1
|
MacLeod CD, Luong LT. Risk of predation increases susceptibility to parasitism via trait-mediated indirect effects. Oecologia 2025; 207:79. [PMID: 40328927 DOI: 10.1007/s00442-025-05722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
The presence of natural enemies can cause organisms to change habitat use, foraging behavior, and/or resource allocation in response to a perceived risk, responses that may come at the cost of other fitness-related traits. Since most species encounter multiple natural enemies in nature, defensive behaviors against one attacker may make the focal organism more vulnerable to attack by a different natural enemy. Anti-predator behaviors can lead to trait-mediated indirect effects, such as an increased risk of parasitism and vice versa. Few empirical studies have examined the response of a single focal species to the risk of attack by multiple species. Our experiments provided the cactiphilic fly Drosophila nigrospiracula with opportunities to prioritize either anti-predator (e.g., reduced activity) or anti-parasite behavior (e.g., increased activity) at the cost of increased infection or predation, respectively. We experimentally show that when flies were exposed to ectoparasitic mites, in the presence of predator (jumping spider) cues, flies incurred increased levels of infection compared to flies without predator cues. The mean infection prevalence increased by 80% and the infection intensity increased by 180%. However, the presence of parasite cues had no analogous effect on predation rates, which suggests that flies prioritized predation risk over parasite defense at the cost of increased infection. We provide empirical evidence that the presence of multiple threats can lead to trait-mediated indirect effects, with important consequences for host-parasite and food web dynamics, and the ecology of fear.
Collapse
Affiliation(s)
- Colin D MacLeod
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Lien T Luong
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
2
|
Jackson Z, Xue B. Dynamic Trait Distribution as a Source for Shifts in Interaction Strength and Population Density. Am Nat 2024; 204:1-14. [PMID: 38857344 DOI: 10.1086/730264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractIntraspecific trait variation has been increasingly recognized as an important factor in determining species interactions and diversity. Eco-evolutionary models have studied the distribution of trait values within a population that changes over the generations as a result of selection and heritability. Nonheritable traits that can change within the lifetime, such as behavior, can cause trait-mediated indirect effects, often studied by modeling the dynamics of a homogeneous trait. Complementary to these approaches, we study the distribution of traits within a population and its dynamics on short timescales due to ecological processes. We consider several mechanisms by which the trait distribution can shift dynamically: phenotypic plasticity within each individual, differential growth among individuals, and preferential consumption by the predator. Through a simple predator-prey model that explicitly tracks the trait distribution within the prey, we identify the density and trait effects from the predator. We show that the dynamic shift of the trait distribution can lead to the modification of interaction strength between species and result in otherwise unexpected consequences. A particular example is the emergent promotion of the prey by the predator, where the introduction of the predator causes the prey population to increase rather than decrease.
Collapse
|
3
|
Ghosh R, Verma UK, Jalan S, Shrimali MD. Chimeric states induced by higher-order interactions in coupled prey-predator systems. CHAOS (WOODBURY, N.Y.) 2024; 34:061101. [PMID: 38829788 DOI: 10.1063/5.0213288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024]
Abstract
Higher-order interactions have been instrumental in characterizing the intricate complex dynamics in a diverse range of large-scale complex systems. Our study investigates the effect of attractive and repulsive higher-order interactions in globally and non-locally coupled prey-predator Rosenzweig-MacArthur systems. Such interactions lead to the emergence of complex spatiotemporal chimeric states, which are otherwise unobserved in the model system with only pairwise interactions. Our model system exhibits a second-order transition from a chimera-like state (mixture of oscillating and steady state nodes) to a chimera-death state through a supercritical Hopf bifurcation. The origin of these states is discussed in detail along with the effect of the higher-order non-local topology which leads to the rise of a distinct and dynamical state termed as "amplitude-mediated chimera-like states." Our study observes that the introduction of higher-order attractive and repulsive interactions exhibit incoherence and promote persistence in consumer-resource population dynamics as opposed to susceptibility shown by synchronized dynamics with only pairwise interactions, and these results may be of interest to conservationists and theoretical ecologists studying the effect of competing interactions in ecological networks.
Collapse
Affiliation(s)
- Richita Ghosh
- Department of Physics, Central University of Rajasthan, Rajasthan, Ajmer 305 817, India
| | - Umesh Kumar Verma
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| | - Sarika Jalan
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| | - Manish Dev Shrimali
- Department of Physics, Central University of Rajasthan, Rajasthan, Ajmer 305 817, India
| |
Collapse
|
4
|
Shteindel N, Gerchman Y, Silberbush A. Fish microbiota repel ovipositing mosquitoes. J Anim Ecol 2024; 93:599-605. [PMID: 38420662 DOI: 10.1111/1365-2656.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
The mere presence of predators causes prey organisms to display predation-avoidance strategies. Predator presence is often communicated through predator-released chemical signals. Ovipositing female mosquitoes of several species are repelled by unknown signals released from larvivorous fish. It was previously suggested that in many cases, a predator's microbiota plays an important role in the release of these signals; however, this mechanism is still poorly understood. In this study, we looked into the effects of the microbiota originating from the larvivorous Gambusia affinis (Baird and Girard) on the oviposition behaviour of gravid female mosquitoes. We used fish with altered microbiota and bacterial isolates in a set of outdoor mesocosm experiments to address this aim. We show that interference with the fish microbiota significantly reduces fish's repellent effect. We further show that the bacterium Pantoea pleuroti, isolated from the skin of the fish, repels oviposition of Culex laticinctus Edwards and Culiseta longiareolata Macquart mosquitoes similarly to the way in which live fish repel them. Our results highlight the importance of bacteria in the interspecies interactions of their hosts. Furthermore, this finding may lead to the development of an ecologically friendly mosquito repellent, that may reduce the use of larvivorous fish for mosquito control.
Collapse
Affiliation(s)
| | - Yoram Gerchman
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Oranim Academic College, Kiryat Tiv'on, Israel
| | - Alon Silberbush
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Oranim Academic College, Kiryat Tiv'on, Israel
| |
Collapse
|
5
|
Vandermeer J, Perfecto I. Combining intransitive and higher-order effects in a coupled oscillator framework: A case study of an ant community. Ecology 2024; 105:e4218. [PMID: 38032663 DOI: 10.1002/ecy.4218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
A growing body of literature recognizes that pairwise species interactions are not necessarily an appropriate metaphorical molecule of community ecology. Two examples are intransitive competition and nonlinear higher-order effects. While these two processes have been discussed extensively, the explicit analysis of how the two of them behave when simultaneously part of the same dynamic system has not yet been explored theoretically. A concrete situation exists on coffee farms in Puerto Rico in which three ant species form an intransitive competitive triplet, and that triplet is strongly influenced, nonlinearly, by a fly parasitoid that modifies the competitive ability of one of the species. Using this arrangement as a template, we explore the dynamical consequences with a simple ordinary differential equation (ODE) model. Results are complicated and include alternative periodic and chaotic attractors. The qualitative structures of those complications, however, may be approximately retrieved from the basic natural history of the system.
Collapse
Affiliation(s)
- John Vandermeer
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- School of Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Ivette Perfecto
- School of Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Chen FSE, Dawson SJ, Fleming PA. Housework or vigilance? Bilbies alter their burrowing activity under threat of predation by feral cats. Behav Ecol 2024; 35:arad073. [PMID: 38193017 PMCID: PMC10773314 DOI: 10.1093/beheco/arad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 01/10/2024] Open
Abstract
Behavioral adjustments to predation risk not only impose costs on prey species themselves but can also have cascading impacts on whole ecosystems. The greater bilby (Macrotis lagotis) is an important ecosystem engineer, modifying the physical environment through their digging activity, and supporting a diverse range of sympatric species that use its burrows for refuge and food resources. The bilby has experienced a severe decline over the last 200 years, and the species is now restricted to ~20% of its former distribution. Introduced predators, such as the feral cat (Felis catus), have contributed to this decline. We used camera traps to monitor bilby burrows at four sites in Western Australia, where bilbies were exposed to varying levels of cat predation threat. We investigated the impact of feral cats on bilby behavior at burrows, particularly during highly vulnerable periods when they dig and clear away soil or debris from the burrow entrance as they perform burrow maintenance. There was little evidence that bilbies avoided burrows that were visited by a feral cat; however, bilbies reduced the time spent performing burrow maintenance in the days following a cat visit (P = 0.010). We found the risk posed to bilbies varied over time, with twice the cat activity around full moon compared with dark nights. Given bilby burrows are an important resource in Australian ecosystems, predation by feral cats and the indirect impact of cats on bilby behavior may have substantial ecosystem function implications.
Collapse
Affiliation(s)
- Faith S E Chen
- Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Perth, Western Australia 6150, Australia
| | - Stuart J Dawson
- Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Perth, Western Australia 6150, Australia
| | - Patricia A Fleming
- Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Perth, Western Australia 6150, Australia
| |
Collapse
|
7
|
Brönmark C, Hellström G, Baktoft H, Hansson LA, McCallum ES, Nilsson PA, Skov C, Brodin T, Hulthén K. Ponds as experimental arenas for studying animal movement: current research and future prospects. MOVEMENT ECOLOGY 2023; 11:68. [PMID: 37880741 PMCID: PMC10601242 DOI: 10.1186/s40462-023-00419-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/02/2023] [Indexed: 10/27/2023]
Abstract
Animal movement is a multifaceted process that occurs for multiple reasons with powerful consequences for food web and ecosystem dynamics. New paradigms and technical innovations have recently pervaded the field, providing increasingly powerful means to deliver fine-scale movement data, attracting renewed interest. Specifically in the aquatic environment, tracking with acoustic telemetry now provides integral spatiotemporal information to follow individual movements in the wild. Yet, this technology also holds great promise for experimental studies, enhancing our ability to truly establish cause-and-effect relationships. Here, we argue that ponds with well-defined borders (i.e. "islands in a sea of land") are particularly well suited for this purpose. To support our argument, we also discuss recent experiences from studies conducted in an innovative experimental infrastructure, composed of replicated ponds equipped with modern aquatic telemetry systems that allow for unparalleled insights into the movement patterns of individual animals.
Collapse
Affiliation(s)
- Christer Brönmark
- Department of Biology-Aquatic Ecology, Lund University, Ecology building, Sölvegatan 37 223 62, Lund, Sweden.
| | - Gustav Hellström
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, 90183, Sweden
| | - Henrik Baktoft
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Silkeborg, Denmark
| | - Lars-Anders Hansson
- Department of Biology-Aquatic Ecology, Lund University, Ecology building, Sölvegatan 37 223 62, Lund, Sweden
| | - Erin S McCallum
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, 90183, Sweden
| | - P Anders Nilsson
- Department of Biology-Aquatic Ecology, Lund University, Ecology building, Sölvegatan 37 223 62, Lund, Sweden
| | - Christian Skov
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Silkeborg, Denmark
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, 90183, Sweden
| | - Kaj Hulthén
- Department of Biology-Aquatic Ecology, Lund University, Ecology building, Sölvegatan 37 223 62, Lund, Sweden.
| |
Collapse
|
8
|
Batabyal A. Predator-prey systems as models for integrative research in biology: the value of a non-consumptive effects framework. J Exp Biol 2023; 226:jeb245851. [PMID: 37772622 DOI: 10.1242/jeb.245851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Predator-prey interactions are a cornerstone of many ecological and evolutionary processes that influence various levels of biological organization, from individuals to ecosystems. Predators play a crucial role in shaping ecosystems through the consumption of prey species and non-consumptive effects. Non-consumptive effects (NCEs) can induce changes in prey behavior, including altered foraging strategies, habitat selection, life history and anti-predator responses. These defensive strategies have physiological consequences for prey, affecting their growth, reproduction and immune function to name a few. Numerous experimental studies have incorporated NCEs in investigating predator-prey dynamics in the past decade. Interestingly, predator-prey systems can also be used as experimental models to answer physiology, cognition and adaptability questions. In this Commentary, I highlight research that uses NCEs in predator-prey systems to provide novel insights into cognition, adaptation, epigenetic inheritance and aging. I discuss the evolution of instinct, anxiety and other cognitive disorders, the shaping of brain connectomes, stress-induced aging and the development of behavioral coping styles. I outline how studies can integrate the investigation of NCEs with advanced behavioral, genomic and neurological tools to provide novel insights into physiological and cognitive health.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| |
Collapse
|
9
|
Resetarits EJ, Ellis WT, Byers JE. The opposing roles of lethal and nonlethal effects of parasites on host resource consumption. Ecol Evol 2023; 13:e9973. [PMID: 37066062 PMCID: PMC10099202 DOI: 10.1002/ece3.9973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 04/18/2023] Open
Abstract
Although parasites can kill their hosts, they also commonly cause nonlethal effects on their hosts, such as altered behaviors or feeding rates. Both the lethal and nonlethal effects of parasites can influence host resource consumption. However, few studies have explicitly examined the joint lethal and nonlethal effects of parasites to understand the net impacts of parasitism on host resource consumption. To do this, we adapted equations used in the indirect effects literature to quantify how parasites jointly influence basal resource consumption through nonlethal effects (altered host feeding rate) and lethal effects (increased host mortality). To parametrize these equations and to examine the potential temperature sensitivity of parasite influences, we conducted a fully factorial lab experiment (crossing trematode infection status and a range of temperatures) to quantify feeding rates and survivorship curves of snail hosts. We found that infected snails had significantly higher mortality and ate nearly twice as much as uninfected snails and had significantly higher mortality, resulting in negative lethal effects and positive nonlethal effects of trematodes on host resource consumption. The net effects of parasites on resource consumption were overall positive in this system, but did vary with temperature and experimental duration, highlighting the context dependency of outcomes for the host and ecosystem. Our work demonstrates the importance of jointly investigating lethal and nonlethal effects of parasites and provides a novel framework for doing so.
Collapse
Affiliation(s)
- Emlyn J. Resetarits
- Odum School of EcologyUniversity of GeorgiaAthensGeorgia30602USA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgia30602USA
- Marine InstituteUniversity of GeorgiaDarienGeorgia31305USA
| | - William T. Ellis
- Odum School of EcologyUniversity of GeorgiaAthensGeorgia30602USA
| | - James E. Byers
- Odum School of EcologyUniversity of GeorgiaAthensGeorgia30602USA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgia30602USA
| |
Collapse
|
10
|
Morris DW. Sex‐dependent habitat selection modulates risk management by meadow voles. Ecosphere 2023. [DOI: 10.1002/ecs2.4378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Douglas W. Morris
- Department of Biology Lakehead University Thunder Bay Ontario Canada
| |
Collapse
|
11
|
Deng J, Taylor W, Saavedra S. Understanding the impact of third-party species on pairwise coexistence. PLoS Comput Biol 2022; 18:e1010630. [PMID: 36279302 PMCID: PMC9632822 DOI: 10.1371/journal.pcbi.1010630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/03/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The persistence of virtually every single species depends on both the presence of other species and the specific environmental conditions in a given location. Because in natural settings many of these conditions are unknown, research has been centered on finding the fraction of possible conditions (probability) leading to species coexistence. The focus has been on the persistence probability of an entire multispecies community (formed of either two or more species). However, the methodological and philosophical question has always been whether we can observe the entire community and, if not, what the conditions are under which an observed subset of the community can persist as part of a larger multispecies system. Here, we derive long-term (using analytical calculations) and short-term (using simulations and experimental data) system-level indicators of the effect of third-party species on the coexistence probability of a pair (or subset) of species under unknown environmental conditions. We demonstrate that the fraction of conditions incompatible with the possible coexistence of a pair of species tends to become vanishingly small within systems of increasing numbers of species. Yet, the probability of pairwise coexistence in isolation remains approximately the expected probability of pairwise coexistence in more diverse assemblages. In addition, we found that when third-party species tend to reduce (resp. increase) the coexistence probability of a pair, they tend to exhibit slower (resp. faster) rates of competitive exclusion. Long-term and short-term effects of the remaining third-party species on all possible specific pairs in a system are not equally distributed, but these differences can be mapped and anticipated under environmental uncertainty.
Collapse
Affiliation(s)
- Jie Deng
- Department of Civil and Environmental Engineering, MIT, Cambridge, Massachusetts, United States of America
| | - Washington Taylor
- Center for Theoretical Physics, MIT, Cambridge, Cambridge, Massachusetts, United States of America
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
12
|
Peacor SD, Dorn NJ, Smith JA, Peckham NE, Cherry MJ, Sheriff MJ, Kimbro DL. A skewed literature: Few studies evaluate the contribution of predation-risk effects to natural field patterns. Ecol Lett 2022; 25:2048-2061. [PMID: 35925978 PMCID: PMC9545701 DOI: 10.1111/ele.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
A narrative in ecology is that prey modify traits to reduce predation risk, and the trait modification has costs large enough to cause ensuing demographic, trophic and ecosystem consequences, with implications for conservation, management and agriculture. But ecology has a long history of emphasising that quantifying the importance of an ecological process ultimately requires evidence linking a process to unmanipulated field patterns. We suspected that such process-linked-to-pattern (PLP) studies were poorly represented in the predation risk literature, which conflicts with the confidence often given to the importance of risk effects. We reviewed 29 years of the ecological literature which revealed that there are well over 4000 articles on risk effects. Of those, 349 studies examined risk effects on prey fitness measures or abundance (i.e., non-consumptive effects) of which only 26 were PLP studies, while 275 studies examined effects on other interacting species (i.e., trait-mediated indirect effects) of which only 35 were PLP studies. PLP studies were narrowly focused taxonomically and included only three that examined unmanipulated patterns of prey abundance. Before concluding a widespread and influential role of predation-risk effects, more attention must be given to linking the process of risk effects to unmanipulated patterns observed across diverse ecosystems.
Collapse
Affiliation(s)
- Scott D Peacor
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Nathan J Dorn
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, Florida, USA
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California - Davis, Davis, California, USA
| | - Nicole E Peckham
- Department of Marine and Environmental Science, Northeastern University, Boston, Massachusetts, USA
| | - Michael J Cherry
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - David L Kimbro
- Department of Marine and Environmental Science, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Walsman JC, Cressler CE. Predation shifts coevolution toward higher host contact rate and parasite virulence. Proc Biol Sci 2022; 289:20212800. [PMID: 35858064 PMCID: PMC9277270 DOI: 10.1098/rspb.2021.2800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator-host-parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy-Gyrodactylus spp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.
Collapse
Affiliation(s)
- Jason C. Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
14
|
Baker HK, Li SS, Samu SC, Jones NT, Symons CC, Shurin JB. Prey naiveté alters the balance of consumptive and non‐consumptive predator effects and shapes trophic cascades in freshwater plankton. OIKOS 2022. [DOI: 10.1111/oik.09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henry K. Baker
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| | - Stephanie S. Li
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
- School of Environment and Natural Resources, The Ohio State Univ. Columbus OH USA
| | - Stefan C. Samu
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| | - Natalie T. Jones
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
- School of Biological Sciences, Univ. of Queensland St. Lucia QLD Australia
| | - Celia C. Symons
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA USA
| | - Jonathan B. Shurin
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| |
Collapse
|
15
|
Dynamic landscapes of fear: understanding spatiotemporal risk. Trends Ecol Evol 2022; 37:911-925. [PMID: 35817684 DOI: 10.1016/j.tree.2022.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023]
Abstract
The landscape of fear (LOF) concept posits that prey navigate spatial heterogeneity in perceived predation risk, balancing risk mitigation against other activities necessary for survival and reproduction. These proactive behavioral responses to risk can affect individual fitness, population dynamics, species interactions, and coexistence. Yet, antipredator responses in free-ranging prey often contradict expectations, raising questions about the generality and scalability of the LOF framework and suggesting that a purely spatial, static LOF conceptualization may be inadequate. Here, we outline a 'dynamic' LOF framework that explicitly incorporates time to account for predictable spatiotemporal variation in risk-resource trade-offs. This integrated approach suggests novel predictions about predator effects on prey behaviors to refine understanding of the role predators play in ecological communities.
Collapse
|
16
|
Walsman JC, Janecka MJ, Clark DR, Kramp RD, Rovenolt F, Patrick R, Mohammed RS, Konczal M, Cressler CE, Stephenson JF. Shoaling guppies evade predation but have deadlier parasites. Nat Ecol Evol 2022; 6:945-954. [PMID: 35618818 DOI: 10.1038/s41559-022-01772-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Parasites exploit hosts to replicate and transmit, but overexploitation kills both host and parasite. Predators may shift this cost-benefit balance by consuming infected hosts or changing host behaviour, but the strength of these effects remains unclear. Here we use field and lab data on Trinidadian guppies and their Gyrodactylus spp. parasites to show how differential predation pressure influences parasite virulence and transmission. We use an experimentally demonstrated virulence-transmission trade-off to parametrize a mathematical model in which host shoaling (as a means of anti-predator defence), increases contact rates and selects for higher virulence. Then we validate model predictions by collecting parasites from wild, Trinidadian populations; parasites from high-predation populations were more virulent in common gardens than those from low-predation populations. Broadly, our results indicate that reduced social contact selects against parasite virulence.
Collapse
Affiliation(s)
- Jason C Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mary J Janecka
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - David R Clark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachael D Kramp
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Faith Rovenolt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Regina Patrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan S Mohammed
- Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.,Biology Department, Thompson Biology Lab, Williams College, Williamstown, MA, USA
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Bohenek JR, Pintar MR, Breech TM, Resetarits WJ. A wolf in sheep's clothing: Predatory fish have convergent consumptive effects but divergent predation‐risk effects. Ecosphere 2022. [DOI: 10.1002/ecs2.4073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jason R. Bohenek
- Department of Biology and Center for Water and Wetlands Resources The University of Mississippi University Mississippi USA
| | - Matthew R. Pintar
- Department of Biology and Center for Water and Wetlands Resources The University of Mississippi University Mississippi USA
| | - Tyler M. Breech
- Department of Biology and Center for Water and Wetlands Resources The University of Mississippi University Mississippi USA
| | - William J. Resetarits
- Department of Biology and Center for Water and Wetlands Resources The University of Mississippi University Mississippi USA
| |
Collapse
|
18
|
De Lisle SP, Bolnick DI, Brodie ED, Moore AJ, McGlothlin JW. Interacting phenotypes and the coevolutionary process: Interspecific indirect genetic effects alter coevolutionary dynamics. Evolution 2022; 76:429-444. [PMID: 34997942 PMCID: PMC9385155 DOI: 10.1111/evo.14427] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Coevolution occurs when species interact to influence one another's fitness, resulting in reciprocal evolutionary change. In many coevolving lineages, trait expression in one species is modified by the genotypes and phenotypes of the other, forming feedback loops reminiscent of models of intraspecific social evolution. Here, we adapt the theory of within-species social evolution, characterized by indirect genetic effects and social selection imposed by interacting individuals, to the case of interspecific interactions. In a trait-based model, we derive general expressions for multivariate evolutionary change in two species and the expected between-species covariance in evolutionary change when selection varies across space. We show that reciprocal interspecific indirect genetic effects can dominate the coevolutionary process and drive patterns of correlated evolution beyond what is expected from direct selection alone. In extreme cases, interspecific indirect genetic effects can lead to coevolution when selection does not covary between species or even when one species lacks genetic variance. Moreover, our model indicates that interspecific indirect genetic effects may interact in complex ways with cross-species selection to determine the course of coevolution. Importantly, our model makes empirically testable predictions for how different forms of reciprocal interactions contribute to the coevolutionary process.
Collapse
Affiliation(s)
- Stephen P. De Lisle
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Storrs, Connecticut, USA 06269
- Present address: Evolutionary Ecology Unit, Department of Biology, Lund University, Solvegatan 37, Lund, Sweden
| | - Daniel I. Bolnick
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Storrs, Connecticut, USA 06269
| | - Edmund D. Brodie
- Department of Biology and Mountain Lake Biological Station, University of Virginia, 485 McCormick Road, Charlottesville, VA 22904 USA
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602 USA
| | - Joel W. McGlothlin
- Department of Biological Sciences, Virginia Tech, 2125 Derring Hall, 926 West Campus Drive, Blacksburg, Virginia, USA 24060
| |
Collapse
|
19
|
Jellison BM, Elsmore KE, Miller JT, Ng G, Ninokawa AT, Hill TM, Gaylord B. Low-pH seawater alters indirect interactions in rocky-shore tidepools. Ecol Evol 2022; 12:e8607. [PMID: 35169457 PMCID: PMC8840877 DOI: 10.1002/ece3.8607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Ocean acidification is expected to degrade marine ecosystems, yet most studies focus on organismal-level impacts rather than ecological perturbations. Field studies are especially sparse, particularly ones examining shifts in direct and indirect consumer interactions. Here we address such connections within tidepool communities of rocky shores, focusing on a three-level food web involving the keystone sea star predator, Pisaster ochraceus, a common herbivorous snail, Tegula funebralis, and a macroalgal basal resource, Macrocystis pyrifera. We demonstrate that during nighttime low tides, experimentally manipulated declines in seawater pH suppress the anti-predator behavior of snails, bolstering their grazing, and diminishing the top-down influence of predators on basal resources. This attenuation of top-down control is absent in pools maintained experimentally at higher pH. These findings suggest that as ocean acidification proceeds, shifts of behaviorally mediated links in food webs could change how cascading effects of predators manifest within marine communities.
Collapse
Affiliation(s)
- Brittany M. Jellison
- Department of Biological SciencesUniversity of New HampshireDurhamNew HampshireUSA
| | - Kristen E. Elsmore
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
| | - Jeffrey T. Miller
- Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Gabriel Ng
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
- Marine Invasions LaboratoryEstuary Ocean Science CenterTiburonCaliforniaUSA
| | - Aaron T. Ninokawa
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
| | - Tessa M. Hill
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
- Department of Earth and Planetary SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Brian Gaylord
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
- Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
20
|
Russell MC, Herzog CM, Gajewski Z, Ramsay C, El Moustaid F, Evans MV, Desai T, Gottdenker NL, Hermann SL, Power AG, McCall AC. Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission. eLife 2022; 11:e71503. [PMID: 35044908 PMCID: PMC8769645 DOI: 10.7554/elife.71503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Predator-prey interactions influence prey traits through both consumptive and non-consumptive effects, and variation in these traits can shape vector-borne disease dynamics. Meta-analysis methods were employed to generate predation effect sizes by different categories of predators and mosquito prey. This analysis showed that multiple families of aquatic predators are effective in consumptively reducing mosquito survival, and that the survival of Aedes, Anopheles, and Culex mosquitoes is negatively impacted by consumptive effects of predators. Mosquito larval size was found to play a more important role in explaining the heterogeneity of consumptive effects from predators than mosquito genus. Mosquito survival and body size were reduced by non-consumptive effects of predators, but development time was not significantly impacted. In addition, Culex vectors demonstrated predator avoidance behavior during oviposition. The results of this meta-analysis suggest that predators limit disease transmission by reducing both vector survival and vector size, and that associations between drought and human West Nile virus cases could be driven by the vector behavior of predator avoidance during oviposition. These findings are likely to be useful to infectious disease modelers who rely on vector traits as predictors of transmission.
Collapse
Affiliation(s)
- Marie C Russell
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| | - Catherine M Herzog
- Center for Infectious Disease Dynamics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Zachary Gajewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburgUnited States
| | - Chloe Ramsay
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburgUnited States
| | - Michelle V Evans
- Odum School of Ecology & Center for Ecology of Infectious Diseases, University of GeorgiaAthensUnited States
- MIVEGEC, IRD, CNRS, Université MontpellierMontpellierFrance
| | - Trishna Desai
- Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Nicole L Gottdenker
- Odum School of Ecology & Center for Ecology of Infectious Diseases, University of GeorgiaAthensUnited States
- Department of Veterinary Pathology, University of Georgia College of Veterinary MedicineAthensUnited States
| | - Sara L Hermann
- Department of Entomology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Alison G Power
- Department of Ecology & Evolutionary Biology, Cornell UniversityIthacaUnited States
| | - Andrew C McCall
- Biology Department, Denison UniversityGranvilleUnited States
| |
Collapse
|
21
|
Selbach C, Marchant L, Mouritsen KN. Mussel memory: can bivalves learn to fear parasites? ROYAL SOCIETY OPEN SCIENCE 2022; 9:211774. [PMID: 35116166 PMCID: PMC8790352 DOI: 10.1098/rsos.211774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/23/2021] [Indexed: 05/03/2023]
Abstract
Fear plays a crucial role in predator-prey interactions and can have cascading impacts on the structure of whole ecosystems. Comparable fear effects have recently been described for hosts and their parasites but our understanding of the underlying mechanisms remains limited by the lack of empirical examples. Here, we experimentally tested if bivalves Mytilus edulis can potentially 'learn to fear' the infective transmission stages (cercariae) of the trematode Himasthla elongata, and if experienced mussels change their parasite-avoidance behaviour accordingly. Our results show that previous experience with parasites, but not established infections, lead to a reduced filtration activity in mussels in the presence of cercariae compared to parasite-naive conspecifics. This reduction in filtration activity resulted in lower infection rates in mussels. Since parasite avoidance comes at the cost of lower feeding rates, mussels likely benefit from the ability to adjust their defence behaviour when infection risks are high. Overall, these dynamic processes of avoidance behaviour can be expected to play a significant role in regulating the bivalves' ecosystem engineering function in coastal habitats.
Collapse
Affiliation(s)
- Christian Selbach
- Department of Biology, Aquatic Biology, Aarhus University, Aarhus, Denmark
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Loïc Marchant
- Department of Biology, Aquatic Biology, Aarhus University, Aarhus, Denmark
| | - Kim N. Mouritsen
- Department of Biology, Aquatic Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Penczykowski RM, Shocket MS, Ochs JH, Lemanski BCP, Sundar H, Duffy MA, Hall SR. Virulent Disease Epidemics Can Increase Host Density by Depressing Foraging of Hosts. Am Nat 2022; 199:75-90. [DOI: 10.1086/717175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Scharf I. The interaction between ambush predators, search patterns of herbivores, and aggregations of plants. Behav Ecol 2021. [DOI: 10.1093/beheco/arab091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
While predators benefit from spatial overlap with their prey, prey strive to avoid predators. I used an individual-based simulation comprising sit-and-wait predators, widely foraging herbivores, and plants, to examine the link between predator ambush location, herbivore movement, and plant aggregation. I used a genetic algorithm to reach the best strategies for all players. The predators could ambush herbivores either inside or outside plant patches. The herbivores could use movement of varying directionality levels, with a change in directionality following the detection of plants. When the predators were fixed outside plant patches, the herbivores were selected to use a directional movement before plant encounter followed by a tortuous movement afterwards. When predators were fixed inside patches, herbivores used a continuous directional movement. Predators maintained within-patch positions when the herbivores were fixed to use the directional-tortuous movement. The predator location inside patches led to higher plant aggregations, by changing the herbivore movement. Finally, I allowed half of the predators to search for herbivores and let them compete with sit-and-wait predators located inside plant patches. When plants were clumped and herbivores used a directional-tortuous movement, with a movement shift after plant detection, ambush predators had the highest success relative to widely foraging predators. In all other scenarios, widely foraging predators did much better than ambush predators. The findings from my simulation suggest a behavioral mechanism for several observed phenomena of predator–prey interactions, such as a shorter stay by herbivores in patches when predators ambush them nearby, and a more directional movement of herbivores in riskier habitats.
Collapse
Affiliation(s)
- Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Predation risk differentially affects aphid morphotypes: impacts on prey behavior, fecundity and transgenerational dispersal morphology. Oecologia 2021; 197:411-419. [PMID: 34542673 DOI: 10.1007/s00442-021-05037-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
To avoid predation, prey initiate anti-predator defenses such as altered behavior, physiology and/or morphology. Prey trait changes in response to perceived predation risk can influence several aspects of prey biology that collectively contribute to individual success and thus population growth. However, studies often focus on single trait changes in a discrete life stage or morphotype. We assessed how predation risk by Harmonia axyridis affects several important traits in the aphid, Myzus persicae: host plant preference, fecundity and investment in dispersal. Importantly, we examined whether these traits changed in a similar way between winged (alate) and wingless (apterous) adult aphid morphotypes, which differ in morphology, but also in life-history characteristics important for reproduction and dispersal. Host plant preference was influenced by the presence of H.axyridis odors in choice tests; wingless aphids were deterred by the odor of plants with H.axyridis whereas winged aphids preferred plants with H.axyridis present. Wingless aphids reared in the presence of ladybeetle cues produced fewer offspring in the short-term, but significantly more when reared with exposure to predator cues for multiple generations. However, winged aphid fecundity was unaffected by H.axyridis cues. Lastly, transgenerational plasticity was demonstrated in response to predation risk via increased formation of winged aphid morphotypes in the offspring of predator cue-exposed wingless mothers. Importantly, we found that responses to risk differ across aphid polyphenism and that plasticity in aphid morphology occurs in response to predation risk. Together our results highlight the importance of considering how predation risk affects multiple life stages and morphotypes.
Collapse
|
25
|
Revilla TA, Marcou T, Křivan V. Plant competition under simultaneous adaptation by herbivores and pollinators. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Lennox RJ, Westrelin S, Souza AT, Šmejkal M, Říha M, Prchalová M, Nathan R, Koeck B, Killen S, Jarić I, Gjelland K, Hollins J, Hellstrom G, Hansen H, Cooke SJ, Boukal D, Brooks JL, Brodin T, Baktoft H, Adam T, Arlinghaus R. A role for lakes in revealing the nature of animal movement using high dimensional telemetry systems. MOVEMENT ECOLOGY 2021; 9:40. [PMID: 34321114 PMCID: PMC8320048 DOI: 10.1186/s40462-021-00244-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
Movement ecology is increasingly relying on experimental approaches and hypothesis testing to reveal how, when, where, why, and which animals move. Movement of megafauna is inherently interesting but many of the fundamental questions of movement ecology can be efficiently tested in study systems with high degrees of control. Lakes can be seen as microcosms for studying ecological processes and the use of high-resolution positioning systems to triangulate exact coordinates of fish, along with sensors that relay information about depth, temperature, acceleration, predation, and more, can be used to answer some of movement ecology's most pressing questions. We describe how key questions in animal movement have been approached and how experiments can be designed to gather information about movement processes to answer questions about the physiological, genetic, and environmental drivers of movement using lakes. We submit that whole lake telemetry studies have a key role to play not only in movement ecology but more broadly in biology as key scientific arenas for knowledge advancement. New hardware for tracking aquatic animals and statistical tools for understanding the processes underlying detection data will continue to advance the potential for revealing the paradigms that govern movement and biological phenomena not just within lakes but in other realms spanning lands and oceans.
Collapse
Affiliation(s)
- Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries (LFI) at NORCE Norwegian Research Centre, Nygårdsporten 112, 5008, Bergen, Norway.
| | - Samuel Westrelin
- INRAE, Aix Marseille Univ, Pôle R&D ECLA, RECOVER, 3275 Route de Cézanne - CS 40061, 13182 Cedex 5, Aix-en-Provence, France
| | - Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Milan Říha
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marie Prchalová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 102 Berman Bldg, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Barbara Koeck
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Shaun Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Ivan Jarić
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Karl Gjelland
- Norwegian Institute of Nature Research, Tromsø, Norway
| | - Jack Hollins
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
- University of Windsor, Windsor, ON, Canada
| | - Gustav Hellstrom
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henry Hansen
- Karlstads University, Universitetsgatan 2, 651 88, Karlstad, Sweden
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Boukal
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jill L Brooks
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henrik Baktoft
- Technical University of Denmark, Vejlsøvej 39, Building Silkeborg-039, 8600, Silkeborg, Denmark
| | - Timo Adam
- Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
- Division of Integrative Fisheries Management, Humboldt-Universität zu Berlin, Bergen, Germany
| |
Collapse
|
27
|
Mirzoeva A, Zhukov O. Conchological variability of Anadara kagoshimensis (Bivalvia: Arcidae) in the northern part of the Black–Azov Sea basin. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00844-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Cuthbert RN, Dalu T, Wasserman RJ, Sentis A, Weyl OLF, Froneman PW, Callaghan A, Dick JTA. Prey and predator density-dependent interactions under different water volumes. Ecol Evol 2021; 11:6504-6512. [PMID: 34141235 PMCID: PMC8207356 DOI: 10.1002/ece3.7503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/28/2023] Open
Abstract
Predation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates. Using a functional response approach, we examined the influence of predator and prey densities on interaction strengths of the temporary pond specialist copepod Lovenula raynerae preying on cladoceran prey, Daphnia pulex, under contrasting water volumes. Further, using a population dynamic modeling approach, we quantified multiple predator effects across differences in prey density and water volume. Predators exhibited type II functional responses under both water volumes, with significant antagonistic multiple predator effects (i.e., antagonisms) exhibited overall. The strengths of antagonistic interactions were, however, enhanced under reduced water volumes and at intermediate prey densities. These findings indicate important biotic and abiotic contexts that mediate predator-prey dynamics, whereby multiple predator effects are contingent on both prey density and search area characteristics. In particular, reduced search areas (i.e., water volumes) under intermediate prey densities could enhance antagonisms by heightening predator-predator interference effects.
Collapse
Affiliation(s)
- Ross N. Cuthbert
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung KielKielGermany
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Tatenda Dalu
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- School of Biology and Environmental SciencesUniversity of MpumalangaNelspruitSouth Africa
| | - Ryan J. Wasserman
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
| | - Arnaud Sentis
- INRAEAix Marseille University, UMR RECOVERAix‐en‐ProvenceFrance
| | - Olaf L. F. Weyl
- DSI/NRF Research Chair in Inland Fisheries and Freshwater EcologySouth African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | | | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological SciencesUniversity of ReadingReadingUK
| | - Jaimie T. A. Dick
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
29
|
Schmidt BR, BĂncilĂ RI, Hartel T, Grossenbacher K, Schaub M. Shifts in amphibian population dynamics in response to a change in the predator community. Ecosphere 2021. [DOI: 10.1002/ecs2.3528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Benedikt R. Schmidt
- Department of Evolutionary Biology and Environmental Studies University of Zurich Winterthurerstrasse 190 ZurichCH‐8057Switzerland
- Info fauna karch UniMail, Bâtiment G, Bellevaux 51 NeuchatelCH‐2000Switzerland
| | - Raluca I. BĂncilĂ
- “Emil Racoviţă” Institute of Speleology of Romanian Academy 13 Sptembrie Road, No. 13 Bucharest050711Romania
- Hungarian Department of Biology and Ecology and Center of Systems Biology, Biodiversity and Bioresources Babes‐Bolyai University Cluj‐Napoca Romania
| | - Tibor Hartel
- Hungarian Department of Biology and Ecology and Center of Systems Biology, Biodiversity and Bioresources Babes‐Bolyai University Cluj‐Napoca Romania
| | | | | |
Collapse
|
30
|
Beltran RS, Kilpatrick AM, Breed GA, Adachi T, Takahashi A, Naito Y, Robinson PW, Smith WO, Kirkham AL, Burns JM. Seasonal resource pulses and the foraging depth of a Southern Ocean top predator. Proc Biol Sci 2021; 288:20202817. [PMID: 33726591 PMCID: PMC8059541 DOI: 10.1098/rspb.2020.2817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Seasonal resource pulses can have enormous impacts on species interactions. In marine ecosystems, air-breathing predators often drive their prey to deeper waters. However, it is unclear how ephemeral resource pulses such as near-surface phytoplankton blooms alter the vertical trade-off between predation avoidance and resource availability in consumers, and how these changes cascade to the diving behaviour of top predators. We integrated data on Weddell seal diving behaviour, diet stable isotopes, feeding success and mass gain to examine shifts in vertical foraging throughout ice break-out and the resulting phytoplankton bloom each year. We also tested hypotheses about the likely location of phytoplankton bloom origination (advected or produced in situ where seals foraged) based on sea ice break-out phenology and advection rates from several locations within 150 km of the seal colony. In early summer, seals foraged at deeper depths resulting in lower feeding rates and mass gain. As sea ice extent decreased throughout the summer, seals foraged at shallower depths and benefited from more efficient energy intake. Changes in diving depth were not due to seasonal shifts in seal diets or horizontal space use and instead may reflect a change in the vertical distribution of prey. Correspondence between the timing of seal shallowing and the resource pulse was variable from year to year and could not be readily explained by our existing understanding of the ocean and ice dynamics. Phytoplankton advection occurred faster than ice break-out, and seal dive shallowing occurred substantially earlier than local break-out. While there remains much to be learned about the marine ecosystem, it appears that an increase in prey abundance and accessibility via shallower distributions during the resource pulse could synchronize life-history phenology across trophic levels in this high-latitude ecosystem.
Collapse
Affiliation(s)
- Roxanne S Beltran
- Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Drive, Fairbanks, AK 99775, USA.,Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Greg A Breed
- Institute of Arctic Biology, University of Alaska Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA
| | - Taiki Adachi
- Department of Biological Sciences, University of Tokyo, 2-11-16 Yayoi, Bunkyō, Tokyo 113-0032, Japan
| | - Akinori Takahashi
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Yasuhiko Naito
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Patrick W Robinson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Walker O Smith
- Virginia Institute of Marine Science, College of William and Mary, 1375 Greate Rd, Gloucester Point, VA 23062, USA.,Institute of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200240, People's Republic of China
| | - Amy L Kirkham
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK 99801, USA
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA.,Department of Biological Sciences, Texas Tech University, Box 43131 Lubbock, TX 79409, USA
| |
Collapse
|
31
|
Pärssinen V, Hulthén K, Brönmark C, Björnerås C, Ekelund Ugge G, Gollnisch R, Hansson L, Herzog SD, Hu N, Johansson E, Lee M, Rengefors K, Sha Y, Škerlep M, Vinterstare J, Zhang H, Langerhans RB, Nilsson PA. Variation in predation regime drives sex‐specific differences in mosquitofish foraging behaviour. OIKOS 2021. [DOI: 10.1111/oik.08335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Kaj Hulthén
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | | | | | - Gustaf Ekelund Ugge
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
- Univ. of Skövde, School of Bioscience Skövde Sweden
| | | | | | | | - Nan Hu
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | - Emma Johansson
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | - Marcus Lee
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | | | - Yongcui Sha
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | - Martin Škerlep
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
| | | | - Huan Zhang
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
- Chinese Academy of Sciences, Inst. of Hydrobiology Wuhan China
| | - R. Brian Langerhans
- North Carolina State Univ., Dept of Biological Sciences and W.M. Keck Center for Behavioral Biology Raleigh USA
| | - P. Anders Nilsson
- Lund Univ., Aquatic Ecology, Dept of Biology Lund Sweden
- Karlstad Univ., River Ecology and Management Research Group RivEM, Dept of Environmental and Life Sciences Karlstad Sweden
| |
Collapse
|
32
|
de Meo I, Østbye K, Kahilainen KK, Hayden B, Fagertun CHH, Poléo ABS. Predator community and resource use jointly modulate the inducible defense response in body height of crucian carp. Ecol Evol 2021; 11:2072-2085. [PMID: 33717443 PMCID: PMC7920785 DOI: 10.1002/ece3.7176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
Phenotypic plasticity can be expressed as changes in body shape in response to environmental variability. Crucian carp (Carassius carassius), a widespread cyprinid, displays remarkable plasticity in body morphology and increases body depth when exposed to cues from predators, suggesting the triggering of an antipredator defense mechanism. However, these morphological changes could also be related to resource use and foraging behavior, as an indirect effect of predator presence. In order to determine whether phenotypic plasticity in crucian carp is driven by a direct or indirect response to predation threat, we compared twelve fish communities inhabiting small lakes in southeast Norway grouped by four categories of predation regimes: no predator fish, or brown trout (Salmo trutta), perch (Perca fluviatilis), or pike (Esox lucius) as main piscivores. We predicted the body shape of crucian carp to be associated with the species composition of predator communities and that the presence of efficient piscivores would result in a deeper body shape. We use stable isotope analyses to test whether this variation in body shape was related to a shift in individual resource use-that is, littoral rather than pelagic resource use would favor the development of a specific body shape-or other environmental characteristics. The results showed that increasingly efficient predator communities induced progressively deeper body shape, larger body size, and lower population densities. Predator maximum gape size and individual trophic position were the best variables explaining crucian carp variation in body depth among predation categories, while littoral resource use did not have a clear effect. The gradient in predation pressure also corresponded to a shift in lake productivity. These results indicate that crucian carp have a fine-tuned morphological defense mechanism against predation risk, triggered by the combined effect of predator presence and resource availability.
Collapse
Affiliation(s)
- Ilaria de Meo
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Kjartan Østbye
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | | | - Brian Hayden
- Biology DepartmentCanadian Rivers InstituteUniversity of New BrunswickFrederictonNBCanada
| | - Christian H. H. Fagertun
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Antonio B. S. Poléo
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| |
Collapse
|
33
|
Catalán AM, Büchner-Miranda J, Riedemann B, Chaparro OR, Valdivia N, Scrosati RA. Community-wide consequences of nonconsumptive predator effects on a foundation species. J Anim Ecol 2021; 90:1307-1316. [PMID: 33630333 DOI: 10.1111/1365-2656.13455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Predators can exert nonconsumptive effects (NCEs) on prey, which often take place through prey behavioural adjustments to minimise predation risk. As NCEs are widespread in nature, interest is growing to determine whether NCEs on a prey species can indirectly influence several other species simultaneously, thus leading to changes in community structure. In this study, we investigate whether a predator can exert NCEs on a foundation species and indirectly affect community structure. Through laboratory experiments, we first tested whether the predatory marine snail Acanthina monodon exerts negative NCEs on larviphagy (consumption of pelagic larvae) and phytoplankton filtration rates of the mussel Perumytilus purpuratus, an intertidal foundation species. These hypotheses stem from the notion that mussels may decrease feeding activities in the presence of predator cues to limit detection by predators. Afterwards, a field experiment tested whether the presence of A. monodon near mussel beds leads to higher colonisation rates of invertebrates that reproduce through pelagic larvae (expected under a lower larviphagy in P. purpuratus) and to a lower algal biomass on P. purpuratus shells (expected under a lower metabolite excretion in the mussels), thereby changing the community structure of the species typically found in P. purpuratus beds. The laboratory experiments revealed that waterborne cues from A. monodon limit the larviphagy and filtration rates of P. purpuratus. In turn, the field experiment showed that A. monodon cues led to greater abundances of barnacles and bivalves and a lower algal biomass in P. purpuratus beds, thus altering community structure. Overall, this study shows that a predator can indirectly affect community structure through NCEs on an invertebrate foundation species. As invertebrate foundation species are ubiquitous worldwide, understanding predator NCEs on these organisms could help to better understand community regulation in systems structured by such species.
Collapse
Affiliation(s)
- Alexis M Catalán
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.,Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Bárbara Riedemann
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Oscar R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.,Centro FONDAP de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Ricardo A Scrosati
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
34
|
O'Gorman EJ. Multitrophic diversity sustains ecological complexity by dampening top-down control of a shallow marine benthic food web. Ecology 2021; 102:e03274. [PMID: 33368225 DOI: 10.1002/ecy.3274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 11/08/2022]
Abstract
Biodiversity is typically considered as a one-dimensional metric (e.g., species richness), yet the consequences of species loss may be different depending on where extinctions occur in the food web. Here, I used a manipulative field experiment in a temperate subtidal marine system to explore the implications of diversity loss at multiple trophic levels for ecosystem functioning and food web structure. The four manipulated predators included the small painted goby and common prawn, which are also fed on by the larger black goby and shore crab. Antagonistic interactions between the manipulated predators (e.g., intraguild predation, intimidation, interference competition) limited their negative effects on the rest of the food web. Top-down control was so suppressed at the highest level of multitrophic diversity that the resulting food webs were as complex and productive as those containing no manipulated predators. Negative interactions between the predators weakened as multitrophic diversity decreased, however, resulting in stronger consumption of lower trophic levels and a simpler food web with lower rates of two key ecosystem processes: primary production and decomposition. These results show how indirect interactions between predators on multiple trophic levels help to promote the complexity and functioning of natural systems.
Collapse
Affiliation(s)
- Eoin J O'Gorman
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| |
Collapse
|
35
|
|
36
|
Pintar MR, Resetarits WJ. Match and mismatch: Integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects. Ecol Evol 2021; 11:1902-1917. [PMID: 33614012 PMCID: PMC7882981 DOI: 10.1002/ece3.7181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non-consumptive effects. Non-consumptive effects can often exceed consumptive effects, but their relative importance is undetermined in many systems. Our objective was to determine the consumptive and non-consumptive effects of a predaceous aquatic insect, Notonecta irrorata, on colonizing aquatic beetles. We tested how N. irrorata affected survival and habitat selection of colonizing aquatic beetles, how beetle traits contributed to their vulnerability to predation by N. irrorata, and how combined consumptive and non-consumptive effects affected populations and community structure. Predation vulnerabilities ranged from 0% to 95% mortality, with size, swimming, and exoskeleton traits generating species-specific vulnerabilities. Habitat selection ranged from predator avoidance to preferentially colonizing predator patches. Attraction of Dytiscidae to N. irrorata may be a natural ecological trap given similar cues produced by these taxa. Hence, species-specific habitat selection by prey can be either predator-avoidance responses that reduce consumptive effects, or responses that magnify predator effects. Notonecta irrorata had both strong consumptive and non-consumptive effects on populations and communities, while combined effects predicted even more distinct communities and populations across patches with or without predators. Our results illustrate that an aquatic invertebrate predator can have functionally unique consumptive effects on prey, attracting and repelling prey, while prey have functionally unique responses to predators. Determining species-specific consumptive and non-consumptive effects is important to understand patterns of species diversity across landscapes.
Collapse
Affiliation(s)
- Matthew R. Pintar
- Department of BiologyCenter for Water and Wetlands ResourcesCenter for Biodiversity and Conservation ResearchUniversity of MississippiUniversityMSUSA
| | - William J. Resetarits
- Department of BiologyCenter for Water and Wetlands ResourcesCenter for Biodiversity and Conservation ResearchUniversity of MississippiUniversityMSUSA
| |
Collapse
|
37
|
Stouffer DB, Novak M. Hidden layers of density dependence in consumer feeding rates. Ecol Lett 2021; 24:520-532. [PMID: 33404158 DOI: 10.1111/ele.13670] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023]
Abstract
Functional responses relate a consumer's feeding rates to variation in its abiotic and biotic environment, providing insight into consumer behaviour and fitness, and underpinning population and food-web dynamics. Despite their broad relevance and long-standing history, we show here that the types of density dependence found in classic resource- and consumer-dependent functional-response models equate to strong and often untenable assumptions about the independence of processes underlying feeding rates. We first demonstrate mathematically how to quantify non-independence between feeding and consumer interference and between feeding on multiple resources. We then analyse two large collections of functional-response data sets to show that non-independence is pervasive and borne out in previously hidden forms of density dependence. Our results provide a new lens through which to view variation in consumer feeding rates and disentangle the biological underpinnings of species interactions in multi-species contexts.
Collapse
Affiliation(s)
- Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, 8041, New Zealand
| | - Mark Novak
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
38
|
Palmer MS, Portales-Reyes C, Potter C, Mech LD, Isbell F. Behaviorally-mediated trophic cascade attenuated by prey use of risky places at safe times. Oecologia 2021; 195:235-248. [PMID: 33389153 DOI: 10.1007/s00442-020-04816-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/03/2020] [Indexed: 11/29/2022]
Abstract
The mere threat of predation may incite behavioral changes in prey that lead to community-wide impacts on productivity, biodiversity, and nutrient cycling. The paucity of experimental manipulations, however, has contributed to controversy over the strength of this pathway in wide-ranging vertebrate systems. We investigated whether simulated gray wolf (Canis lupus) presence can induce behaviorally-mediated trophic cascades, specifically, whether the 'fear' of wolf olfactory cues alone can change deer foraging behavior in ways that affect plants and soils. Wolves were recently removed from the Cedar Creek Ecosystem Science Reserve (Minnesota, USA), such that consumptively mediated predator effects were negligible. At 32 experimental plots, we crossed two nested treatments: wolf urine application and herbivore exclosures. We deployed camera traps to quantify how white-tailed deer (Odocoileus virginianus) adjusted their spatiotemporal habitat use, foraging, and vigilance in response to wolf cues and how these behavioral changes affected plant productivity, plant communities, and soil nutrients. Weekly applications of wolf urine significantly altered deer behavior, but deer responses did not cascade to affect plant or soil properties. Deer substantially reduced crepuscular activity at wolf-simulated sites compared to control locations. As wolves in this area predominantly hunted during mornings and evenings, this response potentially allows deer to maximize landscape use by accessing dangerous areas when temporal threat is low. Our experiment suggests that prey may be sensitive to 'dynamic' predation risk that is structured across both space and time and, consequentially, prey use of risky areas during safe times may attenuate behaviorally-mediated trophic cascades at the predator-prey interface.
Collapse
Affiliation(s)
- Meredith S Palmer
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55104, USA. .,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - C Portales-Reyes
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55104, USA
| | - C Potter
- Cedar Creek Ecosystem Science Reserve, University of Minnesota, East Bethel, MN, USA
| | - L David Mech
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND, USA
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55104, USA.,Cedar Creek Ecosystem Science Reserve, University of Minnesota, East Bethel, MN, USA
| |
Collapse
|
39
|
Menge BA, Foley MM, Robart MJ, Richmond E, Noble M, Chan F. Keystone predation: trait‐based or driven by extrinsic processes? Assessment using a comparative‐experimental approach. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bruce A. Menge
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
| | - Melissa M. Foley
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- San Francisco Estuary Institute 4911 Central Avenue Richmond California 94804 USA
| | - Matthew J. Robart
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- Vantuna Research Group Occidental College 1600 Campus Road Los Angeles California 90041 USA
| | - Erin Richmond
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- Joint Institute for the Study of the Atmosphere and the Ocean University of Washington Seattle Washington 98115 USA
- Marine Mammal Laboratory Alaska Fisheries Science Center NOAA Seattle Washington 98105 USA
| | - Mae Noble
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- Fenner School of Environment and Society The Australian National University B48 Linnaeus Way Acton Australian Capital Territory 2601 Australia
| | - Francis Chan
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
| |
Collapse
|
40
|
Peacor SD, Barton BT, Kimbro DL, Sih A, Sheriff MJ. A framework and standardized terminology to facilitate the study of predation-risk effects. Ecology 2020; 101:e03152. [PMID: 32736416 DOI: 10.1002/ecy.3152] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/14/2020] [Accepted: 06/08/2020] [Indexed: 11/10/2022]
Abstract
The very presence of predators can strongly influence flexible prey traits such as behavior, morphology, life history, and physiology. In a rapidly growing body of literature representing diverse ecological systems, these trait (or "fear") responses have been shown to influence prey fitness components and density, and to have indirect effects on other species. However, this broad and exciting literature is burdened with inconsistent terminology that is likely hindering the development of inclusive frameworks and general advances in ecology. We examine the diverse terminology used in the literature, and discuss pros and cons of the many terms used. Common problems include the same term being used for different processes, and many different terms being used for the same process. To mitigate terminological barriers, we developed a conceptual framework that explicitly distinguishes the multiple predation-risk effects studied. These multiple effects, along with suggested standardized terminology, are risk-induced trait responses (i.e., effects on prey traits), interaction modifications (i.e., effects on prey-other-species interactions), nonconsumptive effects (i.e., effects on the fitness and density of the prey), and trait-mediated indirect effects (i.e., the effects on the fitness and density of other species). We apply the framework to three well studied systems to highlight how it can illuminate commonalities and differences among study systems. By clarifying and elucidating conceptually similar processes, the framework and standardized terminology can facilitate communication of insights and methodologies across systems and foster cross-disciplinary perspectives.
Collapse
Affiliation(s)
- Scott D Peacor
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Brandon T Barton
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - David L Kimbro
- Department of Marine and Environmental Science, Northeastern University, Nahant, Massachusetts, 01908, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California Davis, Davis, California, 95616, USA
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, 20747, USA
| |
Collapse
|
41
|
Montgomery RA, Macdonald DW, Hayward MW. The inducible defences of large mammals to human lethality. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Robert A. Montgomery
- Research on the Ecology of Carnivores and their Prey (RECaP) Laboratory Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
- Wildlife Conservation Research Unit Department of Zoology University of OxfordThe Recanati‐Kaplan CentreTubney House Tubney Oxon UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit Department of Zoology University of OxfordThe Recanati‐Kaplan CentreTubney House Tubney Oxon UK
| | - Matthew W. Hayward
- School of Environmental and Life Sciences University of Newcastle Callaghan NSW Australia
- Centre for African Conservation Ecology Nelson Mandela University Port Elizabeth South Africa
- Centre for Wildlife Management University of Pretoria Pretoria South Africa
| |
Collapse
|
42
|
Wirsing AJ, Heithaus MR, Brown JS, Kotler BP, Schmitz OJ. The context dependence of non-consumptive predator effects. Ecol Lett 2020; 24:113-129. [PMID: 32990363 DOI: 10.1111/ele.13614] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023]
Abstract
Non-consumptive predator effects (NCEs) are now widely recognised for their capacity to shape ecosystem structure and function. Yet, forecasting the propagation of these predator-induced trait changes through particular communities remains a challenge. Accordingly, focusing on plasticity in prey anti-predator behaviours, we conceptualise the multi-stage process by which predators trigger direct and indirect NCEs, review and distil potential drivers of contingencies into three key categories (properties of the prey, predator and setting), and then provide a general framework for predicting both the nature and strength of direct NCEs. Our review underscores the myriad factors that can generate NCE contingencies while guiding how research might better anticipate and account for them. Moreover, our synthesis highlights the value of mapping both habitat domains and prey-specific patterns of evasion success ('evasion landscapes') as the basis for predicting how direct NCEs are likely to manifest in any particular community. Looking ahead, we highlight two key knowledge gaps that continue to impede a comprehensive understanding of non-consumptive predator-prey interactions and their ecosystem consequences; namely, insufficient empirical exploration of (1) context-dependent indirect NCEs and (2) the ways in which direct and indirect NCEs are shaped interactively by multiple drivers of context dependence.
Collapse
Affiliation(s)
- Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA, 98195, USA
| | - Michael R Heithaus
- Department of Biological Sciences, Marine Sciences Program, Florida International University, 3000 NE 151st St, North Miami, FL, 33181, USA
| | - Joel S Brown
- Department of Biological Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607, USA.,Department of Integrated Mathematical Oncology, Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33613, USA
| | - Burt P Kotler
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet, Ben-Gurion, 84990, Israel
| | - Oswald J Schmitz
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06511, USA
| |
Collapse
|
43
|
Kadye WT, Leigh S, Booth AJ. Predator naïve minnows respond to their conspecific alarm substance but not the odour from a non‐native predator. Afr J Ecol 2020. [DOI: 10.1111/aje.12768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wilbert T. Kadye
- Department of Ichthyology and Fisheries Science Rhodes University Grahamstown South Africa
| | - Simon Leigh
- Department of Ichthyology and Fisheries Science Rhodes University Grahamstown South Africa
| | - Anthony J. Booth
- Department of Ichthyology and Fisheries Science Rhodes University Grahamstown South Africa
| |
Collapse
|
44
|
Sheriff MJ, Peacor SD, Hawlena D, Thaker M. Non-consumptive predator effects on prey population size: A dearth of evidence. J Anim Ecol 2020; 89:1302-1316. [PMID: 32215909 DOI: 10.1111/1365-2656.13213] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/24/2020] [Indexed: 11/30/2022]
Abstract
There is a large and growing interest in non-consumptive effects (NCEs) of predators. Diverse and extensive evidence shows that predation risk directly influences prey traits, such as behaviour, morphology and physiology, which in turn, may cause a reduction in prey fitness components (i.e. growth rate, survival and reproduction). An intuitive expectation is that NCEs that reduce prey fitness will extend to alter population growth rate and therefore population size. However, our intensive literature search yielded only 10 studies that examined how predator-induced changes in prey traits translate to changes in prey population size. Further, the scant evidence for risk-induced changes on prey population size have been generated from studies that were performed in very controlled systems (mesocosm and laboratory), which do not have the complexity and feedbacks of natural settings. Thus, although likely that predation risk alone can alter prey population size, there is little direct empirical evidence that demonstrates that it does. There are also clear reasons that risk effects on population size may be much smaller than the responses on phenotype and fitness components that are typically measured, magnifying the need to show, rather than infer, effects on population size. Herein we break down the process of how predation risk influences prey population size into a chain of events (predation risk affects prey traits, which affect prey fitness components and population growth rate, which affect prey population size), and highlight the complexity of each transition. We illustrate how the outcomes of these transitions are not straightforward, and how environmental context strongly dictates the direction and magnitude of effects. Indeed, the high variance in prey responses is reflected in the variance of results reported in the few studies that have empirically quantified risk effects on population size. It is therefore a major challenge to predict population effects given the complexity of how environmental context interacts with predation risk and prey responses. We highlight the critical need to appreciate risk effects at each level in the chain of events, and that changes at one level cannot be assumed to translate into changes in the next because of the interplay between risk, prey responses, and the environment. The gaps in knowledge we illuminate underscore the need for more evidence to substantiate the claim that predation risk effects extend to prey population size. The lacunae we identify should inspire future studies on the impact of predation risk on population-level responses in free-living animals.
Collapse
Affiliation(s)
- Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Scott D Peacor
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Dror Hawlena
- Risk Management Ecology Laboratory, Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
45
|
Luttbeg B, Ferrari MCO, Blumstein DT, Chivers DP. Safety Cues Can Give Prey More Valuable Information Than Danger Cues. Am Nat 2020; 195:636-648. [DOI: 10.1086/707544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Siepielski AM, Hasik AZ, Ping T, Serrano M, Strayhorn K, Tye SP. Predators weaken prey intraspecific competition through phenotypic selection. Ecol Lett 2020; 23:951-961. [PMID: 32227439 DOI: 10.1111/ele.13491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/01/2022]
Abstract
Predators have a key role shaping competitor dynamics in food webs. Perhaps the most obvious way this occurs is when predators reduce competitor densities. However, consumption could also generate phenotypic selection on prey that determines the strength of competition, thus coupling consumptive and trait-based effects of predators. In a mesocosm experiment simulating fish predation on damselflies, we found that selection against high damselfly activity rates - a phenotype mediating predation and competition - weakened the strength of density dependence in damselfly growth rates. A field experiment corroborated this finding and showed that increasing damselfly densities in lakes with high fish densities had limited effects on damselfly growth rates but generated a precipitous growth rate decline where fish densities were lower - a pattern expected because of spatial variation in selection imposed by predation. These results suggest that accounting for both consumption and selection is necessary to determine how predators regulate prey competitive interactions.
Collapse
Affiliation(s)
- Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Adam Z Hasik
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Taylor Ping
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Mabel Serrano
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Koby Strayhorn
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Simon P Tye
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
47
|
Kimbro DL, Tillotson HG, White JW. Environmental forcing and predator consumption outweigh the nonconsumptive effects of multiple predators on oyster reefs. Ecology 2020; 101:e03041. [PMID: 32134508 DOI: 10.1002/ecy.3041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/27/2020] [Accepted: 01/23/2020] [Indexed: 11/05/2022]
Abstract
The ability to predict how predators structure ecosystems has been shown to depend on identifying both consumptive effects (CEs) and nonconsumptive effects (NCEs) of predators on prey fitness. Prey populations may also be affected by interactions between multiple predators across life stages of the prey and by environmental factors such as disturbance. However, the intersection of these multiple drivers of prey dynamics has yet to be empirically evaluated. We addressed this knowledge gap using eastern oysters (Crassostrea virginica), a species known to suffer NCEs, as the focal prey. Over 4 months, we manipulated orthogonally the life stage (none, juvenile, adult, or both) at which oysters experienced simulated predation (CE) and exposure to olfactory cues of a juvenile oyster predator (crab), adult predator (conch), sequentially the crab and then the conch, or none. We replicated this experiment at three sites along an environmental gradient in a Florida (USA) estuary. For both juvenile and adult oysters, survival was reduced solely by CEs, and variation in growth was best explained by among-site variation in water flow, with a much smaller and negative effect of predator cue. Adults exposed to conch cue exhibited reduced growth (an NCE), but this effect was outweighed by a positive CE on growth: Surviving oysters grew faster at lower densities. Finally, conch cue reduced larval settlement (another NCE), but this was swamped by among-site variation in larval supply. This research highlights how strong environmental gradients and predator CEs may outweigh the influence of NCEs, even in prey known to respond to predator cues. These findings serve as a cautionary tale for the importance of evaluating NCE processes over temporal scales and across environmental gradients relevant to prey demography.
Collapse
Affiliation(s)
- David L Kimbro
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts, 01908, USA
| | - Hanna G Tillotson
- Department of Biology, Florida State University, Tallahassee, Florida, 32306, USA.,Florida Department of Environmental Protection, Tallahassee, Florida, 32399, USA
| | - J Wilson White
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, 97365, USA
| |
Collapse
|
48
|
Rogy P, Hammill E, Smith MA, Rost-Komiya B, Srivastava DS. Bromeliads affect the interactions and composition of invertebrates on their support tree. Oecologia 2020; 192:879-891. [PMID: 32067120 DOI: 10.1007/s00442-020-04616-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 02/05/2020] [Indexed: 11/30/2022]
Abstract
Individual species can have profound effects on ecological communities, but, in hyperdiverse systems, it can be challenging to determine the underlying ecological mechanisms. Simplifying species' responses by trophic level or functional group may be useful, but characterizing the trait structure of communities may be better related to niche processes. A largely overlooked trait in such community-level analyses is behaviour. In the Neotropics, epiphytic tank bromeliads (Bromeliaceae) harbour a distinct fauna of terrestrial invertebrates that is mainly composed of predators, such as ants and spiders. As these bromeliad-associated predators tend to forage on the bromeliads' support tree, they may influence the arboreal invertebrate fauna. We examined how, by increasing associated predator habitat, bromeliads may affect arboreal invertebrates. Specifically, we observed the trophic and functional group composition, and the behaviour and interspecific interactions of arboreal invertebrates in trees with and without bromeliads. Bromeliads modified the functional composition of arboreal invertebrates, but not the overall abundance of predators and herbivores. Bromeliads did not alter the overall behavioural profile of arboreal invertebrates, but did lead to more positive interactions in the day than at night, with a reverse pattern on trees without bromeliads. In particular, tending behaviours were influenced by bromeliad-associated predators. These results indicate that detailed examination of the functional affiliations and behaviour of organisms can reveal complex effects of habitat-forming species like bromeliads, even when total densities of trophic groups are insensitive.
Collapse
Affiliation(s)
- Pierre Rogy
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| | - Edd Hammill
- Department of Watershed Sciences, Utah State University, 5210 Old Main Hill, NR 210, Logan, UT, 84322-5210, USA
| | - M Alex Smith
- Department of Integrative Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Beatrice Rost-Komiya
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Diane S Srivastava
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
49
|
Can an herbivore affect where a top predator kills its prey by modifying woody vegetation structure? Oecologia 2020; 192:779-789. [PMID: 32060732 DOI: 10.1007/s00442-020-04617-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
In large mammal communities, little is known about modification of interspecific interactions through habitat structure changes. We assessed the effects of African elephants (Loxodonta africana) on features of woody habitat structure that can affect predator-prey interactions. We then explored how this can influence where African lions (Panthera leo) kill their prey. Indeed, lions are stalk-and-ambush predators and habitat structure and concealment opportunities are assumed to influence their hunting success. During 2 years, in Hwange National Park, Zimbabwe, kill sites (n = 167) of GPS-collared lions were characterized (visibility distance for large mammals, distance to a potential ambush site and presence of elephant impacts). We compared characteristics of lion kill sites with characteristics of random sites (1) at a large scale (i.e. in areas intensively used by lions, n = 418) and (2) at the microhabitat scale (i.e. in the direct surrounding available habitat, < 150 m, n = 167). Elephant-impacted sites had a slightly higher visibility and a longer distance to a potential ambush site than non-impacted sites, but these relationships were characterized by a high variability. At large scale, kill sites were characterized by higher levels of elephant impacts compared to random sites. At microhabitat scale, compared to the direct nearby available habitat, kill sites were characterized by a reduced distance to a potential ambush site. We suggest a conceptual framework whereby the relative importance of habitat features and prey abundance could change upon the scale considered.
Collapse
|
50
|
Wood ZT, Fryxell DC, Moffett ER, Kinnison MT, Simon KS, Palkovacs EP. Prey adaptation along a competition-defense tradeoff cryptically shifts trophic cascades from density- to trait-mediated. Oecologia 2020; 192:767-778. [PMID: 31989320 DOI: 10.1007/s00442-020-04610-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/16/2020] [Indexed: 11/25/2022]
Abstract
Trophic cascades have become a dominant paradigm in ecology, yet considerable debate remains about the relative strength of density- (consumptive) and trait-mediated (non-consumptive) effects in trophic cascades. This debate may, in part, be resolved by considering prey experience, which shapes prey traits (through genetic and plastic change) and influences prey survival (and therefore density). Here, we investigate the cascading role of prey experience through the addition of mosquitofish (Gambusia affinis) from predator-experienced or predator-naïve sources to mesocosms containing piscivorous largemouth bass (Micropterus salmoides), zooplankton, and phytoplankton. These two sources were positioned along a competition-defense tradeoff. Results show that predator-naïve mosquitofish suffered higher depredation rates, which drove a density-mediated cascade, whereas predator-experienced mosquitofish exhibited higher survival but fed less, which drove a trait-mediated cascade. Both cascades were similar in strength, leading to indistinguishable top-down effects on lower trophic levels. Therefore, the accumulation of prey experience with predators can cryptically shift cascade mechanisms from density- to trait-mediated.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology, Ecology and Environmental Sciences Program, University of Maine, Orono, ME, 04469, USA.
| | - David C Fryxell
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Emma R Moffett
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Michael T Kinnison
- School of Biology and Ecology, Ecology and Environmental Sciences Program, University of Maine, Orono, ME, 04469, USA
| | - Kevin S Simon
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|