1
|
Falanga AP, Cremonini M, Bartocci A, Nolli MG, Terracciano M, Volpi S, Dumont E, Piccialli G, Casnati A, Sansone F, Borbone N, Oliviero G. Calixarenes meet (TG 4T) 4 G-quadruplex: Exploring reciprocal interactions to develop innovative biotechnological applications. Int J Biol Macromol 2025; 305:141331. [PMID: 39984072 DOI: 10.1016/j.ijbiomac.2025.141331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/30/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
This study investigates, for the first time, the ability of calixarene ligands to interact with G-quadruplex (GQ) DNA assemblies, which play a critical role in many biological processes, including gene expression regulation, telomere maintenance, and the surveillance of genome stability and DNA repair mechanisms. Specifically, the interaction between two calix[4]arene compounds, featuring cationic or zwitterionic functional groups on their upper rim, and the parallel tetramolecular (TG4T)4 G-quadruplex used as a model, was analyzed using circular dichroism, NMR, and molecular dynamics simulations. The results revealed that both derivatives interact favorably with the GQ model, inducing aggregation at higher ligand concentrations. Notably, the interaction varied depending on the functional groups present on the calixarene upper rim. Calixarene 1, which bears four proline units, showed a stronger affinity for GQ termini, whereas calixarene 2, functionalized with four positively charged guanidinium groups, displayed a stronger affinity for the GQ lateral phosphate groups. These findings unveiled the calixarene ability to recognize different GQ structural features depending on the type of functional groups installed on their upper rim, paving the way for their use as GQ-targeting ligands, with positive implications for therapeutic and biotechnological applications.
Collapse
Affiliation(s)
- Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Maria Cremonini
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Alessio Bartocci
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, 38123 Trento, Italy
| | - Maria Grazia Nolli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Stefano Volpi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Elise Dumont
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108 Nice, France; Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy.
| | - Giorgia Oliviero
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
Jiao L, Gao X, Xing J, Zhou Y, Liu X, Zhao A, Zhang Z. Nuclease-Mimetic Nanomaterials: From Fundamentals to Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502660. [PMID: 40304160 DOI: 10.1002/smll.202502660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/04/2025] [Indexed: 05/02/2025]
Abstract
With the rapid development of nanozymes and nanomedicine, designing novel nanostructures directly acting on deoxyribonucleic acid (DNA) has great therapeutic potential because DNA is the carrier of genetic information and plays a vital role on life activities of the organism. Specifically, DNA cleavage is an important step in most of these DNA engineering technologies. While nucleases play crucial roles in the cell metabolism by efficient DNA cutting, the practical applications of natural nucleases suffer from some intrinsic shortcomings such as high cost and intolerance to harsh environments. In the past 20 years, great varieties of engineered nanostructures with DNA cleavage (nuclease-mimetic nanomaterials, abbreviated as nuclease mimics) have been developed rapidly and widely used in biomedical fields. In view of the significant progress of nuclease-mimetic nanomaterials, the possible DNA cleavage mechanism mediated by nuclease-mimetic nanomaterials is systematically discussed in this review, and the classification of nuclease-mimetic nanomaterials is illustrated. Their potential biomedical applications, especially in anti-biofilms and cancer treatment, are also comprehensively summarized. Finally, the current opportunities and challenges are discussed to stimulate the research of understanding and development of nuclease-mimetic nanomaterials.
Collapse
Affiliation(s)
- Lizhi Jiao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoyin Gao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| | - Jinzhu Xing
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| | - Yuan Zhou
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Andong Zhao
- Department of Chemistry, School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, China
| | - Zhijun Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| |
Collapse
|
3
|
Burkhart I, Wirmer-Bartoschek J, Plavec J, Schwalbe H. Exploring the Modulation of the Complex Folding Landscape of Human Telomeric DNA by a Low Molecular Weight Ligand. Chemistry 2025:e202501377. [PMID: 40261079 DOI: 10.1002/chem.202501377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Telomeric DNA forms G-quadruplex (G4) structures. These G4 structures are crucial for genomic stability and therapeutic targeting. Using time-resolved NMR and CD spectroscopy, we investigated how the ligand Phen-DC3 modulates the folding of the human telomeric repeat 23TAG DNA. The kinetics are modulated by the ligand and by the presence of potassium cations (K+). Ligand binding to G4 occurs via a triphasic process with fast and slow phases. Notably, for the G4 structure in the presence of K+, the slow rate is ten times slower than without K+. These findings offer key insights into the modulation of the complex folding landscape of G4s by ligands, advancing our understanding of G4-ligand interactions for potential therapeutic applications.
Collapse
Affiliation(s)
- Ines Burkhart
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max von Laue Str. 7, 60438, Frankfurt am Main, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max von Laue Str. 7, 60438, Frankfurt am Main, Germany
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, SI-1000, Slovenia
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max von Laue Str. 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Roy S, Pramanik P, Bhattacharya S. Exploring the role of G-quadruplex DNA, and their structural polymorphism, in targeting small molecules for the design of anticancer therapeutics: Progress, challenges, and future directions. Biochimie 2025; 234:120-145. [PMID: 40250703 DOI: 10.1016/j.biochi.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Selective stabilization of non-canonical G-quadruplex DNA structures by small molecules can be a potential target for anticancer therapeutics. The primary motivation for the molecular design of these G-quadruplex binders is to restrict the transcriptional machinery, which can impede cancer cell progression. This review article comprises the structural diversity of different G-quadruplex DNA, the design strategy for targeting these structures with small molecules, and various G-quadruplex binding ligands which have been expanded by the chemists and biologists over the past few decades. Further, the existence of G-quadruplex structures inside human cells, the significant challenges for designing these selective G-quadruplex binding ligands, current status, and progress towards achieving this goal have also been discussed.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Pulakesh Pramanik
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619, India.
| |
Collapse
|
5
|
Hashimoto Y, Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Three- and four-stranded nucleic acid structures and their ligands. RSC Chem Biol 2025; 6:466-491. [PMID: 40007865 PMCID: PMC11848209 DOI: 10.1039/d4cb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Nucleic acids have the potential to form not only duplexes, but also various non-canonical secondary structures in living cells. Non-canonical structures play regulatory functions mainly in the central dogma. Therefore, nucleic acid targeting molecules are potential novel therapeutic drugs that can target 'undruggable' proteins in various diseases. One of the concerns of small molecules targeting nucleic acids is selectivity, because nucleic acids have only four different building blocks. Three- and four-stranded non-canonical structures, triplexes and quadruplexes, respectively, are promising targets of small molecules because their three-dimensional structures are significantly different from the canonical duplexes, which are the most abundant in cells. Here, we describe some basic properties of the triplexes and quadruplexes and small molecules targeting the triplexes and tetraplexes.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Sumit Shil
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Mitsuki Tsuruta
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| |
Collapse
|
6
|
Florez-Vargas O, Ho M, Hogshead MH, Papenberg BW, Lee CH, Forsythe K, Jones K, Luo W, Teshome K, Blauwendraat C, Billingsley KJ, Kolmogorov M, Meredith M, Paten B, Chari R, Zhang C, Schneekloth JS, Machiela MJ, Chanock SJ, Gadalla SM, Savage SA, Mbulaiteye SM, Prokunina-Olsson L. Genetic regulation of TERT splicing affects cancer risk by altering cellular longevity and replicative potential. Nat Commun 2025; 16:1676. [PMID: 39956830 PMCID: PMC11830802 DOI: 10.1038/s41467-025-56947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. Here, we characterize a variable number tandem repeat within TERT intron 6, VNTR6-1 (38-bp repeat unit), and detect a strong link between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.5-66.5 repeats) and GWAS signals rs2242652 and rs10069690 within TERT intron 4. Bioinformatics analyses reveal that rs10069690-T allele increases intron 4 retention while VNTR6-1-Long allele expands a polymorphic G-quadruplex (G4, 35-113 copies) within intron 6, with both variants contributing to variable TERT expression through alternative splicing and nonsense-mediated decay. In two cell lines, CRISPR/Cas9 deletion of VNTR6-1 increases the ratio of TERT-full-length (FL) to the alternative TERT-β isoform, promoting apoptosis and reducing cell proliferation. In contrast, treatment with G4-stabilizing ligands shifts splicing from TERT-FL to TERT-β isoform, implicating VNTR6-1 as a splicing switch. We associate the functional variants VNTR6-1, rs10069690, and their haplotypes with multi-cancer risk and age-related telomere shortening. By regulating TERT splicing, these variants may contribute to fine-tuning cellular longevity and replicative potential in the context of stress due to tissue-specific endogenous and exogenous exposures, thereby influencing the cancer risk conferred by this locus.
Collapse
Affiliation(s)
- Oscar Florez-Vargas
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Michelle Ho
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Maxwell H Hogshead
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Brenen W Papenberg
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Chia-Han Lee
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kaitlin Forsythe
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedest Teshome
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kimberly J Billingsley
- Center for Alzheimer's and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, CCR, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chi Zhang
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, CCR, National Cancer Institute, Frederick, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sam M Mbulaiteye
- Infections and Immunoepidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | | |
Collapse
|
7
|
Johnson K, Seidel JM, Cech TR. Small molecule telomerase inhibitors are also potent inhibitors of telomeric C-strand synthesis. RNA (NEW YORK, N.Y.) 2024; 30:1213-1226. [PMID: 38918043 PMCID: PMC11331414 DOI: 10.1261/rna.080043.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α-primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and in human cells they cause telomere shortening that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their binding to GQ RNA and their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.
Collapse
Affiliation(s)
- Kaitlin Johnson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Julia M Seidel
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
8
|
Rivosecchi J, Jurikova K, Cusanelli E. Telomere-specific regulation of TERRA and its impact on telomere stability. Semin Cell Dev Biol 2024; 157:3-23. [PMID: 38088000 DOI: 10.1016/j.semcdb.2023.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 01/08/2024]
Abstract
TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination. Therefore, a fine-tuned control of TERRA is important to maintain the integrity of the genome. Several studies have reported that different cell lines express substantially different levels of TERRA. Most importantly, TERRA levels markedly vary among telomeres of a given cell type, indicating the existence of telomere-specific regulatory mechanisms which may help coordinate TERRA functions. TERRA molecules contain distinct subtelomeric sequences, depending on their telomere of origin, which may instruct specific post-transcriptional modifications or mediate distinct functions. In addition, all TERRA transcripts share a repetitive G-rich sequence at their 3' end which can form DNA:RNA hybrids and fold into G-quadruplex structures. Both structures are involved in TERRA functions and can critically affect telomere stability. In this review, we examine the mechanisms controlling TERRA levels and the impact of their telomere-specific regulation on telomere stability. We compare evidence obtained in different model organisms, discussing recent advances as well as controversies in the field. Furthermore, we discuss the importance of DNA:RNA hybrids and G-quadruplex structures in the context of TERRA biology and telomere maintenance.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy; Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
9
|
Figueiredo J, Mergny JL, Cruz C. G-quadruplex ligands in cancer therapy: Progress, challenges, and clinical perspectives. Life Sci 2024; 340:122481. [PMID: 38301873 DOI: 10.1016/j.lfs.2024.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Guanine-rich sequences can form G-quadruplexes (G4) in living cells, making these structures promising anti-cancer targets. Compounds able to recognize these structures have been investigated as potential anticancer drugs; however, no G4 binder has yet been approved in the clinic. Here, we describe G4 ligands structure-activity relationships, in vivo effects as well as clinical trials. Addressing G4 ligand characteristics, targeting challenges, and structure-activity relationships, this review provides insights into the development of potent and selective G4-targeting molecules for therapeutic applications.
Collapse
Affiliation(s)
- Joana Figueiredo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau cedex, France; Institute of Biophysics of the CAS, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
10
|
Zareie AR, Dabral P, Verma SC. G-Quadruplexes in the Regulation of Viral Gene Expressions and Their Impacts on Controlling Infection. Pathogens 2024; 13:60. [PMID: 38251367 PMCID: PMC10819198 DOI: 10.3390/pathogens13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures that play significant roles in regulating various biological processes, including replication, transcription, translation, and recombination. Recent studies have identified G4s in the genomes of several viruses, such as herpes viruses, hepatitis viruses, and human coronaviruses. These structures are implicated in regulating viral transcription, replication, and virion production, influencing viral infectivity and pathogenesis. G4-stabilizing ligands, like TMPyP4, PhenDC3, and BRACO19, show potential antiviral properties by targeting and stabilizing G4 structures, inhibiting essential viral life-cycle processes. This review delves into the existing literature on G4's involvement in viral regulation, emphasizing specific G4-stabilizing ligands. While progress has been made in understanding how these ligands regulate viruses, further research is needed to elucidate the mechanisms through which G4s impact viral processes. More research is necessary to develop G4-stabilizing ligands as novel antiviral agents. The increasing body of literature underscores the importance of G4s in viral biology and the development of innovative therapeutic strategies against viral infections. Despite some ligands' known regulatory effects on viruses, a deeper comprehension of the multifaceted impact of G4s on viral processes is essential. This review advocates for intensified research to unravel the intricate relationship between G4s and viral processes, paving the way for novel antiviral treatments.
Collapse
Affiliation(s)
| | | | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA; (A.R.Z.); (P.D.)
| |
Collapse
|
11
|
Shiekh S, Kodikara SG, Balci H. Structure, Topology, and Stability of Multiple G-quadruplexes in Long Telomeric Overhangs. J Mol Biol 2024; 436:168205. [PMID: 37481156 PMCID: PMC10799177 DOI: 10.1016/j.jmb.2023.168205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Telomeres and their single stranded overhangs gradually shorten with successive cell divisions, as part of the natural aging process, but can be elongated by telomerase, a nucleoprotein complex which is activated in the majority of cancers. This prominent implication in cancer and aging has made the repetitive telomeric sequences (TTAGGG repeats) and the G-quadruplex structures that form in their overhangs the focus of intense research in the past several decades. However, until recently most in vitro efforts to understand the structure, stability, dynamics, and interactions of telomeric overhangs had been focused on short sequences that are not representative of longer sequences encountered in a physiological setting. In this review, we will provide a broad perspective about telomeres and associated factors, and introduce the agents and structural characteristics involved in organizing, maintaining, and protecting telomeric DNA. We will also present a summary of recent research performed on long telomeric sequences, nominally defined as those that can form two or more tandem G-quadruplexes, i.e., which contain eight or more TTAGGG repeats. Results of experimental studies using a broad array of experimental tools, in addition to recent computational efforts will be discussed, particularly in terms of their implications for the stability, folding topology, and compactness of the tandem G-quadruplexes that form in long telomeric overhangs.
Collapse
Affiliation(s)
- Sajad Shiekh
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | | | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
12
|
Xu Y, Komiyama M. G-Quadruplexes in Human Telomere: Structures, Properties, and Applications. Molecules 2023; 29:174. [PMID: 38202757 PMCID: PMC10780218 DOI: 10.3390/molecules29010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
G-quadruplexes, intricate four-stranded structures composed of G-tetrads formed by four guanine bases, are prevalent in both DNA and RNA. Notably, these structures play pivotal roles in human telomeres, contributing to essential cellular functions. Additionally, the existence of DNA:RNA hybrid G-quadruplexes adds a layer of complexity to their structural diversity. This review provides a comprehensive overview of recent advancements in unraveling the intricacies of DNA and RNA G-quadruplexes within human telomeres. Detailed insights into their structural features are presented, encompassing the latest developments in chemical approaches designed to probe these G-quadruplex structures. Furthermore, this review explores the applications of G-quadruplex structures in targeting human telomeres. Finally, the manuscript outlines the imminent challenges in this evolving field, setting the stage for future investigations.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
13
|
Lejault P, Prudent L, Terrier MP, Perreault JP. Small molecule chaperones facilitate the folding of RNA G-quadruplexes. Biochimie 2023; 214:83-90. [PMID: 37666291 DOI: 10.1016/j.biochi.2023.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
RNA G-quadruplexes (rG4) have recently emerged as major regulatory elements in both mRNA and non-coding RNA. In order to investigate the biological roles of rG4 structures, chemists have developed a variety of highly specific and potent ligands. All of these ligands bind to the rG4s by stacking on top of them. The binding specificity is demonstrated by comparison to other structures such as duplex or three-way junctions. It remains unclear whether rG4-ligands merely stabilize fully formed rG4 structures, or if they actively participate in the folding of the rG4 structure through their association with an unfolded RNA sequence. In order to elucidate the innate steps of ligand-rG4 associations and mechanisms robust in vitro techniques, including FRET, electrophoretic mobility shift assays and reverse transcriptase stalling assays, were used to examine the capacity of five well-known G4 ligands to induce rG4 structures derived from either long non-coding RNAs or from synthetic RNAs. It was found that both PhenDC3 and PDS induce rG4 formation in single RNA strands. This discovery has important implications for the interpretation of RNA-seq experiments. Overall, in vitro data that can assist biochemists in selecting the optimal G4-ligands for their RNA cellular experiments are presented, and the effects induced by these ligands on the rG4s are also considered.
Collapse
Affiliation(s)
- Pauline Lejault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Louis Prudent
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michel-Pierre Terrier
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
14
|
El-Khoury R, Roman M, Assi HA, Moye AL, Bryan T, Damha M. Telomeric i-motifs and C-strands inhibit parallel G-quadruplex extension by telomerase. Nucleic Acids Res 2023; 51:10395-10410. [PMID: 37742080 PMCID: PMC10602923 DOI: 10.1093/nar/gkad764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Telomeric C-rich repeated DNA sequences fold into tetrahelical i-motif structures in vitro at acidic pH. While studies have suggested that i-motifs may form in cells, little is known about their potential role in human telomere biology. In this study, we explore the effect of telomeric C-strands and i-motifs on the ability of human telomerase to extend G-rich substrates. To promote i-motif formation at neutral pH, we use telomeric sequences where the cytidines have been substituted with 2'-fluoroarabinocytidine. Using FRET-based studies, we show that the stabilized i-motifs resist hybridization to concomitant parallel G-quadruplexes, implying that both structures could exist simultaneously at telomeric termini. Moreover, through telomerase activity assays, we show that both unstructured telomeric C-strands and telomeric i-motifs can inhibit the activity and processivity of telomerase extension of parallel G-quadruplexes and linear telomeric DNA. The data suggest at least three modes of inhibition by C-strands and i-motifs: direct hybridization to the substrate DNA, hybridization to nascent product DNA resulting in early telomerase dissociation, and interference with the unique mechanism of telomerase unwinding and extension of a G-quadruplex. Overall, this study highlights a potential inhibitory role for the telomeric C-strand in telomere maintenance.
Collapse
Affiliation(s)
- Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Morgane Roman
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Aaron L Moye
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
15
|
Ferret L, Alvarez-Valadez K, Rivière J, Muller A, Bohálová N, Yu L, Guittat L, Brázda V, Kroemer G, Mergny JL, Djavaheri-Mergny M. G-quadruplex ligands as potent regulators of lysosomes. Autophagy 2023; 19:1901-1915. [PMID: 36740766 PMCID: PMC10283436 DOI: 10.1080/15548627.2023.2170071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 02/07/2023] Open
Abstract
Guanine-quadruplex structures (G4) are unusual nucleic acid conformations formed by guanine-rich DNA and RNA sequences and known to control gene expression mechanisms, from transcription to protein synthesis. So far, a number of molecules that recognize G4 have been developed for potential therapeutic applications in human pathologies, including cancer and infectious diseases. These molecules are called G4 ligands. When the biological effects of G4 ligands are studied, the analysis is often limited to nucleic acid targets. However, recent evidence indicates that G4 ligands may target other cellular components and compartments such as lysosomes and mitochondria. Here, we summarize our current knowledge of the regulation of lysosome by G4 ligands, underlying their potential functional impact on lysosome biology and autophagic flux, as well as on the transcriptional regulation of lysosomal genes. We outline the consequences of these effects on cell fate decisions and we systematically analyzed G4-prone sequences within the promoter of 435 lysosome-related genes. Finally, we propose some hypotheses about the mechanisms involved in the regulation of lysosomes by G4 ligands.
Collapse
Affiliation(s)
- Lucille Ferret
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Karla Alvarez-Valadez
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Jennifer Rivière
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra Muller
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Natalia Bohálová
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Luo Yu
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, Orsay, France
| | - Lionel Guittat
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
- UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France
| | - Vaclav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Jean-Louis Mergny
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
16
|
Miclot T, Froux A, D'Anna L, Bignon E, Grandemange S, Barone G, Monari A, Terenzi A. Understanding the Interactions of Guanine Quadruplexes with Peptides as Novel Strategies for Diagnosis or Tuning Biological Functions. Chembiochem 2023; 24:e202200624. [PMID: 36598366 DOI: 10.1002/cbic.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Guanine quadruplexes (G4s) are nucleic acid structures exhibiting a complex structural behavior and exerting crucial biological functions in both cells and viruses. The specific interactions of peptides with G4s, as well as an understanding of the factors driving the specific recognition are important for the rational design of both therapeutic and diagnostic agents. In this review, we examine the most important studies dealing with the interactions between G4s and peptides, highlighting the strengths and limitations of current analytic approaches. We also show how the combined use of high-level molecular simulation techniques and experimental spectroscopy is the best avenue to design specifically tuned and selective peptides, thus leading to the control of important biological functions.
Collapse
Affiliation(s)
- Tom Miclot
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy.,Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
| | - Aurane Froux
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy.,Université de Lorraine and CNRS, UMR 7039 CRAN, 54000, Nancy, France
| | - Luisa D'Anna
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
| | | | - Giampaolo Barone
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006, Paris, France
| | - Alessio Terenzi
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy
| |
Collapse
|
17
|
cRGD-Functionalized Silk Fibroin Nanoparticles: A Strategy for Cancer Treatment with a Potent Unselective Naphthalene Diimide Derivative. Cancers (Basel) 2023; 15:cancers15061725. [PMID: 36980611 PMCID: PMC10046852 DOI: 10.3390/cancers15061725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Developing drug delivery systems to target cytotoxic drugs directly into tumor cells is still a compelling need with regard to reducing side effects and improving the efficacy of cancer chemotherapy. In this work, silk fibroin nanoparticles (SFNs) have been designed to load a previously described cytotoxic compound (NDI-1) that disrupts the cell cycle by specifically interacting with non-canonical secondary structures of DNA. SFNs were then functionalized on their surface with cyclic pentapeptides incorporating the Arg-Gly-Asp sequence (cRGDs) to provide active targeting toward glioma cell lines that abundantly express ανβ3 and ανβ5 integrin receptors. Cytotoxicity and selective targeting were assessed by in vitro tests on human glioma cell lines U373 (highly-expressing integrin subunits) and D384 cell lines (low-expressing integrin subunits in comparison to U373). SFNs were of nanometric size (d50 less than 100 nm), round shaped with a smooth surface, and with a negative surface charge; overall, these characteristics made them very likely to be taken up by cells. The active NDI-1 was loaded into SFNs with high encapsulation efficiency and was not released before the internalization and degradation by cells. Functionalization with cRGDs provided selectivity in cell uptake and thus cytotoxicity, with a significantly higher cytotoxic effect of NDI-1 delivered by cRGD-SFNs on U373 cells than on D384 cells. This manuscript provides an in vitro proof-of-concept of cRGD-silk fibroin nanoparticles’ active site-specific targeting of tumors, paving the way for further in vivo efficacy tests.
Collapse
|
18
|
Vinayagamurthy S, Bagri S, Mergny JL, Chowdhury S. Telomeres expand sphere of influence: emerging molecular impact of telomeres in non-telomeric functions. Trends Genet 2023; 39:59-73. [PMID: 36404192 PMCID: PMC7614491 DOI: 10.1016/j.tig.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
Although the impact of telomeres on physiology stands well established, a question remains: how do telomeres impact cellular functions at a molecular level? This is because current understanding limits the influence of telomeres to adjacent subtelomeric regions despite the wide-ranging impact of telomeres. Emerging work in two distinct aspects offers opportunities to bridge this gap. First, telomere-binding factors were found with non-telomeric functions. Second, locally induced DNA secondary structures called G-quadruplexes are notably abundant in telomeres, and gene regulatory regions genome wide. Many telomeric factors bind to G-quadruplexes for non-telomeric functions. Here we discuss a more general model of how telomeres impact the non-telomeric genome - through factors that associate at telomeres and genome wide - and influence cell-intrinsic functions, particularly aging, cancer, and pluripotency.
Collapse
Affiliation(s)
- Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jean-Louis Mergny
- Institute of Biophysics of the CAS, v.v.i. Královopolská 135, 612 65 Brno, Czech Republic; Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; GNR Knowledge Centre for Genome and Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India.
| |
Collapse
|
19
|
Li C, Yin Z, Xiao R, Huang B, Cui Y, Wang H, Xiang Y, Wang L, Lei L, Ye J, Li T, Zhong Y, Guo F, Xia Y, Fang P, Liang K. G-quadruplexes sense natural porphyrin metabolites for regulation of gene transcription and chromatin landscapes. Genome Biol 2022; 23:259. [PMID: 36522639 PMCID: PMC9753424 DOI: 10.1186/s13059-022-02830-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND G-quadruplexes (G4s) are unique noncanonical nucleic acid secondary structures, which have been proposed to physically interact with transcription factors and chromatin remodelers to regulate cell type-specific transcriptome and shape chromatin landscapes. RESULTS Based on the direct interaction between G4 and natural porphyrins, we establish genome-wide approaches to profile where the iron-liganded porphyrin hemin can bind in the chromatin. Hemin promotes genome-wide G4 formation, impairs transcription initiation, and alters chromatin landscapes, including decreased H3K27ac and H3K4me3 modifications at promoters. Interestingly, G4 status is not involved in the canonical hemin-BACH1-NRF2-mediated enhancer activation process, highlighting an unprecedented G4-dependent mechanism for metabolic regulation of transcription. Furthermore, hemin treatment induces specific gene expression profiles in hepatocytes, underscoring the in vivo potential for metabolic control of gene transcription by porphyrins. CONCLUSIONS These studies demonstrate that G4 functions as a sensor for natural porphyrin metabolites in cells, revealing a G4-dependent mechanism for metabolic regulation of gene transcription and chromatin landscapes, which will deepen our knowledge of G4 biology and the contribution of cellular metabolites to gene regulation.
Collapse
Affiliation(s)
- Conghui Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhinang Yin
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ruijing Xiao
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Beili Huang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yali Cui
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Honghong Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ying Xiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lingrui Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lingyu Lei
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaqin Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Tianyu Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Youquan Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fangteng Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuchen Xia
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China
| | - Pingping Fang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Kaiwei Liang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, China.
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
20
|
Novel Planar Pt(II) Cyclometallated Cytotoxic Complexes with G-Quadruplex Stabilisation and Luminescent Properties. Int J Mol Sci 2022; 23:ijms231810469. [PMID: 36142379 PMCID: PMC9499473 DOI: 10.3390/ijms231810469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Herein is described the development of a series of novel quadruplex DNA (QDNA)-stabilising cyclometallated square–planar metal complexes (CMCs). Melting experiments using quadruplex DNA (QDNA) demonstrated that interactions with the complexes increased the melting temperature by up to 19 °C. This QDNA stabilisation was determined in two of the major G-quadruplex structures formed in the human c-MYC promoter gene (c-MYC) and a human telomeric repeat sequence (H-Telo). The CMCs were found to stabilise H-telo more strongly than c-MYC, and the CMCs with the highest cytotoxic effect had a low–moderate correlation between H-telo binding capacity and cytotoxicity (R2 values up to 10 times those of c-MYC). The melting experiments further revealed that the stabilisation effect was altered depending on whether the CMC was introduced before or after the formation of QDNA. All CMCs’ GI50 values were comparable or better than cisplatin in human cancer cell lines HT29, U87, MCF-7, H460, A431, Du145, BE2-C, SJ-G2, MIA, and ADDP. Complexes 6, 7, and 9 were significantly more cytotoxic than cisplatin in all cell lines tested and had good to moderate selectivity indices, 1.7–4.5 in MCF10A/MCF-7. The emission quantum yields were determined to be relatively high (up to 0.064), and emission occurred outside cellular autofluorescence, meaning CMC fluorescence is ideal for in vitro analyses.
Collapse
|
21
|
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer 2022; 22:515-532. [PMID: 35790854 DOI: 10.1038/s41568-022-00490-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
Cancer cells establish replicative immortality by activating a telomere-maintenance mechanism (TMM), be it telomerase or the alternative lengthening of telomeres (ALT) pathway. Targeting telomere maintenance represents an intriguing opportunity to treat the vast majority of all cancer types. Whilst telomerase inhibitors have historically been heralded as promising anticancer agents, the reality has been more challenging, and there are currently no therapeutic options for cancer types that use ALT despite their aggressive nature and poor prognosis. In this Review, we discuss the mechanistic differences between telomere maintenance by telomerase and ALT, the current methods used to detect each mechanism, the utility of these tests for clinical diagnosis, and recent developments in the therapeutic strategies being employed to target both telomerase and ALT. We present notable developments in repurposing established therapeutic agents and new avenues that are emerging to target cancer types according to which TMM they employ. These opportunities extend beyond inhibition of telomere maintenance, by finding and exploiting inherent weaknesses in the telomeres themselves to trigger rapid cellular effects that lead to cell death.
Collapse
Affiliation(s)
- Jixuan Gao
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
22
|
Apiratikul N, Sriklung K, Dolsophon K, Thamvapee P, Watanapokasin R, Yingyongnarongkul B, Niyomtham N, Bremner JB, Watanavetch P, Samosorn S. Enhancing Anticancer Potency of a 13-Substituted Berberine Derivative with Cationic Liposomes. Chem Pharm Bull (Tokyo) 2022; 70:420-426. [PMID: 35342147 DOI: 10.1248/cpb.c21-01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cationic liposomal formulations of the telomeric G-quadruplex stabilizing ligand, 13-(2-naphthylmethoxy)berberine bromide (1), have been developed with the purpose of delivering 1 into the nucleus of cancer cells for potential telomere targeting. Berberine derivative 1 was encapsulated in various cationic lipids 2-4 by the thin film evaporation method; these lipids are cationic after amine protonation. The most appropriate liposomal berberine formulation was that of 1 and the cholesterol derived cationic lipid 4 in a weight ratio of 1:20 with 76.5% encapsulation efficiency of 1. Cellular uptake studies in the HeLa and HT-29 cancer cells line showed that the liposomal berberine derivative uptake in the cells was higher and more stable than for berberine derivative 1 alone while free 1 was completely decomposed in the cells within 60 min exposure to the cells. Anticancer activity of the liposomal berberine derivative 1 based on 4 was greater than that for the free berberine derivative 1 in the MCF-7, HeLa and HT-29 cell line by 2.3-, 4.9- and 5.3-fold, respectively, and also, interestingly, superior to the anticancer drug doxorubicin against the HT29 cancer cell line.
Collapse
Affiliation(s)
- Nuttapon Apiratikul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| | - Kanlayanee Sriklung
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University
| | - Kulvadee Dolsophon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| | | | | | - Boonek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaenng University
| | | | - John B Bremner
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong
| | - Petcharat Watanavetch
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| |
Collapse
|
23
|
Mooney DT, Donkin BDT, Demirel N, Moore PR, Lee AL. Direct C-H Functionalization of Phenanthrolines: Metal- and Light-Free Dicarbamoylations. J Org Chem 2021; 86:17282-17293. [PMID: 34792370 DOI: 10.1021/acs.joc.1c02425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A direct method for C-H dicarbamoylations of phenanthrolines has been developed, which is capable of directly installing primary, secondary as well as tertiary amides. This is a significant improvement on the previous direct method, which was limited to primary amides. The metal-, light-, and catalyst-free Minisci-type reaction is cheap, operationally simple, and scalable. We demonstrate that the step efficiency toward dicarbamoylated phenanthroline targets can now be significantly improved.
Collapse
Affiliation(s)
- David T Mooney
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, U.K
| | - Benjamin D T Donkin
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, U.K
| | - Nemrud Demirel
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, U.K
| | - Peter R Moore
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Ai-Lan Lee
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, U.K
| |
Collapse
|
24
|
Zhu Z, Tran H, Mathahs MM, Fink BD, Albert JA, Moninger TO, Meier JL, Li M, Schmidt WN. Zinc protoporphyrin binding to telomerase complexes and inhibition of telomerase activity. Pharmacol Res Perspect 2021; 9:e00882. [PMID: 34747573 PMCID: PMC8573827 DOI: 10.1002/prp2.882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Zinc protoporphyrin (ZnPP), a naturally occurring metalloprotoporphyrin (MPP), is currently under development as a chemotherapeutic agent although its mechanism is unclear. When tested against other MPPs, ZnPP was the most effective DNA synthesis and cellular proliferation inhibitor while promoting apoptosis in telomerase positive but not telomerase negative cells. Concurrently, ZnPP down-regulated telomerase expression and was the best overall inhibitor of telomerase activity in intact cells and cellular extracts with IC50 and EC50 values of ca 2.5 and 6 µM, respectively. The natural fluorescence properties of ZnPP enabled direct imaging in cellular fractions using non-denaturing agarose gel electrophoresis, western blots, and confocal fluorescence microscopy. ZnPP localized to large cellular complexes (>600 kD) that contained telomerase and dysskerin as confirmed with immunocomplex mobility shift, immunoprecipitation, and immunoblot analyses. Confocal fluorescence studies showed that ZnPP co-localized with telomerase reverse transcriptase (TERT) and telomeres in the nucleus of synchronized S-phase cells. ZnPP also co-localized with TERT in the perinuclear regions of log phase cells but did not co-localize with telomeres on the ends of metaphase chromosomes, a site known to be devoid of telomerase complexes. Overall, these results suggest that ZnPP does not bind to telomeric sequences per se, but alternatively, interacts with other structural components of the telomerase complex to inhibit telomerase activity. In conclusion, ZnPP actively interferes with telomerase activity in neoplastic cells, thus promoting pro-apoptotic and anti-proliferative properties. These data support further development of natural or synthetic protoporphyrins for use as chemotherapeutic agents to augment current treatment protocols for neoplastic disease.
Collapse
Affiliation(s)
- Zhaowen Zhu
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
- Department of Internal MedicineRoy G. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Huy Tran
- Department of Internal MedicineRoy G. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Meleah M. Mathahs
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| | - Brian D. Fink
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| | - John A. Albert
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| | - Thomas O. Moninger
- Central Microscopy Research Facility Roy G. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Jeffery L. Meier
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
- Department of Internal MedicineRoy G. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Ming Li
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
| | - Warren N. Schmidt
- Department of Internal Medicine and Research ServiceVeterans Affairs Medical CenterIowa CityIowaUSA
- Department of Internal MedicineRoy G. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
25
|
Cheng Y, Zhang Y, You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021; 11:1579. [PMID: 34827577 PMCID: PMC8615981 DOI: 10.3390/biom11111579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplexes (G4s) are stable secondary nucleic acid structures that play crucial roles in many fundamental biological processes. The folding/unfolding dynamics of G4 structures are associated with the replication and transcription regulation functions of G4s. However, many DNA G4 sequences can adopt a variety of topologies and have complex folding/unfolding dynamics. Determining the dynamics of G4s and their regulation by proteins remains challenging due to the coexistence of multiple structures in a heterogeneous sample. Here, in this mini-review, we introduce the application of single-molecule force-spectroscopy methods, such as magnetic tweezers, optical tweezers, and atomic force microscopy, to characterize the polymorphism and folding/unfolding dynamics of G4s. We also briefly introduce recent studies using single-molecule force spectroscopy to study the molecular mechanisms of G4-interacting proteins.
Collapse
Affiliation(s)
| | | | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.Z.)
| |
Collapse
|
26
|
Zell J, Duskova K, Chouh L, Bossaert M, Chéron N, Granzhan A, Britton S, Monchaud D. Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Res 2021; 49:10275-10288. [PMID: 34551430 PMCID: PMC8501980 DOI: 10.1093/nar/gkab796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA is intrinsically dynamic and folds transiently into alternative higher-order structures such as G-quadruplexes (G4s) and three-way DNA junctions (TWJs). G4s and TWJs can be stabilised by small molecules (ligands) that have high chemotherapeutic potential, either as standalone DNA damaging agents or combined in synthetic lethality strategies. While previous approaches have claimed to use ligands that specifically target either G4s or TWJs, we report here on a new approach in which ligands targeting both TWJs and G4s in vitro demonstrate cellular effects distinct from that of G4 ligands, and attributable to TWJ targeting. The DNA binding modes of these new, dual TWJ-/G4-ligands were studied by a panel of in vitro methods and theoretical simulations, and their cellular properties by extensive cell-based assays. We show here that cytotoxic activity of TWJ-/G4-ligands is mitigated by the DNA damage response (DDR) and DNA topoisomerase 2 (TOP2), making them different from typical G4-ligands, and implying a pivotal role of TWJs in cells. We designed and used a clickable ligand, TrisNP-α, to provide unique insights into the TWJ landscape in cells and its modulation upon co-treatments. This wealth of data was exploited to design an efficient synthetic lethality strategy combining dual ligands with clinically relevant DDR inhibitors.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Katerina Duskova
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Leïla Chouh
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Madeleine Bossaert
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - Nicolas Chéron
- Pasteur, Département de chimie, École Normale Supérieure (ENS), CNRS UMR8640, PSL Research University, Sorbonne Université, 75005 Paris, France
| | - Anton Granzhan
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
27
|
Chatain J, Hatem G, Delagoutte E, Riou JF, Alberti P, Saintomé C. Multiple hPOT1-TPP1 cooperatively unfold contiguous telomeric G-quadruplexes proceeding from 3' toward 5', a feature due to a 3'-end binding preference and to structuring of telomeric DNA. Nucleic Acids Res 2021; 49:10735-10746. [PMID: 34534331 PMCID: PMC8501996 DOI: 10.1093/nar/gkab768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/04/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Telomeres are DNA repeated sequences that associate with shelterin proteins and protect the ends of eukaryotic chromosomes. Human telomeres are composed of 5'TTAGGG repeats and ends with a 3' single-stranded tail, called G-overhang, that can be specifically bound by the shelterin protein hPOT1 (human Protection of Telomeres 1). In vitro studies have shown that the telomeric G-strand can fold into stable contiguous G-quadruplexes (G4). In the present study we investigated how hPOT1, in complex with its shelterin partner TPP1, binds to telomeric sequences structured into contiguous G4 in potassium solutions. We observed that binding of multiple hPOT1-TPP1 preferentially proceeds from 3' toward 5'. We explain this directionality in terms of two factors: (i) the preference of hPOT1-TPP1 for the binding site situated at the 3' end of a telomeric sequence and (ii) the cooperative binding displayed by hPOT1-TPP1 in potassium. By comparing binding in K+ and in Li+, we demonstrate that this cooperative behaviour does not stem from protein-protein interactions, but from structuring of the telomeric DNA substrate into contiguous G4 in potassium. Our study suggests that POT1-TPP1, in physiological conditions, might preferentially cover the telomeric G-overhang starting from the 3'-end and proceeding toward 5'.
Collapse
Affiliation(s)
- Jean Chatain
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France
| | - Georges Hatem
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France
| | - Emmanuelle Delagoutte
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France
| | - Jean-François Riou
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France
| | - Patrizia Alberti
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France
| | - Carole Saintomé
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France.,Sorbonne Université, UFR927, F-75005 Paris, France
| |
Collapse
|
28
|
Seimiya H, Nagasawa K, Shin-Ya K. Chemical targeting of G-quadruplexes in telomeres and beyond for molecular cancer therapeutics. J Antibiot (Tokyo) 2021; 74:617-628. [PMID: 34285374 DOI: 10.1038/s41429-021-00454-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
G-quadruplexes (G4s) are higher-order structures formed by guanine-rich sequences of nucleic acids, such as the telomeric 5'-TTAGGG-3'/5'-UUAGGG-3' repeats and those in gene regulatory regions. G4s regulate various biological events, including replication, transcription, and translation. Imbalanced G4 dynamics is associated with diseases, such as cancer and neurodegenerative diseases. Telomestatin is a natural macrocyclic compound derived from Streptomyces anulatus 3533-SV4. It interacts with the guanine quartet via π-π stacking and potently stabilizes G4. Because G4 stabilization at the telomeric repeat inhibits the telomere-synthesizing enzyme telomerase, telomestatin was originally identified as a telomerase inhibitor. Whereas non-toxic doses of telomestatin induce gradual shortening of telomeres and eventual crisis in human cancer cells, higher doses trigger prompt replication stress and DNA damage responses, resulting in acute cell death. Suppression of the transcription and translation of G4-containing genes is also implicated in the anticancer effects of telomestatin. Because telomestatin is rare, labile, and insoluble, synthetic oxazole telomestatin derivatives have been developed and verified for their therapeutic efficacies in preclinical cancer models. Furthermore, a variety of G4-stabilizing compounds have been reported as promising seeds for molecular cancer therapeutics. To improve the design of future clinical studies, it will be important to identify predictive biomarkers of drug efficacy.
Collapse
Affiliation(s)
- Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Technology Research Association for Next Generation Natural Products Chemistry, Tokyo, Japan
| |
Collapse
|
29
|
Li C, Wang H, Yin Z, Fang P, Xiao R, Xiang Y, Wang W, Li Q, Huang B, Huang J, Liang K. Ligand-induced native G-quadruplex stabilization impairs transcription initiation. Genome Res 2021; 31:1546-1560. [PMID: 34400476 PMCID: PMC8415369 DOI: 10.1101/gr.275431.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
G-quadruplexes (G4s) are noncanonical DNA secondary structures formed through the self-association of guanines, and G4s are distributed widely across the genome. G4 participates in multiple biological processes including gene transcription, and G4-targeted ligands serve as potential therapeutic agents for DNA-targeted therapies. However, genome-wide studies of the exact roles of G4s in transcriptional regulation are still lacking. Here, we establish a sensitive G4-CUT&Tag method for genome-wide profiling of native G4s with high resolution and specificity. We find that native G4 signals are cell type–specific and are associated with transcriptional regulatory elements carrying active epigenetic modifications. Drug-induced promoter-proximal RNA polymerase II pausing promotes nearby G4 formation. In contrast, G4 stabilization by G4-targeted ligands globally reduces RNA polymerase II occupancy at gene promoters as well as nascent RNA synthesis. Moreover, ligand-induced G4 stabilization modulates chromatin states and impedes transcription initiation via inhibition of general transcription factors loading to promoters. Together, our study reveals a reciprocal genome-wide regulation between native G4 dynamics and gene transcription, which will deepen our understanding of G4 biology toward therapeutically targeting G4s in human diseases.
Collapse
Affiliation(s)
- Conghui Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honghong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhinang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Pingping Fang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ruijing Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.,Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Xiang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wen Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiuzi Li
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Beili Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jian Huang
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.,Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.,Research Center for Medicine and Structural Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
30
|
Mitteaux J, Lejault P, Wojciechowski F, Joubert A, Boudon J, Desbois N, Gros CP, Hudson RHE, Boulé JB, Granzhan A, Monchaud D. Identifying G-Quadruplex-DNA-Disrupting Small Molecules. J Am Chem Soc 2021; 143:12567-12577. [PMID: 34346684 DOI: 10.1021/jacs.1c04426] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The quest for small molecules that strongly bind to G-quadruplex-DNA (G4), so-called G4 ligands, has invigorated the G4 research field from its very inception. Massive efforts have been invested to discover or rationally design G4 ligands, evaluate their G4-interacting properties in vitro through a series of now widely accepted and routinely implemented assays, and use them as innovative chemical biology tools to interrogate cellular networks that might involve G4s. In sharp contrast, only uncoordinated efforts aimed at developing small molecules that destabilize G4s have been invested to date, even though it is now recognized that such molecular tools would have tremendous application in neurobiology as many genetic and age-related diseases are caused by an overrepresentation of G4s. Herein, we report on our efforts to develop in vitro assays to reliably identify molecules able to destabilize G4s. This workflow comprises the newly designed G4-unfold assay, adapted from the G4-helicase assay implemented with Pif1, as well as a series of biophysical and biochemical techniques classically used to study G4/ligand interactions (CD, UV-vis, PAGE, and FRET-melting), and a qPCR stop assay, adapted from a Taq-based protocol recently used to identify G4s in the genomic DNA of Schizosaccharomyces pombe. This unique, multipronged approach leads to the characterization of a phenylpyrrolocytosine (PhpC)-based G-clamp analog as a prototype of G4-disrupting small molecule whose properties are validated through many different and complementary in vitro evaluations.
Collapse
Affiliation(s)
- Jérémie Mitteaux
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Pauline Lejault
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Filip Wojciechowski
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Alexandra Joubert
- Genome Structure and Instability Laboratory, CNRS UMR 7196, INSERM U1154, National Museum of Natural History, Alliance Sorbonne Université, 75005 Paris, France
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, ICB CNRS UMR 6303, UBFC, 21078 Dijon, France
| | - Nicolas Desbois
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Claude P Gros
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Jean-Baptiste Boulé
- Genome Structure and Instability Laboratory, CNRS UMR 7196, INSERM U1154, National Museum of Natural History, Alliance Sorbonne Université, 75005 Paris, France
| | - Anton Granzhan
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France.,Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| |
Collapse
|
31
|
Cadoni E, De Paepe L, Manicardi A, Madder A. Beyond small molecules: targeting G-quadruplex structures with oligonucleotides and their analogues. Nucleic Acids Res 2021; 49:6638-6659. [PMID: 33978760 PMCID: PMC8266634 DOI: 10.1093/nar/gkab334] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
32
|
Banerjee N, Panda S, Chatterjee S. Frontiers in G-Quadruplex Therapeutics in Cancer: Selection of Small Molecules, Peptides and Aptamers. Chem Biol Drug Des 2021; 99:1-31. [PMID: 34148284 DOI: 10.1111/cbdd.13910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
G-quadruplex, a unique secondary structure in nucleic acids found throughout human genome, elicited widespread interest in the field of therapeutic research. Being present in key regulatory regions of oncogenes, RNAs and telomere, G-quadruplex structure regulates transcription, translation, splicing etc. Changes in its structure and stability leads to differential expression of oncogenes causing cancer. Thus, targeting G-Quadruplex structures with small molecules/other biologics has shown elevated research interest. Covering previous reports, in this review we try to enlighten the facts on the structural diversity in G-quadruplex ligands aiming to provide newer insights to design first-in-class drugs for the next generation cancer treatment.
Collapse
Affiliation(s)
- Nilanjan Banerjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, India
| | - Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, India
| |
Collapse
|
33
|
Scognamiglio PL, Platella C, Napolitano E, Musumeci D, Roviello GN. From Prebiotic Chemistry to Supramolecular Biomedical Materials: Exploring the Properties of Self-Assembling Nucleobase-Containing Peptides. Molecules 2021; 26:3558. [PMID: 34200901 PMCID: PMC8230524 DOI: 10.3390/molecules26123558] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Peptides and their synthetic analogs are a class of molecules with enormous relevance as therapeutics for their ability to interact with biomacromolecules like nucleic acids and proteins, potentially interfering with biological pathways often involved in the onset and progression of pathologies of high social impact. Nucleobase-bearing peptides (nucleopeptides) and pseudopeptides (PNAs) offer further interesting possibilities related to their nucleobase-decorated nature for diagnostic and therapeutic applications, thanks to their reported ability to target complementary DNA and RNA strands. In addition, these chimeric compounds are endowed with intriguing self-assembling properties, which are at the heart of their investigation as self-replicating materials in prebiotic chemistry, as well as their application as constituents of innovative drug delivery systems and, more generally, as novel nanomaterials to be employed in biomedicine. Herein we describe the properties of nucleopeptides, PNAs and related supramolecular systems, and summarize some of the most relevant applications of these systems.
Collapse
Affiliation(s)
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
- Istituto di Biostrutture e Bioimmagini IBB-CNR, via Tommaso De Amicis 95, I-80145 Naples, Italy
| | | |
Collapse
|
34
|
Krafčík D, Ištvánková E, Džatko Š, Víšková P, Foldynová-Trantírková S, Trantírek L. Towards Profiling of the G-Quadruplex Targeting Drugs in the Living Human Cells Using NMR Spectroscopy. Int J Mol Sci 2021; 22:6042. [PMID: 34205000 PMCID: PMC8199861 DOI: 10.3390/ijms22116042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, the 1H-detected in-cell NMR spectroscopy has emerged as a unique tool allowing the characterization of interactions between nucleic acid-based targets and drug-like molecules in living human cells. Here, we assess the application potential of 1H and 19F-detected in-cell NMR spectroscopy to profile drugs/ligands targeting DNA G-quadruplexes, arguably the most studied class of anti-cancer drugs targeting nucleic acids. We show that the extension of the original in-cell NMR approach is not straightforward. The severe signal broadening and overlap of 1H in-cell NMR spectra of polymorphic G-quadruplexes and their complexes complicate their quantitative interpretation. Nevertheless, the 1H in-cell NMR can be used to identify drugs that, despite strong interaction in vitro, lose their ability to bind G-quadruplexes in the native environment. The in-cell NMR approach is adjusted to a recently developed 3,5-bis(trifluoromethyl)phenyl probe to monitor the intracellular interaction with ligands using 19F-detected in-cell NMR. The probe allows dissecting polymorphic mixture in terms of number and relative populations of individual G-quadruplex species, including ligand-bound and unbound forms in vitro and in cellulo. Despite the probe's discussed limitations, the 19F-detected in-cell NMR appears to be a promising strategy to profile G-quadruplex-ligand interactions in the complex environment of living cells.
Collapse
Affiliation(s)
- Daniel Krafčík
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | | | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
| |
Collapse
|
35
|
Ye SY, Pan CG, Dai YH, Liang GX. Sensitive electrochemiluminescent detection of telomerase activity based on nicking enzyme assisted signal amplification. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Lejault P, Mitteaux J, Sperti FR, Monchaud D. How to untie G-quadruplex knots and why? Cell Chem Biol 2021; 28:436-455. [PMID: 33596431 DOI: 10.1016/j.chembiol.2021.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
For over two decades, the prime objective of the chemical biology community studying G-quadruplexes (G4s) has been to use chemicals to interact with and stabilize G4s in cells to obtain mechanistic interpretations. This strategy has been undoubtedly successful, as demonstrated by recent advances. However, these insights have also led to a fundamental rethinking of G4-targeting strategies: due to the prevalence of G4s in the human genome, transcriptome, and ncRNAome (collectively referred to as the G4ome), and their involvement in human diseases, should we continue developing G4-stabilizing ligands or should we invest in designing molecular tools to unfold G4s? Here, we first focus on how, when, and where G4s fold in cells; then, we describe the enzymatic systems that have evolved to counteract G4 folding and how they have been used as tools to manipulate G4s in cells; finally, we present strategies currently being implemented to devise new molecular G4 unwinding agents.
Collapse
Affiliation(s)
- Pauline Lejault
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France.
| |
Collapse
|
37
|
Zell J, Rota Sperti F, Britton S, Monchaud D. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem Biol 2021; 2:47-76. [PMID: 35340894 PMCID: PMC8885165 DOI: 10.1039/d0cb00151a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022] Open
Abstract
Damaging DNA is a current and efficient strategy to fight against cancer cell proliferation. Numerous mechanisms exist to counteract DNA damage, collectively referred to as the DNA damage response (DDR) and which are commonly dysregulated in cancer cells. Precise knowledge of these mechanisms is necessary to optimise chemotherapeutic DNA targeting. New research on DDR has uncovered a series of promising therapeutic targets, proteins and nucleic acids, with application notably via an approach referred to as combination therapy or combinatorial synthetic lethality. In this review, we summarise the cornerstone discoveries which gave way to the DNA being considered as an anticancer target, and the manipulation of DDR pathways as a valuable anticancer strategy. We describe in detail the DDR signalling and repair pathways activated in response to DNA damage. We then summarise the current understanding of non-B DNA folds, such as G-quadruplexes and DNA junctions, when they are formed and why they can offer a more specific therapeutic target compared to that of canonical B-DNA. Finally, we merge these subjects to depict the new and highly promising chemotherapeutic strategy which combines enhanced-specificity DNA damaging and DDR targeting agents. This review thus highlights how chemical biology has given rise to significant scientific advances thanks to resolutely multidisciplinary research efforts combining molecular and cell biology, chemistry and biophysics. We aim to provide the non-specialist reader a gateway into this exciting field and the specialist reader with a new perspective on the latest results achieved and strategies devised.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS Toulouse France
- Équipe Labellisée la Ligue Contre le Cancer 2018 Toulouse France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| |
Collapse
|
38
|
[Are telomeres and telomerase still relevant targets in oncology?]. Bull Cancer 2020; 108:30-38. [PMID: 33256968 DOI: 10.1016/j.bulcan.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
|
39
|
Wang Y, Cai YJ, Liang RP, Qiu JD. Electrochemical biosensor for telomerase activity assay based on HCR and dual interaction of the poly-adenine DNA with Au electrode and Ce-Ti dioxide nanorods. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Cui H, Zhang L. G-Quadruplexes Are Present in Human Coronaviruses Including SARS-CoV-2. Front Microbiol 2020; 11:567317. [PMID: 33193156 PMCID: PMC7644843 DOI: 10.3389/fmicb.2020.567317] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is one of seven human coronaviruses. G-quadruplexes are intrinsic obstacles to genome replication. Whether G-quadruplexes are present in human coronaviruses is unknown. In the current study, we have predicted that all seven human coronaviruses harbor G-quadruplex sequences. Conserved G-quadruplex sequences in SARS-CoV and SARS-CoV-2 were analyzed and verified by circular dichroism (CD) spectroscopy and Thioflavin T fluorescence assay. Similar to SARS-CoV, SARS-CoV-2 encodes an nsP3 protein, which is predicted to associate with G-quadruplexes. Targeting G-quadruplex sequences in the SARS-CoV-2 genome by G-quadruplex ligands could be a new way to conquer COVID-19.
Collapse
Affiliation(s)
- Haoran Cui
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Leiliang Zhang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
41
|
Liu NN, Ji L, Guo Q, Dai YX, Wu WQ, Guo HL, Lu KY, Li XM, Xi XG. Quantitative and real-time measurement of helicase-mediated intra-stranded G4 unfolding in bulk fluorescence stopped-flow assays. Anal Bioanal Chem 2020; 412:7395-7404. [PMID: 32851458 DOI: 10.1007/s00216-020-02875-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/26/2023]
Abstract
G-Quadruplexes (G4s) are thermodynamically stable, compact, and poorly hydrated structures that pose a potent obstacle for chromosome replication and gene expression, and requiring resolution by helicases in a cell. Bulk stopped-flow fluorescence assays have provided many mechanistic insights into helicase-mediated duplex DNA unwinding. However, to date, detailed studies on intramolecular G-quadruplexes similar or comparable with those used for studying duplex DNA are still lacking. Here, we describe a method for the direct and quantitative measurement of helicase-mediated intramolecular G-quadruplex unfolding in real time. We designed a series of site-specific fluorescently double-labeled intramolecular G4s and screened appropriate substrates to characterize the helicase-mediated G4 unfolding. With the developed method, we determined, for the first time to our best knowledge, the unfolding and refolding constant of G4 (≈ 5 s-1), and other relative parameters under single-turnover experimental conditions in the presence of G4 traps. Our approach not only provides a new paradigm for characterizing helicase-mediated intramolecular G4 unfolding using stopped-flow assays but also offers a way to screen for inhibitors of G4 unfolding helicases as therapeutic drug targets. Graphical abstract.
Collapse
Affiliation(s)
- Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Ji
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Guo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang-Xue Dai
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Qiang Wu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai-Lei Guo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ke-Yu Lu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiao-Mei Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France.
| |
Collapse
|
42
|
Bryan TM. G-Quadruplexes at Telomeres: Friend or Foe? Molecules 2020; 25:molecules25163686. [PMID: 32823549 PMCID: PMC7464828 DOI: 10.3390/molecules25163686] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Telomeres are DNA-protein complexes that cap and protect the ends of linear chromosomes. In almost all species, telomeric DNA has a G/C strand bias, and the short tandem repeats of the G-rich strand have the capacity to form into secondary structures in vitro, such as four-stranded G-quadruplexes. This has long prompted speculation that G-quadruplexes play a positive role in telomere biology, resulting in selection for G-rich tandem telomere repeats during evolution. There is some evidence that G-quadruplexes at telomeres may play a protective capping role, at least in yeast, and that they may positively affect telomere maintenance by either the enzyme telomerase or by recombination-based mechanisms. On the other hand, G-quadruplex formation in telomeric DNA, as elsewhere in the genome, can form an impediment to DNA replication and a source of genome instability. This review summarizes recent evidence for the in vivo existence of G-quadruplexes at telomeres, with a focus on human telomeres, and highlights some of the many unanswered questions regarding the location, form, and functions of these structures.
Collapse
Affiliation(s)
- Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
43
|
Paudel BP, Moye AL, Abou Assi H, El-Khoury R, Cohen SB, Holien JK, Birrento ML, Samosorn S, Intharapichai K, Tomlinson CG, Teulade-Fichou MP, González C, Beck JL, Damha MJ, van Oijen AM, Bryan TM. A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. eLife 2020; 9:56428. [PMID: 32723475 PMCID: PMC7426096 DOI: 10.7554/elife.56428] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Telomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) microscopy and bulk-phase enzymology to propose a mechanism for the resolution and extension of parallel G4 by telomerase. Binding is initiated by the RNA template of telomerase interacting with the G-quadruplex; nucleotide addition then proceeds to the end of the RNA template. It is only through the large conformational change of translocation following synthesis that the G-quadruplex structure is completely unfolded to a linear product. Surprisingly, parallel G4 stabilization with either small molecule ligands or by chemical modification does not always inhibit G4 unfolding and extension by telomerase. These data reveal that telomerase is a parallel G-quadruplex resolvase.
Collapse
Affiliation(s)
- Bishnu P Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Aaron Lavel Moye
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| | - Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Scott B Cohen
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| | - Jessica K Holien
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Monica L Birrento
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Kamthorn Intharapichai
- Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | - Marie-Paule Teulade-Fichou
- Institut Curie, PSL Research University, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, Madrid, Spain
| | - Jennifer L Beck
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Canada
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| |
Collapse
|
44
|
Tan J, Lan L. The DNA secondary structures at telomeres and genome instability. Cell Biosci 2020; 10:47. [PMID: 32257105 PMCID: PMC7104500 DOI: 10.1186/s13578-020-00409-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Telomeric DNA are TTAGGG tandem repeats, which are susceptible for oxidative DNA damage and hotspot regions for formation of DNA secondary structures such as t-loop, D-loop, G-quadruplexes (G4), and R-loop. In the past two decades, unique DNA or RNA secondary structures at telomeres or some specific regions of genome have become promising therapeutic targets. G-quadruplex and R-loops at telomeres or transcribed regions of genome have been considered as the potential targets for cancer therapy. Here we discuss the potentials to target the secondary structures (G4s and R-loops) in genome as therapy approaches.
Collapse
Affiliation(s)
- Jun Tan
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Li Lan
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115 USA
| |
Collapse
|
45
|
Betori RC, Liu Y, Mishra RK, Cohen SB, Kron SJ, Scheidt KA. Targeted Covalent Inhibition of Telomerase. ACS Chem Biol 2020; 15:706-717. [PMID: 32017522 DOI: 10.1021/acschembio.9b00945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Telomerase is a ribonuceloprotein complex responsible for maintaining telomeres and protecting chromosomal integrity. The human telomerase reverse transcriptase (hTERT) is expressed in ∼90% of cancer cells where it confers the capacity for limitless proliferation. Along with its established role in telomere lengthening, telomerase also serves noncanonical extra-telomeric roles in oncogenic signaling, resistance to apoptosis, and enhanced DNA damage response. We report a new class of natural-product-inspired covalent inhibitors of telomerase that target the catalytic active site.
Collapse
Affiliation(s)
- Rick C. Betori
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yue Liu
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rama K. Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, United States
| | - Scott B. Cohen
- Children’s Medical Research Institute, University of Sydney, Westmead, New South Wales 2145, Australia
| | - Stephen J. Kron
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
46
|
Qin QP, Wang ZF, Huang XL, Tan MX, Luo ZH, Wang SL, Zou BQ, Liang H. Two telomerase-targeting Pt(ii) complexes of jatrorrhizine and berberine derivatives induce apoptosis in human bladder tumor cells. Dalton Trans 2020; 48:15247-15254. [PMID: 31577283 DOI: 10.1039/c9dt02381j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two novel Pt(ii) complexes, [Pt(B-TFA)Cl]Cl (Pt1) and [Pt(J-TFA)Cl]Cl (Pt2) with jatrorrhizine and berberine derivatives (B-TFA and J-TFA) were first prepared as desirable luminescent agents for cellular applications and potent telomerase inhibitors, which can induce bladder T-24 tumor cell apoptosis by targeting telomerase, together with induction of mitochondrial dysfunction, telomere DNA damage and cell-cycle arrest. Importantly, T-24 tumor inhibition rate (TIR) was 50.4% for Pt2, which was higher than that of Pt1 (26.4%) and cisplatin (37.1%). Taken together, all the results indicated that jatrorrhizine and berberine derivatives Pt1 and Pt2 show low toxicity and could be novel Pt-based anti-cancer drug candidates.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jodoin R, Carrier JC, Rivard N, Bisaillon M, Perreault JP. G-quadruplex located in the 5'UTR of the BAG-1 mRNA affects both its cap-dependent and cap-independent translation through global secondary structure maintenance. Nucleic Acids Res 2019; 47:10247-10266. [PMID: 31504805 PMCID: PMC6821271 DOI: 10.1093/nar/gkz777] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/19/2022] Open
Abstract
The anti-apoptotic BAG-1 protein isoforms are known to be overexpressed in colorectal tumors and are considered to be potential therapeutic targets. The isoforms are derived from alternative translation initiations occuring at four in-frame start codons of a single mRNA transcript. Its 5′UTR also contains an internal ribosome entry site (IRES) regulating the cap-independent translation of the transcript. An RNA G-quadruplex (rG4) is located at the 5′end of the BAG-1 5′UTR, upstream of the known cis-regulatory elements. Herein, we observed that the expression of BAG-1 isoforms is post-transcriptionally regulated in colorectal cancer cells and tumors, and that stabilisation of the rG4 by small molecules ligands reduces the expression of endogenous BAG-1 isoforms. We demonstrated a critical role for the rG4 in the control of both cap-dependent and independent translation of the BAG-1 mRNA in colorectal cancer cells. Additionally, we found an upstream ORF that also represses BAG-1 mRNA translation. The structural probing of the complete 5′UTR showed that the rG4 acts as a steric block which controls the initiation of translation at each start codon of the transcript and also maintains the global 5′UTR secondary structure required for IRES-dependent translation.
Collapse
Affiliation(s)
- Rachel Jodoin
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Julie C Carrier
- Service de Gastro-entérologie, Département de médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nathalie Rivard
- Département d'Anatomie et de Biologie Cellulaire, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
48
|
Thiazole orange – Spermine conjugate: A potent human telomerase inhibitor comparable to BRACO-19. Eur J Med Chem 2019; 175:20-33. [DOI: 10.1016/j.ejmech.2019.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/31/2019] [Accepted: 04/14/2019] [Indexed: 11/17/2022]
|
49
|
Zyner KG, Mulhearn DS, Adhikari S, Martínez Cuesta S, Di Antonio M, Erard N, Hannon GJ, Tannahill D, Balasubramanian S. Genetic interactions of G-quadruplexes in humans. eLife 2019; 8:e46793. [PMID: 31287417 PMCID: PMC6615864 DOI: 10.7554/elife.46793] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/17/2019] [Indexed: 01/20/2023] Open
Abstract
G-quadruplexes (G4) are alternative nucleic acid structures involved in transcription, translation and replication. Aberrant G4 formation and stabilisation is linked to genome instability and cancer. G4 ligand treatment disrupts key biological processes leading to cell death. To discover genes and pathways involved with G4s and gain mechanistic insights into G4 biology, we present the first unbiased genome-wide study to systematically identify human genes that promote cell death when silenced by shRNA in the presence of G4-stabilising small molecules. Many novel genetic vulnerabilities were revealed opening up new therapeutic possibilities in cancer, which we exemplified by an orthogonal pharmacological inhibition approach that phenocopies gene silencing. We find that targeting the WEE1 cell cycle kinase or USP1 deubiquitinase in combination with G4 ligand treatment enhances cell killing. We also identify new genes and pathways regulating or interacting with G4s and demonstrate that the DDX42 DEAD-box helicase is a newly discovered G4-binding protein.
Collapse
Affiliation(s)
- Katherine G Zyner
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Darcie S Mulhearn
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Santosh Adhikari
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Marco Di Antonio
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Nicolas Erard
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Gregory J Hannon
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - David Tannahill
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Shankar Balasubramanian
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
- School of Clinical MedicineUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
50
|
Qin QP, Wang ZF, Wang SL, Luo DM, Zou BQ, Yao PF, Tan MX, Liang H. In vitro and in vivo antitumor activities of three novel binuclear platinum(II) complexes with 4′-substituted-2,2′:6′,2″-terpyridine ligands. Eur J Med Chem 2019; 170:195-202. [DOI: 10.1016/j.ejmech.2019.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
|