1
|
Githaka JM, Kirschenman R, Patel N, Tripathi N, Wang J, Li L, Muranyi H, Pirayeshfard L, Montpetit R, Glubrecht DD, Lerner EP, Perry T, Danial NN, Nation PN, Godbout R, Goping IS. Multiple anti-tumor programs are activated by blocking BAD phosphorylation. Oncogene 2025:10.1038/s41388-025-03420-1. [PMID: 40316741 DOI: 10.1038/s41388-025-03420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
The Bcl-2 family member BAD is a candidate disease modulator because it stimulates apoptosis in a cell context basis and inhibits cell migration during normal mammary gland morphogenesis. This activity depends on 3 key regulatory serines (S75, 99, 118) in the unphosphorylated state. Given that developmental programs are often hijacked in cancer, we hypothesized that BAD would impede breast cancer progression. We generated breast cancer mouse models representing loss-of-function or phosphorylation deficient mutations (PyMT-Bad-/- and PyMT-Bad3SA/3SA, respectively). Preventing BAD phosphorylation significantly decreased breast cancer progression and metastasis. The knock-out phenocopied the control PyMT-Bad+/+ suggesting that phosphorylated BAD protein was inert. Thus, the BAD3SA mutation unmasked latent anti-tumor activity. Indeed, transcriptomics showed PyMT-Bad3SA/3SA activated multiple anti-tumor programs including apoptosis, inflammation, cellular differentiation, and diminished cell migration. This anti-tumor effect associated with clinical survival of breast cancer patients whose tumors had high levels of unphosphorylated BAD. Kinase screens identified ERK as the major BAD kinase in breast cells, and ERK inhibition impeded tumoroid invasion. Our data suggest that unphosphorylated BAD modulates anti-tumor pathways that contribute to excellent patient prognosis. Thus, targeting ERK to dephosphorylate BAD may be an exciting therapeutic opportunity in the future.
Collapse
Affiliation(s)
| | - Raven Kirschenman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Namrata Patel
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Namita Tripathi
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Joy Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Laiji Li
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Heather Muranyi
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Rachel Montpetit
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - E Paul Lerner
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Troy Perry
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - P Nick Nation
- Animal Pathology Services (APS) Ltd., Canmore, AB, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Nabeel Mustafa A, Salih Mahdi M, Ballal S, Chahar M, Verma R, Ali Al-Nuaimi AM, Kumar MR, Kadhim A Al-Hussein R, Adil M, Jasem Jawad M. Netrin-1: Key insights in neural development and disorders. Tissue Cell 2025; 93:102678. [PMID: 39719818 DOI: 10.1016/j.tice.2024.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors. By directing axonal growth cones toward the appropriate targets, netrin-1 is a critical actor in the formation of the intricate architecture of the nervous system. Netrin-1 is believed to be involved in additional biological and pathological processes in addition to its traditional function in neural development. The behavior of a diverse array of cell types is influenced by controlling cell adhesion and movement, which is impacted by netrin-1. It is a molecule of interest in both developmental biology and clinical research because of its involvement in angiogenesis, tumorigenesis, inflammation, and tissue regeneration, as confirmed by recent studies. The therapeutic capability of netrin-1 in disorders such as cancer, neurodegenerative disorders, and cardiovascular diseases warrants significant attention.
Collapse
Affiliation(s)
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bengaluru, Karnataka, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, Rajasthan, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | | | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | | | | | | |
Collapse
|
3
|
Ho Ching Chan B, Hardy H, Requena T, Findlay A, Ioannidis J, Meunier D, Toms M, Moosajee M, Raper A, McGrew MJ, Rainger J. A stable NTN1 fluorescent reporter chicken reveals cell specific molecular signatures during optic fissure closure. Sci Rep 2025; 15:10096. [PMID: 40128351 PMCID: PMC11933247 DOI: 10.1038/s41598-025-94589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
NTN1 is expressed in a wide range of developmental tissues and is essential for normal development. Here we describe the generation of a Netrin-1 reporter chicken line (NTN1-T2A-eGFP) by targeting green fluorescent protein into the NTN1 locus using CRISPR/Cas9 methodology. Our strategy gave 100% transmission of heterozygous (NTN1T2A - eGFP/+) embryos in which GFP localisation faithfully replicated endogenous NTN1 expression in the optic fissure and neural tube floorplate. Furthermore, all NTN1T2A - eGFP/+ embryos and hatched birds appeared phenotypically normal. We applied this resource to a pertinent developmental context - coloboma is a structural eye malformation characterised by failure of epithelial fusion during optic fissure closure (OFC) and NTN1 is specifically expressed in fusion pioneer cells at the edges of the optic fissure. We therefore optimised the isolation of GFP expressing cells from embryonic NTN1T2A - eGFP/+ eyes using spectral fluorescence cell-sorting and applied transcriptomic profiling of pioneer cells, which revealed multiple new OFC markers and novel pathways for developmental tissue fusion and coloboma. This work provides a novel fluorescent NTN1 chicken reporter line with broad experimental utility and is the first to directly molecularly characterise pioneer cells during OFC.
Collapse
Affiliation(s)
- Brian Ho Ching Chan
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Holly Hardy
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Teresa Requena
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Amy Findlay
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Jason Ioannidis
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Dominique Meunier
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
- National Avian Research Facility, The Roslin Institute, Greenwood Building, Midlothian, EH25 9RG, UK
| | - Maria Toms
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
- Francis Crick Institute, London, NW1 1AT, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Anna Raper
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
- Bioimaging and Flow Cytometry Facility, The Roslin Institute, Midlothian, EH25 9RG, UK
| | - Mike J McGrew
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK
- National Avian Research Facility, The Roslin Institute, Greenwood Building, Midlothian, EH25 9RG, UK
| | - Joe Rainger
- The Division of Functional Genetics, The Roslin Institute, Midlothian, EH25 9RG, UK.
| |
Collapse
|
4
|
Nakayama H, Murakami A, Nishida-Fukuda H, Fukuda S, Matsugi E, Nakahara M, Kusumoto C, Kamei Y, Higashiyama S. Semaphorin 3F inhibits breast cancer metastasis by regulating the Akt-mTOR and TGFβ signaling pathways via neuropilin-2. Sci Rep 2025; 15:7394. [PMID: 40033046 PMCID: PMC11876635 DOI: 10.1038/s41598-025-91559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Class 3 semaphorins are axon guidance factors implicated in tumor and vascular biology, including invasive activity. Recent studies indicate that semaphorin 3F (SEMA3F) is a potent inhibitor of metastasis; however, its functional role in breast cancer is not fully understood. We found that exogenous SEMA3F inhibited phosphorylation of Akt and mTOR downstream kinase S6K in MDA-MB-231 and MCF7 cells via neuropilin-2 (NRP2) receptor. We also examined the effect of SEMA3F on breast cancer progression in vivo allograft model. The mouse 4T1 breast cancer cells or 4T1 cells overexpressing SEMA3F (4T1-SEMA3F) were implanted into mammary fat pads of Balb/c mice. We found that tumor growth was significantly inhibited in 4T1-SEMA3F injected mice compared to controls. Immunostaining revealed a remarkable reduction in the expression of vimentin, a mesenchymal cell marker, in 4T1-SEMA3F tumors. We also observed that mice injected with 4T1-SEMA3F cells had minimal metastasis to the liver and lungs, compared to controls. As a novel feature, SEMA3F suppressed TGFβ-induced Smad2 phosphorylation, resulting in the inhibition of cell invasiveness and epithelial-to-mesenchymal transition (EMT) in breast cancer. Consistently, a significant correlation between reduced expression of SEMA3F and poor outcome in patients with breast cancer. We conclude that SEMA3F acts as a dual inhibitor of the Akt-mTOR and TGFβ signaling pathways; thus, it has the potential to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, 739-2695, Hiroshima, Japan.
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Toon, 791-0295, Ehime, Japan.
| | - Akari Murakami
- Breast Center, Ehime University Hospital, Toon, 791-0295, Ehime, Japan
| | - Hisayo Nishida-Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8650, Aichi, Japan
| | - Shinji Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8650, Aichi, Japan
| | - Erina Matsugi
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, 739-2695, Hiroshima, Japan
| | - Masako Nakahara
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, 739-2695, Hiroshima, Japan
| | - Chiaki Kusumoto
- Department of Medical Science and Technology, Hiroshima International University, Higashi-hiroshima, 739-2695, Hiroshima, Japan
| | - Yoshiaki Kamei
- Breast Center, Ehime University Hospital, Toon, 791-0295, Ehime, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Toon, 791-0295, Ehime, Japan.
- Department of Oncogenesis and Growth Regulation, Osaka International Cancer Institute, Chuo-ku, Osaka, 541-8567, Japan.
| |
Collapse
|
5
|
Wang JF, Wang MC, Jiang LL, Lin NM. The neuroscience in breast cancer: Current insights and clinical opportunities. Heliyon 2025; 11:e42293. [PMID: 39975839 PMCID: PMC11835589 DOI: 10.1016/j.heliyon.2025.e42293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/21/2025] Open
Abstract
The involvement of nerves in the development of breast cancer has emerged as a significant factor. Interaction between the nervous system and breast cancer can influence tumor initiation, growth, invasion, metastasis, reverse resistance to drugs, promote inflammation in tumors, and impair the immune system's ability to combat cancer. This review examined the intricate relationship linking the nervous system with breast cancer, emphasizing both central and peripheral aspects of the nervous system. Moreover, we reviewed neural cell factors and their impact on breast cancer progression, alongside the interactions between nerves and immunology, microbiota in breast cancer. Furthermore, the study discussed the potential of nerves as biomarkers for diagnosing and prognosticating breast cancer, and evaluated prospects for improving chemotherapy and immunotherapy therapeutic outcomes in breast cancer treatment. We hope to provide a deeper understanding of the neurobiological underpinnings of breast cancer and pave the way for the discovery of innovative therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Jia-feng Wang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Meng-chuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, China
| | - Lei-lei Jiang
- The First Affiliated Hospital of Anhui University of Chinese Medicine,Hefei, 230031, China
| | - Neng-ming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| |
Collapse
|
6
|
Pearson JD, Huang K, Dela Pena LG, Ducarouge B, Mehlen P, Bremner R. Netrin-1 and UNC5B Cooperate with Integrins to Mediate YAP-Driven Cytostasis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2374-2383. [PMID: 39172021 PMCID: PMC11384508 DOI: 10.1158/2767-9764.crc-24-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Opposite expression and pro- or anti-cancer function of YAP and its paralog TAZ/WWTR1 stratify cancers into binary YAPon and YAPoff classes. These transcriptional coactivators are oncogenic in YAPon cancers. In contrast, YAP/TAZ are silenced epigenetically along with their integrin and extracellular matrix adhesion target genes in neural and neuroendocrine YAPoff cancers (e.g., small cell lung cancer, retinoblastoma). Forced YAP/TAZ expression induces these targets, causing cytostasis in part through Integrin-αV/β5, independent of the integrin-binding RGD ligand. Other effectors of this anticancer YAP function are unknown. Here, using clustered regularly interspaced short palindromic repeats (CRISPR) screens, we link the Netrin receptor UNC5B to YAP-induced cytostasis in YAPoff cancers. Forced YAP expression induces UNC5B through TEAD DNA-binding partners, as either TEAD1/4-loss or a YAP mutation that disrupts TEAD-binding (S94A) blocks, whereas a TEAD-activator fusion (TEAD(DBD)-VP64) promotes UNC5B induction. Ectopic YAP expression also upregulates UNC5B relatives and their netrin ligands in YAPoff cancers. Netrins are considered protumorigenic, but knockout and peptide/decoy receptor blocking assays reveal that in YAPoff cancers, UNC5B and Netrin-1 can cooperate with integrin-αV/β5 to mediate YAP-induced cytostasis. These data pinpoint an unsuspected Netrin-1/UNC5B/integrin-αV/β5 axis as a critical effector of YAP tumor suppressor activity. SIGNIFICANCE Netrins are widely perceived as procancer proteins; however, we uncover an anticancer function for Netrin-1 and its receptor UNC5B.
Collapse
Affiliation(s)
- Joel D. Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, Canada.
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Paul Albrechtsen Research Institute CancerCare Manitoba & Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, Canada.
| | - Louis G. Dela Pena
- Paul Albrechtsen Research Institute CancerCare Manitoba & Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.
| | | | - Patrick Mehlen
- Netris Pharma, Centre Léon Bérard 28 Rue Laennec, Lyon, France.
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée ‘La Ligue’, LabEX DEVweCAN, Centre de Recherche en Cancérologie de Lyon, Lyon, France.
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, Canada.
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Ucuncu Kefeli A, Yaprak Bayrak B, Betul Tunce E, Vural C, Suyusal IH, Kefeli U, Aksu MG. Expression of netrin-1 in uterine serous carcinoma and its association with prognosis. Int J Gynaecol Obstet 2024; 166:1337-1344. [PMID: 38588254 DOI: 10.1002/ijgo.15513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND/OBJECTIVES At present, there are few biomarkers used to predict the prognosis of uterine serous carcinoma (USC). Netrin-1 may be a promising biomarker candidate. We investigated netrin-1 expression in USC tissues and healthy endometrial tissues to determine its relevance to disease prognosis. MATERIALS AND METHODS Netrin-1 expression was examined in the tissues of 48 patients with USC and 30 patients with healthy benign endometrial tissues via immunohistochemistry. RESULTS None of the healthy tissues were stained with netrin-1. In tumor tissues, the overall positivity rate of netrin-1 was 75%, detected as high expression in 17 patients (35%) and low in 19 (40%). Patients who had tumors with no netrin-1 expression (n = 12) had a median overall survival (OS) of 60.0 months (95% confidence interval [CI], 47-98), whereas patients who had tumors with low to strong netrin-1 expression (n = 33) had a lower median OS of 50 months, but the difference was not statistically significant (95% CI, 58-108; P = 0.531). Disease-free survival (DFS) was not statistically significant between the groups (95% CI, 67.7-115.9; P = 0.566). Patients with a tumor diameter ≥2 cm had higher netrin-1 expression than those with a tumor diameter of 2 cm (P = 0.027). We did not find any difference in overall and DFS when age, tumor stage, histology, tumor diameter, p53 status, lymphovascular space invasion, myometrial invasion, and lymph node metastasis were compared according to netrin-1 expression (P > 0.05). CONCLUSION Netrin-1 was expressed in USC but not in healthy tissues. Its expression was not associated with OS or DFS.
Collapse
Affiliation(s)
- Aysegul Ucuncu Kefeli
- Faculty of Medicine, Department of Radiation Oncology, Kocaeli University, Kocaeli, Turkey
| | - Busra Yaprak Bayrak
- Faculty of Medicine, Department of Pathology, Kocaeli University, Kocaeli, Turkey
| | - Esra Betul Tunce
- Faculty of Medicine, Department of Pathology, Kocaeli University, Kocaeli, Turkey
| | - Cigdem Vural
- Faculty of Medicine, Department of Pathology, Kocaeli University, Kocaeli, Turkey
| | - Ibrahim Halil Suyusal
- Faculty of Medicine, Department of Radiation Oncology, Kocaeli University, Kocaeli, Turkey
| | - Umut Kefeli
- Division of Medical Oncology, Faculty of Medicine, Department of Internal Medicine, Kocaeli University, Kocaeli, Turkey
| | - Maksut Gorkem Aksu
- Faculty of Medicine, Department of Radiation Oncology, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
8
|
Liu Y, Yin S, Lu G, Du Y. The intersection of the nervous system and breast cancer. Cancer Lett 2024; 598:217132. [PMID: 39059572 DOI: 10.1016/j.canlet.2024.217132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer (BC) represents a paradigm of heterogeneity, manifesting as a spectrum of molecular subtypes with divergent clinical trajectories. It is fundamentally characterized by the aberrant proliferation of malignant cells within breast tissue, a process modulated by a myriad of factors that govern its progression. Recent endeavors outline the interplay between BC and the nervous system, illuminate the complex symbiosis between neural structures and neoplastic cells, and elucidate nerve dependence as a cornerstone of BC progression. This includes the neural modulations on immune response, neurovascular formation, and multisystem interactions. Such insights have unveiled the critical impact of neural elements on tumor dynamics and patient prognosis. This revelation beckons a deeper exploration into the neuro-oncological interface, potentially unlocking novel therapeutic vistas. This review endeavors to delineate the intricate mechanisms between the nervous system and BC, aiming to accentuate the implications and therapeutic strategies of this intersection for tumor evolution and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China
| | - Guanyu Lu
- Cancer Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
9
|
You MH. Mechanism of DAPK1 for Regulating Cancer Stem Cells in Thyroid Cancer. Curr Issues Mol Biol 2024; 46:7086-7096. [PMID: 39057063 PMCID: PMC11275583 DOI: 10.3390/cimb46070422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase and is characteristically downregulated in metastatic cancer. Several studies showed that DAPK1 is involved in both the early and late stages of cancer. DAPK1 downregulation is elaborately controlled by epigenetic, transcriptional, posttranscriptional, and posttranslational processes. DAPK1 is known to regulate not only cancer cells but also stromal cells. Recent studies showed that DAPK1 was involved not only in tumor suppression but also in epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation in colon and thyroid cancers. CSCs are major factors in determining cancer aggressiveness in cancer metastasis and treatment prognosis by influencing EMT. However, the molecular mechanism involved in the regulation of cancer cells by DAPK1 remains unclear. In particular, little is known about the existence of CSCs and how they are regulated in papillary thyroid carcinoma (PTC) among thyroid cancers. In this review, we describe the molecular mechanism of CSC regulation by DAPK1 in PTC progression.
Collapse
Affiliation(s)
- Mi-Hyeon You
- Department of Anatomy, Konkuk University College of Medicine, 50-1, 268 Chungwon-daero, Cungju-si 27478, Republic of Korea
| |
Collapse
|
10
|
Breusa S, Thomas E, Baldinotti N, Zilio S, Delcros JG, Hernandez-Palomino DM, Qi W, Guérin H, Gibert B, Mehlen P, Marigo I, Kryza D, Lollo G. Anti-Netrin-1 decorated nanoparticles combined with chemotherapy for the treatment of triple-negative breast cancer. BIOMATERIALS ADVANCES 2024; 161:213881. [PMID: 38749213 DOI: 10.1016/j.bioadv.2024.213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024]
Abstract
Nanoparticle's success as drug delivery systems for cancer treatment has been achieved through passive targeting mechanisms. However, tumor heterogeneity and rapid drug clearance limit the treatment efficacy. Improved outcomes and selective drug release can be achieved by grafting ligands at the surface of nanocarriers that bind molecules overexpressed in the tumor microenvironment (TME). In this work, we developed a docetaxel-loaded nanoemulsions (NEs) binding an anti-netrin-1 monoclonal antibody (NP137) to selectively target the netrin-1 protein overexpressed in many different tumors. The goal is to refine a combined approach utilizing NP137 and docetaxel as an improved tumor-targeting chemotherapeutic agent for addressing triple-negative breast cancer (TNBC). Several factors have been considered for the optimization of the active targeted drug delivery system via the click-chemistry conjugation, as the impact of PEGylated surfactant that stabilize the NEs shell on conjugation efficiency, cytocompatibility with EMT6 cell line and colloidal stability over time of NEs. Results showed that a 660 Da PEG chain length contributed to NEs colloidal stability and had no impact on cell viability or on the antibody binding ability for its ligand after surface conjugation. Moreover, docetaxel was encapsulated into the oily core of NEs, with an encapsulation efficiency of 70 %. To validate our treatment strategy in vivo, the 4T1 murine breast cancer model was used. As a result, the comparison of active-targeted and non-targeted NEs revealed that only active-targeted NE could decrease the tumor growth rate.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France
| | - Eloise Thomas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Noemi Baldinotti
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Jean-Guy Delcros
- Small molecules for biological targets, Centre de Recherche en Cancérologie de Lyon, INSERM 1052 - CNRS5286, ISPB Rockefeller, Université Lyon 1, 69008 Lyon, France
| | | | - Weisha Qi
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Hanäé Guérin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France; Gastroenterology and technologies for health group, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, 69008 Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France; Netris Pharma, Lyon, France
| | - Ilaria Marigo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padua, Italy; Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Imthernat Plateform, Hospices Civils de Lyon, 69437 Lyon, France.
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| |
Collapse
|
11
|
Cai M, Zheng Q, Chen Y, Liu S, Zhu H, Bai B. Insights from the neural guidance factor Netrin-1 into neurodegeneration and other diseases. Front Mol Neurosci 2024; 17:1379726. [PMID: 38638604 PMCID: PMC11024333 DOI: 10.3389/fnmol.2024.1379726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Netrin-1 was initially discovered as a neuronal growth cue for axonal guidance, and its functions have later been identified in inflammation, tumorigenesis, neurodegeneration, and other disorders. We have recently found its alterations in the brains with Alzheimer's disease, which might provide important clues to the mechanisms of some unique pathologies. To provide better understanding of this promising molecule, we here summarize research progresses in genetics, pathology, biochemistry, cell biology and other studies of Netrin-1 about its mechanistic roles and biomarker potentials with an emphasis on clinical neurodegenerative disorders in order to expand understanding of this promising molecular player in human diseases.
Collapse
Affiliation(s)
- Minqi Cai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Qian Zheng
- Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiqiang Chen
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Siyuan Liu
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huimin Zhu
- Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Gao X, Ye J, Huang X, Huang S, Luo W, Zeng D, Li S, Tang M, Mai R, Li Y, Lin Y, Liang R. Research progress of the netrins and their receptors in cancer. J Cell Mol Med 2024; 28:e18241. [PMID: 38546656 PMCID: PMC10977403 DOI: 10.1111/jcmm.18241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 11/12/2024] Open
Abstract
Netrins, a family of secreted and membrane-associated proteins, can regulate axonal guidance, morphogenesis, angiogenesis, cell migration, cell survival, and tumorigenesis. Four secreted netrins (netrin 1, 3, 4 and 5) and two glycosylphosphatidylinositols-anchored membrane proteins, netrin-G1 and G2, have been identified in mammals. Netrins and their receptors can serve as a biomarker and molecular therapeutic target for pathological differentiation, diagnosis and prognosis of malignant cancers. We review here the potential roles of the netrins family and their receptors in cancer.
Collapse
Affiliation(s)
- Xing Gao
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Jiazhou Ye
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Xi Huang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Shilin Huang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Wenfeng Luo
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Dandan Zeng
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Shizhou Li
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Minchao Tang
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Rongyun Mai
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Yongqiang Li
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Yan Lin
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Rong Liang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| |
Collapse
|
13
|
Moreau C, Lukačević T, Pallier A, Sobilo J, Aci-Sèche S, Garnier N, Même S, Tóth É, Lacerda S. Peptide-Conjugated MRI Probe Targeted to Netrin-1, a Novel Metastatic Breast Cancer Biomarker. Bioconjug Chem 2024; 35:265-275. [PMID: 38340041 DOI: 10.1021/acs.bioconjchem.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Despite significant progress in cancer imaging and treatment over the years, early diagnosis and metastasis detection remain a challenge. Molecular magnetic resonance imaging (MRI), with its high resolution, can be well adapted to fulfill this need, requiring the design of contrast agents which target specific tumor biomarkers. Netrin-1 is an extracellular protein overexpressed in metastatic breast cancer and implicated in tumor progression and the appearance of metastasis. This study focuses on the design and preclinical evaluation of a novel Netrin-1-specific peptide-based MRI probe, GdDOTA-KKTHDAVR (Gd-K), to visualize metastatic breast cancer. The targeting peptide sequence was identified based on the X-ray structure of the complex between Netrin-1 and its transmembrane receptor DCC. Molecular docking simulations support the probe design. In vitro studies evidenced submicromolar affinity of Gd-K for Netrin-1 (KD = 0.29 μM) and good MRI efficacy (proton relaxivity, r1 = 4.75 mM-1 s-1 at 9.4 T, 37 °C). In vivo MRI studies in a murine model of triple-negative metastatic breast cancer revealed successful tumor visualization at earlier stages of tumor development (smaller tumor volume). Excellent signal enhancement, 120% at 2 min and 70% up to 35 min post injection, was achieved (0.2 mmol/kg injected dose), representing a reasonable imaging time window and a superior contrast enhancement in the tumor as compared to Dotarem injection.
Collapse
Affiliation(s)
- Clémentine Moreau
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Tea Lukačević
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Julien Sobilo
- TAAM-In vivo Imaging Centre, MO2VING, CNRS UAR44, F-45071 Orléans 2, France
| | - Samia Aci-Sèche
- Institut de Chimie Organique et Analytique, UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067 Orléans Cedex 2, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| |
Collapse
|
14
|
Dudgeon C, Casabianca A, Harris C, Ogier C, Bellina M, Fiore S, Bernet A, Ducarouge B, Goldschneider D, Su X, Pitarresi J, Hezel A, De S, Narrow W, Soliman F, Shields C, Vendramini-Costa DB, Prela O, Wang L, Astsaturov I, Mehlen P, Carpizo DR. Netrin-1 feedforward mechanism promotes pancreatic cancer liver metastasis via hepatic stellate cell activation, retinoid, and ELF3 signaling. Cell Rep 2023; 42:113369. [PMID: 37922311 DOI: 10.1016/j.celrep.2023.113369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/04/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2023] Open
Abstract
The biology of metastatic pancreatic ductal adenocarcinoma (PDAC) is distinct from that of the primary tumor due to changes in cell plasticity governed by a distinct transcriptome. Therapeutic strategies that target this distinct biology are needed. We detect an upregulation of the neuronal axon guidance molecule Netrin-1 in PDAC liver metastases that signals through its dependence receptor (DR), uncoordinated-5b (Unc5b), to facilitate metastasis in vitro and in vivo. The mechanism of Netrin-1 induction involves a feedforward loop whereby Netrin-1 on the surface of PDAC-secreted extracellular vesicles prepares the metastatic niche by inducing hepatic stellate cell activation and retinoic acid secretion that in turn upregulates Netrin-1 in disseminated tumor cells via RAR/RXR and Elf3 signaling. While this mechanism promotes PDAC liver metastasis, it also identifies a therapeutic vulnerability, as it can be targeted using anti-Netrin-1 therapy to inhibit metastasis using the Unc5b DR cell death mechanism.
Collapse
Affiliation(s)
- Crissy Dudgeon
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Anthony Casabianca
- Department of Surgery, Division of Surgical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| | - Chris Harris
- Department of Surgery, Division of Surgical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| | - Charline Ogier
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Mélanie Bellina
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; Netris Pharma, 69008 Lyon, France
| | - Stephany Fiore
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France
| | - Agnes Bernet
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; Netris Pharma, 69008 Lyon, France
| | | | | | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Jason Pitarresi
- Department of Medicine, Division of Hematology/Oncology, University of Massachusetts, Worcester, MA, USA
| | - Aram Hezel
- Department of Medicine, Division of Medical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Wade Narrow
- Department of Surgery, Division of Surgical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| | - Fady Soliman
- Rutgers Robert Wood-Johnson Medical School, New Brunswick, NJ, USA
| | - Cory Shields
- Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| | | | - Orjola Prela
- Department of Surgery, Division of Surgical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lan Wang
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Igor Astsaturov
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; Netris Pharma, 69008 Lyon, France
| | - Darren R Carpizo
- Department of Surgery, Division of Surgical Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wilmot Cancer Center, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
15
|
Ducarouge B, Redavid AR, Victoor C, Chira R, Fonseca A, Hervieu M, Bergé R, Lengrand J, Vieugué P, Neves D, Goddard I, Richaud M, Laval PA, Rama N, Goldschneider D, Paradisi A, Gourdin N, Chabaud S, Treilleux I, Gadot N, Ray-Coquard I, Depil S, Decaudin D, Némati F, Marangoni E, Mery-Lamarche E, Génestie C, Tabone-Eglinger S, Devouassoux-Shisheboran M, Moore KJ, Gibert B, Mehlen P, Bernet A. Netrin-1 blockade inhibits tumor associated Myeloid-derived suppressor cells, cancer stemness and alleviates resistance to chemotherapy and immune checkpoint inhibitor. Cell Death Differ 2023; 30:2201-2212. [PMID: 37633969 PMCID: PMC10589209 DOI: 10.1038/s41418-023-01209-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023] Open
Abstract
Drug resistance and cancer relapse represent significant therapeutic challenges after chemotherapy or immunotherapy, and a major limiting factor for long-term cancer survival. Netrin-1 was initially identified as a neuronal navigation cue but has more recently emerged as an interesting target for cancer therapy, which is currently clinically investigated. We show here that netrin-1 is an independent prognostic marker for clinical progression of breast and ovary cancers. Cancer stem cells (CSCs)/Tumor initiating cells (TICs) are hypothesized to be involved in clinical progression, tumor relapse and resistance. We found a significant correlation between netrin-1 expression and cancer stem cell (CSC) markers levels. We also show in different mice models of resistance to chemotherapies that netrin-1 interference using a therapeutic netrin-1 blocking antibody alleviates resistance to chemotherapy and triggers an efficient delay in tumor relapse and this effect is associated with CSCs loss. We also demonstrate that netrin-1 interference limits tumor resistance to immune checkpoint inhibitor and provide evidence linking this enhanced anti-tumor efficacy to a decreased recruitment of a subtype of myeloid-derived suppressor cells (MDSCs) called polymorphonuclear (PMN)-MDSCs. We have functionally demonstrated that these immune cells promote CSCs features and, consequently, resistance to anti-cancer treatments. Together, these data support the view of both a direct and indirect contribution of netrin-1 to cancer stemness and we propose that this may lead to therapeutic opportunities by combining conventional chemotherapies and immunotherapies with netrin-1 interfering drugs.
Collapse
Affiliation(s)
- Benjamin Ducarouge
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | - Anna-Rita Redavid
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Camille Victoor
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | - Ruxanda Chira
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | | | - Maëva Hervieu
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Roméo Bergé
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | - Justine Lengrand
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | - Pauline Vieugué
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - David Neves
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France
| | - Isabelle Goddard
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Mathieu Richaud
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Pierre-Alexandre Laval
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | | | - Andrea Paradisi
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Nicolas Gourdin
- Targeting of the Tumor and its Immune Environnement, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | | | | | - Nicolas Gadot
- Pathology Department, Centre Léon Bérard, Lyon, France
| | | | | | - Didier Decaudin
- Laboratory of Preclinical Investigations, Translational Research Department, Institut Curie, Université Paris-Sciences-et-Lettres, 75005, Paris, France
| | - Fariba Némati
- Laboratory of Preclinical Investigations, Translational Research Department, Institut Curie, Université Paris-Sciences-et-Lettres, 75005, Paris, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigations, Translational Research Department, Institut Curie, Université Paris-Sciences-et-Lettres, 75005, Paris, France
| | | | | | | | | | - Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France.
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France.
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France.
| | - Agnes Bernet
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', Labex DEVweCAN, Institut Convergence PLAsCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France.
- Netris Pharma, Centre Léon Bérard, 69008, Lyon, France.
| |
Collapse
|
16
|
Lengrand J, Pastushenko I, Vanuytven S, Song Y, Venet D, Sarate RM, Bellina M, Moers V, Boinet A, Sifrim A, Rama N, Ducarouge B, Van Herck J, Dubois C, Scozzaro S, Lemaire S, Gieskes S, Bonni S, Collin A, Braissand N, Allard J, Zindy E, Decaestecker C, Sotiriou C, Salmon I, Mehlen P, Voet T, Bernet A, Blanpain C. Pharmacological targeting of netrin-1 inhibits EMT in cancer. Nature 2023; 620:402-408. [PMID: 37532929 PMCID: PMC7615210 DOI: 10.1038/s41586-023-06372-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFβ1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- A549 Cells
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Epithelial Cell Adhesion Molecule/metabolism
- Epithelial-Mesenchymal Transition/drug effects
- Neoplasm Metastasis/drug therapy
- Netrin Receptors/antagonists & inhibitors
- Netrin Receptors/deficiency
- Netrin Receptors/genetics
- Netrin-1/antagonists & inhibitors
- Netrin-1/deficiency
- Netrin-1/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- RNA-Seq
- Single-Cell Gene Expression Analysis
- Skin Neoplasms/drug therapy
- Skin Neoplasms/pathology
- Transforming Growth Factor beta1/pharmacology
- Xenograft Model Antitumor Assays
- Antibodies, Monoclonal, Humanized/pharmacology
Collapse
Affiliation(s)
- Justine Lengrand
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
- NETRIS Pharma, Lyon, France
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sebastiaan Vanuytven
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Multi-omic Integrative Bioinformatics, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - David Venet
- Laboratory of Breast Cancer Translational Research J.-C. Heuson, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rahul M Sarate
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Melanie Bellina
- NETRIS Pharma, Lyon, France
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Virginie Moers
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alice Boinet
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alejandro Sifrim
- Laboratory of Multi-omic Integrative Bioinformatics, Center for Human Genetics, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single-cell Omics, KU Leuven, Leuven, Belgium
| | - Nicolas Rama
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | | | - Jens Van Herck
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Samuel Scozzaro
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophie Lemaire
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sarah Gieskes
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophie Bonni
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Amandine Collin
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
| | - Nicolas Braissand
- NETRIS Pharma, Lyon, France
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
| | - Egor Zindy
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
- Laboratory of Image Synthesis and Analysis, Ecole Polytechnique-Université libre de Bruxelles (EPB-ULB), Gosselies, Belgium
| | - Christos Sotiriou
- Laboratory of Breast Cancer Translational Research J.-C. Heuson, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle Salmon
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
- Centre Universitaire Inter Régional d'Expertise en Anatomie pathologique Hospitalière (CurePath), Brussels, Belgium
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Mehlen
- NETRIS Pharma, Lyon, France.
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France.
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single-cell Omics, KU Leuven, Leuven, Belgium
| | - Agnès Bernet
- NETRIS Pharma, Lyon, France.
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France.
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WEL (Wallon ExceLlence) Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
17
|
Cassier PA, Navaridas R, Bellina M, Rama N, Ducarouge B, Hernandez-Vargas H, Delord JP, Lengrand J, Paradisi A, Fattet L, Garin G, Gheit H, Dalban C, Pastushenko I, Neves D, Jelin R, Gadot N, Braissand N, Léon S, Degletagne C, Matias-Guiu X, Devouassoux-Shisheboran M, Mery-Lamarche E, Allard J, Zindy E, Decaestecker C, Salmon I, Perol D, Dolcet X, Ray-Coquard I, Blanpain C, Bernet A, Mehlen P. Netrin-1 blockade inhibits tumour growth and EMT features in endometrial cancer. Nature 2023; 620:409-416. [PMID: 37532934 PMCID: PMC10412451 DOI: 10.1038/s41586-023-06367-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2023] [Indexed: 08/04/2023]
Abstract
Netrin-1 is upregulated in cancers as a protumoural mechanism1. Here we describe netrin-1 upregulation in a majority of human endometrial carcinomas (ECs) and demonstrate that netrin-1 blockade, using an anti-netrin-1 antibody (NP137), is effective in reduction of tumour progression in an EC mouse model. We next examined the efficacy of NP137, as a first-in-class single agent, in a Phase I trial comprising 14 patients with advanced EC. As best response we observed 8 stable disease (8 out of 14, 57.1%) and 1 objective response as RECIST v.1.1 (partial response, 1 out of 14 (7.1%), 51.16% reduction in target lesions at 6 weeks and up to 54.65% reduction during the following 6 months). To evaluate the NP137 mechanism of action, mouse tumour gene profiling was performed, and we observed, in addition to cell death induction, that NP137 inhibited epithelial-to-mesenchymal transition (EMT). By performing bulk RNA sequencing (RNA-seq), spatial transcriptomics and single-cell RNA-seq on paired pre- and on-treatment biopsies from patients with EC from the NP137 trial, we noted a net reduction in tumour EMT. This was associated with changes in immune infiltrate and increased interactions between cancer cells and the tumour microenvironment. Given the importance of EMT in resistance to current standards of care2, we show in the EC mouse model that a combination of NP137 with carboplatin-paclitaxel outperformed carboplatin-paclitaxel alone. Our results identify netrin-1 blockade as a clinical strategy triggering both tumour debulking and EMT inhibition, thus potentially alleviating resistance to standard treatments.
Collapse
Affiliation(s)
- Philippe A Cassier
- Centre Léon Bérard, Departement de Recherche Clinique, Centre de recherche en cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Raul Navaridas
- Basic Medical Sciences Department Oncological Pathology Group, Institut de Recerca Biomèdica de Lleida, Universidad de Lleida, Lleida, Spain
| | - Melanie Bellina
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
- Netris Pharma, Lyon, France
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | | | - Hector Hernandez-Vargas
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | | | - Justine Lengrand
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
- Netris Pharma, Lyon, France
- Laboratory of Stem Cells and Cancer, WEL Research Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrea Paradisi
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Laurent Fattet
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Gwenaële Garin
- Centre Léon Bérard, Departement de Recherche Clinique, Centre de recherche en cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Hanane Gheit
- Centre Léon Bérard, Departement de Recherche Clinique, Centre de recherche en cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Cecile Dalban
- Centre Léon Bérard, Departement de Recherche Clinique, Centre de recherche en cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, WEL Research Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - David Neves
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Remy Jelin
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
- Netris Pharma, Lyon, France
| | - Nicolas Gadot
- CRCL Core facilities, Centre de Recherche en Cancérologie de Lyon (CRCL) INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Nicolas Braissand
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
- Netris Pharma, Lyon, France
| | - Sophie Léon
- CRCL Core facilities, Centre de Recherche en Cancérologie de Lyon (CRCL) INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Cyril Degletagne
- CRCL Core facilities, Centre de Recherche en Cancérologie de Lyon (CRCL) INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Xavier Matias-Guiu
- Basic Medical Sciences Department Oncological Pathology Group, Institut de Recerca Biomèdica de Lleida, Universidad de Lleida, Lleida, Spain
| | | | | | - Justine Allard
- DIAPath, Center for microscopy and molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Egor Zindy
- DIAPath, Center for microscopy and molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Christine Decaestecker
- DIAPath, Center for microscopy and molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
- Laboratory of Image Synthesis and Analysis, Ecole Polytechnique-Université libre de Bruxelles, Brussels, Belgium
| | - Isabelle Salmon
- DIAPath, Center for microscopy and molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
- Departement of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Centre Universitaire Inter Régional d'Expertise en Anatomie pathologique Hospitalière (CurePath), Jumet, Belgium
| | - David Perol
- Centre Léon Bérard, Departement de Recherche Clinique, Centre de recherche en cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Xavi Dolcet
- Basic Medical Sciences Department Oncological Pathology Group, Institut de Recerca Biomèdica de Lleida, Universidad de Lleida, Lleida, Spain
| | - Isabelle Ray-Coquard
- Centre Léon Bérard, Departement de Recherche Clinique, Centre de recherche en cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, WEL Research Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Agnès Bernet
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France.
- Netris Pharma, Lyon, France.
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France.
- Netris Pharma, Lyon, France.
| |
Collapse
|
18
|
Cui Q, Jiang D, Zhang Y, Chen C. The tumor-nerve circuit in breast cancer. Cancer Metastasis Rev 2023; 42:543-574. [PMID: 36997828 PMCID: PMC10349033 DOI: 10.1007/s10555-023-10095-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 04/01/2023]
Abstract
It is well established that innervation is one of the updated hallmarks of cancer and that psychological stress promotes the initiation and progression of cancer. The breast tumor environment includes not only fibroblasts, adipocytes, endothelial cells, and lymphocytes but also neurons, which is increasingly discovered important in breast cancer progression. Peripheral nerves, especially sympathetic, parasympathetic, and sensory nerves, have been reported to play important but different roles in breast cancer. However, their roles in the breast cancer progression and treatment are still controversial. In addition, the brain is one of the favorite sites of breast cancer metastasis. In this review, we first summarize the innervation of breast cancer and its mechanism in regulating cancer growth and metastasis. Next, we summarize the neural-related molecular markers in breast cancer diagnosis and treatment. In addition, we review drugs and emerging technologies used to block the interactions between nerves and breast cancer. Finally, we discuss future research directions in this field. In conclusion, the further research in breast cancer and its interactions with innervated neurons or neurotransmitters is promising in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Qiuxia Cui
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuanqi Zhang
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
| |
Collapse
|
19
|
Kryza D, Wischhusen J, Richaud M, Hervieu M, Sidi Boumedine J, Delcros JG, Besse S, Baudier T, Laval PA, Breusa S, Boutault E, Clermidy H, Rama N, Ducarouge B, Devouassoux-Shisheboran M, Chezal JM, Giraudet AL, Walter T, Mehlen P, Sarrut D, Gibert B. From netrin-1-targeted SPECT/CT to internal radiotherapy for management of advanced solid tumors. EMBO Mol Med 2023; 15:e16732. [PMID: 36876343 PMCID: PMC10086585 DOI: 10.15252/emmm.202216732] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
Targeted radionuclide therapy is a revolutionary tool for the treatment of highly spread metastatic cancers. Most current approaches rely on the use of vectors to deliver radionuclides to tumor cells, targeting membrane-bound cancer-specific moieties. Here, we report the embryonic navigation cue netrin-1 as an unanticipated target for vectorized radiotherapy. While netrin-1, known to be re-expressed in tumoral cells to promote cancer progression, is usually characterized as a diffusible ligand, we demonstrate here that netrin-1 is actually poorly diffusible and bound to the extracellular matrix. A therapeutic anti-netrin-1 monoclonal antibody (NP137) has been preclinically developed and was tested in various clinical trials showing an excellent safety profile. In order to provide a companion test detecting netrin-1 in solid tumors and allowing the selection of therapy-eligible patients, we used the clinical-grade NP137 agent and developed an indium-111-NODAGA-NP137 single photon emission computed tomography (SPECT) contrast agent. NP137-111 In provided specific detection of netrin-1-positive tumors with an excellent signal-to-noise ratio using SPECT/CT imaging in different mouse models. The high specificity and strong affinity of NP137 paved the way for the generation of lutetium-177-DOTA-NP137, a novel vectorized radiotherapy, which specifically accumulated in netrin-1-positive tumors. We demonstrate here, using tumor cell-engrafted mouse models and a genetically engineered mouse model, that a single systemic injection of NP137-177 Lu provides important antitumor effects and prolonged mouse survival. Together, these data support the view that NP137-111 In and NP137-177 Lu may represent original and unexplored imaging and therapeutic tools against advanced solid cancers.
Collapse
Affiliation(s)
- David Kryza
- Imthernat, LAGEPP, CNRS UMR 5007, Université de Lyon, Hospices Civils de Lyon, Lyon, France.,Lumen Nuclear Medicine group, Hospices Civils de Lyon et Centre Léon Bérard, Lyon, France
| | - Jennifer Wischhusen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS 5286, Université de Lyon1, Lyon, France
| | - Mathieu Richaud
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS 5286, Université de Lyon1, Lyon, France.,Gastroenterology and technologies for health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, France
| | - Maëva Hervieu
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS 5286, Université de Lyon1, Lyon, France.,Gastroenterology and technologies for health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, France
| | - Jacqueline Sidi Boumedine
- Imthernat, LAGEPP, CNRS UMR 5007, Université de Lyon, Hospices Civils de Lyon, Lyon, France.,Gastroenterology and technologies for health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, France
| | - Jean-Guy Delcros
- Small molecules for biological targets, Centre de Recherche en Cancérologie de Lyon. UMR INSERM 1052 - CNRS 5286 ISPB Rockefeller, Lyon, France
| | - Sophie Besse
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Thomas Baudier
- CREATIS, INSA Lyon, INSERM U1206 - CNRS UMR 5220, Université de Lyon, Lyon, France
| | - Pierre-Alexandre Laval
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS 5286, Université de Lyon1, Lyon, France
| | - Silvia Breusa
- Imthernat, LAGEPP, CNRS UMR 5007, Université de Lyon, Hospices Civils de Lyon, Lyon, France.,Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS 5286, Université de Lyon1, Lyon, France.,Gastroenterology and technologies for health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, France
| | - Erwan Boutault
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Hugo Clermidy
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS 5286, Université de Lyon1, Lyon, France
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS 5286, Université de Lyon1, Lyon, France
| | | | | | - Jean-Michel Chezal
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Anne-Laure Giraudet
- Lumen Nuclear Medicine group, Hospices Civils de Lyon et Centre Léon Bérard, Lyon, France
| | - Thomas Walter
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS 5286, Université de Lyon1, Lyon, France.,Gastroenterology and technologies for health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Gastroentérologie et d'Oncologie Digestive, Lyon Cedex 03, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS 5286, Université de Lyon1, Lyon, France
| | - David Sarrut
- CREATIS, INSA Lyon, INSERM U1206 - CNRS UMR 5220, Université de Lyon, Lyon, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS 5286, Université de Lyon1, Lyon, France.,Gastroenterology and technologies for health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, France
| |
Collapse
|
20
|
Mentxaka A, Gómez-Ambrosi J, Neira G, Ramírez B, Becerril S, Rodríguez A, Valentí V, Moncada R, Baixauli J, Burrell MA, Silva C, Claro V, Ferro A, Catalán V, Frühbeck G. Increased Expression Levels of Netrin-1 in Visceral Adipose Tissue during Obesity Favour Colon Cancer Cell Migration. Cancers (Basel) 2023; 15:cancers15041038. [PMID: 36831381 PMCID: PMC9953821 DOI: 10.3390/cancers15041038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Netrin (NTN)-1, an extracellular matrix protein with a crucial role in inflammation, is dysregulated during obesity (OB) and influences colon cancer (CC) progression. To decipher the mechanisms underlying CC development during obesity, we examined the expression of NTN1 and its receptors in the visceral adipose tissue (VAT) of 74 (25 normal weight (NW)) (16 with CC) and 49 patients with OB (12 with CC). We also evaluated the effect of caloric restriction (CR) on the gene expression levels of Ntn1 and its receptors in the colon from a rat model fed a normal diet. The impact of adipocyte-conditioned media (ACM) from patients with OB and NTN-1 was assessed on the expression levels of neogenin 1(NEO1), deleted in colorectal carcinomas (DCC) and uncoordinated-5 homolog B (UNC5B) in Caco-2 and HT-29 human colorectal cell lines, as well as on Caco-2 cell migration. Increased NTN1 and NEO1 mRNA levels in VAT were due to OB (p < 0.05) and CC (p < 0.001). In addition, an upregulation in the expression levels of DCC and UNC5B in patients with CC (p < 0.01 and p < 0.05, respectively) was observed. Decreased (p < 0.01) Ntn1 levels in the colon from rats submitted to CR were found. In vitro experiments showed that ACM increased DCC (p < 0.05) and NEO1 (p < 0.01) mRNA levels in HT-29 and Caco-2 cell lines, respectively, while UNC5B decreased (p < 0.01) in HT-29. The treatment with NTN-1 increased (p < 0.05) NEO1 mRNA levels in HT-29 cells and DCC (p < 0.05) in both cell lines. Finally, we revealed a potent migratory effect of ACM and NTN-1 on Caco-2 cells. Collectively, these findings point to increased NTN-1 during OB and CC fuelling cancer progression and exerting a strong migratory effect on colon cancer cells.
Collapse
Affiliation(s)
- Amaia Mentxaka
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - María A. Burrell
- Department of Histology and Pathology, Universidad de Navarra, 31008 Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Vasco Claro
- School of Cardiovascular & Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 9NH, UK
| | - Albert Ferro
- School of Cardiovascular & Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 9NH, UK
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Correspondence: (V.C.); (G.F.); Tel.: +34-948-25-54-00 (ext. 4484) (G.F.)
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (V.C.); (G.F.); Tel.: +34-948-25-54-00 (ext. 4484) (G.F.)
| |
Collapse
|
21
|
Maraş Y, Kor A, Oğuz EF, Sarı A, Gök K, Akdoğan A. Serum netrin-1 levels in systemic sclerosis patients with capillary abnormalities. THE EGYPTIAN RHEUMATOLOGIST 2023. [DOI: 10.1016/j.ejr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Hu J, Chen W, Shen L, Chen Z, Huang J. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188828. [PMID: 36283598 DOI: 10.1016/j.bbcan.2022.188828] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that peripheral nerves play an important role in the progression of breast cancer. Breast cancer cells (BCCs) promote local peripheral nerve growth and branching by secreting neuroactive molecules, including neurotrophins and axon guidance molecules (AGMs). Sympathetic nerves promote breast cancer progression, while parasympathetic and sensory nerves mainly have anti-tumor effects in the progression of breast cancer. Specifically, peripheral nerves can influence the progression of breast cancer by secreting neurotransmitters not only directly binding to the corresponding receptors of BCCs, but also indirectly acting on immune cells to modulate anti-tumor immunity. In this review, we summarize the crosstalk between breast cancer and peripheral nerves and the roles of important neuroactive molecules in the progression of breast cancer. In addition, we summarize indicators, including nerve fiber density and perineural invasion (PNI), that may help determine the prognosis of breast cancer based on current research results, as well as potential therapeutic approaches, such as β-blockers and retroviral-mediated genetic neuroengineering techniques, that may enhance the prognosis of breast cancer. In addition, we propose suggestions for future research priorities based on a current lack of knowledge in this area.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhigang Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| |
Collapse
|
23
|
Barnault R, Verzeroli C, Fournier C, Michelet M, Redavid AR, Chicherova I, Plissonnier ML, Adrait A, Khomich O, Chapus F, Richaud M, Hervieu M, Reiterer V, Centonze FG, Lucifora J, Bartosch B, Rivoire M, Farhan H, Couté Y, Mirakaj V, Decaens T, Mehlen P, Gibert B, Zoulim F, Parent R. Hepatic inflammation elicits production of proinflammatory netrin-1 through exclusive activation of translation. Hepatology 2022; 76:1345-1359. [PMID: 35253915 DOI: 10.1002/hep.32446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Netrin-1 displays protumoral properties, though the pathological contexts and processes involved in its induction remain understudied. The liver is a major model of inflammation-associated cancer development, leading to HCC. APPROACH AND RESULTS A panel of cell biology and biochemistry approaches (reverse transcription quantitative polymerase chain reaction, reporter assays, run-on, polysome fractionation, cross linking immunoprecipitation, filter binding assay, subcellular fractionation, western blotting, immunoprecipitation, stable isotope labeling by amino acids in cell culture) on in vitro-grown primary hepatocytes, human liver cell lines, mouse samples and clinical samples was used. We identify netrin-1 as a hepatic inflammation-inducible factor and decipher its mode of activation through an exhaustive eliminative approach. We show that netrin-1 up-regulation relies on a hitherto unknown mode of induction, namely its exclusive translational activation. This process includes the transfer of NTN1 (netrin-1) mRNA to the endoplasmic reticulum and the direct interaction between the Staufen-1 protein and this transcript as well as netrin-1 mobilization from its cell-bound form. Finally, we explore the impact of a phase 2 clinical trial-tested humanized anti-netrin-1 antibody (NP137) in two distinct, toll-like receptor (TLR) 2/TLR3/TLR6-dependent, hepatic inflammatory mouse settings. We observe a clear anti-inflammatory activity indicating the proinflammatory impact of netrin-1 on several chemokines and Ly6C+ macrophages. CONCLUSIONS These results identify netrin-1 as an inflammation-inducible factor in the liver through an atypical mechanism as well as its contribution to hepatic inflammation.
Collapse
Affiliation(s)
- Romain Barnault
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Claire Verzeroli
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Carole Fournier
- Institute for Advanced Biosciences, Inserm U1209, University of Grenoble-Alpes, La Tronche, France
| | - Maud Michelet
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Anna Rita Redavid
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Ievgeniia Chicherova
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Marie-Laure Plissonnier
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Annie Adrait
- University of Grenoble-Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS CEA FR2048, Grenoble, France
| | - Olga Khomich
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Fleur Chapus
- Single Cell Dynamics Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | - Mathieu Richaud
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Maëva Hervieu
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Veronika Reiterer
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Julie Lucifora
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Birke Bartosch
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Michel Rivoire
- Léon Bérard Cancer Center, Lyon, France.,Université Lyon 1, Lyon, France
| | - Hesso Farhan
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yohann Couté
- University of Grenoble-Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS CEA FR2048, Grenoble, France
| | - Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Eberhard-Karls University, Tuebingen, Germany
| | - Thomas Decaens
- Institute for Advanced Biosciences, Inserm U1209, University of Grenoble-Alpes, La Tronche, France
| | - Patrick Mehlen
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Benjamin Gibert
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Fabien Zoulim
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Service of Hepato-Gastroenterology, Hospices Civils de Lyon, Lyon, France
| | - Romain Parent
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| |
Collapse
|
24
|
Implication of Netrin-1 Gain of Expression in Canine Nodal Lymphoma. Vet Sci 2022; 9:vetsci9090494. [PMID: 36136711 PMCID: PMC9501284 DOI: 10.3390/vetsci9090494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Canine lymphomas represent one of the most frequent groups of neoplasia, for which prognosis may be poor. Treatments are based on polychemotherapy, with variable responses. As in human lymphomas, more and more targeted therapies are studied and developed. Therapy to restore apoptosis in neoplastic cells is one of them. Netrin-1 is a ligand of dependence receptors. When bound to its receptor, a positive signaling is triggered. When unbound, apoptosis is induced. In some human cancers, neoplastic cells can lose the ability to induce apoptosis by overexpressing netrin-1, or by decreasing the receptor expression. We hypothesized a similar pathway in canine lymphomas. We observed increased expression of netrin-1, particularly in high-grade nodal lymphomas. In vitro evaluation of an anti-netrin-1 antibody is encouraging as apoptosis is restored in a T-cell lymphoma cell line. Netrin-1 appears thus as a possible survival factor in dog lymphomas. This study suggests it can be a promising tool for a targeted therapy in lymphoma management in dogs. Abstract Netrin-1 is a member of the laminin superfamily, and is known to interact with specific receptors, called dependence receptors. While upon netrin-1 binding these receptors initiate positive signaling, in absence of netrin-1, these receptors trigger apoptosis. Tumor cells can avoid apoptosis by inactivating these receptors or by gaining ligand expression. The aim of the present study was to investigate the expression of netrin-1, the ligand of dependence receptors, in canine healthy lymph nodes (LN), and in lymphomas and to evaluate efficiency of a netrin-1 interfering compound in cell cultures from canine lymphoma. Thirty-two control LN and 169 lymphomas were analyzed through immunohistochemistry. Netrin-1 was expressed in the nucleoli of lymphoid and non-lymphoid cells in controls. Acquisition of a cytoplasmic expression was present in B-cell lymphomas (23.1 % in low-grade and 50.6% in high-grade) and T-cell lymphomas (50.0 % in low-grade and 78.8 % in high-grade), with a significant difference between the high- and low-grade in B-cell lymphomas. Through flow cytometry, we showed a significant increase in netrin-1 expression in either high-grade B-cell and T-cell lymphomas (19 and 5, respectively) compared with healthy LN (5), likewise an RT-qPCR analysis demonstrated a significant increase in netrin-1 expression level in 14 samples of lymphomas compared with eight samples of healthy LN. A T-cell aggressive canine lymphoma cell line and four primary canine nodal lymphomas cell cultures were treated with a netrin-1 interfering antibody. Apoptosis by measuring caspase 3 activity was significantly increased in the cell line and viability was decreased in three of the four primary cell cultures. Together, these data suggest that netrin-1 expression is increased in lymphoma, and more specifically in high-grade lymphomas, and that netrin-1 can act as a survival factor for the neoplastic cells, and so be a therapeutic target.
Collapse
|
25
|
Huang L, An X, Zhu Y, Zhang K, Xiao L, Yao X, Zeng X, Liang S, Yu J. Netrin-1 induces the anti-apoptotic and pro-survival effects of B-ALL cells through the Unc5b-MAPK axis. Cell Commun Signal 2022; 20:122. [PMID: 35974411 PMCID: PMC9380321 DOI: 10.1186/s12964-022-00935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND B-cell acute lymphoblastic leukemia (B-ALL) comprises over 85% of all acute lymphoblastic leukemia (ALL) cases and is the most common childhood malignancy. Although the 5 year overall survival of patients with B-ALL exceeds 90%, patients with relapsed or refractory B-ALL may suffer from poor prognosis and adverse events. The axon guidance factor netrin-1 has been reported to be involved in the tumorigenesis of many types of cancers. However, the impact of netrin-1 on B-ALL remains unknown. METHODS The expression level of netrin-1 in peripheral blood samples of children with B-ALL and children without neoplasia was measured by enzyme-linked immunosorbent assay (ELISA) kits. Then, CCK-8 cell proliferation assays and flow cytometric analysis were performed to detect the viability and apoptosis of B-ALL cells (Reh and Sup B15) treated with exogenous recombinant netrin-1 at concentrations of 0, 25, 50, and 100 ng/ml. Furthermore, co-immunoprecipitation(co-IP) was performed to detect the receptor of netrin-1. UNC5B expression interference was induced in B-ALL cells with recombinant lentivirus, and then CCK-8 assays, flow cytometry assays and western blotting assays were performed to verify that netrin-1 might act on B-ALL cells via the receptor Unc5b. Finally, western blotting and kinase inhibitor treatment were applied to detect the downstream signaling pathway. RESULTS Netrin-1 expression was increased in B-ALL, and netrin-1 expression was upregulated in patients with high- and intermediate-risk stratification group of patients. Then, we found that netrin-1 induced an anti-apoptotic effect in B-ALL cells, implying that netrin-1 plays an oncogenic role in B-ALL. co-IP results showed that netrin-1 interacted with the receptor Unc5b in B-ALL cells. Interference with UNC5B was performed in B-ALL cells and abolished the antiapoptotic effects of netrin-1. Further western blotting was applied to detect the phosphorylation levels of key molecules in common signaling transduction pathways in B-ALL cells treated with recombinant netrin-1, and the FAK-MAPK signaling pathway was found to be activated. The anti-apoptotic effect of netrin-1 and FAK-MAPK phosphorylation was abrogated by UNC5B interference. FAK inhibitor treatment and ERK inhibitor treatment were applied and verified that the FAK-MAPK pathway may be downstream of Unc5b. CONCLUSION Taken together, our findings suggested that netrin-1 induced the anti-apoptotic effect of B-ALL cells through activation of the FAK-MAPK signaling pathway by binding to the receptor Unc5b. Video Abstract.
Collapse
Affiliation(s)
- Lan Huang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xizhou An
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Yao Zhu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Kainan Zhang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Xiao
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Xinyuan Yao
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Xing Zeng
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Shaoyan Liang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.
| |
Collapse
|
26
|
Somatic mutations in DCC are associated with genomic instability and favourable outcomes in melanoma patients treated with immune checkpoint inhibitors. Br J Cancer 2022; 127:1411-1423. [PMID: 35871235 PMCID: PMC9553921 DOI: 10.1038/s41416-022-01921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Deleted in colorectal cancer (DCC) encodes a transmembrane dependence receptor and is frequently mutated in melanoma. The associations of DCC mutation with chromosomal instability and immunotherapeutic efficacy in melanoma are largely uncharacterised. METHODS We performed an integrated study based on biological experiments and multi-dimensional data types, including genomic, transcriptomic and clinical immune checkpoint blockade (ICB)-treated melanoma cohorts from public databases. RESULTS DCC mutation was significantly correlated with the tumour mutational burden (TMB) in The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and ICB-treated melanoma cohorts. DCC expression levels were correlated with DNA damage response and repair (DDR) pathways responsive to irradiation (IR) in the Malme-3M and SK-MEL-2 cell lines. In the TCGA cohort, DCC-mutated samples presented more neoantigens, higher proportions of infiltrating antitumour immunocytes and lower proportions of infiltrating pro-tumour immunocytes than DCC wild-type samples. DCC-mutated samples were significantly enriched in activated immune response and DDR pathways. Furthermore, patients harbouring mutated DCC treated with ICB showed remarkable clinical benefits in terms of the response rate and overall survival. CONCLUSIONS Somatic mutations in DCC are associated with improved clinical outcomes in ICB-treated melanoma patients. Once further validated, the DCC mutational status can improve patient selection for clinical practice and future study enrolment.
Collapse
|
27
|
Keeping Cell Death Alive: An Introduction into the French Cell Death Research Network. Biomolecules 2022; 12:biom12070901. [PMID: 35883457 PMCID: PMC9313292 DOI: 10.3390/biom12070901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.
Collapse
|
28
|
Oleanolic Acid (OA) Targeting UNC5B Inhibits Proliferation and EMT of Ovarian Cancer Cell and Increases Chemotherapy Sensitivity of Niraparib. JOURNAL OF ONCOLOGY 2022; 2022:5887671. [PMID: 35035481 PMCID: PMC8758276 DOI: 10.1155/2022/5887671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
Objective To investigate the effect of OA on proliferation, migration, and epithelial-mesenchymal transition (EMT) of ovarian cancer cells by inhibiting UNC5B and to study its mechanism. Methods TCGA database was used to analyze the expression of UNC5B in ovarian cancer and its relationship with prognosis. The expression of UNC5B in ovarian cancer cells was detected by qPCR assay. qRT-PCR was used to detect the changes of EMT markers after different treatments. CCK-8 assay was used to detect cell proliferation, transwell assay was used to evaluate cell migration, and clonogenesis assay was used to evaluate the effect of UNC5B on ovarian cancer cell proliferation. Meanwhile, the synergistic effect of OA on niraparib was evaluated. Results UNC5B was highly expressed in ovarian cancer, and its expression was negatively correlated with the prognosis of ovarian cancer patients. UNC5B was highly expressed in ovarian cancer cells SKOV3 and OVCA420 compared with normal ovarian epithelial cells. In addition, silencing UNC5B inhibits the proliferation, invasion, clonogenesis, and EMT processes of ovarian cancer cells. OA inhibits proliferation, invasion, and clonogenesis of ovarian cancer cells by inhibiting UNC5B and increases the antitumor activity of niraparib. Conclusion UNC5B acts as an oncogenic gene in ovarian cancer. OA inhibits ovarian cancer cell proliferation, migration, and EMT by targeting UNC5B and increases the antitumor effect of niraparib. UNC5B is expected to be a new potential therapeutic target for ovarian cancer. OA may be used as an antitumor drug and deserves further study.
Collapse
|
29
|
Brisset M, Grandin M, Bernet A, Mehlen P, Hollande F. Dependence receptors: new targets for cancer therapy. EMBO Mol Med 2021; 13:e14495. [PMID: 34542930 PMCID: PMC8573599 DOI: 10.15252/emmm.202114495] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Dependence receptors are known to promote survival and positive signaling such as proliferation, migration, and differentiation when activated, but to actively trigger apoptosis when unbound to their ligand. Their abnormal regulation was shown to be an important feature of tumorigenesis, allowing cancer cells to escape apoptosis triggered by these receptors while promoting in parallel major aspects of tumorigenesis such as proliferation, angiogenesis, invasiveness, and chemoresistance. This involvement in multiple cancer hallmarks has raised interest in dependence receptors as targets for cancer therapy. Although additional studies remain necessary to fully understand the complexity of signaling pathways activated by these receptors and to target them efficiently, it is now clear that dependence receptors represent very exciting targets for future cancer treatment. This manuscript reviews current knowledge on the contribution of dependence receptors to cancer and highlights the potential for therapies that activate pro-apoptotic functions of these proteins.
Collapse
Affiliation(s)
- Morgan Brisset
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| | - Mélodie Grandin
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| | - Agnès Bernet
- Apoptosis, Cancer and Development LaboratoryCentre de Recherche en Cancérologie de Lyon, INSERM U1052‐CNRS UMR5286Centre Léon BérardUniversité de LyonLyonFrance
| | - Patrick Mehlen
- Apoptosis, Cancer and Development LaboratoryCentre de Recherche en Cancérologie de Lyon, INSERM U1052‐CNRS UMR5286Centre Léon BérardUniversité de LyonLyonFrance
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| |
Collapse
|
30
|
Yang X, Sun H, Tang T, Zhang W, Li Y. Netrin-1 promotes retinoblastoma-associated angiogenesis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1683. [PMID: 34988192 PMCID: PMC8667090 DOI: 10.21037/atm-21-5560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Retinoblastoma (Rb) is the most common intraocular cancer of infancy and childhood, with an incidence of nearly 0.006% in all live births. Although a functional loss or inactivation of both alleles of the retinoblastoma 1 (RB1) gene during retinal development appears to be the predominant etiology for Rb, genes associated with tumor angiogenesis are also likely to be involved in the development of this condition. Netrin-1 is a factor that regulates pathological angiogenesis, while its role in Rb is largely unknown. The present study examined the role of netrin-1 in Rb. METHODS The expression of netrin-1 in Rb was assessed using public databases and using clinical specimens by RT-qPCR for mRNA and by ELISA for protein. The expression of netrin-1 was suppressed in Rb by siRNA and the effects on cell growth were determined by a CCK-8 assay, while the effects on angiogenesis were examined in vitro using human umbilical vein endothelial cell (HUVEC) assays and in vivo by quantification of tumor vessel density. RESULTS Analysis of published databases revealed that the netrin-1 gene is significantly upregulated in Rb, which was confirmed by immunohistochemistry on clinical specimens. Inhibition of netrin-1 in Rb cell lines significantly reduced their effects on angiogenesis in vitro using a HUVEC co-culture assay without affecting cell growth. Inhibition of netrin-1 expression in vivo suppressed the growth of grafted Rb, and this effect could be abolished by co-expression of vascular endothelial growth factor A (VEGF-A). CONCLUSIONS This data demonstrated a novel role for netrin-1 in the regulation of Rb-associated cancer vascularization and may represent a novel therapeutic target for patients with Rb.
Collapse
Affiliation(s)
- Xiaosheng Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Sun
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenchuan Zhang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Δ40p53 isoform up-regulates netrin-1/UNC5B expression and potentiates netrin-1 pro-oncogenic activity. Proc Natl Acad Sci U S A 2021; 118:2103319118. [PMID: 34470826 DOI: 10.1073/pnas.2103319118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Netrin-1, a secreted protein recently characterized as a relevant cancer therapeutic target, is the antiapoptotic ligand of the dependence receptors deleted in colorectal carcinoma and members of the UNC5H family. Netrin-1 is overexpressed in several aggressive cancers where it promotes cancer progression by inhibiting cell death induced by its receptors. Interference of its binding to its receptors has been shown, through the development of a monoclonal neutralizing antinetrin-1 antibody (currently in phase II of clinical trial), to actively induce apoptosis and tumor growth inhibition. The transcription factor p53 was shown to positively regulate netrin-1 gene expression. We show here that netrin-1 could be a target gene of the N-terminal p53 isoform Δ40p53, independent of full-length p53 activity. Using stable cell lines, harboring wild-type or null-p53, in which Δ40p53 expression could be finely tuned, we prove that Δ40p53 binds to and activates the netrin-1 promoter. In addition, we show that forcing immortalized human skeletal myoblasts to produce the Δ40p53 isoform, instead of full-length p53, leads to the up-regulation of netrin-1 and its receptor UNC5B and promotes cell survival. Indeed, we demonstrate that netrin-1 interference, in the presence of Δ40p53, triggers apoptosis in cancer and primary cells, leading to tumor growth inhibition in preclinical in vivo models. Finally, we show a positive correlation between netrin-1 and Δ40p53 gene expression in human melanoma and colorectal cancer biopsies. Hence, we propose that inhibition of netrin-1 binding to its receptors should be a promising therapeutic strategy in human tumors expressing high levels of Δ40p53.
Collapse
|
32
|
Fadel MM, Abdel Ghaffar FR, Zwain SK, Ibrahim HM, badr EAE. Serum netrin and VCAM-1 as biomarker for Egyptian patients with type IΙ diabetes mellitus. Biochem Biophys Rep 2021; 27:101045. [PMID: 34179515 PMCID: PMC8209750 DOI: 10.1016/j.bbrep.2021.101045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the serum level of netrin and soluble vascular cell adhesion molecule 1 (VCAM-I) in patients with type IΙ diabetes mellitus (T2DM) and evaluate the association of their levels with the development of a diabetic complication. PATIENTS AND METHODS This study was carried out on type II diabetic patients with and without complications and healthy individuals served as controls. All subjects were submitted to the estimation of serum lipid profile, serum creatinine, urinary albumin/creatinine ratio (ACR), fasting blood glucose (FBG), glycated hemoglobin (HbA1c), visceral adiposity index (VAI), atherogenic index of plasma (AIP), lipid accumulation product (LAP) and detection of serum level of netrin1 and VCAM1. RESULTS Diabetic patients with complications had significantly higher serum levels of creatinine, ACR, cholesterol, Triglyceride, low-density lipoprotein, netrin1, and VCAM1 than diabetic patients without complications. Likewise, the level of VAI and LAP as markers of excessive body fat were significantly higher in diabetic patients with complications than diabetic patients without complications. The netrin1 and VCAM1 were a significant discriminator of T2DM renal complications with a sensitivity of 96%, 90%, and specificity of 82.7%, 91.3% respectively. CONCLUSION It can be concluded that serum netrin1 and VCAM1 correlated significantly with markers of excessive body fat, a renal complication in the patient with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Maher M. Fadel
- Unit of Immunology and Physiology Department of Zoology, Faculty of Science, Menoufia University, Egypt
| | - Faten R. Abdel Ghaffar
- Unit of Immunology and Physiology Department of Zoology, Faculty of Science, Menoufia University, Egypt
| | - Shimaa K. Zwain
- Department of Internal Medicine, Diabetes and Endocrinology, Faculty of Medicine, Menoufia University, Egypt
| | - Hany M. Ibrahim
- Unit of Immunology and Physiology Department of Zoology, Faculty of Science, Menoufia University, Egypt
| | - Eman AE. badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
33
|
Duan L, Woolbright BL, Jaeschke H, Ramachandran A. Late Protective Effect of Netrin-1 in the Murine Acetaminophen Hepatotoxicity Model. Toxicol Sci 2021; 175:168-181. [PMID: 32207522 DOI: 10.1093/toxsci/kfaa041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acetaminophen (APAP) overdose-induced acute liver failure is an important clinical problem in the United States and the current antidote N-acetylcysteine, has a short early therapeutic window. Since most patients present late to the clinic, there is need for novel late-acting therapeutic options. Though the neuronal guidance cue netrin-1, has been shown to promote hepatic repair and regeneration during liver ischemia/reperfusion injury, its effect in APAP-induced hepatotoxicity is unknown. In the quest for a late-acting therapeutic intervention in APAP-induced liver injury, we examined the role of netrin-1 in a mouse model of APAP overdose. Male C57BL/6J mice were cotreated with exogenous netrin-1 or vehicle control, along with 300 mg/kg APAP and euthanized at 6, 12, and 24 h. Significant elevations in alanine aminotransferase indicative of liver injury were seen in control mice at 6 h and this was not affected by netrin-1 administration. Also, netrin-1 treatment did not influence mitochondrial translocation of phospho-JNK, or peroxynitrite formation indicating that there was no interference with APAP-induced injury processes. Interestingly however, netrin-1 administration attenuated liver injury at 24 h, as seen by alanine aminotransferase levels and histology, at which time significant elevations in the netrin-1 receptor, adenosine A2B receptor (A2BAR) as well as macrophage infiltration was evident. Removal of resident macrophages with clodronate liposomes or treatment with the A2BAR antagonist PSB1115 blocked the protective effects of netrin-1. Thus, our data indicate a previously unrecognized role for netrin-1 in attenuation of APAP hepatotoxicity by enhancing recovery and regeneration, which is mediated through the A2BAR and involves resident liver macrophages.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
34
|
Zhu Y, Li Y, Nakagawara A. UNC5 dependence receptor family in human cancer: A controllable double-edged sword. Cancer Lett 2021; 516:28-35. [PMID: 34077783 DOI: 10.1016/j.canlet.2021.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
UNC5 receptor family (UNC5A-D) have been identified as dependence receptors whose functions depend on the availability of their ligand netrin-1. Through binding to netrin-1, these receptors transmit signals for cell survival, migration and differentiation, and participate in diverse physiological and pathological processes. In the lack of netrin-1, however, these receptors initiate apoptosis-inducing signal. Accumulating evidence reveals that netrin-1 and its receptors play a role in tumorigenesis and tumor progression. The expression of UNC5 receptor family is down-regulated in a variety of human tumors. Expression aberrance of UNC5 receptor family in tumors is caused by diverse mechanisms including genomic, epigenetic, transcriptional and post-transcriptional regulation. Notably, blocking netrin-1 binding to its receptors induces apoptotic cell death in tumor cells. In this review, we describe the characters and roles of UNC5 family members in tumorigenesis and tumor progression, discussing the regulatory mechanisms underlying down-regulation of UNC5 family members as well as recent implications of targeting netrin-1/UNC5 on potential clinical application for cancer treatment.
Collapse
Affiliation(s)
- Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
| | - Yuanyuan Li
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Akira Nakagawara
- Kyushu International Heavy Particle Beam Cancer Radiotherapy Center (SAGA HIMAT Foundation), Tosu, Japan.
| |
Collapse
|
35
|
Abstract
AbstractAn important goal in the fight against cancer is to understand how tumors become invasive and metastatic. A crucial early step in metastasis is thought to be the epithelial mesenchymal transition (EMT), the process in which epithelial cells transition into a more migratory and invasive, mesenchymal state. Since the genetic regulatory networks driving EMT in tumors derive from those used in development, analysis of EMTs in genetic model organisms such as the vinegar fly, Drosophila melanogaster, can provide great insight into cancer. In this review I highlight the many ways in which studies in the fly are shedding light on cancer metastasis. The review covers both normal developmental events in which epithelial cells become migratory, as well as induced events, whereby normal epithelial cells become metastatic due to genetic manipulations. The ability to make such precise genetic perturbations in the context of a normal, in vivo environment, complete with a working innate immune system, is making the fly increasingly important in understanding metastasis.
Collapse
Affiliation(s)
- Michael J. Murray
- School of BioSciences, Faculty of Science, University of Melbourne, Victoria 3010, Melbourne, Australia
| |
Collapse
|
36
|
Netrin-1 functions as a suppressor of bone morphogenetic protein (BMP) signaling. Sci Rep 2021; 11:8585. [PMID: 33883596 PMCID: PMC8060280 DOI: 10.1038/s41598-021-87949-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Netrin-1 is a secreted protein that is well known for its involvement in axonal guidance during embryonic development and as an enhancer of cancer cell metastasis. Despite extensive efforts, the molecular mechanisms behind many of the physiological functions of netrin-1 have remained elusive. Here, we show that netrin-1 functions as a suppressor of bone morphogenetic protein (BMP) signaling in various cellular systems, including a mutually inhibitory interaction with the BMP-promoting function of leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins. The BMP inhibitory function of netrin-1 in mouse embryonic fibroblasts was dependent on the netrin receptor neogenin, with the expression level regulated by both netrin-1 and LRIG proteins. Our results reveal a previously unrecognized function of netrin-1 that may help to explain several of the developmental, physiological, and cancer-promoting functions of netrins at the signal transduction level.
Collapse
|
37
|
Elkholy RA, Younis RL, Allam AA, Hagag RY, Abdel Ghafar MT. Diagnostic efficacy of serum and urinary netrin-1 in the early detection of diabetic nephropathy. J Investig Med 2021; 69:1189-1195. [PMID: 33863755 DOI: 10.1136/jim-2021-001785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
This study aimed to assess the diagnostic value of serum and urinary netrin-1 in patients with type 2 diabetes mellitus (T2DM) at different stages of diabetic nephropathy (DN) and to compare its efficacy of estimation in serum with that in the urine. This study was carried out on 135 patients with T2DM and 45 healthy subjects. The patients with diabetes were divided according to urinary albumin creatinine ratio (UACR) into: T2DM with normoalbuminuria, incipient DN with microalbuminuria, and overt DN with macroalbuminuria groups. Serum and urinary levels of netrin-1 were measured by ELISA. The mean levels of serum and urinary netrin-1 were significantly higher in the microalbuminuric and macroalbuminuric patients with DN than those in the normoalbuminuric patients with T2DM, with the highest values detected in macroalbuminuric patients with DN. Urinary netrin-1 level was significantly higher in the normoalbuminuric T2DM group than control group, whereas no significant difference existed regarding serum netrin-1 level. In T2DM groups, the urinary and serum netrin-1 correlated with each other and were independently related to fasting blood glucose, UACR, and estimated glomerular filtration rate. Receiver operating characteristic curve analysis showed that the area under the curve of urinary netrin-1 was 0.916 which is significantly higher than that of serum netrin-1 (0.812) for the detection of incipient DN and reached 0.938 on coestimation of both urinary and serum netrin-1. In conclusion, netrin-1 is a potential diagnostic marker for early detection of DN with its estimation in urine has higher accuracy than that of serum.
Collapse
Affiliation(s)
- Rasha A Elkholy
- Clinical Pathology, Tanta University Faculty of Medicine, Tanta, Egypt
| | - Reham L Younis
- Physiology, Tanta University Faculty of Medicine, Tanta, Egypt
| | - Alzahraa A Allam
- Internal Medicine, Tanta University Faculty of Medicine, Tanta, Egypt
| | | | | |
Collapse
|
38
|
Silverman DA, Martinez VK, Dougherty PM, Myers JN, Calin GA, Amit M. Cancer-Associated Neurogenesis and Nerve-Cancer Cross-talk. Cancer Res 2021; 81:1431-1440. [PMID: 33334813 PMCID: PMC7969424 DOI: 10.1158/0008-5472.can-20-2793] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
In this review, we highlight recent discoveries regarding mechanisms contributing to nerve-cancer cross-talk and the effects of nerve-cancer cross-talk on tumor progression and dissemination. High intratumoral nerve density correlates with poor prognosis and high recurrence across multiple solid tumor types. Recent research has shown that cancer cells express neurotrophic markers such as nerve growth factor, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor and release axon-guidance molecules such as ephrin B1 to promote axonogenesis. Tumor cells recruit new neural progenitors to the tumor milieu and facilitate their maturation into adrenergic infiltrating nerves. Tumors also rewire established nerves to adrenergic phenotypes via exosome-induced neural reprogramming by p53-deficient tumors. In turn, infiltrating sympathetic nerves facilitate cancer progression. Intratumoral adrenergic nerves release noradrenaline to stimulate angiogenesis via VEGF signaling and enhance the rate of tumor growth. Intratumoral parasympathetic nerves may have a dichotomous role in cancer progression and may induce Wnt-β-catenin signals that expand cancer stem cells. Importantly, infiltrating nerves not only influence the tumor cells themselves but also impact other cells of the tumor stroma. This leads to enhanced sympathetic signaling and glucocorticoid production, which influences neutrophil and macrophage differentiation, lymphocyte phenotype, and potentially lymphocyte function. Although much remains unexplored within this field, fundamental discoveries underscore the importance of nerve-cancer cross-talk to tumor progression and may provide the foundation for developing effective targets for the inhibition of tumor-induced neurogenesis and tumor progression.
Collapse
Affiliation(s)
- Deborah A Silverman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vena K Martinez
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
39
|
Mei S, Zong H, Zhou H. Long non-coding RNA PITPNA-AS1 regulates UNC5B expression in papillary thyroid cancer via sponging miR-129-5p. Int J Biol Markers 2021; 36:10-19. [PMID: 33706585 DOI: 10.1177/1724600820985528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) PITPNA antisense RNA 1 (PITPNA-AS1) expression characteristics, function, and mechanism in papillary thyroid cancer are unclear. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was applied for detecting PITPNA-AS1, UNC-5 netrin receptor B (UNC5B) mRNA, and miR-129-5p expressions in papillary thyroid cancer tissues and cell lines. EdU assay, cell counting kit-8 (CCK-8) assay, wound healing assay, and flow cytometry analysis were performed to investigate the biological functions of PITPNA-AS1 in papillary thyroid cancer. Dual-luciferase reporter assay was utilized for determining whether PITPNA-AS1 and miR-129-5p, as well as UNC5B and miR-129-5p could directly bind to each other. Western blot assay was employed for measuring UNC5B protein expression level in papillary thyroid cancer cell lines. RESULTS PITPNA-AS1 and UNC5B expressions were markedly increased in papillary thyroid cancer tissues and cell lines while miR-129-5p expression was down-regulated. Knockdown of PITPNA-AS1 could significantly inhibit papillary thyroid cancer cell growth and migration and promote cell apoptosis while UNC5B overexpression plasmids or miR-129-5p inhibitors counteracted the knockdown effect of PITPNA-AS1 on papillary thyroid cancer cells. PITPNA-AS1 targeted miR-129-5p to repress its expression and miR-129-5p targeted UNC5B to repress its expression. Silencing PITPNA-AS1 reduced the expression of UNC5B via regulating miR-129-5p expression. CONCLUSIONS PITPNA-AS1 facilitated papillary thyroid cancer cell proliferation and migration, and suppressed apoptosis through miR-129-5p/UNC5B axis.
Collapse
Affiliation(s)
- Shijuan Mei
- Department of Breast and Thyroid Surgery, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Huafeng Zong
- Department of Pathology, Dalian Friendship Hospital, Zhongshan District, Dalian, Liaoning, China
| | - Haicheng Zhou
- Department of Endocrinology, the First Affiliated Hospital of Dalian Medical University, Xigang District, Liaoning, China
| |
Collapse
|
40
|
Yu AQ, Wang J, Zhou XJ, Chen KY, Cao YD, Wang ZX, Mao ZB. Senescent Cell-Secreted Netrin-1 Modulates Aging-Related Disorders by Recruiting Sympathetic Fibers. Front Aging Neurosci 2021; 12:507140. [PMID: 33390926 PMCID: PMC7772213 DOI: 10.3389/fnagi.2020.507140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is implicated in several lines of aging-related disorders. However, the potential molecular mechanisms by which cellular senescence modulates age-related pathologies remain largely unexplored. Herein, we report that the density of sympathetic fibers (SFs) is significantly elevated in naturally aged mouse tissues and human colon adenoma tissues compared to the SFs densities in the corresponding young mouse tissues and human non-lesion colon tissues. A dorsal root ganglion (DRG)-human diploid fibroblast coculture assay revealed that senescent cells promote the outgrowth of SFs, indicating that the senescent cells induce recruitment of SFs in vitro. Additionally, subcutaneous transplantation of 2BS fibroblasts in nude mice shows that transplanted senescent 2BS fibroblasts promote SFs infiltration. Intra-articular senolytic molecular injection can reduce SFs density and inhibit SFs infiltration caused by senescent cells in osteoarthritis (OA), suggesting senescent cells promote the infiltration of SFs in vivo in aged tissues. Notably, the elevated level of SFs contributes to impaired cognitive function in naturally aged mice, which can be reversed by treatment with propranolol hydrochloride, a non-selective β receptor blocker that inhibits sympathetic nerve activity (SNA) by blocking non-selective β receptors. Additionally, 6-hydroxydopamine (6-OHDA)-induced sympathectomy improved hepatic sympathetic overactivity mediated hepatic steatosis in high fat diet (HFD)-fed APOE knockout mice (APOE−/− mice) by reducing hepatic SNA. Taken together, this study concludes that senescent cell-secreted netrin-1 mediated SFs outgrowth and infiltration, which contributes to aging-related disorders, suggesting that clearing senescent cells or inhibiting SNA is a promising therapeutic strategy for improving sympathetic nervous system (SNS) hyperactivity-induced aging-related pathologies.
Collapse
Affiliation(s)
- Ai Qing Yu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Research Center on Aging, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jie Wang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao Jia Zhou
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ke Yu Chen
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - You De Cao
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhi Xiao Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ze Bin Mao
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Research Center on Aging, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
41
|
Ding S, Guo X, Zhu L, Wang J, Li T, Yu Q, Zhang X. Macrophage-derived netrin-1 contributes to endometriosis-associated pain. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:29. [PMID: 33553322 PMCID: PMC7859736 DOI: 10.21037/atm-20-2161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Endometriosis-associated pain can be considered a type of neuropathic pain. Netrin-1 is an axon guidance cue that regulates axonal attraction or rejection in neural injury and regeneration. However, whether netrin-1 plays a role in endometriosis-associated pain remains unclear. This study aimed to determine the role of netrin-1 in endometriosis-related pain. Methods Peripheral blood, peritoneal fluid, and endometrial tissues were sampled from women with (n=37) and without endometriosis (n=23). Lipopolysaccharide (LPS) and interferon gamma (IFN-γ) were used to stimulate human monocytic cell lines (THP-1) and rat alveolar macrophage-derived cell lines (NR8383) to induce M1 phenotype macrophages. Serum netrin-1 concentrations, endometrial expression levels of netrin-1, and its receptors including deleted in colorectal cancer (DCC), A2B adenosine receptor (A2BAR), uncoordinated B receptor (UNC5B), uncoordinated C receptor (UNC5C) and Down’s syndrome cell adhesion molecule (DSCAM) were assessed. The polarization phenotypes of the peritoneal macrophages were identified by detecting the marker expression of M1/M2 macrophages via flow cytometry. The expression levels of M1 markers and netrin-1 in THP-1/NR8383 cells were determined. Results The expression levels of netrin-1 in serum and endometriotic lesions were significantly higher in women with endometriosis, and were positively correlated with the severity of endometriosis-associated pain. Netrin-1 was co-expressed with CD68 (a macrophage marker) in endometriotic lesions and was synthesized and secreted by THP-1 and NR8383 cells in the process of M1 polarization. In women with endometriosis, peritoneal macrophages were polarized towards the M1 phenotype. In addition, increased expression of DCC and A2BAR, and decreased expression of UNC5B, UNC5C and DSCAM were found in endometriotic lesions. Conclusions These results suggest that netrin-1 production by macrophages in endometriotic lesions may play an important role in endometriosis-associated pain.
Collapse
Affiliation(s)
- Shaojie Ding
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Guo
- Zhejiang University School of Medicine, Hangzhou, China
| | - Libo Zhu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhang Wang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Yu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Wu S, Guo X, Zhou J, Zhu X, Chen H, Zhang K, Lu Y, Chen Y. High expression of UNC5B enhances tumor proliferation, increases metastasis, and worsens prognosis in breast cancer. Aging (Albany NY) 2020; 12:17079-17098. [PMID: 32902412 PMCID: PMC7521535 DOI: 10.18632/aging.103639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
UNC-5 Homolog B (UNC5B) is a member of the dependence receptor family that regulates cell survival and apoptosis in a ligand-dependent manner. UNC5B plays an important role in the development of multiple cancers, including colorectal, bladder, and thyroid cancer. However, the exact expression pattern and mechanism of UNC5B in breast cancer have not been well elucidated. Here, we showed that UNC5B expression was significantly upregulated in breast cancer using bioinformatics analysis and experimental validation. High UNC5B expression was correlated with poor overall survival in breast cancer patients. UNC5B knockdown inhibited breast cancer cell proliferation and metastasis and compromised PI3K/Akt signaling activation. In summary, UNC5B is a promising diagnostic and prognostic biomarker and targeting UNC5B is a potential strategy for individualized breast cancer treatment.
Collapse
Affiliation(s)
- Shijie Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Xinyue Guo
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Jiaojiao Zhou
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Xuan Zhu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Huihui Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Kun Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yuexin Lu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
43
|
Wu G, Wang Z, Shan P, Huang S, Lin S, Huang W, Huang Z. Suppression of Netrin-1 attenuates angiotension II-induced cardiac remodeling through the PKC/MAPK signaling pathway. Biomed Pharmacother 2020; 130:110495. [PMID: 32688140 DOI: 10.1016/j.biopha.2020.110495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myocardial remodeling caused by angiotensin II (Ang II) is essential for the pathological process of heart failure. Netrin-1, which is an axonal guidance cue, has been shown to be involved in the inflammatory response, tumorigenesis, and angiogenesis in non-neuronal tissues. However, the role of Netrin-1 in cardiac remodeling has not been fully elucidated. METHODS The rat cardiomyocyte cell line H9c2 and primary neonatal rat cardiomyocytes were treated with Ang II. Cells were transfected with siRNA to silence Netrin-1 expression. Real-time polymerase chain reaction and Western blot analysis were used to detect the markers for fibrosis, apoptosis, and hypertrophy in cardiomyocytes. An Annexin V-EGFP/PI cell apoptosis detection kit was used to measure the level of apoptosis caused by angiotensin II. RESULTS We found that Netrin-1 expression was upregulated in the H9c2 cells and the neonatal rat cardiomyocytes stimulated by Ang II. The increased Netrin-1 expression was decreased by valsartan to block AT1R. Importantly, the application of Netrin-1 siRNA significantly alleviated the degrees of myocardial hypertrophy, fibrosis (reflected by Myhc, collagen I, and TGF-β) and apoptosis (reflected by the level of Caspase 3, Bax, and Bcl-2) induced by Ang II. In addition, the silencing of Netrin-1 substantially decreased the phosphorylation of PKCα, JNK, and P38. We treated H9c2 cells with LY317615, SP600125, and SB203580, inhibitors of PKCα, JNK, and P38, respectively, thereby resulting in a substantial decrease in hypertrophy, fibrosis, and apoptosis. CONCLUSIONS Ang II produces cardiac hypertrophy, fibrosis, and apoptosis through the upregulation of Netrin-1 and the activation of the AT1R/PKCα/MAPK (JNK, P38) pathway. Suppression of Netrin-1 can relieve Ang II-induced cardiac remodeling via inhibition of the PKCα/MAPK (JNK and P38) signaling pathway. Thus, Netrin-1 may be a novel therapeutic target for Ang II-mediated cardiac remodeling.
Collapse
Affiliation(s)
- Gaojun Wu
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Zhengxian Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Peiren Shan
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Shanjun Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Shuang Lin
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| |
Collapse
|
44
|
Polyomavirus Small T Antigen Induces Apoptosis in Mammalian Cells through the UNC5B Pathway in a PP2A-Dependent Manner. J Virol 2020; 94:JVI.02187-19. [PMID: 32404521 DOI: 10.1128/jvi.02187-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/02/2020] [Indexed: 11/20/2022] Open
Abstract
UNC5B is a dependence receptor that promotes survival in the presence of its ligand, netrin-1, while inducing cell death in its absence. The receptor has an important role in the development of the nervous and vascular systems. It is also involved in the normal turnover of intestinal epithelium. Netrin-1 and UNC5B are deregulated in multiple cancers, including colorectal, neuroblastoma, and breast tumors. However, the detailed mechanism of UNC5B function is not fully understood. We have utilized the murine polyomavirus small T antigen (PyST) as a tool to study UNC5B-mediated apoptosis. PyST is known to induce mitotic arrest followed by extensive cell death in mammalian cells. Our results show that the expression of PyST increases mRNA levels of UNC5B by approximately 3-fold in osteosarcoma cells (U2OS) and also stabilizes UNC5B at the posttranslational level. Furthermore, UNC5B is upregulated predominantly in those cells that undergo mitotic arrest upon PyST expression. Interestingly, although its expression was previously reported to be regulated by p53, our data show that the increase in UNC5B levels by PyST is p53 independent. The posttranslational stabilization of UNC5B by PyST is regulated by the interaction of PyST with PP2A. We also show that netrin-1 expression, which is known to inhibit UNC5B apoptotic activity, promotes survival of PyST-expressing cells. Our results thus suggest an important role of UNC5B in small-T antigen-induced mitotic catastrophe that also requires PP2A.IMPORTANCE UNC5B, PP2A, and netrin-1 are deregulated in a variety of cancers. UNC5B and PP2A are regarded as tumor suppressors, as they promote apoptosis and are deleted or mutated in many cancers. In contrast, netrin-1 promotes survival by inhibiting dependence receptors, including UNC5B, and is upregulated in many cancers. Here, we show that UNC5B-mediated apoptosis can occur independently of p53 but in a PP2A-dependent manner. A substantial percentage of cancers arise due to p53 mutations and are insensitive to chemotherapeutic treatments that activate p53. Unexpectedly, treatment of cancers having functional p53 with many conventional drugs leads to the upregulation of netrin-1 through activated p53, which is counterintuitive. Therefore, understanding the p53-independent mechanisms of the netrin-UNC5B axis, such as those involving PP2A, assumes greater clinical significance. Anticancer strategies utilizing anti-netrin-1 antibody treatment are already in clinical trials.
Collapse
|
45
|
Galardi A, Colletti M, Lavarello C, Di Paolo V, Mascio P, Russo I, Cozza R, Romanzo A, Valente P, De Vito R, Pascucci L, Peinado H, Carcaboso AM, Petretto A, Locatelli F, Di Giannatale A. Proteomic Profiling of Retinoblastoma-Derived Exosomes Reveals Potential Biomarkers of Vitreous Seeding. Cancers (Basel) 2020; 12:cancers12061555. [PMID: 32545553 PMCID: PMC7352325 DOI: 10.3390/cancers12061555] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma (RB) is the most common tumor of the eye in early childhood. Although recent advances in conservative treatment have greatly improved the visual outcome, local tumor control remains difficult in the presence of massive vitreous seeding. Traditional biopsy has long been considered unsafe in RB, due to the risk of extraocular spread. Thus, the identification of new biomarkers is crucial to design safer diagnostic and more effective therapeutic approaches. Exosomes, membrane-derived nanovesicles that are secreted abundantly by aggressive tumor cells and that can be isolated from several biological fluids, represent an interesting alternative for the detection of tumor-associated biomarkers. In this study, we defined the protein signature of exosomes released by RB tumors (RBT) and vitreous seeding (RBVS) primary cell lines by high resolution mass spectrometry. A total of 5666 proteins were identified. Among these, 5223 and 3637 were expressed in exosomes RBT and one RBVS group, respectively. Gene enrichment analysis of exclusively and differentially expressed proteins and network analysis identified in RBVS exosomes upregulated proteins specifically related to invasion and metastasis, such as proteins involved in extracellular matrix (ECM) remodeling and interaction, resistance to anoikis and the metabolism/catabolism of glucose and amino acids.
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Marta Colletti
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
- Correspondence: ; Tel.: +39-066859-3516
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (C.L.); (A.P.)
| | - Virginia Di Paolo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Paolo Mascio
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Ida Russo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Raffaele Cozza
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| | - Antonino Romanzo
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’ Onofrio 4, 00165 Rome, Italy; (A.R.); (P.V.)
| | - Paola Valente
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’ Onofrio 4, 00165 Rome, Italy; (A.R.); (P.V.)
| | - Rita De Vito
- Department of Pathology, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy;
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Hector Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, 28029 Madrid, Spain;
| | - Angel M. Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, 08950 Esplugues de Llobregat, Spain;
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; (C.L.); (A.P.)
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
- Department of Ginecology/Obstetrics & Pediatrics, Sapienza University of Rome, 00185 Roma, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (A.G.); (V.D.P.); (P.M.); (I.R.); (R.C.); (F.L.); (A.D.G.)
| |
Collapse
|
46
|
Netrin-1: A new promising diagnostic marker for muscle invasion in bladder cancer. Urol Oncol 2020; 38:640.e1-640.e12. [PMID: 32156466 DOI: 10.1016/j.urolonc.2020.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Bladder cancer is the most common urological malignancy with a high tendency for progression and recurrence. So far, no reliable diagnostic marker is present with 100% sensitivity and specificity. Netrins are related to laminin proteins, and were first discovered to be involved in neural development. After that, they were found in other organs of the body and several studies stated that they have implicated in cancer progression. PURPOSE This study aimed at investigating the netrin-1 gene expression in bladder cancer tissues, in addition to the possibility of using urinary netrin-1 as a marker for muscle invasion diagnosis in bladder cancer cases. METHODS Netrin-1 gene expression in bladder cancer tissue was detected in this study by real-time polymerase chain reaction. Moreover, netrin-1 protein was measured in tissue and urinary deposit samples by western blotting. RESULTS The results of this study revealed that netrin-1 is expressed in bladder cancer and control tissues, with a strong positive correlation between netrin-1 in tissues and urinary netrin-1 (rs = 0.762, P < 0.0005). Receiver operating characteristic curve analysis confirmed the muscle-invasion diagnostic value of urinary netrin-1 with bladder cancer cases, providing an area under the curve equals to 0.758 (95% confidence interval, 0.630-0.886, P < 0.0005), with 96% sensitivity and 67% specificity. Bladder cancer patients had been included to examine risk factors for local recurrence, distant metastasis, and death. Cox regression models showed that netrin-1 gene expression, tumor size, and age are positive predictor markers for local tumor recurrence. Age is a predictor for distant metastasis, and tumor stage is a predictor for death. CONCLUSION Urinary netrin-1 can be used as a promising biomarker for diagnosis of muscle invasion, which may help in the follow up of non-invasive tumors. In addition, tissue netrin-1 expression may serve as a predictor of local tumor recurrence.
Collapse
|
47
|
Boussouar A, Tortereau A, Manceau A, Paradisi A, Gadot N, Vial J, Neves D, Larue L, Battistella M, Leboeuf C, Lebbé C, Janin A, Mehlen P. Netrin-1 and Its Receptor DCC Are Causally Implicated in Melanoma Progression. Cancer Res 2020; 80:747-756. [PMID: 31806640 DOI: 10.1158/0008-5472.can-18-1590] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/25/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022]
Abstract
Deleted in colorectal cancer (DCC), the receptor for the multifunctional cue netrin-1, acts as a tumor suppressor in intestinal cancer and lung metastasis by triggering cancer cell death when netrin-1 is lowly expressed. Recent genomic data highlighted that DCC is the third most frequently mutated gene in melanoma; we therefore investigated whether DCC could act as a melanoma tumor suppressor. Reexpressing DCC in human melanoma cell lines promoted tumor cell death and tumor growth inhibition in xenograft mouse models. Genetic silencing of DCC prodeath activity in a BRAFV600E mouse model increased the proportion of mice with melanoma, further supporting that DCC is a melanoma tumor suppressor. Netrin-1 expression was elevated in melanoma compared with benign melanocytic lesions. Upregulation of netrin-1 in the skin cells of a BRAFV600E-mutated murine model reduced cancer cell death and promoted melanoma progression. Therapeutic antibody blockade of netrin-1 combined with dacarbazine increased overall survival in several mouse melanoma models. Together, these data support that interfering with netrin-1 could be a viable therapeutic approach in patients with netrin-1-expressing melanoma. SIGNIFICANCE: Netrin-1 and its receptor DCC regulate melanoma progression, suggesting therapeutic targeting of this signaling axis as a viable option for melanoma treatment.
Collapse
Affiliation(s)
- Amina Boussouar
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Antonin Tortereau
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Ambroise Manceau
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Andrea Paradisi
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Jonathan Vial
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | | | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR3347, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Maxime Battistella
- Université Paris Diderot, Inserm, UMR_S1165, Paris, France, Laboratoire de pathologie, Hôpital Saint Louis, APHP, Paris, France
| | - Christophe Leboeuf
- Université Paris Diderot, Inserm, UMR_S1165, Paris, France, Laboratoire de pathologie, Hôpital Saint Louis, APHP, Paris, France
| | - Celeste Lebbé
- Service de dermatologie, Hôpital Saint Louis, APHP, Paris, France
| | - Anne Janin
- Université Paris Diderot, Inserm, UMR_S1165, Paris, France, Laboratoire de pathologie, Hôpital Saint Louis, APHP, Paris, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France. .,Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| |
Collapse
|
48
|
Bissey PA, Mathot P, Guix C, Jasmin M, Goddard I, Costechareyre C, Gadot N, Delcros JG, Mali SM, Fasan R, Arrigo AP, Dante R, Ichim G, Mehlen P, Fombonne J. Blocking SHH/Patched Interaction Triggers Tumor Growth Inhibition through Patched-Induced Apoptosis. Cancer Res 2020; 80:1970-1980. [PMID: 32060146 DOI: 10.1158/0008-5472.can-19-1340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/23/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The Sonic Hedgehog (SHH) pathway plays a key role in cancer. Alterations of SHH canonical signaling, causally linked to tumor progression, have become rational targets for cancer therapy. However, Smoothened (SMO) inhibitors have failed to show clinical benefit in patients with cancers displaying SHH autocrine/paracrine expression. We reported earlier that the SHH receptor Patched (PTCH) is a dependence receptor that triggers apoptosis in the absence of SHH through a pathway that differs from the canonical one, thus generating a state of dependence on SHH for survival. Here, we propose a dual function for SHH: its binding to PTCH not only activates the SHH canonical pathway but also blocks PTCH-induced apoptosis. Eighty percent, 64%, and 8% of human colon, pancreatic, and lung cancer cells, respectively, overexpressed SHH at transcriptional and protein levels. In addition, SHH-overexpressing cells expressed all the effectors of the PTCH-induced apoptotic pathway. Although the canonical pathway remained unchanged, autocrine SHH interference in colon, pancreatic, and lung cell lines triggered cell death through PTCH proapoptotic signaling. In vivo, SHH interference in colon cancer cell lines decreased primary tumor growth and metastasis. Therefore, the antitumor effect associated to SHH deprivation, usually thought to be a consequence of the inactivation of the canonical SHH pathway, is, at least in part, because of the engagement of PTCH proapoptotic activity. Together, these data strongly suggest that therapeutic strategies based on the disruption of SHH/PTCH interaction in SHH-overexpressing cancers should be explored. SIGNIFICANCE: Sonic Hedgehog-overexpressing tumors express PTCH-induced cell death effectors, suggesting that this death signaling could be activated as an antitumor strategy.
Collapse
Affiliation(s)
- Pierre-Antoine Bissey
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLASCAN, Cancer Research Center of Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Pauline Mathot
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLASCAN, Cancer Research Center of Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Catherine Guix
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLASCAN, Cancer Research Center of Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Mélissa Jasmin
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLASCAN, Cancer Research Center of Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Isabelle Goddard
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLASCAN, Cancer Research Center of Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Translational Research and Innovation, Centre Leon Bérard, Laboratoire des Modèles Tumoraux (LMT) Fondation Synergie Lyon Cancer, Lyon, France
| | - Clélia Costechareyre
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLASCAN, Cancer Research Center of Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- Department of Translational Research and Innovation, Anapath, Centre Léon Bérard, Lyon
| | - Jean-Guy Delcros
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLASCAN, Cancer Research Center of Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | | | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York
| | - André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLASCAN, Cancer Research Center of Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Robert Dante
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLASCAN, Cancer Research Center of Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Gabriel Ichim
- Cancer Cell death Lab, Cancer Reasearch Center of Lyon (CRCL), LabEx DEVweCAN, Institut Convergence PLASCAN, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLASCAN, Cancer Research Center of Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France. .,Department of Translational Research and Innovation, Anapath, Centre Léon Bérard, Lyon
| | - Joanna Fombonne
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLASCAN, Cancer Research Center of Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
49
|
Stone TW. Dependence and Guidance Receptors-DCC and Neogenin-In Partial EMT and the Actions of Serine Proteases. Front Oncol 2020; 10:94. [PMID: 32117748 PMCID: PMC7010924 DOI: 10.3389/fonc.2020.00094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
The Epithelial-Mesenchymal Transition (EMT) is an important concept in understanding the processes of oncogenesis, especially with respect to the relationship between cell proliferation and metastatic properties such as spontaneous cell motility, chemotaxic migration and tissue invasion. EMT is now recognized as a more complex phenomenon than an all-or-nothing event, in which different components of the EMT may have distinct roles in the physio-pathological regulation of cell function and which may in turn depend on differential interactions with cell constituents and metabolic products. This mini-review summarizes recent work on the induction of cancer properties in parallel with the presence of EMT activities in the presence of serine proteases, with the focus on those tumor suppressors known as "dependence" receptors such as neogenin and Deleted in Colorectal Cancer (DCC). It is concluded that various forms of partial EMT should be given more detailed investigation and consideration as the results could have valuable implications for the development of disease-specific and patient-specific therapies.
Collapse
|
50
|
Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, Yuan L, Ye J. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol 2020; 56:139-150. [PMID: 31789389 PMCID: PMC6910211 DOI: 10.3892/ijo.2019.4931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Unc‑5 Netrin Receptor C (UNC5C) is a netrin‑1 dependence receptor that mediates the induction of apoptosis in the absence of netrin‑1. The present study found that UNC5C is heterogeneously expressed in breast cancer cell lines. By knocking down UNC5C in SK‑BR‑3 and ZR‑75‑30 cells and overexpressing UNC5c in MDA‑MB‑231 cells, it was demonstrated that UNC5C exerts an inhibitory effect on the growth and metastasis of breast cancer cells. The mechanism involved a UNC5C‑knockdown‑induced enhancement of matrix metalloproteinase (MMP)3, MMP7, MMP9 and MMP10 expression via activation of the PI3K/AKT, ERK and p38 MAPK signaling pathways. Notably, UNC5C directly interacted with integrin α6, which is involved in the growth and metastasis of breast cancer cells. Additionally, UNC5C‑knockdown enhanced the phosphorylation of FAK and SRC, which are key kinases in the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. This suggests that netrin‑1 functions as an integrator for both the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. UNC5C‑knockdown potentiated netrin‑1/integrin α6/β4 signaling. Given that UNC5C‑knockdown inhibited integrin‑liked protein kinase phosphorylation at Thr‑173, at least in SK‑BR‑3 cells, this may be an inhibitory phosphorylation site rather than activating phosphorylation site for relaying integrin signaling.
Collapse
Affiliation(s)
- Mingjing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Fuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102
| | - Xianyuan Xia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Kai Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Lanlan Lian
- Department of Laboratory Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361102
| | - Shihui Zhang
- School of Life Science, Central South University, Changsha, Hunan 410083, P.R. China
| | - Li Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Jun Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| |
Collapse
|