competitor microbes, resulting in the loss of antibiotic resistance carried by pAB3. However, the regulatory network associated with T6SS in A. baumannii remains poorly understood. Here, we identified an Mn2+-dependent post-transcriptional regulation of T6SS mediated by a bonafide small RNA, AbsR28. A. baumannii utilizes MumT, an Mn2+-uptake inner membrane transporter, for the uptake of extracellular Mn2+ during oxidative stress. We demonstrate that the abundance of intracellular Mn2+ enables complementary base pairing of AbsR28-tssM mRNA (that translates to TssM, one of the vital inner membrane components of T6SS), inducing RNase E-mediated degradation of tssM mRNA and resulting in T6SS repression. Thus, AbsR28 mediates a crosstalk between MumT and T6SS in A. baumannii.IMPORTANCESmall RNAs (sRNAs) are identified as critical components within the bacterial regulatory networks involved in fine regulation of virulence-associated factors. The sRNA-mediated regulation of type VI secretion system (T6SS) in Acinetobacter baumannii was unchartered. Previously, it was demonstrated that A. baumannii ATCC 17978 cells switch from T6- to T6+ phenotype, resulting in the loss of antibiotic resistance conferred by plasmid pAB3. Furthermore, the derivatives of pAB3 found in recent clinical isolates of A. baumannii harbor expanded antibiotic resistance genes and multiple determinants for virulence factors. Hence, the loss of this plasmid for T6SS activity renders A. baumannii T6+ cells susceptible to antibiotics and compromises their virulence. Our findings show how A. baumannii tends to inactivate T6SS through an sRNA-mediated regulation that relies on Mn2+ and retains pAB3 during infection to retain antibiotic resistance genes carried on the plasmid.
Collapse
Affiliation(s)
- Somok Bhowmik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shivam Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kuldip Devnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Abhiroop Sett
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Nishant Jyoti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Jawed Akhter
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- Center of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
6
|
Malter KE, Dunbar TL, Westin C, Darin E, Alfaro JR, Shikuma NJ. A bacterial membrane-disrupting protein stimulates animal metamorphosis. mBio 2025; 16:e0357324. [PMID: 39727418 PMCID: PMC11796346 DOI: 10.1128/mbio.03573-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Diverse marine animals undergo a metamorphic larval-to-juvenile transition in response to surface-bound bacteria. Although this host-microbe interaction is critical to establishing and maintaining marine animal populations, the functional activity of bacterial products and how they activate the host's metamorphosis program has not yet been defined for any animal. The marine bacterium Pseudoalteromonas luteoviolacea stimulates the metamorphosis of a tubeworm called Hydroides elegans by producing a molecular syringe called metamorphosis-associated contractile structures (MACs). MACs stimulate metamorphosis by injecting a protein effector termed metamorphosis-inducing factor 1 (Mif1) into tubeworm larvae. Here, we show that MACs bind to tubeworm cilia and form visible pores on the cilia membrane surface, which are smaller and less numerous in the absence of Mif1. In vitro, Mif1 associates with eukaryotic lipid membranes and possesses phospholipase activity. MACs can also deliver Mif1 to human cell lines and cause parallel phenotypes, including cell surface binding, membrane disruption, calcium flux, and mitogen-activated protein kinase activation. Finally, MACs can also stimulate metamorphosis by delivering two unrelated membrane-disrupting proteins, MLKL and RegIIIɑ. Our findings demonstrate that membrane disruption by MACs and Mif1 is necessary for Hydroides metamorphosis, connecting the activity of a bacterial protein effector to the developmental transition of a marine animal. IMPORTANCE This research describes a mechanism wherein a bacterium prompts the metamorphic development of an animal from larva to juvenile form by injecting a protein that disrupts membranes in the larval cilia. Specifically, results show that a bacterial contractile injection system and the protein effector it injects form pores in larval cilia, influencing critical signaling pathways like mitogen-activated protein kinase and calcium flux, ultimately driving animal metamorphosis. This discovery sheds light on how a bacterial protein effector exerts its activity through membrane disruption, a phenomenon observed in various bacterial toxins affecting cellular functions, and elicits a developmental response. This work reveals a potential strategy used by marine organisms to respond to microbial cues, which could inform efforts in coral reef restoration and biofouling prevention. The study's insights into metamorphosis-associated contractile structures' delivery of protein effectors to specific anatomical locations highlight prospects for future biomedical and environmental applications.
Collapse
Affiliation(s)
- Kyle E. Malter
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Tiffany L. Dunbar
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Carl Westin
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Emily Darin
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Josefa Rivera Alfaro
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Nicholas J. Shikuma
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
7
|
Bezkorovayna V, Hayes BK, Gillett FN, Wright A, Roper DI, Harper M, McGowan S, Boyce JD. Delivery determinants of an Acinetobacter baumannii type VI secretion system bifunctional peptidoglycan hydrolase. mBio 2025; 16:e0262724. [PMID: 39745415 PMCID: PMC11796386 DOI: 10.1128/mbio.02627-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 02/06/2025] Open
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic pathogen and is a common cause of nosocomial infections. The increasing development of antibiotic resistance in this organism is a global health concern. The A. baumannii clinical isolate AB307-0294 produces a type VI secretion system (T6SS) that delivers three antibacterial effector proteins that give this strain a competitive advantage against other bacteria in polymicrobial environments. Each effector, Tse15, Tde16, and Tae17, is delivered via a non-covalent interaction with a specific T6SS VgrG protein (VgrG15, VgrG16, and VgrG17, respectively). Here we define the regions of interaction between Tae17 and its cognate delivery protein VgrG17 and identify that amino acids G1069 and W1075 in VgrG17 are essential for Tae17 delivery via the T6SS, the first time such specific delivery determinants of T6SS cargo effectors have been defined. Furthermore, we determine that the Tae17 effector is a multidomain, bifunctional, peptidoglycan-degrading enzyme that has both amidase activity, which targets the sugar-peptide bonds, and lytic transglycosylase activity, which targets the peptidoglycan sugar backbone. Moreover, we show that the Tae17 transglycosylase activity is more important than amidase activity for the killing of Escherichia coli. This study provides molecular insight into how the T6SS allows A. baumannii strains to gain dominance in polymicrobial communities and thus improve their chances of survival and transmission.IMPORTANCEWe have shown that the Acinetobacter baumannii T6SS effector Tae17 is a modular, bifunctional, peptidoglycan-degrading enzyme that has both lytic transglycosylase and amidase activities. Both activities contribute to the ability to degrade peptidoglycan, but the transglycosylase activity was more important for the killing of Escherichia coli. We have defined the specific regions of Tae17 and its cognate delivery protein VgrG17 that are necessary for the non-covalent interactions and, for the first time, identified specific amino acids essential for T6SS cargo effector delivery. This work contributes to our molecular understanding of bacterial competition strategies in polymicrobial environments and may provide a window to design new therapeutic approaches for combating infection by A. baumannii.
Collapse
Affiliation(s)
- Valeriya Bezkorovayna
- Infection Program, Department of Microbiology, Monash University, Biomedicine Discovery Institute, Melbourne, Victoria, Australia
| | - Brooke K. Hayes
- Infection Program, Department of Microbiology, Monash University, Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Australia
| | | | - Amy Wright
- Infection Program, Department of Microbiology, Monash University, Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Australia
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Marina Harper
- Infection Program, Department of Microbiology, Monash University, Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Australia
| | - Sheena McGowan
- Infection Program, Department of Microbiology, Monash University, Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Australia
| | - John D. Boyce
- Infection Program, Department of Microbiology, Monash University, Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Habich A, Chaves Vargas V, Robinson LA, Allsopp LP, Unterweger D. Distribution of the four type VI secretion systems in Pseudomonas aeruginosa and classification of their core and accessory effectors. Nat Commun 2025; 16:888. [PMID: 39837841 PMCID: PMC11751169 DOI: 10.1038/s41467-024-54649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 11/14/2024] [Indexed: 01/23/2025] Open
Abstract
Bacterial type VI secretion systems (T6SSs) are puncturing molecular machines that transport effector proteins to kill microbes, manipulate eukaryotic cells, or facilitate nutrient uptake. How and why T6SS machines and effectors differ within a species is not fully understood. Here, we applied molecular population genetics to the T6SSs in a global population of the opportunistic pathogen Pseudomonas aeruginosa. We reveal varying occurrence of up to four distinct T6SS machines. Moreover, we define conserved core T6SS effectors, likely critical for the biology of P. aeruginosa, and accessory effectors that can exhibit mutual exclusivity between strains. By ancestral reconstruction, we observed dynamic changes in the gain and loss of effector genes in the species' evolutionary history. Our work highlights the potential importance of T6SS intraspecific diversity in bacterial ecology and evolution.
Collapse
Affiliation(s)
- Antonia Habich
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Verónica Chaves Vargas
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Luca A Robinson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Luke P Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel Unterweger
- Institute for Experimental Medicine, Kiel University, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
9
|
Colautti J, Kelly SD, Whitney JC. Specialized killing across the domains of life by the type VI secretion systems of Pseudomonas aeruginosa. Biochem J 2025; 482:1-15. [PMID: 39774785 DOI: 10.1042/bcj20230240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Type VI secretion systems (T6SSs) are widespread bacterial protein secretion machines that inject toxic effector proteins into nearby cells, thus facilitating both bacterial competition and virulence. Pseudomonas aeruginosa encodes three evolutionarily distinct T6SSs that each export a unique repertoire of effectors. Owing to its genetic tractability, P. aeruginosa has served as a model organism for molecular studies of the T6SS. However, P. aeruginosa is also an opportunistic pathogen and ubiquitous environmental organism that thrives in a wide range of habitats. Consequently, studies of its T6SSs have provided insight into the role these systems play in the diverse lifestyles of this species. In this review, we discuss recent advances in understanding the regulation and toxin repertoire of each of the three P. aeruginosa T6SSs. We argue that these T6SSs serve distinct physiological functions; whereas one system is a dedicated defensive weapon for interbacterial antagonism, the other two T6SSs appear to function primarily during infection. We find support for this model in examining the signalling pathways that control the expression of each T6SS and co-ordinate the activity of these systems with other P. aeruginosa behaviours. Furthermore, we discuss the effector repertoires of each T6SS and connect the mechanisms by which these effectors kill target cells to the ecological conditions under which their respective systems are activated. Understanding the T6SSs of P. aeruginosa in the context of this organism's diverse lifestyles will provide insight into the physiological roles these secretion systems play in this remarkably adaptable bacterium.
Collapse
Affiliation(s)
- Jake Colautti
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Steven D Kelly
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
10
|
Echeverría-Bugueño M, Hernández M, Avendaño-Herrera R. Proteomic Analysis of the Fish Pathogen Vibrio ordalii Strain Vo-LM-18 and Its Outer Membrane Vesicles. Animals (Basel) 2024; 14:3598. [PMID: 39765502 PMCID: PMC11672436 DOI: 10.3390/ani14243598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Vibrio ordalii is the causative agent of atypical vibriosis in salmonids cultured in Chile. While extensive research provides insights into V. ordalii through phenotypic, antigenic, and genetic typing, as well as various virulence mechanisms, proteomic characterization remains largely unexplored. This study aimed to advance the proteomic knowledge of Chilean V. ordalii Vo-LM-18 and its OMVs, which have known virulence. Using Nano-UHPLC-LC-MS/MS, we identified 2242 proteins and 1755 proteins in its OMVs. Of these, 644 unique proteins were detected in V. ordalii Vo-LM-18, namely 156 unique proteins in its OMVs and 1596 shared proteins. The major categories for the OMVs were like those in the bacteria (i.e., cytoplasmic and cytoplasmic membrane proteins). Functional annotation identified 37 biological pathways in V. ordalii Vo-LM-18 and 28 in its OMVs. Proteins associated with transport, transcription, and virulence were predominant in both. Evident differences in protein expression were found. OMVs expressed a higher number of virulence-associated proteins, including those related to iron- and heme-uptake mechanisms. Notable pathways in the bacteria included flagellum assembly, heme group-associated proteins, and protein biosynthesis. This proteomic analysis is the first to detect the RTX toxin in a V. ordalii strain (Vo-LM-18) and its vesicles. Our results highlight the crucial role of OMVs in the pathogenesis and adaptation of V. ordalii, suggesting use as potential diagnostic biomarkers and therapeutic targets for bacterial infections.
Collapse
Affiliation(s)
- Macarena Echeverría-Bugueño
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar 2531015, Chile;
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar 2531015, Chile
| | - Mauricio Hernández
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Concepción 4133515, Chile;
| | - Ruben Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar 2531015, Chile;
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar 2531015, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay 2480055, Chile
| |
Collapse
|
11
|
Kielkopf CS, Shneider MM, Leiman PG, Taylor NMI. T6SS-associated Rhs toxin-encapsulating shells: Structural and bioinformatical insights into bacterial weaponry and self-protection. Structure 2024; 32:2375-2389.e5. [PMID: 39481373 DOI: 10.1016/j.str.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Bacteria use the type VI secretion system (T6SS) to secrete toxins into pro- and eukaryotic cells via machinery consisting of a contractile sheath and a rigid tube. Rearrangement hotspot (Rhs) proteins represent one of the most common T6SS effectors. The Rhs C-terminal toxin domain displays great functional diversity, while the Rhs core is characterized by YD repeats. We elucidate the Rhs core structures of PAAR- and VgrG-linked Rhs proteins from Salmonella bongori and Advenella mimigardefordensis, respectively. The Rhs core forms a large shell of β-sheets with a negatively charged interior and encloses a large volume. The S. bongori Rhs toxin does not lead to ordered density in the Rhs shell, suggesting the toxin is unfolded. Together with bioinformatics analysis showing that Rhs toxins predominantly act intracellularly, this suggests that the Rhs core functions two-fold, as a safety feature for the producer cell and as delivery mechanism for the toxin.
Collapse
Affiliation(s)
- Claudia S Kielkopf
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mikhail M Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Molecular Bioengineering, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia; École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, 1015 Lausanne, Switzerland
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0647, USA.
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
12
|
van Kessel JC, Camilli A. Vibrio cholerae: a fundamental model system for bacterial genetics and pathogenesis research. J Bacteriol 2024; 206:e0024824. [PMID: 39405459 PMCID: PMC11580405 DOI: 10.1128/jb.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Species of the Vibrio genus occupy diverse aquatic environments ranging from brackish water to warm equatorial seas to salty coastal regions. More than 80 species of Vibrio have been identified, many of them as pathogens of marine organisms, including fish, shellfish, and corals, causing disease and wreaking havoc on aquacultures and coral reefs. Moreover, many Vibrio species associate with and thrive on chitinous organisms abundant in the ocean. Among the many diverse Vibrio species, the most well-known and studied is Vibrio cholerae, discovered in the 19th century to cause cholera in humans when ingested. The V. cholerae field blossomed in the late 20th century, with studies broadly examining V. cholerae evolution as a human pathogen, natural competence, biofilm formation, and virulence mechanisms, including toxin biology and virulence gene regulation. This review discusses some of the historic discoveries of V. cholerae biology and ecology as one of the fundamental model systems of bacterial genetics and pathogenesis.
Collapse
Affiliation(s)
| | - Andrew Camilli
- Tufts University, School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Colautti J, Tan H, Bullen NP, Thang SS, Hackenberger D, Doxey AC, Whitney JC. A widespread accessory protein family diversifies the effector repertoire of the type VI secretion system spike. Nat Commun 2024; 15:10108. [PMID: 39572545 PMCID: PMC11582642 DOI: 10.1038/s41467-024-54509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Type VI secretion systems (T6SSs) are macromolecular assemblies that deliver toxic effector proteins between adjacent bacteria. These effectors span a wide range of protein families that all lack canonical signal sequences that would target them for export. Consequently, it remains incompletely understood how conserved structural components of the T6SS apparatus recognize a diverse repertoire of effectors. Here, we characterize a widespread family of adaptor proteins, containing the domain of unknown function DUF4123, that enable the recognition and export of evolutionarily unrelated effectors. By examining two nearly identical paralogs of the conserved T6SS spike protein, VgrG, we demonstrate that each spike protein exports a structurally unique effector. We further show that the recruitment of each effector to its respective spike protein requires a cognate adaptor protein. Protein-protein interaction experiments demonstrate that these adaptor proteins specifically tether an effector to a structurally conserved but sequence divergent helix-turn-helix motif found at the C-terminus of its cognate VgrG. Using structural predictions and mutagenesis analyses, we elucidate the molecular contacts required for these interactions and discover that these adaptor proteins contain a structurally conserved N-terminal lobe that has evolved to bind VgrG helix-turn-helix motifs and a structurally variable C-terminal lobe that recognizes diverse effector families. Overall, our work provides molecular insight into a mechanism by which conserved T6SS components recognize structurally diverse effectors.
Collapse
Affiliation(s)
- Jake Colautti
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Huagang Tan
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Cheriton School of Computer Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Nathan P Bullen
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Stephanie S Thang
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Dirk Hackenberger
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Cheriton School of Computer Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada.
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
14
|
Motta EVS, Lariviere PJ, Jones KR, Song Y, Moran NA. Type VI secretion systems promote intraspecific competition and host interactions in a bee gut symbiont. Proc Natl Acad Sci U S A 2024; 121:e2414882121. [PMID: 39441627 PMCID: PMC11536156 DOI: 10.1073/pnas.2414882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The Type VI Secretion System (T6SS) is a sophisticated mechanism utilized by gram-negative bacteria to deliver toxic effector proteins into target cells, influencing microbial community dynamics and host interactions. In this study, we investigated the role of T6SSs in Snodgrassella alvi wkB2, a core bacterial symbiont of the honey bee gut microbiota. We generated single- and double-knockout mutants targeting essential genes (tssD and tssE) in both T6SS-1 and T6SS-2 and assessed their colonization and competition capabilities in vivo. Our results indicate that T6SSs are nonessential for colonization of the bee gut, although T6SS-2 mutant strains exhibited significantly lower colonization levels compared to the wild-type (WT) strain. Further, a defined community experiment showed that S. alvi wkB2 T6SSs do not significantly impact interspecific competition among core gut bacteria. However, cocolonization experiments with closely related S. alvi strains demonstrated that T6SS-1 plays a role in mediating intraspecific competition. Transcriptomic analysis of bee guts monocolonized by WT or T6SS mutants revealed differential expression of host immunity-related genes relative to microbiota-deprived bees, such as upregulation of the antimicrobial peptide apidaecin in the presence of WT S. alvi and the antimicrobial peptide defensin in the presence of T6SS-2 mutant S. alvi, suggesting that T6SSs contribute to shaping host immune responses. These findings provide insight into the ecological roles of T6SSs in the honey bee gut microbiota, emphasizing their importance in maintaining competitive dynamics and influencing host-bacterial interactions.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Molecular Biosciences, The University of Texas at Austin, TX78712
| | - Korin R. Jones
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Yulin Song
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| |
Collapse
|
15
|
Lien YW, Amendola D, Lee KS, Bartlau N, Xu J, Furusawa G, Polz MF, Stocker R, Weiss GL, Pilhofer M. Mechanism of bacterial predation via ixotrophy. Science 2024; 386:eadp0614. [PMID: 39418385 DOI: 10.1126/science.adp0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/17/2024] [Indexed: 10/19/2024]
Abstract
Ixotrophy is a contact-dependent predatory strategy of filamentous bacteria in aquatic environments for which the molecular mechanism remains unknown. We show that predator-prey contact can be established by gliding motility or extracellular assemblages we call "grappling hooks." Cryo-electron microscopy identified the grappling hooks as heptamers of a type IX secretion system substrate. After close predator-prey contact is established, cryo-electron tomography and functional assays showed that puncturing by a type VI secretion system mediated killing. Single-cell analyses with stable isotope-labeled prey revealed that prey components are taken up by the attacker. Depending on nutrient availability, insertion sequence elements toggle the activity of ixotrophy. A marine metagenomic time series shows coupled dynamics of ixotrophic bacteria and prey. We found that the mechanism of ixotrophy involves multiple cellular machineries, is conserved, and may shape microbial populations in the environment.
Collapse
Affiliation(s)
- Yun-Wei Lien
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Davide Amendola
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Kang Soo Lee
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Nina Bartlau
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Jingwei Xu
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Malaysia
| | - Martin F Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Gregor L Weiss
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
Hayes BK, Harper M, Venugopal H, Lewis JM, Wright A, Lee HC, Steele JR, Steer DL, Schittenhelm RB, Boyce JD, McGowan S. Structure of a Rhs effector clade domain provides mechanistic insights into type VI secretion system toxin delivery. Nat Commun 2024; 15:8709. [PMID: 39379370 PMCID: PMC11461821 DOI: 10.1038/s41467-024-52950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
The type VI secretion system (T6SS) is a molecular machine utilised by many Gram-negative bacteria to deliver antibacterial toxins into adjacent cells. Here we present the structure of Tse15, a T6SS Rhs effector from the nosocomial pathogen Acinetobacter baumannii. Tse15 forms a triple layered β-cocoon Rhs domain with an N-terminal α-helical clade domain and an unfolded C-terminal toxin domain inside the Rhs cage. Tse15 is cleaved into three domains, through independent auto-cleavage events involving aspartyl protease activity for toxin self-cleavage and a nucleophilic glutamic acid for N-terminal clade cleavage. Proteomic analyses identified that significantly more peptides from the N-terminal clade and toxin domains were secreted than from the Rhs cage, suggesting toxin delivery often occurs without the cage. We propose the clade domain acts as an internal chaperone to mediate toxin tethering to the T6SS machinery. Conservation of the clade domain in other Gram-negative bacteria suggests this may be a common mechanism for delivery.
Collapse
Affiliation(s)
- Brooke K Hayes
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia
| | - Marina Harper
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Jessica M Lewis
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia
| | - Amy Wright
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia
| | - Han-Chung Lee
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Joel R Steele
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David L Steer
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - John D Boyce
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia.
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia.
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia.
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
17
|
Zhang L, Xu Q, Tan FC, Deng Y, Hakki M, Shelburne SA, Kirienko NV. Role of R5 Pyocin in the Predominance of High-Risk Pseudomonas aeruginosa Isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.616987. [PMID: 39416193 PMCID: PMC11483031 DOI: 10.1101/2024.10.07.616987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Infections with antimicrobial resistant pathogens, such as Pseudomonas aeruginosa, are a frequent occurrence in healthcare settings. Human P. aeruginosa infections are predominantly caused by a small number of sequence types (ST), such as ST235, ST111, and ST175. Although ST111 is recognized as one of the most prevalent high-risk P. aeruginosa clones worldwide and frequently exhibits multidrug-resistant or extensively drug-resistant phenotypes, the basis for this dominance remains unclear. In this study, we used a genome-wide transposon insertion library screen to discover that the competitive advantage of ST111 strains over certain non-ST111 strains is through production of R pyocins. We confirmed this finding by showing that competitive dominance was lost by ST111 mutants with R pyocin gene deletions. Further investigation showed that sensitivity to ST111 R pyocin (specifically R5 pyocin) is caused by deficiency in the O-antigen ligase waaL, which leaves lipopolysaccharide (LPS) bereft of O antigen, enabling pyocins to bind the LPS core. In contrast, sensitivity of waaL mutants to R1 or R2 pyocins depended on additional genomic changes. In addition, we found the PA14 mutants in lipopolysaccharide biosynthesis (waaL, wbpL, wbpM) that cause high susceptibility to R pyocins also exhibit poor swimming motility. Analysis of 5,135 typed P. aeruginosa strains revealed that several international, high-risk sequence types (including ST235, ST111, and ST175) are enriched for R5 pyocin production, indicating a correlation between these phenotypes and suggesting a novel approach for evaluating risk from emerging prevalent P. aeruginosa strains. Overall, our study sheds light on the mechanisms underlying the dominance of ST111 strains and highlighting the role of waaL in extending spectrum of R pyocin susceptibility.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Filemon C Tan
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Yanhan Deng
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Morgan Hakki
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Samuel A. Shelburne
- Departments of Infectious Diseases and Genomic Medicine, MD Anderson Cancer Center, Houston TX
| | | |
Collapse
|
18
|
Han X, Yao J, He J, Liu H, Jiang Y, Zhao D, Shi Q, Zhou J, Hu H, Lan P, Zhou H, Li X. Clinical and laboratory insights into the threat of hypervirulent Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107275. [PMID: 39002700 DOI: 10.1016/j.ijantimicag.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) typically causes severe invasive infections affecting multiple sites in healthy individuals. In the past, hvKP was characterized by a hypermucoviscosity phenotype, susceptibility to antimicrobial agents, and its tendency to cause invasive infections in healthy individuals within the community. However, there has been an alarming increase in reports of multidrug-resistant hvKP, particularly carbapenem-resistant strains, causing nosocomial infections in critically ill or immunocompromised patients. This presents a significant challenge for clinical treatment. Early identification of hvKP is crucial for timely infection control. Notably, identifying hvKP has become confusing due to its prevalence in nosocomial settings and the limited predictive specificity of the hypermucoviscosity phenotype. Novel virulence predictors for hvKP have been discovered through animal models or machine learning algorithms, while standardization of identification criteria is still necessary. Timely source control and antibiotic therapy have been widely employed for the treatment of hvKP infections. Additionally, phage therapy is a promising alternative approach due to escalating antibiotic resistance. In summary, this narrative review highlights the latest research progress in the development, virulence factors, identification, epidemiology of hvKP, and treatment options available for hvKP infection.
Collapse
Affiliation(s)
- Xinhong Han
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jiayao Yao
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huangdu Hu
- Department of Infectious Diseases, Centre for General Practice Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peng Lan
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Chen S, Du F, Shang K, Chen H, Guo R, Liao C, Jia Y, Yu Z, Li J, Zhang C, Ding K. Colonization Mediated by T6SS-ClpV Disrupts Host Gut Microbiota and Enhances Virulence of Salmonella enterica serovar Typhimurium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19155-19166. [PMID: 39161106 DOI: 10.1021/acs.jafc.4c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common foodborne enteric pathogen that infects humans or mammals and colonizes the intestinal tract primarily by invading the host following ingestion. Meanwhile, ClpV is a core secreted protein of the bacterial type VI secretion system (T6SS). Because elucidating ClpV's role in the pathogenesis of T6SS is pivotal for revealing the virulence mechanism of Salmonella, in our study, clpV gene deletion mutants were constructed using a λ-red-based recombination system, and the effect of clpV mutation on SL1344's pathogenicity was examined in terms of stress resistance, motility, cytokine secretion, gut microbiota, and a BALB/c mouse model. Among the results, ClpV affected SL1344's motility and was also involved in cell invasion, adhesion, and intracellular survival in the MDBK cell model but did not affect invasion or intracellular survival in the RAW264.7 cell model. Moreover, clpV gene deletion significantly reduced the transcription levels of GBP2b, IFNB1, IL-6, NLRP3, NOS2, and TNF-α proinflammatory factor levels but significantly increased transcription levels of IL-4 and IL-10 anti-inflammatory factors. Last, ClpV appeared to closely relate to the pathogenicity of S. Typhimurium in vivo, which can change the gut environment and cause dysbiosis of gut microbiota. Our findings elucidate the functions of ClpV in S. Typhimurium and illustrating interactions between T6SS and gut microbiota help to clarify the mechanisms of the pathogenesis of foodborne diseases.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan 450000, China
| | - Fuxi Du
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Huimin Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongxian Guo
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengshui Liao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan 450000, China
| | - Yanyan Jia
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jing Li
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Chunjie Zhang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan 450000, China
| |
Collapse
|
20
|
Das S, Das S, Rath PP, Banerjee A, Gourinath S, Mukhopadhyay AK, Maiti S. Hemolysin Coregulated Protein (HCP) from Vibrio Cholerae Interacts with the Host Cell Actin Cytoskeleton. ACS Infect Dis 2024; 10:2886-2898. [PMID: 39079033 DOI: 10.1021/acsinfecdis.4c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Vibrio cholerae (V. cholerae), the etiological agent of cholera, employs various virulence factors to adapt and thrive within both aquatic and human host environments. Among these factors, the type VI secretion system (T6SS) stands out as one of the crucial determinants of its pathogenicity. Valine glycine repeat protein G1 (VgrG1) and hemolysin coregulated protein (HCP) are considered major effector molecules of T6SS. Previous studies have highlighted that VgrG1 interacts with HCP proteins. Additionally, it has been shown that VgrG1 possesses an actin cross-linking domain (ACD) with actin-binding activity. Interestingly, it was reported that purified HCP protein treatment increased the stress fibers within cells. Therefore, we hypothesize that HCP may interact with host cell actin, potentially playing a role in the cytoskeletal rearrangement during V. cholerae infection. To test this hypothesis, we characterized HCP from the V. cholerae O139 serotype and demonstrated its interaction with actin monomers. In silico analysis and experimental validation revealed the presence of an actin-binding site within HCP. Furthermore, overexpression of HCP resulted in its colocalization with actin stress fibers in host cells. Our findings establish HCP as an effector molecule for potent host cell actin cytoskeleton remodeling during V. cholerae infection, providing new insights into bacterial pathogenicity mechanisms. Understanding the interplay between bacterial effectors and host cell components is crucial for developing targeted therapeutic interventions against cholera and related infectious diseases.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Saikat Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | | | - Aishwarya Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246, India
| |
Collapse
|
21
|
Bier SB, Toska J, Zhao W, Suthianthong P, Proespraiwong P, Robins WP, Mekalanos J. A coordinated attack by a bacterial secretion system and a small molecule drives prey specificity. Commun Biol 2024; 7:958. [PMID: 39117895 PMCID: PMC11310501 DOI: 10.1038/s42003-024-06637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Vibrio species are recognized for their role in food- and water-borne diseases in humans, fish, and aquatic invertebrates. We screened bacterial strains isolated from raw food shrimp for those that are bactericidal to Vibrio strains. Here we identify and characterize Aeromonas dhakensis strain A603 which shows robust bactericidal activity specifically towards Vibrio and related taxa but less potency toward other Gram-negative species. Using the A603 genome and genetic analysis, we show that two antibacterial mechanisms account for its vibriocidal activity -- a highly potent Type Six Secretion System (T6SS) and biosynthesis of a vibriocidal phenazine-like small molecule, named here as Ad-Phen. Further analysis indicates coregulation between Ad-Phen and a pore-forming T6SS effector TseC, which potentiates V. cholerae to killing by Ad-Phen.
Collapse
Affiliation(s)
- S B Bier
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - J Toska
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - W Zhao
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease. The Sixth Affiliated Hospital, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - P Suthianthong
- Charoen Pokphand Foods PCL. Aquatic Animal Health Research Center, Samutsakorn, Thailand
| | - P Proespraiwong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - W P Robins
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - J Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Abdelhamed H, Mannan SB, Riman MM, Tekedar HC, Lawrence ML. Comparative analysis of three plasmids from Plesiomonas shigelloides strain MS-17-188 and their role in antimicrobial resistance. JAC Antimicrob Resist 2024; 6:dlae109. [PMID: 39035015 PMCID: PMC11258559 DOI: 10.1093/jacamr/dlae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Background Plesiomonas shigelloides strain MS-17-188 was isolated from a deceased catfish from East Mississippi and showed resistance to florfenicol, tetracyclines and a sulphonamide. WGS of strain MS-17-188 revealed three plasmids (pPSMS-171881, pPSMS-171882 and pPSMS-171883). Objectives To accurately determine the impact of three plasmids found in P. shigelloides strain MS-17-188 on the dissemination of antibiotic resistance genes and to provide insights into the molecular structure of these plasmids. Methods The genetic features of these plasmids in terms of genes associated with antimicrobial resistance (AMR), virulence, transfer, maintenance and replication were identified using bioinformatic tools. Additionally, we investigated the in vitro mobilization and stability of plasmid-mediated resistance. The Comprehensive Antibiotic Resistance Database and Virulence Factors Database were used to detect the AMR genes and virulence genes of P. shigelloides plasmids. Moreover, plasmid mobility was evaluated by a filter-mating assay using strain MS-17-188 as a donor and azide-resistant Escherichia coli J53 as a recipient strain. A stability experiment was conducted to explore the persistence of plasmid-mediated antibiotic resistance in strain MS-17-188 in the absence and presence of selection. Results pPSMS-171881 harboured multidrug efflux complex (adeF) and two genes responsible for arsenic resistance (arsB and arsC). pPSMS-171882 had a region of 7085 bp encoding type IV secretion system proteins. pPSMS-171883 carried the tetracycline resistance genes tet(A) and tet(R), and a phenicol resistance gene (floR), which were flanked by two transposable elements and mobilization proteins, suggesting that there is a conjugative mechanism by which this plasmid can be mobilized. Results from the stability experiment indicated that pPSMS-171883 is lost over time in the absence of selective pressure. Moreover, pPSMS-171883 is more stable in P. shigelloides at growth temperatures of 30°C and 37°C compared with 40°C and 43°C. After intraperitoneal injection in catfish, P. shigelloides strain MS-17-188 resulted in no mortalities. Conclusions This is the first study to report plasmid-mediated AMR in Plesiomonas isolated from cultured fish, which needs continued monitoring. This study will provide an understanding of the genetic mechanisms of AMR and virulence of P. shigelloides.
Collapse
Affiliation(s)
- Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Shahnewaj Bin Mannan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Munshi Mustafiz Riman
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Hasan C Tekedar
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Mark L Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
23
|
Che S, Sun C, Yang L, Zhou M, Xia L, Yan J, Jiang M, Wang J, Wang H, Zhao W, Toth I, Hu B, Guo T, Fan J. T6SS and T4SS Redundantly Secrete Effectors to Govern the Virulence and Bacterial Competition in Pectobacterium PccS1. PHYTOPATHOLOGY 2024; 114:1926-1939. [PMID: 38749069 DOI: 10.1094/phyto-11-23-0455-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Previous studies revealed that the type VI secretion system (T6SS) has an essential role in bacterial competition and virulence in many gram-negative bacteria. However, the role of T6SS in virulence in Pectobacterium atrosepticum remains controversial. We examined a closely related strain, PccS1, and discovered that its T6SS comprises a single-copy cluster of 17 core genes with a higher identity to homologs from P. atrosepticum. Through extensive phenotypic and functional analyses of over 220 derivatives of PccS1, we found that three of the five VgrGs could be classified into group I VgrGs. These VgrGs interacted with corresponding DUF4123 domain proteins, which were secreted outside of the membrane and were dependent on either the T6SS or type IV secretion system (T4SS). This interaction directly governed virulence and competition. Meanwhile, supernatant proteomic analyses with strains defective in the T6SS and/or T4SS confirmed that effectors, such as FhaB, were secreted redundantly to control the virulence and suppress host callose deposition in the course of infection. Notably, this redundant secretion mechanism between the T6SS and T4SS is believed to be the first of its kind in bacteria.
Collapse
Affiliation(s)
- Shu Che
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Chen Sun
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuke Yang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Zhou
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyan Xia
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingyuan Yan
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyi Jiang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaju Wang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Wang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Institute of Agricultural Science of Suzhou, Taihu Lake District, Suzhou 215155, China
| | - Wenjun Zhao
- CAIQ Center for Biosafety, Sanya 572024, China
| | - Ian Toth
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Baishi Hu
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Guo
- Southern Breeding Administrate Office of Hainan Province, Sanya 572000, China
| | - Jiaqin Fan
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Sun Y, Wang L, Zhang M, Jie J, Guan Q, Fu J, Chu X, Chen D, Li C, Song L, Luo ZQ. Acinetobacter nosocomialis utilizes a unique type VI secretion system to promote its survival in niches with prey bacteria. mBio 2024; 15:e0146824. [PMID: 38916378 PMCID: PMC11253628 DOI: 10.1128/mbio.01468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Pathogenic bacteria of the Acinetobacter genus pose a severe threat to human health worldwide due to their strong adaptability, tolerance, and antibiotic resistance. Most isolates of these bacteria harbor a type VI secretion system (T6SS) that allows them to outcompete co-residing microorganisms, but whether this system is involved in acquiring nutrients from preys remains less studied. In this study, we found that Ab25, a clinical isolate of Acinetobacter nosocomialis, utilizes a T6SS to kill taxonomically diverse microorganisms, including bacteria and fungi. The T6SS of Ab25 is constitutively expressed, and among the three predicted effectors, T6e1, a member of the RHS effector family, contributes the most for its antimicrobial activity. T6e1 undergoes self-cleavage, and a short carboxyl fragment with nuclease activity is sufficient to kill target cells via T6SS injection. Interestingly, strain Ab25 encodes an orphan VgrG protein, which when overexpressed blocks the firing of its T6SS. In niches such as dry plastic surfaces, the T6SS promotes prey microorganism-dependent survival of Ab25. These results reveal that A. nosocomialis employs T6SSs that are highly diverse in their regulation and effector composition to gain a competitive advantage in environments with scarce nutrient supply and competing microbes.IMPORTANCEThe type VI secretion system (T6SS) plays an important role in bacterial adaptation to environmental challenges. Members of the Acinetobacter genus, particularly A. baumannii and A. nosocomialis, are notorious for their multidrug resistance and their ability to survive in harsh environments. In contrast to A. baumannii, whose T6SS has been well-studied, few research works have focused on A. nosocomialis. In this study, we found that an A. nosocomialis strain utilizes a contitutively active T6SS to kill diverse microorganisms, including bacteria and fungi. Although T6SS structural proteins of A. nosocomialis are similar to those of A. baumannii, the effector repertoire differs greatly. Interestingly, the T6SS of the A. nosocomialis strain codes for an ophan VgrG protein, which blocks the firing of the system when overexpressed, suggesting the existence of a new regulatory mechanism for the T6SS. Importantly, although the T6SS does not provide an advantage when the bacterium is grown in nutrient-rich medium, it allows A. nosocomialis to survive better in dry surfaces that contain co-existing bacteria. Our results suggest that killing of co-residing microorganisms may increase the effectiveness of strategies designed to reduce the fitness of Acinetobacter bacteria by targeting their T6SS.
Collapse
Affiliation(s)
- Yu Sun
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
- Department of Gastroenterology, Endoscopy center, The First Hospital of Jilin University, Changchun, China
| | - Lidong Wang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Ming Zhang
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Jing Jie
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Qingtian Guan
- Bioinformatics Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Dong Chen
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Chunxiuli Li
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
25
|
Gupta S, Biswas P, Das B, Mondal S, Gupta P, Das D, Mallick AI. Selective depletion of Campylobacter jejuni via T6SS dependent functionality: an approach for improving chickens gut health. Gut Pathog 2024; 16:38. [PMID: 38997758 PMCID: PMC11245787 DOI: 10.1186/s13099-024-00628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The targeted depletion of potential gut pathogens is often challenging because of their intrinsic ability to thrive in harsh gut environments. Earlier, we showed that Campylobacter jejuni (C. jejuni) exclusively uses the Type-VI Secretion System (T6SS) to target its prey such as Escherichia coli (E. coli), and phenotypic differences between T6SS-negative and T6SS-positive C. jejuni isolates toward bile salt sensitivity. However, it remains unclear how the target-driven T6SS functionality prevails in a polymicrobial gut environment. Here, we investigated the fate of microbial competition in an altered gut environment via bacterial T6SS using a T6SS-negative and -positive C. jejuni or its isogenic mutant of the hemolysin-coregulated protein (hcp). We showed that in the presence of bile salt and prey bacteria (E. coli), T6SS-positive C. jejuni experiences enhanced intracellular stress leading to cell death. Intracellular tracking of fluorophore-conjugated bile salts confirmed that T6SS-mediated bile salt influx into C. jejuni can enhance intracellular oxidative stress, affecting C. jejuni viability. We further investigated whether the T6SS activity in the presence of prey (E. coli) perturbs the in vivo colonization of C. jejuni. Using chickens as primary hosts of C. jejuni and non-pathogenic E. coli as prey, we showed a marked reduction of C. jejuni load in chickens cecum when bile salt solution was administered orally. Analysis of local antibody responses and pro-inflammatory gene expression showed a reduced risk of tissue damage, indicating that T6SS activity in the complex gut environment can be exploited as a possible measure to clear the persistent colonization of C. jejuni in chickens.
Collapse
Affiliation(s)
- Subhadeep Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Dipjyoti Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
26
|
Tsaplina O. The Balance between Protealysin and Its Substrate, the Outer Membrane Protein OmpX, Regulates Serratia proteamaculans Invasion. Int J Mol Sci 2024; 25:6159. [PMID: 38892348 PMCID: PMC11172720 DOI: 10.3390/ijms25116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Serratia are opportunistic bacteria, causing infections in plants, insects, animals and humans under certain conditions. The development of bacterial infection in the human body involves several stages of host-pathogen interaction, including entry into non-phagocytic cells to evade host immune cells. The facultative pathogen Serratia proteamaculans is capable of penetrating eukaryotic cells. These bacteria synthesize an actin-specific metalloprotease named protealysin. After transformation with a plasmid carrying the protealysin gene, noninvasive E. coli penetrate eukaryotic cells. This suggests that protealysin may play a key role in S. proteamaculans invasion. This review addresses the mechanisms underlying protealysin's involvement in bacterial invasion, highlighting the main findings as follows. Protealysin can be delivered into the eukaryotic cell by the type VI secretion system and/or by bacterial outer membrane vesicles. By cleaving actin in the host cell, protealysin can mediate the reversible actin rearrangements required for bacterial invasion. However, inactivation of the protealysin gene leads to an increase, rather than decrease, in the intensity of S. proteamaculans invasion. This indicates the presence of virulence factors among bacterial protealysin substrates. Indeed, protealysin cleaves the virulence factors, including the bacterial surface protein OmpX. OmpX increases the expression of the EGFR and β1 integrin, which are involved in S. proteamaculans invasion. It has been shown that an increase in the invasion of genetically modified S. proteamaculans may be the result of the accumulation of full-length OmpX on the bacterial surface, which is not cleaved by protealysin. Thus, the intensity of the S. proteamaculans invasion is determined by the balance between the active protealysin and its substrate OmpX.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
27
|
Geller AM, Shalom M, Zlotkin D, Blum N, Levy A. Identification of type VI secretion system effector-immunity pairs using structural bioinformatics. Mol Syst Biol 2024; 20:702-718. [PMID: 38658795 PMCID: PMC11148199 DOI: 10.1038/s44320-024-00035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The type VI secretion system (T6SS) is an important mediator of microbe-microbe and microbe-host interactions. Gram-negative bacteria use the T6SS to inject T6SS effectors (T6Es), which are usually proteins with toxic activity, into neighboring cells. Antibacterial effectors have cognate immunity proteins that neutralize self-intoxication. Here, we applied novel structural bioinformatic tools to perform systematic discovery and functional annotation of T6Es and their cognate immunity proteins from a dataset of 17,920 T6SS-encoding bacterial genomes. Using structural clustering, we identified 517 putative T6E families, outperforming sequence-based clustering. We developed a logistic regression model to reliably quantify protein-protein interaction of new T6E-immunity pairs, yielding candidate immunity proteins for 231 out of the 517 T6E families. We used sensitive structure-based annotation which yielded functional annotations for 51% of the T6E families, again outperforming sequence-based annotation. Next, we validated four novel T6E-immunity pairs using basic experiments in E. coli. In particular, we showed that the Pfam domain DUF3289 is a homolog of Colicin M and that DUF943 acts as its cognate immunity protein. Furthermore, we discovered a novel T6E that is a structural homolog of SleB, a lytic transglycosylase, and identified a specific glutamate that acts as its putative catalytic residue. Overall, this study applies novel structural bioinformatic tools to T6E-immunity pair discovery, and provides an extensive database of annotated T6E-immunity pairs.
Collapse
Affiliation(s)
- Alexander M Geller
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maor Shalom
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Zlotkin
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Blum
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
28
|
Plum MTW, Cheung HC, Iscar PR, Chen Y, Gan YH, Basler M. Burkholderia thailandensis uses a type VI secretion system to lyse protrusions without triggering host cell responses. Cell Host Microbe 2024; 32:676-692.e5. [PMID: 38640929 DOI: 10.1016/j.chom.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/01/2023] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
To spread within a host, intracellular Burkholderia form actin tails to generate membrane protrusions into neighboring host cells and use type VI secretion system-5 (T6SS-5) to induce cell-cell fusions. Here, we show that B. thailandensis also uses T6SS-5 to lyse protrusions to directly spread from cell to cell. Dynamin-2 recruitment to the membrane near a bacterium was followed by a short burst of T6SS-5 activity. This resulted in the polymerization of the actin of the newly invaded host cell and disruption of the protrusion membrane. Most protrusion lysis events were dependent on dynamin activity, caused no cell-cell fusion, and failed to be recognized by galectin-3. T6SS-5 inactivation decreased protrusion lysis but increased galectin-3, LC3, and LAMP1 accumulation in host cells. Our results indicate that B. thailandensis specifically activates T6SS-5 assembly in membrane protrusions to disrupt host cell membranes and spread without alerting cellular responses, such as autophagy.
Collapse
Affiliation(s)
| | - Hoi Ching Cheung
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | | | - Yahua Chen
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore
| | - Marek Basler
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
29
|
Xie H, Huang Y, Wang S, Che J, Luo T, Li L, Bao B. Deletion of speA and aroC genes impacts the pathogenicity of Vibrio anguillarum in spotted sea bass. Microb Pathog 2024; 189:106597. [PMID: 38395316 DOI: 10.1016/j.micpath.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Vibrio anguillarum is one of the major pathogens responsible for bacterial infections in marine environments, causing significant impacts on the aquaculture industry. The misuse of antibiotics leads to bacteria developing multiple drug resistances, which is detrimental to the development of the fisheries industry. In contrast, live attenuated vaccines are gradually gaining acceptance and widespread recognition. In this study, we constructed a double-knockout attenuated strain, V. anguillarum ΔspeA-aroC, to assess its potential for preparing a live attenuated vaccine. The research results indicate a significant downregulation of virulence-related genes, including Type VI secretion system, Type II secretion system, biofilm synthesis, iron uptake system, and other related genes, in the mutant strain. Furthermore, the strain lacking the genes exhibited a 67.47% reduction in biofilm formation ability and increased sensitivity to antibiotics. The mutant strain exhibited significantly reduced capability in evading host immune system defenses and causing in vivo infections in spotted sea bass (Lateolabrax maculatus), with an LD50 that was 13.93 times higher than that of the wild-type V. anguillarum. Additionally, RT-qPCR analysis of immune-related gene expression in spotted sea bass head kidney and spleen showed a weakened immune response triggered by the knockout strain. Compared to the wild-type V. anguillarum, the mutant strain caused reduced levels of tissue damage. The results demonstrate that the deletion of speA and aroC significantly reduces the biosynthesis of biofilms in V. anguillarum, leading to a decrease in its pathogenicity. This suggests a crucial role of biofilms in the survival and invasive capabilities of V. anguillarum.
Collapse
Affiliation(s)
- Haisheng Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yajuan Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shengming Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jingyuan Che
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Tuyan Luo
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Lekang Li
- Jiujiang Academy of Fishery Sciences, Jiujiang, 332000, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
30
|
Xu X, Foley E. Vibrio cholerae arrests intestinal epithelial proliferation through T6SS-dependent activation of the bone morphogenetic protein pathway. Cell Rep 2024; 43:113750. [PMID: 38340318 DOI: 10.1016/j.celrep.2024.113750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
To maintain an effective barrier, intestinal progenitor cells must divide at a rate that matches the loss of dead and dying cells. Otherwise, epithelial breaches expose the host to systemic infection by gut-resident microbes. Unlike most pathogens, Vibrio cholerae blocks tissue repair by arresting progenitor proliferation in the Drosophila model. At present, we do not understand how V. cholerae circumvents such a critical antibacterial defense. We find that V. cholerae blocks epithelial repair by activating the growth inhibitor bone morphogenetic protein (BMP) pathway in progenitors. Specifically, we show that interactions between V. cholerae and gut commensals initiate BMP signaling via host innate immune defenses. Notably, we find that V. cholerae also activates BMP and arrests proliferation in zebrafish intestines, indicating an evolutionarily conserved link between infection and failure in tissue repair. Our study highlights how enteric pathogens engage host immune and growth regulatory pathways to disrupt intestinal epithelial repair.
Collapse
Affiliation(s)
- Xinyue Xu
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
31
|
Ramamoorthy S, Pena M, Ghosh P, Liao YY, Paret M, Jones JB, Potnis N. Transcriptome profiling of type VI secretion system core gene tssM mutant of Xanthomonas perforans highlights regulators controlling diverse functions ranging from virulence to metabolism. Microbiol Spectr 2024; 12:e0285223. [PMID: 38018859 PMCID: PMC10782981 DOI: 10.1128/spectrum.02852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE T6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here, Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* in X. perforans AL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria.
Collapse
Affiliation(s)
- Sivakumar Ramamoorthy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Michelle Pena
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Palash Ghosh
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Ying-Yu Liao
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Mathews Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
32
|
Kjellin J, Lee D, Steinsland H, Dwane R, Barth Vedoy O, Hanevik K, Koskiniemi S. Colicins and T6SS-based competition systems enhance enterotoxigenic E. coli (ETEC) competitiveness. Gut Microbes 2024; 16:2295891. [PMID: 38149626 PMCID: PMC10761095 DOI: 10.1080/19490976.2023.2295891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023] Open
Abstract
Diarrheal diseases are still a significant problem for humankind, causing approximately half a million deaths annually. To cause diarrhea, enteric bacterial pathogens must first colonize the gut, which is a niche occupied by the normal bacterial microbiota. Therefore, the ability of pathogenic bacteria to inhibit the growth of other bacteria can facilitate the colonization process. Although enterotoxigenic Escherichia coli (ETEC) is one of the major causative agents of diarrheal diseases, little is known about the competition systems found in and used by ETEC and how they contribute to the ability of ETEC to colonize a host. Here, we collected a set of 94 fully assembled ETEC genomes by performing whole-genome sequencing and mining the NCBI RefSeq database. Using this set, we performed a comprehensive search for delivered bacterial toxins and investigated how these toxins contribute to ETEC competitiveness in vitro. We found that type VI secretion systems (T6SS) were widespread among ETEC (n = 47). In addition, several closely related ETEC strains were found to encode Colicin Ia and T6SS (n = 8). These toxins provide ETEC competitive advantages during in vitro competition against other E. coli, suggesting that the role of T6SS as well as colicins in ETEC biology has until now been underappreciated.
Collapse
Affiliation(s)
- Jonas Kjellin
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Danna Lee
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Hans Steinsland
- CISMAC, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rachel Dwane
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Oda Barth Vedoy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- National centre for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Neff SL, Hampton TH, Koeppen K, Sarkar S, Latario CJ, Ross BD, Stanton BA. Rocket-miR, a translational launchpad for miRNA-based antimicrobial drug development. mSystems 2023; 8:e0065323. [PMID: 37975659 PMCID: PMC10734502 DOI: 10.1128/msystems.00653-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Antimicrobial-resistant infections contribute to millions of deaths worldwide every year. In particular, the group of bacteria collectively known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) pathogens are of considerable medical concern due to their virulence and exceptional ability to develop antibiotic resistance. New kinds of antimicrobial therapies are urgently needed to treat patients for whom existing antibiotics are ineffective. The Rocket-miR application predicts targets of human miRNAs in bacterial and fungal pathogens, rapidly identifying candidate miRNA-based antimicrobials. The application's target audience are microbiologists that have the laboratory resources to test the application's predictions. The Rocket-miR application currently supports 24 recognized human pathogens that are relevant to numerous diseases including cystic fibrosis, chronic obstructive pulmonary disease (COPD), urinary tract infections, and pneumonia. Furthermore, the application code was designed to be easily extendible to other human pathogens that commonly cause hospital-acquired infections.
Collapse
Affiliation(s)
- Samuel L. Neff
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Katja Koeppen
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Casey J. Latario
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Benjamin D. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
34
|
Beauvois SG, Flaugnatti N, Ilbert M, Boyer M, Gavello-Fernandez E, Fronzes R, Jurėnas D, Journet L. The tip protein PAAR is required for the function of the type VI secretion system. Microbiol Spectr 2023; 11:e0147823. [PMID: 37800964 PMCID: PMC10715212 DOI: 10.1128/spectrum.01478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The type VI secretion system (T6SS) is a bacterial contractile injection system involved in bacterial competition by the delivery of antibacterial toxins. The T6SS consists of an envelope-spanning complex that recruits the baseplate, allowing the polymerization of a contractile tail structure. The tail is a tube wrapped by a sheath and topped by the tip of the system, the VgrG spike/PAAR complex. Effectors loaded onto the puncturing tip or into the tube are propelled in the target cells upon sheath contraction. The PAAR protein tips and sharpens the VgrG spike. However, the importance and the function of this protein remain unclear. Here, we provide evidence for association of PAAR at the tip of the VgrG spike. We also found that the PAAR protein is a T6SS critical component required for baseplate and sheath assembly.
Collapse
Affiliation(s)
- Solène G. Beauvois
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Nicolas Flaugnatti
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Marianne Ilbert
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7281, Marseille, France
| | - Marie Boyer
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Esther Gavello-Fernandez
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
| | - Rémi Fronzes
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
| | - Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Laure Journet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| |
Collapse
|
35
|
Anderson AJG, Morrell B, Lopez Campos G, Valvano MA. Distribution and diversity of type VI secretion system clusters in Enterobacter bugandensis and Enterobacter cloacae. Microb Genom 2023; 9:001148. [PMID: 38054968 PMCID: PMC10763514 DOI: 10.1099/mgen.0.001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
Gram-negative bacteria use type VI secretion systems (T6SSs) to antagonize neighbouring cells. Although primarily involved in bacterial competition, the T6SS is also implicated in pathogenesis, biofilm formation and ion scavenging. Enterobacter species belong to the ESKAPE pathogens, and while their antibiotic resistance has been well studied, less is known about their pathogenesis. Here, we investigated the distribution and diversity of T6SS components in isolates of two clinically relevant Enterobacter species, E. cloacae and E. bugandensis. T6SS clusters are grouped into four types (T6SSi-T6SSiv), of which type i can be further divided into six subtypes (i1, i2, i3, i4a, i4b, i5). Analysis of a curated dataset of 31 strains demonstrated that most of them encode T6SS clusters belonging to the T6SSi type. All T6SS-positive strains possessed a conserved i3 cluster, and many harboured one or two additional i2 clusters. These clusters were less conserved, and some strains displayed evidence of deletion. We focused on a pathogenic E. bugandensis clinical isolate for comprehensive in silico effector prediction, with comparative analyses across the 31 isolates. Several new effector candidates were identified, including an evolved VgrG with a metallopeptidase domain and a Tse6-like protein. Additional effectors included an anti-eukaryotic catalase (KatN), M23 peptidase, PAAR and VgrG proteins. Our findings highlight the diversity of Enterobacter T6SSs and reveal new putative effectors that may be important for the interaction of these species with neighbouring cells and their environment.
Collapse
Affiliation(s)
- Amy J. G. Anderson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Becca Morrell
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Guillermo Lopez Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
36
|
González-Magaña A, Tascón I, Altuna-Alvarez J, Queralt-Martín M, Colautti J, Velázquez C, Zabala M, Rojas-Palomino J, Cárdenas M, Alcaraz A, Whitney JC, Ubarretxena-Belandia I, Albesa-Jové D. Structural and functional insights into the delivery of a bacterial Rhs pore-forming toxin to the membrane. Nat Commun 2023; 14:7808. [PMID: 38016939 PMCID: PMC10684867 DOI: 10.1038/s41467-023-43585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Bacterial competition is a significant driver of toxin polymorphism, which allows continual compensatory evolution between toxins and the resistance developed to overcome their activity. Bacterial Rearrangement hot spot (Rhs) proteins represent a widespread example of toxin polymorphism. Here, we present the 2.45 Å cryo-electron microscopy structure of Tse5, an Rhs protein central to Pseudomonas aeruginosa type VI secretion system-mediated bacterial competition. This structural insight, coupled with an extensive array of biophysical and genetic investigations, unravels the multifaceted functional mechanisms of Tse5. The data suggest that interfacial Tse5-membrane binding delivers its encapsulated pore-forming toxin fragment to the target bacterial membrane, where it assembles pores that cause cell depolarisation and, ultimately, bacterial death.
Collapse
Affiliation(s)
- Amaia González-Magaña
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Igor Tascón
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Jon Altuna-Alvarez
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - Jake Colautti
- Department of Biochemistry and Biomedical Sciences, Michael DeGroote Institute for Infectious Disease Research, and David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Carmen Velázquez
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Maialen Zabala
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Jessica Rojas-Palomino
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - Marité Cárdenas
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, Michael DeGroote Institute for Infectious Disease Research, and David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - David Albesa-Jové
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain.
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
37
|
Wang C, Chen M, Shao Y, Jiang M, Li Q, Chen L, Wu Y, Cen S, Waterfield NR, Yang J, Yang G. Genome wide analysis revealed conserved domains involved in the effector discrimination of bacterial type VI secretion system. Commun Biol 2023; 6:1195. [PMID: 38001377 PMCID: PMC10673891 DOI: 10.1038/s42003-023-05580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Type VI secretion systems (T6SSs) deliver effectors into target cells. Besides structural and effector proteins, many other proteins, such as adaptors, co-effectors and accessory proteins, are involved in this process. MIX domains can assist in the delivery of T6SS effectors when encoded as a stand-alone gene or fused at the N-terminal of the effector. However, whether there are other conserved domains exhibiting similar encoding forms to MIX in T6SS remains obscure. Here, we scanned publicly available bacterial genomes and established a database which include 130,825 T6SS vgrG loci from 45,041 bacterial genomes. Based on this database, we revealed six domain families encoded within vgrG loci, which are either fused at the C-terminus of VgrG/N-terminus of T6SS toxin or encoded by an independent gene. Among them, DUF2345 was further validated and shown to be indispensable for the T6SS effector delivery and LysM was confirmed to assist the interaction between VgrG and the corresponding effector. Together, our results implied that these widely distributed domain families with similar genetic configurations may be required for the T6SS effector recruitment process.
Collapse
Affiliation(s)
- Caihong Wang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Mingxing Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102629, China
| | - Yuhan Shao
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Mengyuan Jiang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102629, China
| | - Yun Wu
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102629, China.
| | - Guowei Yang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
38
|
Navarro-Monserrat ED, Taylor CG. T6SS: A Key to Pseudomonas's Success in Biocontrol? Microorganisms 2023; 11:2718. [PMID: 38004732 PMCID: PMC10673566 DOI: 10.3390/microorganisms11112718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Bacteria from the genus Pseudomonas have been extensively studied for their capacity to act as biological control agents of disease and pests and for their ability to enhance and promote crop production in agricultural systems. While initial research primarily focused on the human pathogenic bacteria Pseudomonas aeruginosa, recent studies indicate the significance of type VI secretion (T6SS) in other Pseudomonas strains for biocontrol purposes. This system possibly plays a pivotal role in restricting the biological activity of target microorganisms and may also contribute to the bolstering of the survival capabilities of the bacteria within their applied environment. The type VI secretion system is a phage-like structure used to translocate effectors into both prokaryotic and eukaryotic target cells. T6SSs are involved in a myriad of interactions, some of which have direct implications in the success of Pseudomonas as biocontrol agents. The prevalence of T6SSs in the genomes of Pseudomonas species is notably greater than the estimated 25% occurrence rate found in Gram-negative bacteria. This observation implies that T6SS likely plays a pivotal role in the survival and fitness of Pseudomonas. This review provides a brief overview of T6SS, its role in Pseudomonas with biocontrol applications, and future avenues of research within this subject matter.
Collapse
Affiliation(s)
| | - Christopher G. Taylor
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA;
| |
Collapse
|
39
|
Cummins EA, Moran RA, Snaith AE, Hall RJ, Connor CH, Dunn SJ, McNally A. Parallel loss of type VI secretion systems in two multi-drug-resistant Escherichia coli lineages. Microb Genom 2023; 9. [PMID: 37970873 DOI: 10.1099/mgen.0.001133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
The repeated emergence of multi-drug-resistant (MDR) Escherichia coli clones is a threat to public health globally. In recent work, drug-resistant E. coli were shown to be capable of displacing commensal E. coli in the human gut. Given the rapid colonization observed in travel studies, it is possible that the presence of a type VI secretion system (T6SS) may be responsible for the rapid competitive advantage of drug-resistant E. coli clones. We employed large-scale genomic approaches to investigate this hypothesis. First, we searched for T6SS genes across a curated dataset of over 20 000 genomes representing the full phylogenetic diversity of E. coli. This revealed large, non-phylogenetic variation in the presence of T6SS genes. No association was found between T6SS gene carriage and MDR lineages. However, multiple clades containing MDR clones have lost essential structural T6SS genes. We characterized the T6SS loci of ST410 and ST131 and identified specific recombination and insertion events responsible for the parallel loss of essential T6SS genes in two MDR clones.
Collapse
Affiliation(s)
- Elizabeth A Cummins
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Robert A Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann E Snaith
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca J Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Christopher H Connor
- Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Steven J Dunn
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
40
|
Rehm C, Kolm C, Pleininger S, Heger F, Indra A, Reischer GH, Farnleitner AAH, Kirschner AKT. Vibrio cholerae-An emerging pathogen in Austrian bathing waters? Wien Klin Wochenschr 2023; 135:597-608. [PMID: 37530997 PMCID: PMC10651712 DOI: 10.1007/s00508-023-02241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 08/03/2023]
Abstract
Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.
Collapse
Affiliation(s)
- Carmen Rehm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
- Interuniversity Cooperation Centre Water & Health
| | - Claudia Kolm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Sonja Pleininger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Florian Heger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Alexander Indra
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Georg H Reischer
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Andreas A H Farnleitner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Alexander K T Kirschner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria.
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria.
- Interuniversity Cooperation Centre Water & Health, .
| |
Collapse
|
41
|
Durán D, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Martín M. An Orphan VrgG Auxiliary Module Related to the Type VI Secretion Systems from Pseudomonas ogarae F113 Mediates Bacterial Killing. Genes (Basel) 2023; 14:1979. [PMID: 38002922 PMCID: PMC10671463 DOI: 10.3390/genes14111979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
The model rhizobacterium Pseudomonas ogarae F113, a relevant plant growth-promoting bacterium, encodes three different Type VI secretion systems (T6SS) in its genome. In silico analysis of its genome revealed the presence of a genetic auxiliary module containing a gene encoding an orphan VgrG protein (VgrG5a) that is not genetically linked to any T6SS structural cluster, but is associated with genes encoding putative T6SS-related proteins: a possible adaptor Tap protein, followed by a putative effector, Tfe8, and its putative cognate immunity protein, Tfi8. The bioinformatic analysis of the VgrG5a auxiliary module has revealed that this cluster is only present in several subgroups of the P. fluorescens complex of species. An analysis of the mutants affecting the vgrG5a and tfe8 genes has shown that the module is involved in bacterial killing. To test whether Tfe8/Tfi8 constitute an effector-immunity pair, the genes encoding Tfe8 and Tfi8 were cloned and expressed in E. coli, showing that the ectopic expression of tfe8 affected growth. The growth defect was suppressed by tfi8 ectopic expression. These results indicate that Tfe8 is a bacterial killing effector, while Tfi8 is its cognate immunity protein. The Tfe8 protein sequence presents homology to the proteins of the MATE family involved in drug extrusion. The Tfe8 effector is a membrane protein with 10 to 12 transmembrane domains that could destabilize the membranes of target cells by the formation of pores, revealing the importance of these effectors for bacterial interaction. Tfe8 represents a novel type of a T6SS effector present in pseudomonads.
Collapse
Affiliation(s)
- David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - David Vazquez-Arias
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| |
Collapse
|
42
|
Mathieu-Denoncourt A, Duperthuy M. The VxrAB two-component system is important for the polymyxin B-dependent activation of the type VI secretion system in Vibrio cholerae O1 strain A1552. Can J Microbiol 2023; 69:393-406. [PMID: 37343290 DOI: 10.1139/cjm-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The type VI secretion system (T6SS) is used by bacteria for virulence, resistance to grazing, and competition with other bacteria. We previously demonstrated that the role of the T6SS in interbacterial competition and in resistance to grazing is enhanced in Vibrio cholerae in the presence of subinhibitory concentrations of polymyxin B. Here, we performed a global quantitative proteomic analysis and a targeted transcriptomic analysis of the T6SS-known regulators in V. cholerae grown with and without polymyxin B. The proteome of V. cholerae is greatly modified by polymyxin B with more than 39% of the identified cellular proteins displaying a difference in their abundance, including T6SS-related proteins. We identified a regulator whose abundance and expression are increased in the presence of polymyxin B, vxrB, the response regulator of the two-component system VxrAB (VCA0565-66). In vxrAB, vxrA and vxrB deficient mutants, the expression of both hcp copies (VC1415 and VCA0017), although globally reduced, was not modified by polymyxin B. These hcp genes encode an identical protein Hcp, which is the major component of the T6SS syringe. Thus, the upregulation of the T6SS in the presence of polymyxin B appears to be, at least in part, due to the two-component system VxrAB.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Département de Microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Marylise Duperthuy
- Département de Microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
43
|
Yang D, Zhao L, Li Q, Huang L, Qin Y, Wang P, Zhu C, Yan Q. The involvement of the T6SS vgrG gene in the pathogenicity of Pseudomonas plecoglossicida. JOURNAL OF FISH DISEASES 2023; 46:1097-1108. [PMID: 37401135 DOI: 10.1111/jfd.13829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Pseudomonas plecoglossicida, the causative agent of white spot disease of large yellow croaker, has caused serious economic losses to the aquaculture industry. The type VI secretion system (T6SS) is a significant virulence system widely distributed among Gram-negative bacteria. VgrG, a structural and core component of T6SS, is crucial to the function of T6SS. To explore the biological profiles mediated by vgrG gene and its effects on the pathogenicity of P. plecoglossicida, the vgrG gene deletion (ΔvgrG) strain and complementary (C-ΔvgrG) strain were constructed and the differences in pathogenicity and virulence-related characteristics between different strains were analysed. The results showed that vgrG gene deletion significantly affected the virulence-related characteristics of P. plecoglossicida, including chemotaxis, adhesion, and biofilm formation. In addition, the LD50 of ΔvgrG strain was nearly 50-fold higher than that of the NZBD9 strain. Transcriptome data analysis suggested that the vgrG gene may affect the virulence of P. plecoglossicida by regulating the quorum sensing pathway to inhibit the secretion of virulence factors and affect biofilm formation. Besides, deletion of the vgrG gene may reduce bacterial pathogenicity by affecting bacterial signal transduction processes and the ability to adapt to chemotactic substances.
Collapse
Affiliation(s)
- Dou Yang
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Pan Wang
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd, Zhangzhou, China
| | - Chuanzhong Zhu
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd, Zhangzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
44
|
Kanarek K, Fridman CM, Bosis E, Salomon D. The RIX domain defines a class of polymorphic T6SS effectors and secreted adaptors. Nat Commun 2023; 14:4983. [PMID: 37591831 PMCID: PMC10435454 DOI: 10.1038/s41467-023-40659-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Bacteria use the type VI secretion system (T6SS) to deliver toxic effectors into bacterial or eukaryotic cells during interbacterial competition, host colonization, or when resisting predation. Identifying effectors is a challenging task, as they lack canonical secretion signals or universally conserved domains. Here, we identify a protein domain, RIX, that defines a class of polymorphic T6SS cargo effectors. RIX is widespread in the Vibrionaceae family and is located at N-termini of proteins containing diverse antibacterial and anti-eukaryotic toxic domains. We demonstrate that RIX-containing proteins are delivered via T6SS into neighboring cells and that RIX is necessary and sufficient for T6SS-mediated secretion. In addition, RIX-containing proteins can enable the T6SS-mediated delivery of other cargo effectors by a previously undescribed mechanism. The identification of RIX-containing proteins significantly enlarges the repertoire of known T6SS effectors, especially those with anti-eukaryotic activities. Furthermore, our findings also suggest that T6SSs may play an underappreciated role in the interactions between vibrios and eukaryotes.
Collapse
Affiliation(s)
- Katarzyna Kanarek
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chaya Mushka Fridman
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel.
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
45
|
Allsopp LP, Bernal P. Killing in the name of: T6SS structure and effector diversity. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001367. [PMID: 37490402 PMCID: PMC10433429 DOI: 10.1099/mic.0.001367] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The life of bacteria is challenging, to endure bacteria employ a range of mechanisms to optimize their environment, including deploying the type VI secretion system (T6SS). Acting as a bacterial crossbow, this system delivers effectors responsible for subverting host cells, killing competitors and facilitating general secretion to access common goods. Due to its importance, this lethal machine has been evolutionarily maintained, disseminated and specialized to fulfil these vital functions. In fact, T6SS structural clusters are present in over 25 % of Gram-negative bacteria, varying in number from one to six different genetic clusters per organism. Since its discovery in 2006, research on the T6SS has rapidly progressed, yielding remarkable breakthroughs. The identification and characterization of novel components of the T6SS, combined with biochemical and structural studies, have revealed fascinating mechanisms governing its assembly, loading, firing and disassembly processes. Recent findings have also demonstrated the efficacy of this system against fungal and Gram-positive cells, expanding its scope. Ongoing research continues to uncover an extensive and expanding repertoire of T6SS effectors, the genuine mediators of T6SS function. These studies are shedding light on new aspects of the biology of prokaryotic and eukaryotic organisms. This review provides a comprehensive overview of the T6SS, highlighting recent discoveries of its structure and the diversity of its effectors. Additionally, it injects a personal perspective on avenues for future research, aiming to deepen our understanding of this combative system.
Collapse
Affiliation(s)
- Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| |
Collapse
|
46
|
Zhao X, Xu C, Qu J, Jin Y, Bai F, Cheng Z, Wu W, Pan X. PitA Controls the H2- and H3-T6SSs through PhoB in Pseudomonas aeruginosa. Appl Environ Microbiol 2023; 89:e0209422. [PMID: 37184394 PMCID: PMC10304775 DOI: 10.1128/aem.02094-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/21/2023] [Indexed: 05/16/2023] Open
Abstract
Pseudomonas aeruginosa possesses three type VI secretion systems (T6SSs) that are involved in interspecies competition, internalization into epithelial cells, and virulence. Host-derived mucin glycans regulate the T6SSs through RetS, and attacks from other species activate the H1-T6SS. However, other environmental signals that control the T6SSs remain to be explored. Previously, we determined PitA to be a constitutive phosphate transporter, whose mutation reduces the intracellular phosphate concentration. Here, we demonstrate that mutation in the pitA gene increases the expression of the H2- and H3-T6SS genes and enhances bacterial uptake by A549 cells. We further found that mutation of pitA results in activation of the quorum sensing (QS) systems, which contributes to the upregulation of the H2- and H3-T6SS genes. Overexpression of the phosphate transporter complex genes pstSCAB or knockdown of the phosphate starvation response regulator gene phoB in the ΔpitA mutant reduces the expression of the QS genes and subsequently the H2- and H3-T6SS genes and bacterial internalization. Furthermore, growth of wild-type PA14 in a low-phosphate medium results in upregulation of the QS and H2- and H3-T6SS genes and bacterial internalization compared to those in cells grown in a high-phosphate medium. Deletion of the phoB gene abolished the differences in the expression of the QS and T6SS genes as well as bacterial internalization in the low- and high- phosphate media. Overall, our results elucidate the mechanism of PitA-mediated regulation on the QS system and H2- and H3-T6SSs and reveal a novel pathway that regulates the T6SSs in response to phosphate starvation. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogenic bacterium that causes acute and chronic infections in humans. The type VI secretion systems (T6SSs) have been shown to associate with chronic infections. Understanding the mechanism used by the bacteria to sense environmental signals and regulate virulence factors will provide clues for developing novel effective treatment strategies. Here, we demonstrate a relationship between a phosphate transporter and the T6SSs and reveal a novel regulatory pathway that senses phosphate limitation and controls bacterial virulence factors in P. aeruginosa.
Collapse
Affiliation(s)
- Xinrui Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Junze Qu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
47
|
Jensen SJ, Ruhe ZC, Williams AF, Nhan DQ, Garza-Sánchez F, Low DA, Hayes CS. Paradoxical Activation of a Type VI Secretion System Phospholipase Effector by Its Cognate Immunity Protein. J Bacteriol 2023; 205:e0011323. [PMID: 37212679 PMCID: PMC10294671 DOI: 10.1128/jb.00113-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Type VI secretion systems (T6SSs) deliver cytotoxic effector proteins into target bacteria and eukaryotic host cells. Antibacterial effectors are invariably encoded with cognate immunity proteins that protect the producing cell from self-intoxication. Here, we identify transposon insertions that disrupt the tli immunity gene of Enterobacter cloacae and induce autopermeabilization through unopposed activity of the Tle phospholipase effector. This hyperpermeability phenotype is T6SS dependent, indicating that the mutants are intoxicated by Tle delivered from neighboring sibling cells rather than by internally produced phospholipase. Unexpectedly, an in-frame deletion of tli does not induce hyperpermeability because Δtli null mutants fail to deploy active Tle. Instead, the most striking phenotypes are associated with disruption of the tli lipoprotein signal sequence, which prevents immunity protein localization to the periplasm. Immunoblotting reveals that most hyperpermeable mutants still produce Tli, presumably from alternative translation initiation codons downstream of the signal sequence. These observations suggest that cytosolic Tli is required for the activation and/or export of Tle. We show that Tle growth inhibition activity remains Tli dependent when phospholipase delivery into target bacteria is ensured through fusion to the VgrG β-spike protein. Together, these findings indicate that Tli has distinct functions, depending on its subcellular localization. Periplasmic Tli acts as a canonical immunity factor to neutralize incoming effector proteins, while a cytosolic pool of Tli is required to activate the phospholipase domain of Tle prior to T6SS-dependent export. IMPORTANCE Gram-negative bacteria use type VI secretion systems deliver toxic effector proteins directly into neighboring competitors. Secreting cells also produce specific immunity proteins that neutralize effector activities to prevent autointoxication. Here, we show the Tli immunity protein of Enterobacter cloacae has two distinct functions, depending on its subcellular localization. Periplasmic Tli acts as a canonical immunity factor to block Tle lipase effector activity, while cytoplasmic Tli is required to activate the lipase prior to export. These results indicate Tle interacts transiently with its cognate immunity protein to promote effector protein folding and/or packaging into the secretion apparatus.
Collapse
Affiliation(s)
- Steven J. Jensen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Zachary C. Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - August F. Williams
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Dinh Q. Nhan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - David A. Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
48
|
Shen Y, Gao S, Fan Q, Zuo J, Wang Y, Yi L, Wang Y. New antibacterial targets: Regulation of quorum sensing and secretory systems in zoonotic bacteria. Microbiol Res 2023; 274:127436. [PMID: 37343493 DOI: 10.1016/j.micres.2023.127436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Quorum sensing (QS) is a communication mechanism that controls bacterial communication and can influence the transcriptional expression of multiple genes through one or more signaling molecules, thereby coordinating the population response of multiple bacterial pathogens. Secretion systems (SS) play an equally important role in bacterial information exchange, relying on the secretory systems to secrete proteins that act as virulence factors to promote adhesion to host cells. Eight highly efficient SS have been described, all of which are involved in the secretion or transfer of virulence factors, and the effector proteins they secrete play a key role in the virulence and pathogenicity of bacteria. It has been shown that many bacterial SS are directly or indirectly regulated by QS and thus influence bacterial virulence and antibiotic resistance. This review describes the relationship between QS and SS of several common zoonotic pathogenic bacteria and outlines the molecular mechanisms of how QS systems regulate SS, to provide a theoretical basis for the study of bacterial pathogenicity and the development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Li Yi
- Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China.
| |
Collapse
|
49
|
Nikolić I, Glatter T, Ranković T, Berić T, Stanković S, Diepold A. Repertoire and abundance of secreted virulence factors shape the pathogenic capacity of Pseudomonas syringae pv. aptata. Front Microbiol 2023; 14:1205257. [PMID: 37383635 PMCID: PMC10294431 DOI: 10.3389/fmicb.2023.1205257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Pseudomonas syringae pv. aptata is a member of the sugar beet pathobiome and the causative agent of leaf spot disease. Like many pathogenic bacteria, P. syringae relies on the secretion of toxins, which manipulate host-pathogen interactions, to establish and maintain an infection. This study analyzes the secretome of six pathogenic P. syringae pv. aptata strains with different defined virulence capacities in order to identify common and strain-specific features, and correlate the secretome with disease outcome. All strains show a high type III secretion system (T3SS) and type VI secretion system (T6SS) activity under apoplast-like conditions mimicking the infection. Surprisingly, we found that low pathogenic strains show a higher secretion of most T3SS substrates, whereas a distinct subgroup of four effectors was exclusively secreted in medium and high pathogenic strains. Similarly, we detected two T6SS secretion patterns: while one set of proteins was highly secreted in all strains, another subset consisting of known T6SS substrates and previously uncharacterized proteins was exclusively secreted in medium and high virulence strains. Taken together, our data show that P. syringae pathogenicity is correlated with the repertoire and fine-tuning of effector secretion and indicate distinct strategies for establishing virulence of P. syringae pv. aptata in plants.
Collapse
Affiliation(s)
- Ivan Nikolić
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Timo Glatter
- Core Facility for Mass spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tamara Ranković
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tanja Berić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
50
|
Pothula R, Lee MW, Patricia Stock S. Type 6 Secretion System components hcp and vgrG support mutualistic partnership between Xenorhabdus bovienii symbiont and Steinernema jollieti host. J Invertebr Pathol 2023; 198:107925. [PMID: 37087093 DOI: 10.1016/j.jip.2023.107925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Xenorhabdus, like other Gram-negative bacteria, possesses a Type 6 Secretion System (T6SS) which acts as a contact-dependent molecular syringe, delivering diverse proteins (effectors) directly into other cells. The number of T6SS loci encoded in Xenorhabdus genomes are variable both at the inter and intraspecific level. Some environmental isolates of Xenorhabdus bovienii, encode at least one T6SS locus while others possess two loci. Previous work conducted by our team demonstrated that X. bovienii [Jollieti strain SS-2004], which has two T6SSs (T6SS-1 and T6SS-2), hcp genes are required for biofilm formation. Additionally, while T6SS-1 hcp gene plays a role in the antibacterial competition, T6SS-2 hcp does not. In this study, we tested the hypothesis that vgrG genes are also involved in mutualistic and pathogenic interactions. For this purpose, targeted mutagenesis together with wet lab experiments including colonization, competition, biofilm, and virulence experiments, were carried out to assess the role of vgrG in the mutualistic and antagonistic interactions in the life cycle of XBJ. Our results revealed that vgrG genes are not required for biofilm formation but play a role in outcompeting other Xenorhabdus bacteria. Additionally, both vgrG and hcp genes are required to fully colonize the nematode host. We also demonstrated that hcp and vgrG genes in both T6SS clusters are needed to support the reproductive fitness of the nematodes. Overall, results from this study revealed that in X. bovieni jollieti strain, the twoT6SS clusters play an important role in the fitness of the nematodes in relation to colonization and reproduction. These results lay a foundation for further investigations on the functional significance of T6SSs in the mutualistic and pathogenic lifecycle of Xenorhabdus spp.
Collapse
Affiliation(s)
- Ratnasri Pothula
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Min-Woo Lee
- Corn, Soybean, and Wheat Quality Research Lab, USDA-ARS Wooster, OH, United States
| | - S Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States; College of Agriculture, California State University, Chico, CA, United States.
| |
Collapse
|