1
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Lu Y, Jiang Y, Wang F, Wu H, Hua Y. Electron Microscopic Mapping of Mitochondrial Morphology in the Cochlear Nerve Fibers. J Assoc Res Otolaryngol 2024; 25:341-354. [PMID: 38937328 PMCID: PMC11349726 DOI: 10.1007/s10162-024-00957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
To enable nervous system function, neurons are powered in a use-dependent manner by mitochondria undergoing morphological-functional adaptation. In a well-studied model system-the mammalian cochlea, auditory nerve fibers (ANFs) display distinct electrophysiological properties, which is essential for collectively sampling acoustic information of a large dynamic range. How exactly the associated mitochondrial networks are deployed in functionally differentiated ANFs remains scarcely interrogated. Here, we leverage volume electron microscopy and machine-learning-assisted image analysis to phenotype mitochondrial morphology and distribution along ANFs of full-length in the mouse cochlea inner spiral bundle. This reveals greater variance in mitochondrial size with increased ANF habenula to terminal path length. Particularly, we analyzed the ANF terminal-residing mitochondria, which are critical for local calcium uptake during sustained afferent activities. Our results suggest that terminal-specific enrichment of mitochondria, in addition to terminal size and overall mitochondrial abundance of the ANF, correlates with heterogenous mitochondrial contents of the terminal.
Collapse
Affiliation(s)
- Yan Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Jiang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunfeng Hua
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
4
|
Duarte FV, Ciampi D, Duarte CB. Mitochondria as central hubs in synaptic modulation. Cell Mol Life Sci 2023; 80:173. [PMID: 37266732 DOI: 10.1007/s00018-023-04814-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Mitochondria are present in the pre- and post-synaptic regions, providing the energy required for the activity of these very specialized neuronal compartments. Biogenesis of synaptic mitochondria takes place in the cell body, and these organelles are then transported to the synapse by motor proteins that carry their cargo along microtubule tracks. The transport of mitochondria along neurites is a highly regulated process, being modulated by the pattern of neuronal activity and by extracellular cues that interact with surface receptors. These signals act by controlling the distribution of mitochondria and by regulating their activity. Therefore, mitochondria activity at the synapse allows the integration of different signals and the organelles are important players in the response to synaptic stimulation. Herein we review the available evidence regarding the regulation of mitochondrial dynamics by neuronal activity and by neuromodulators, and how these changes in the activity of mitochondria affect synaptic communication.
Collapse
Affiliation(s)
- Filipe V Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- III - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniele Ciampi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Wong HTC, Lukasz D, Drerup CM, Kindt KS. In vivo investigation of mitochondria in lateral line afferent neurons and hair cells. Hear Res 2023; 431:108740. [PMID: 36948126 PMCID: PMC10079644 DOI: 10.1016/j.heares.2023.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daria Lukasz
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Yao W, Zhou P, Yan Q, Wu X, Xia Y, Li W, Li X, Zhu F. ERVWE1 Reduces Hippocampal Neuron Density and Impairs Dendritic Spine Morphology through Inhibiting Wnt/JNK Non-Canonical Pathway via miR-141-3p in Schizophrenia. Viruses 2023; 15:168. [PMID: 36680208 PMCID: PMC9863209 DOI: 10.3390/v15010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancestral germline infections by exogenous retroviruses. Human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1), located on chromosome 7q21-22, encodes an envelope glycoprotein from the HERV-W family. Mounting evidence suggests that aberrant expression of ERVWE1 involves the etiology of schizophrenia. Moreover, the genetic and morphological studies indicate that dendritic spine deficits may contribute to the onset of schizophrenia. Here, we reported that ERVWE1 changed the density and morphology of the dendritic spine through inhibiting Wingless-type (Wnt)/c-Jun N-terminal kinases (JNK) non-canonical pathway via miR-141-3p in schizophrenia. In this paper, we found elevated levels of miR-141-3p and a significant positive correlation with ERVWE1 in schizophrenia. Moreover, serum Wnt5a and actin-related protein 2 (Arp2) levels decreased and demonstrated a significant negative correlation with ERVWE1 in schizophrenia. In vitro experiments disclosed that ERVWE1 up-regulated miR-141-3p expression by interacting with transcription factor (TF) Yin Yang 1 (YY1). YY1 modulated miR-141-3p expression by binding to its promoter. The luciferase assay revealed that YY1 enhanced the promoter activity of miR-141-3p. Using the miRNA target prediction databases and luciferase reporter assays, we demonstrated that miR-141-3p targeted Wnt5a at its 3' untranslated region (3' UTR). Furthermore, ERVWE1 suppressed the expression of Arp2 through non-canonical pathway, Wnt5a/JNK signaling pathway. In addition, ERVWE1 inhibited Wnt5a/JNK/Arp2 signal pathway through miR-141-3p. Finally, functional assays showed that ERVWE1 induced the abnormalities in hippocampal neuron morphology and spine density through inhibiting Wnt/JNK non-canonical pathway via miR-141-3p in schizophrenia. Our findings indicated that miR-141-3p, Wnt5a, and Arp2 might be potential clinical blood-based biomarkers or therapeutic targets for schizophrenia. Our work also provided new insight into the role of ERVWE1 in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
7
|
Yang S, Tang Y, Liu Y, Brown AJ, Schaks M, Ding B, Kramer DA, Mietkowska M, Ding L, Alekhina O, Billadeau DD, Chowdhury S, Wang J, Rottner K, Chen B. Arf GTPase activates the WAVE regulatory complex through a distinct binding site. SCIENCE ADVANCES 2022; 8:eadd1412. [PMID: 36516255 PMCID: PMC9750158 DOI: 10.1126/sciadv.add1412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/10/2022] [Indexed: 06/02/2023]
Abstract
Cross-talk between Rho- and Arf-family guanosine triphosphatases (GTPases) plays an important role in linking the actin cytoskeleton to membrane protrusions, organelle morphology, and vesicle trafficking. The central actin regulator, WAVE regulatory complex (WRC), integrates Rac1 (a Rho-family GTPase) and Arf signaling to promote Arp2/3-mediated actin polymerization in many processes, but how WRC senses Arf signaling is unknown. Here, we have reconstituted a direct interaction between Arf and WRC. This interaction is greatly enhanced by Rac1 binding to the D site of WRC. Arf1 binds to a previously unidentified, conserved surface on the Sra1 subunit of WRC, which, in turn, drives WRC activation using a mechanism distinct from that of Rac1. Mutating the Arf binding site abolishes Arf1-WRC interaction, disrupts Arf1-mediated WRC activation, and impairs lamellipodia formation and cell migration. This work uncovers a new mechanism underlying WRC activation and provides a mechanistic foundation for studying how WRC-mediated actin polymerization links Arf and Rac signaling in cells.
Collapse
Affiliation(s)
- Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Yubo Tang
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yijun Liu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Abbigale J. Brown
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Bojian Ding
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Olga Alekhina
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Daniel D. Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Saikat Chowdhury
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
- CSIR–Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261, USA
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| |
Collapse
|
8
|
Abstract
The maintenance of a healthy mitochondrial network and the ability to adjust organelle population in response to internal or external stimuli are essential for the function and the survival of eukaryotic cells. Over the last two decades several studies have demonstrated the paramount importance of mitophagy, a selective form of autophagy that removes damaged and/or superfluous organelles, in organismal physiology. Post-mitotic neuronal cells are particularly vulnerable to mitochondrial damage, and mitophagy impairment has emerged as a causative factor in multiple neurodegenerative pathologies, including Alzheimer's disease and Parkinson's disease among others. Although mitochondrial turnover is a multifaceted process, neurons have to tackle additional complications, arising from their pronounced bioenergetic demands and their unique architecture and cellular polarisation that render the degradation of distal organelles challenging. Mounting evidence indicates that despite the functional conservation of mitophagy pathways, the unique features of neuronal physiology have led to the adaptation of compartmentalised solutions, which serve to ensure seamless mitochondrial removal in every part of the cell. In this review, we summarise the current knowledge concerning the molecular mechanisms that mediate mitophagy compartmentalisation and discuss their implications in various human pathologies.
Collapse
|
9
|
Mitochondrial a Kinase Anchor Proteins in Cardiovascular Health and Disease: A Review Article on Behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. Int J Mol Sci 2022; 23:ijms23147691. [PMID: 35887048 PMCID: PMC9322728 DOI: 10.3390/ijms23147691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.
Collapse
|
10
|
Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 2022; 4:802-812. [PMID: 35817853 PMCID: PMC11151822 DOI: 10.1038/s42255-022-00594-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Mitochondria are vital organelles with distinct morphological features and functional properties. The dynamic network of mitochondria undergoes structural and functional adaptations in response to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity supports unique subcellular functions and is crucial to polarized cells, such as neurons. The spatiotemporal metabolic burden within the complex shape of a neuron requires precisely localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their significance to many other cell types. Here, we put forth an outline of the multifaceted role of mitochondria in regulating neuronal physiology and cellular functions more broadly.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
12
|
Fogarty MJ, Rana S, Mantilla CB, Sieck GC. Quantifying mitochondrial volume density in phrenic motor neurons. J Neurosci Methods 2021; 353:109093. [PMID: 33549636 PMCID: PMC7990712 DOI: 10.1016/j.jneumeth.2021.109093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous assessments of mitochondrial volume density within motor neurons used electron microscopy (EM) to image mitochondria. However, adequate identification and sampling of motor neurons within a particular motor neuron pool is largely precluded using EM. Here, we present an alternative method for determining mitochondrial volume density in identified motor neurons within the phrenic motor neuron (PhMN) pool, with greatly increased sampling. NEW METHOD This novel method for assessing mitochondrial volume density in PhMNs uses a combination of intrapleural injection of Alexa 488-conjugated cholera toxin B (CTB) to retrogradely label PhMNs, followed by intrathecal application of MitoTracker Red to label mitochondria. This technique was validated by comparison to 3D EM determination of mitochondrial volume density as a "gold standard". RESULTS A mean mitochondrial volume density of ∼11 % was observed across PhMNs using the new MitoTracker Red method. This compared favourably with mitochondrial volume density (∼11 %) measurements using EM. COMPARISON WITH EXISTING METHOD The range, mean and variance of mitochondrial volume density estimates in PhMNs were not different between EM and fluorescent imaging techniques. CONCLUSIONS Fluorescent imaging may be used to estimate mitochondrial volume density in a large sample of motor neurons, with results similar to EM, although EM did distinguish finer mitochondrion morphology compared to MitoTracker fluorescence. Compared to EM methods, the assessment of a larger sample size and unambiguous identification of motor neurons belonging to a specific motor neuron pool represent major advantages over previous methods.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Sabhya Rana
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| | - Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, 55905, United States
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
13
|
Sculpting Dendritic Spines during Initiation and Maintenance of Neuropathic Pain. J Neurosci 2021; 40:7578-7589. [PMID: 32998955 DOI: 10.1523/jneurosci.1664-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has established a firm role for synaptic plasticity in the pathogenesis of neuropathic pain. Recent advances have highlighted the importance of dendritic spine remodeling in driving synaptic plasticity within the CNS. Identifying the molecular players underlying neuropathic pain induced structural and functional maladaptation is therefore critical to understanding its pathophysiology. This process of dynamic reorganization happens in unique phases that have diverse pathologic underpinnings in the initiation and maintenance of neuropathic pain. Recent evidence suggests that pharmacological targeting of specific proteins during distinct phases of neuropathic pain development produces enhanced antinociception. These findings outline a potential new paradigm for targeted treatment and the development of novel therapies for neuropathic pain. We present a concise review of the role of dendritic spines in neuropathic pain and outline the potential for modulation of spine dynamics by targeting two proteins, srGAP3 and Rac1, critically involved in the regulation of the actin cytoskeleton.
Collapse
|
14
|
Di Benedetto G, Lefkimmiatis K, Pozzan T. The basics of mitochondrial cAMP signalling: Where, when, why. Cell Calcium 2020; 93:102320. [PMID: 33296837 DOI: 10.1016/j.ceca.2020.102320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Cytosolic cAMP signalling in live cells has been extensively investigated in the past, while only in the last decade the existence of an intramitochondrial autonomous cAMP homeostatic system began to emerge. Thanks to the development of novel tools to investigate cAMP dynamics and cAMP/PKA-dependent phosphorylation within the matrix and in other mitochondrial compartments, it is now possible to address directly and in intact living cells a series of questions that until now could be addressed only by indirect approaches, in isolated organelles or through subcellular fractionation studies. In this contribution we discuss the mechanisms that regulate cAMP dynamics at the surface and inside mitochondria, and its crosstalk with organelle Ca2+ handling. We then address a series of still unsolved questions, such as the intramitochondrial localization of key elements of the cAMP signaling toolkit, e.g., adenylate cyclases, phosphodiesterases, protein kinase A (PKA) and Epac. Finally, we discuss the evidence for and against the existence of an intramitochondrial PKA pool and the functional role of cAMP increases within the organelle matrix.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy.
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| |
Collapse
|
15
|
Caspase inhibition rescues F1Fo ATP synthase dysfunction-mediated dendritic spine elimination. Sci Rep 2020; 10:17589. [PMID: 33067541 PMCID: PMC7568535 DOI: 10.1038/s41598-020-74613-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Dendritic spine injury underlies synaptic failure in many neurological disorders. Mounting evidence suggests a mitochondrial pathway of local nonapoptotic caspase signaling in mediating spine pruning. However, it remains unclear whether this caspase signaling plays a key role in spine loss when severe mitochondrial functional defects are present. The answer to this question is critical especially for some pathological states, in which mitochondrial deficits are prominent and difficult to fix. F1Fo ATP synthase is a pivotal mitochondrial enzyme and the dysfunction of this enzyme involves in diseases with spinopathy. Here, we inhibited F1Fo ATP synthase function in primary cultured hippocampal neurons by using non-lethal oligomycin A treatment. Oligomycin A induced mitochondrial defects including collapsed mitochondrial membrane potential, dissipated ATP production, and elevated reactive oxygen species (ROS) production. In addition, dendritic mitochondria underwent increased fragmentation and reduced positioning to dendritic spines along with increased caspase 3 cleavage in dendritic shaft and spines in response to oligomycin A. Concurring with these dendritic mitochondrial changes, oligomycin A-insulted neurons displayed spine loss and altered spine architecture. Such oligomycin A-mediated changes in dendritic spines were substantially prevented by the inhibition of caspase activation by using a pan-caspase inhibitor, quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh). Of note, the administration of Q-VD-OPh showed no protective effect on oligomycin A-induced mitochondrial dysfunction. Our findings suggest a pivotal role of caspase 3 signaling in mediating spine injury and the modulation of caspase 3 activation may benefit neurons from spine loss in diseases, at least, in those with F1Fo ATP synthase defects.
Collapse
|
16
|
Hur JY, Frost GR, Wu X, Crump C, Pan SJ, Wong E, Barros M, Li T, Nie P, Zhai Y, Wang JC, Tcw J, Guo L, McKenzie A, Ming C, Zhou X, Wang M, Sagi Y, Renton AE, Esposito BT, Kim Y, Sadleir KR, Trinh I, Rissman RA, Vassar R, Zhang B, Johnson DS, Masliah E, Greengard P, Goate A, Li YM. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease. Nature 2020; 586:735-740. [PMID: 32879487 PMCID: PMC7919141 DOI: 10.1038/s41586-020-2681-2] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 05/29/2020] [Indexed: 01/13/2023]
Abstract
Innate immunity is associated with Alzheimer's disease1, but the influence of immune activation on the production of amyloid-β is unknown2,3. Here we identify interferon-induced transmembrane protein 3 (IFITM3) as a γ-secretase modulatory protein, and establish a mechanism by which inflammation affects the generation of amyloid-β. Inflammatory cytokines induce the expression of IFITM3 in neurons and astrocytes, which binds to γ-secretase and upregulates its activity, thereby increasing the production of amyloid-β. The expression of IFITM3 is increased with ageing and in mouse models that express familial Alzheimer's disease genes. Furthermore, knockout of IFITM3 reduces γ-secretase activity and the formation of amyloid plaques in a transgenic mouse model (5xFAD) of early amyloid deposition. IFITM3 protein is upregulated in tissue samples from a subset of patients with late-onset Alzheimer's disease that exhibit higher γ-secretase activity. The amount of IFITM3 in the γ-secretase complex has a strong and positive correlation with γ-secretase activity in samples from patients with late-onset Alzheimer's disease. These findings reveal a mechanism in which γ-secretase is modulated by neuroinflammation via IFITM3 and the risk of Alzheimer's disease is thereby increased.
Collapse
Affiliation(s)
- Ji-Yeun Hur
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Georgia R Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Xianzhong Wu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina Crump
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Si Jia Pan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marilia Barros
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Pengju Nie
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yujia Zhai
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jen Chyong Wang
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Tcw
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew McKenzie
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yotam Sagi
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY, USA
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bianca T Esposito
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yong Kim
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY, USA
| | | | - Ivy Trinh
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Robert Vassar
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY, USA
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.
- Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.
| |
Collapse
|
17
|
Tang Q, Schaks M, Koundinya N, Yang C, Pollard LW, Svitkina TM, Rottner K, Goode BL. WAVE1 and WAVE2 have distinct and overlapping roles in controlling actin assembly at the leading edge. Mol Biol Cell 2020; 31:2168-2178. [PMID: 32697617 PMCID: PMC7550694 DOI: 10.1091/mbc.e19-12-0705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Matthias Schaks
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Neha Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
18
|
Wang Y, Zhao J, Guo FL, Gao X, Xie X, Liu S, Yang X, Yang X, Zhang L, Ye Y, Fan L, Wang J. Metformin Ameliorates Synaptic Defects in a Mouse Model of AD by Inhibiting Cdk5 Activity. Front Cell Neurosci 2020; 14:170. [PMID: 32670025 PMCID: PMC7327108 DOI: 10.3389/fncel.2020.00170] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase that is activated by the neuron-specific activators p35/p39 and plays important roles in neuronal development, synaptic plasticity, and cognitive behavior. However, the proteolytic cleavage of p35 to p25 leads to prolonged and aberrant Cdk5 activation and results in synaptic depression, highly mimicking the early pathology of Alzheimer’s disease (AD). Therefore, Cdk5 inhibition is a potential promising strategy for AD drug development. Here in the present study, we showed that metformin, the most widely used drug for type 2 diabetes, suppressed Cdk5 hyper-activation and Cdk5-dependent tau hyper-phosphorylation in the APP/PS1 mouse hippocampus. We also identified the underlying molecular and cellular mechanism that metformin prevented Cdk5 hyper-activation by inhibiting the calpain-dependent cleavage of p35 into p25. Moreover, chronic metformin treatment rescued the core phenotypes in APP/PS1 mice as evidenced by restored spine density, surface GluA1 trafficking, Long-term potentiation (LTP) expression, and spatial memory. Altogether our study discovered an unidentified role of metformin in suppressing Cdk5 hyper-activation and thus preventing AD pathogenesis and suggested that metformin is a potential promising AD therapeutic drug.
Collapse
Affiliation(s)
- YaLi Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - JianHua Zhao
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fang-Li Guo
- Department of Neurology, Anyang District Hospital of Puyang City, Anyang, China
| | - XiaHuan Gao
- Department of Pathology, People's Hospital of Tongchuan, Tongchuan, China
| | - Xine Xie
- Department of Neurology, The Second Hospital of Jinhua, Jinhua, China
| | - ShouQing Liu
- Department of Neurology, The Second Hospital of Jinhua, Jinhua, China
| | - Xin Yang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XinFeng Yang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - LuYi Zhang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - YuXiao Ye
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - LiBing Fan
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - JianGang Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
19
|
Jin J, Bhatti DL, Lee KW, Medrihan L, Cheng J, Wei J, Zhong P, Yan Z, Kooiker C, Song C, Ahn JH, Obermair GJ, Lee A, Gresack J, Greengard P, Kim Y. Ahnak scaffolds p11/Anxa2 complex and L-type voltage-gated calcium channel and modulates depressive behavior. Mol Psychiatry 2020; 25:1035-1049. [PMID: 30760886 PMCID: PMC6692256 DOI: 10.1038/s41380-019-0371-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 01/05/2023]
Abstract
Genetic polymorphisms of the L-type voltage-gated calcium channel (VGCC) are associated with psychiatric disorders including major depressive disorder. Alterations of S100A10 (p11) level are also implicated in the etiology of major depressive disorder. However, the existence of an endogenous regulator in the brain regulating p11, L-type VGCC, and depressive behavior has not been known. Here we report that Ahnak, whose function in the brain has been obscure, stabilizes p11 and Anxa2 proteins in the hippocampus and prefrontal cortex in the rodent brain. Protein levels of Ahnak, p11, and Anxa2 are highly and positively correlated in the brain. Together these data suggest the existence of an Ahnak/p11/Anxa2 protein complex. Ahnak is expressed in p11-positive as well as p11-negative neurons. Ahnak, through its N-terminal region, scaffolds the L-type pore-forming α1 subunit and, through its C-terminal region, scaffolds the β subunit of VGCC and the p11/Anxa2 complex. Cell surface expression of the α1 subunits and L-type calcium current are significantly reduced in primary cultures of Ahnak knockout (KO) neurons compared to wild-type controls. A decrease in the L-type calcium influx is observed in both glutamatergic neurons and parvalbumin (PV) GABAergic interneurons of Ahnak KO mice. Constitutive Ahnak KO mice or forebrain glutamatergic neuron-selective Ahnak KO mice display a depression-like behavioral phenotype similar to that of constitutive p11 KO mice. In contrast, PV interneuron-selective Ahnak KO mice display an antidepressant-like behavioral phenotype. Our results demonstrate L-type VGCC as an effector of the Ahnak/p11/Anxa2 complex, revealing a novel molecular connection involved in the control of depressive behavior.
Collapse
Affiliation(s)
- Junghee Jin
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Dionnet L Bhatti
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Ko-Woon Lee
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Lucian Medrihan
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Jia Cheng
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Jing Wei
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Cassandra Kooiker
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Claire Song
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Jung-Hyuck Ahn
- Department of Biochemistry, Ewha Womans University, Seoul, South Korea
| | - Gerald J Obermair
- Division of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Jodi Gresack
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yong Kim
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
20
|
Yang Y, Wu L, Wu X, Li B, Huang W, Weng Z, Lin Z, Song L, Guo Y, Meng Z, Liu X, Xia J. Identification of Candidate Growth-Related SNPs and Genes Using GWAS in Brown-Marbled Grouper (Epinephelus fuscoguttatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:153-166. [PMID: 31927644 DOI: 10.1007/s10126-019-09940-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Brown-marbled grouper, Epinephelus fuscoguttatus, is not only an important commercial fish species, but also an important crossbreeding parent in grouper industry. Improvement of growth traits of this species contributes to the development of grouper breeding. Currently, the development of molecular marker associated with growth of brown-marbled grouper is rare. Thus, we performed the first genome-wide association study (GWAS) for five growth traits in 172 brown-marbled groupers with 43,688 SNPs detected by ddRAD-seq. We identified a total of 5 significant and 18 suggestive QTLs located in multiple chromosomes associated with growth traits. In the 20 kb window of the significant SNPs and suggestive SNPs, 5 and 14 potential candidate genes affecting growth were detected, respectively. Five potential candidate genes near the significantly associated SNPs were selected for expression analysis. Among of which, bmp2k, wasf1, and acyp2 involved in bone development, maintenance of mitochondrion structure, and metabolism were differentially expressed. Interestingly, the SNP 23:29601315 located in the intron of bmp2k was significantly associated with body weight, body length, body height, and body thickness and suggestively associated with total length. We verified the locus using another new group including 123 individuals. The results showed that individuals with CC genotype have better growth traits comparing other individuals. Our findings not only contribute to understanding the molecular mechanism of growth regulation, but also promote the advance of marker-assisted selection in brown-marbled grouper.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Lina Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Xi Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Bijun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Wenhua Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zhuoying Weng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zixuan Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Leling Song
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China.
- Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, 510275, People's Republic of China.
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China.
- Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, 510275, People's Republic of China.
| | - Junhong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| |
Collapse
|
21
|
Cardanho-Ramos C, Faria-Pereira A, Morais VA. Orchestrating mitochondria in neurons: Cytoskeleton as the conductor. Cytoskeleton (Hoboken) 2019; 77:65-75. [PMID: 31782907 PMCID: PMC7187307 DOI: 10.1002/cm.21585] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Mitochondria are crucial to support synaptic activity, particularly through ATP production and Ca2+ homeostasis. This implies that mitochondria need to be well distributed throughout the different neuronal sub-compartments. To achieve this, a tight and precise regulation of several neuronal cytoskeleton players is necessary to transport and dock mitochondria. As post-mitotic cells, neurons are highly dependent on mitochondrial quality control mechanisms and several cytoskeleton proteins have been implicated in mitophagy. Therefore, all of these processes are orchestrated by the crosstalk between mitochondria and the neuronal cytoskeleton to form a coordinated and tuned symphony.
Collapse
Affiliation(s)
- Carlos Cardanho-Ramos
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Faria-Pereira
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vanessa Alexandra Morais
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
22
|
Cao YP, Zheng M. Mitochondrial dynamics and inter-mitochondrial communication in the heart. Arch Biochem Biophys 2019; 663:214-219. [DOI: 10.1016/j.abb.2019.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
|
23
|
Vanhauwaert R, Bharat V, Wang X. Surveillance and transportation of mitochondria in neurons. Curr Opin Neurobiol 2019; 57:87-93. [PMID: 30784981 DOI: 10.1016/j.conb.2019.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Neurons need to allocate and sustain mitochondria to provide adequate energy and sufficient Ca2+-buffering capacity in each sub specialization of their extensive arborizations. Damaged mitochondria, which are highly deleterious to the neuron, must be rapidly repaired or eliminated, even when they are left at terminals extremely far away from the soma. The unique shape of neurons complicates the tasks of both transporting and clearing mitochondria. Errors in the underlying molecular regulations cause detrimental neurodegeneration. Here, we review the molecular machinery and regulatory mechanisms employed to transport, distribute, and clear mitochondria in neurons, and how these fundamental regulations are compromised in neurological disorders.
Collapse
Affiliation(s)
- Roeland Vanhauwaert
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Vinita Bharat
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, United States.
| |
Collapse
|
24
|
Chen Y, Milenkovic M, Horsfall W, Salahpour A, Soderling SH, Ramsey AJ. Restoring striatal WAVE-1 improves maze exploration performance of GluN1 knockdown mice. PLoS One 2018; 13:e0199341. [PMID: 30352064 PMCID: PMC6198945 DOI: 10.1371/journal.pone.0199341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/06/2018] [Indexed: 11/19/2022] Open
Abstract
NMDA receptors are important for cognition and are implicated in neuropsychiatric disorders. GluN1 knockdown (GluN1KD) mice have reduced NMDA receptor levels, striatal spine density deficits, and cognitive impairments. However, how NMDA depletion leads to these effects is unclear. Since Rho GTPases are known to regulate spine density and cognition, we examined the levels of RhoA, Rac1, and Cdc42 signaling proteins. Striatal Rac1-pathway components are reduced in GluN1KD mice, with Rac1 and WAVE-1 deficits at 6 and 12 weeks of age. Concurrently, medium spiny neuron (MSN) spine density deficits are present in mice at these ages. To determine whether WAVE-1 deficits were causal or compensatory in relation to these phenotypes, we intercrossed GluN1KD mice with WAVE-1 overexpressing (WAVE-Tg) mice to restore WAVE-1 levels. GluN1KD-WAVE-Tg hybrids showed rescue of striatal WAVE-1 protein levels and MSN spine density, as well as selective behavioral rescue in the Y-maze and 8-arm radial maze tests. GluN1KD-WAVE-Tg mice expressed normalized WAVE-1 protein levels in the hippocampus, yet spine density of hippocampal CA1 pyramidal neurons was not significantly altered. Our data suggest a nuanced role for WAVE-1 effects on cognition and a delineation of specific cognitive domains served by the striatum. Rescue of striatal WAVE-1 and MSN spine density may be significant for goal-directed exploration and associated long-term memory in mice.
Collapse
Affiliation(s)
- Yuxiao Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Marija Milenkovic
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Wendy Horsfall
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Scott H. Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Amy J. Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Sui S, Tian J, Gauba E, Wang Q, Guo L, Du H. Cyclophilin D regulates neuronal activity-induced filopodiagenesis by fine-tuning dendritic mitochondrial calcium dynamics. J Neurochem 2018; 146:403-415. [PMID: 29900530 PMCID: PMC6107423 DOI: 10.1111/jnc.14484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
Recent studies have highlighted the role of mitochondria in dendritic protrusion growth and plasticity. However, the detailed mechanisms that mitochondria regulate dendritic filopodia morphogenesis remain elusive. Cyclophilin D (CypD, gene name: Ppif) controls the opening of mitochondrial permeability transition pore. Although the pathological relevance of CypD has been intensively investigated, little is known about its physiological function in neurons. Here, we have found that genetic depletion of or pharmaceutical inhibition of CypD blunts the outgrowth of dendritic filopodia in response to KCl-stimulated neuronal depolarization. Further cell biological studies suggest that such inhibitory effect of CypD loss-of-function is closely associated with compromised flexibility of dendritic mitochondrial calcium regulation during neuronal depolarization, as well as the resultant changes in intradendritic calcium homeostasis, calcium signaling activation, dendritic mitochondrial motility and redistribution. Interestingly, loss of CypD attenuates oxidative stress-induced mitochondrial calcium perturbations and dendritic protrusion injury. Therefore, our study has revealed the physiological function of CypD in dendritic plasticity by acting as a fine-tuner of mitochondrial calcium homeostasis. Moreover, CypD plays distinct roles in neuronal physiology and pathology. Cover Image for this issue: doi: 10.1111/jnc.14189.
Collapse
Affiliation(s)
- Shaomei Sui
- AD Center, Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China. 250014
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, Texas. 75080
| | - Jing Tian
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, Texas. 75080
| | - Esha Gauba
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, Texas. 75080
| | - Qi Wang
- AD Center, Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China. 250014
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, Texas. 75080
| | - Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, Texas. 75080
| | - Heng Du
- AD Center, Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China. 250014
- Department of Biological Sciences, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, Texas. 75080
| |
Collapse
|
26
|
Ito Y, Carss KJ, Duarte ST, Hartley T, Keren B, Kurian MA, Marey I, Charles P, Mendonça C, Nava C, Pfundt R, Sanchis-Juan A, van Bokhoven H, van Essen A, van Ravenswaaij-Arts C, Boycott KM, Kernohan KD, Dyack S, Raymond FL, Aitman T, Bennett D, Caulfield M, Chinnery P, Gale D, Koziell A, Kuijpers TW, Laffan MA, Maher E, Markus HS, Morrell NW, Ouwehand WH, Perry DJ, Raymond FL, Roberts I, Smith KG, Thrasher A, Watkins H, Williamson C, Woods G, Ashford S, Bradley JR, Fletcher D, Hammerton T, James R, Kingston N, Penkett CJ, Stirrups K, Veltman M, Young T, Brown M, Clements-Brod N, Davis J, Dewhurst E, Dolling H, Erwood M, Frary A, Linger R, Martin JM, Papadia S, Rehnstrom K, Stark H, Allsup D, Austin S, Bakchoul T, Bariana TK, Bolton-Maggs P, Chalmers E, Collins J, Collins P, Erber WN, Everington T, Favier R, Freson K, Furie B, Gattens M, Gebhart J, Gomez K, Greene D, Greinacher A, Gresele P, Hart D, Heemskerk JW, Henskens Y, Kazmi R, Keeling D, Kelly AM, Lambert MP, Lentaigne C, Liesner R, Makris M, Mangles S, Mathias M, Millar CM, Mumford A, Nurden P, Payne J, Pasi J, Peerlinck K, Revel-Vilk S, Richards M, et alIto Y, Carss KJ, Duarte ST, Hartley T, Keren B, Kurian MA, Marey I, Charles P, Mendonça C, Nava C, Pfundt R, Sanchis-Juan A, van Bokhoven H, van Essen A, van Ravenswaaij-Arts C, Boycott KM, Kernohan KD, Dyack S, Raymond FL, Aitman T, Bennett D, Caulfield M, Chinnery P, Gale D, Koziell A, Kuijpers TW, Laffan MA, Maher E, Markus HS, Morrell NW, Ouwehand WH, Perry DJ, Raymond FL, Roberts I, Smith KG, Thrasher A, Watkins H, Williamson C, Woods G, Ashford S, Bradley JR, Fletcher D, Hammerton T, James R, Kingston N, Penkett CJ, Stirrups K, Veltman M, Young T, Brown M, Clements-Brod N, Davis J, Dewhurst E, Dolling H, Erwood M, Frary A, Linger R, Martin JM, Papadia S, Rehnstrom K, Stark H, Allsup D, Austin S, Bakchoul T, Bariana TK, Bolton-Maggs P, Chalmers E, Collins J, Collins P, Erber WN, Everington T, Favier R, Freson K, Furie B, Gattens M, Gebhart J, Gomez K, Greene D, Greinacher A, Gresele P, Hart D, Heemskerk JW, Henskens Y, Kazmi R, Keeling D, Kelly AM, Lambert MP, Lentaigne C, Liesner R, Makris M, Mangles S, Mathias M, Millar CM, Mumford A, Nurden P, Payne J, Pasi J, Peerlinck K, Revel-Vilk S, Richards M, Rondina M, Roughley C, Schulman S, Schulze H, Scully M, Sivapalaratnam S, Stubbs M, Tait RC, Talks K, Thachil J, Toh CH, Turro E, Van Geet C, De Vries M, Warner TQ, Watson H, Westbury S, Furnell A, Mapeta R, Rayner-Matthews P, Simeoni I, Staines S, Stephens J, Watt C, Whitehorn D, Attwood A, Daugherty L, Deevi SV, Halmagyi C, Hu F, Matser V, Meacham S, Megy K, Shamardina O, Titterton C, Tuna S, Yu P, von Ziegenweldt J, Astle W, Bleda M, Carss KJ, Gräf S, Haimel M, Lango-Allen H, Richardson S, Calleja P, Rankin S, Turek W, Anderson J, Bryson C, Carmichael J, McJannet C, Stock S, Allen L, Ambegaonkar G, Armstrong R, Arno G, Bitner-Glindzicz M, Brady A, Canham N, Chitre M, Clement E, Clowes V, Deegan P, Deshpande C, Doffinger R, Firth H, Flinter F, French C, Gardham A, Ghali N, Gissen P, Grozeva D, Henderson R, Hensiek A, Holden S, Holder M, Holder S, Hurst J, Josifova D, Krishnakumar D, Kurian MA, Lees M, MacLaren R, Maw A, Mehta S, Michaelides M, Moore A, Murphy E, Park SM, Parker A, Patch C, Paterson J, Rankin J, Reid E, Rosser E, Sanchis-Juan A, Sandford R, Santra S, Scott R, Sohal A, Stein P, Thomas E, Thompson D, Tischkowitz M, Vogt J, Wakeling E, Wassmer E, Webster A, Ali S, Ali S, Boggard HJ, Church C, Coghlan G, Cookson V, Corris PA, Creaser-Myers A, DaCosta R, Dormand N, Eyries M, Gall H, Ghataorhe PK, Ghio S, Ghofrani A, Gibbs JSR, Girerd B, Greenhalgh A, Hadinnapola C, Houweling AC, Humbert M, in’t Veld AH, Kennedy F, Kiely DG, Kovacs G, Lawrie A, Ross RVM, Machado R, Masati L, Meehan S, Moledina S, Montani D, Othman S, Peacock AJ, Pepke-Zaba J, Pollock V, Polwarth G, Ranganathan L, Rhodes CJ, Rue-Albrecht K, Schotte G, Shipley D, Soubrier F, Southgate L, Scelsi L, Suntharalingam J, Tan Y, Toshner M, Treacy CM, Trembath R, Vonk Noordegraaf A, Walker S, Wanjiku I, Wharton J, Wilkins M, Wort SJ, Yates K, Alachkar H, Antrobus R, Arumugakani G, Bacchelli C, Baxendale H, Bethune C, Bibi S, Booth C, Browning M, Burns S, Chandra A, Cooper N, Davies S, Devlin L, Drewe E, Edgar D, Egner W, Ghurye R, Gilmour K, Goddard S, Gordins P, Grigoriadou S, Hackett S, Hague R, Harper L, Hayman G, Herwadkar A, Huissoon A, Jolles S, Kelleher P, Kumararatne D, Lear S, Longhurst H, Lorenzo L, Maimaris J, Manson A, McDermott E, Murng S, Nejentsev S, Noorani S, Oksenhendler E, Ponsford M, Qasim W, Quinti I, Richter A, Samarghitean C, Sargur R, Savic S, Seneviratne S, Sewell C, Staples E, Stauss H, Thaventhiran J, Thomas M, Welch S, Willcocks L, Yeatman N, Yong P, Ancliff P, Babbs C, Layton M, Louka E, McGowan S, Mead A, Roy N, Chambers J, Dixon P, Estiu C, Hague B, Marschall HU, Simpson M, Chong S, Emmerson I, Ginsberg L, Gosal D, Hadden R, Horvath R, Mahdi-Rogers M, Manzur A, Marshall A, Matthews E, McCarthy M, Reilly M, Renton T, Rice A, Themistocleous A, Vale T, Van Zuydam N, Walker S, Ormondroyd L, Hudson G, Wei W, Yu Wai Man P, Whitworth J, Afzal M, Colby E, Saleem M, Alavijeh OS, Cook HT, Johnson S, Levine AP, Wong EK, Tan R, Boycott KM, MacKenzie A, Majewski J, Brudno M, Bulman D, Dyment D. De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures. Am J Hum Genet 2018; 103:144-153. [PMID: 29961568 PMCID: PMC6037130 DOI: 10.1016/j.ajhg.2018.06.001] [Show More Authors] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022] Open
Abstract
Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability.
Collapse
|
27
|
The role of compartmentalized signaling pathways in the control of mitochondrial activities in cancer cells. Biochim Biophys Acta Rev Cancer 2018; 1869:293-302. [PMID: 29673970 DOI: 10.1016/j.bbcan.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders. Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology.
Collapse
|
28
|
Abstract
Mitochondria are the cell's power plant that must be in a proper functional state in order to produce the energy necessary for basic cellular functions, such as proliferation. Mitochondria are 'dynamic' in that they are constantly undergoing fission and fusion to remain in a functional state throughout the cell cycle, as well as during other vital processes such as energy supply, cellular respiration and programmed cell death. The mitochondrial fission/fusion machinery is involved in generating young mitochondria, while eliminating old, damaged and non-repairable ones. As a result, the organelles change in shape, size and number throughout the cell cycle. Such precise and accurate balance is maintained by the cytoskeletal transporting system via microtubules, which deliver the mitochondrion from one location to another. During the gap phases G1 and G2, mitochondria form an interconnected network, whereas in mitosis and S-phase fragmentation of the mitochondrial network will take place. However, such balance is lost during neoplastic transformation and autoimmune disorders. Several proteins, such as Drp1, Fis1, Kif-family proteins, Opa1, Bax and mitofusins change in activity and might link the mitochondrial fission/fusion events with processes such as alteration of mitochondrial membrane potential, apoptosis, necrosis, cell cycle arrest, and malignant growth. All this indicates how vital proper functioning of mitochondria is in maintaining cell integrity and preventing carcinogenesis.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada.
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
29
|
Norkett R, Modi S, Kittler JT. Mitochondrial roles of the psychiatric disease risk factor DISC1. Schizophr Res 2017; 187:47-54. [PMID: 28087269 DOI: 10.1016/j.schres.2016.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
Ion transport during neuronal signalling utilizes the majority of the brain's energy supply. Mitochondria are key sites for energy provision through ATP synthesis and play other important roles including calcium buffering. Thus, tightly regulated distribution and function of these organelles throughout the intricate architecture of the neuron is essential for normal synaptic communication. Therefore, delineating mechanisms coordinating mitochondrial transport and function is essential for understanding nervous system physiology and pathology. While aberrant mitochondrial transport and dynamics have long been associated with neurodegenerative disease, they have also more recently been linked to major mental illness including schizophrenia, autism and depression. However, the underlying mechanisms have yet to be elucidated, due to an incomplete understanding of the combinations of genetic and environmental factors contributing to these conditions. Consequently, the DISC1 gene has undergone intense study since its discovery at the site of a balanced chromosomal translocation, segregating with mental illness in a Scottish pedigree. The precise molecular functions of DISC1 remain elusive. Reported functions of DISC1 include regulation of intracellular signalling pathways, neuronal migration and dendritic development. Intriguingly, a role for DISC1 in mitochondrial homeostasis and transport is fast emerging. Therefore, a major function of DISC1 in regulating mitochondrial distribution, ATP synthesis and calcium buffering may be disrupted in psychiatric disease. In this review, we discuss the links between DISC1 and mitochondria, considering both trafficking of these organelles and their function, and how, via these processes, DISC1 may contribute to the regulation of neuronal behavior in normal and psychiatric disease states.
Collapse
Affiliation(s)
- R Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - S Modi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - J T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK.
| |
Collapse
|
30
|
Cyclin-dependent Kinase 5: Novel role of gene variants identified in ADHD. Sci Rep 2017; 7:6828. [PMID: 28754891 PMCID: PMC5533779 DOI: 10.1038/s41598-017-06852-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/19/2017] [Indexed: 11/08/2022] Open
Abstract
Cortical neuronal migration and formation of filamentous actin cytoskeleton, needed for development, normal cell growth and differentiation, are regulated by the cyclin-dependent kinase 5 (Cdk5). Attention deficit hyperactivity disorder (ADHD) is associated with delayed maturation of the brain and hence we hypothesized that cdk5 may have a role in ADHD. Eight functional CDK5 gene variants were analyzed in 848 Indo-Caucasoid individuals including 217 families with ADHD probands and 250 healthy volunteers. Only three variants, rs2069454, rs2069456 and rs2069459, predicted to affect transcription, were found to be bimorphic. Significant difference in rs2069456 "AC" genotype frequency was noticed in the probands, more specifically in the males. Family based analysis revealed over transmission of rs2069454 "C" and rs2069456 "A" to the probands. Quantitative trait analysis exhibited association of haplotypes with inattention, domain specific impulsivity, and behavioral problem, though no significant contribution was noticed on the age of onset of ADHD. Gene variants also showed significant association with cognitive function and co-morbidity. Probands having rs2069459 "TT" showed betterment during follow up. It may be inferred from this pilot study that CDK5 may affect ADHD etiology, possibly by attenuating synaptic neurotransmission and could be a useful target for therapeutic intervention.
Collapse
|
31
|
Stroobants S, Damme M, Van der Jeugd A, Vermaercke B, Andersson C, Fogh J, Saftig P, Blanz J, D'Hooge R. Long-term enzyme replacement therapy improves neurocognitive functioning and hippocampal synaptic plasticity in immune-tolerant alpha-mannosidosis mice. Neurobiol Dis 2017; 106:255-268. [PMID: 28720484 DOI: 10.1016/j.nbd.2017.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/14/2017] [Indexed: 01/22/2023] Open
Abstract
Alpha-mannosidosis is a glycoproteinosis caused by deficiency of lysosomal acid alpha-mannosidase (LAMAN), which markedly affects neurons of the central nervous system (CNS), and causes pathognomonic intellectual dysfunction in the clinical condition. Cognitive improvement consequently remains a major therapeutic objective in research on this devastating genetic error. Immune-tolerant LAMAN knockout mice were developed to evaluate the effects of enzyme replacement therapy (ERT) by prolonged administration of recombinant human enzyme. Biochemical evidence suggested that hippocampus may be one of the brain structures that benefits most from long-term ERT. In the present functional study, ERT was initiated in 2-month-old immune-tolerant alpha-mannosidosis mice and continued for 9months. During the course of treatment, mice were trained in the Morris water maze task to assess spatial-cognitive performance, which was related to synaptic plasticity recordings and hippocampal histopathology. Long-term ERT reduced primary substrate storage and neuroinflammation in hippocampus, and improved spatial learning after mid-term (10weeks+) and long-term (30weeks+) treatment. Long-term treatment substantially improved the spatial-cognitive abilities of alpha-mannosidosis mice, whereas the effects of mid-term treatment were more modest. Detailed analyses of spatial memory and spatial-cognitive performance indicated that even prolonged ERT did not restore higher cognitive abilities to the level of healthy mice. However, it did demonstrate marked therapeutic effects that coincided with increased synaptic connectivity, reflected by improvements in hippocampal CA3-CA1 long-term potentiation (LTP), expression of postsynaptic marker PSD-95 as well as postsynaptic density morphology. These experiments indicate that long-term ERT may hold promise, not only for the somatic defects of alpha-mannosidosis, but also to alleviate cognitive impairments of the disorder.
Collapse
Affiliation(s)
- Stijn Stroobants
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Ann Van der Jeugd
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | - Ben Vermaercke
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | | | - Jens Fogh
- Zymenex A/S, Roskildevej 12C, 3400 Hillerød, Denmark.
| | - Paul Saftig
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Judith Blanz
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| |
Collapse
|
32
|
Konietzny A, Bär J, Mikhaylova M. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations. Front Cell Neurosci 2017; 11:147. [PMID: 28572759 PMCID: PMC5435805 DOI: 10.3389/fncel.2017.00147] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin) that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.
Collapse
Affiliation(s)
- Anja Konietzny
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Julia Bär
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Marina Mikhaylova
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| |
Collapse
|
33
|
Shah K, Rossie S. Tale of the Good and the Bad Cdk5: Remodeling of the Actin Cytoskeleton in the Brain. Mol Neurobiol 2017; 55:3426-3438. [PMID: 28502042 DOI: 10.1007/s12035-017-0525-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022]
Abstract
Cdk5 kinase, a cyclin-dependent kinase family member, is a key regulator of cytoskeletal remodeling in the brain. Cdk5 is essential for brain development during embryogenesis. After birth, it is essential for numerous neuronal processes such as learning and memory formation, drug addiction, pain signaling, and long-term behavior changes, all of which rely on rapid alterations in the cytoskeleton. Cdk5 activity is deregulated in various brain disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and ischemic stroke, resulting in profound remodeling of the neuronal cytoskeleton, loss of synapses, and ultimately neurodegeneration. This review focuses on the "good and bad" Cdk5 in the brain and its pleiotropic contribution in regulating neuronal actin cytoskeletal remodeling. A vast majority of physiological and pathological Cdk5 substrates are associated with the actin cytoskeleton. Thus, our special emphasis is on the numerous Cdk5 substrates identified in the past two decades such as ephexin1, p27, Mst3, CaMKv, kalirin-7, RasGRF2, Pak1, WAVE1, neurabin-1, TrkB, 5-HT6R, talin, drebrin, synapsin I, synapsin III, CRMP1, GKAP, SPAR, PSD-95, and LRRK2. These substrates have unraveled the molecular mechanisms by which Cdk5 plays divergent roles in regulating neuronal actin cytoskeletal dynamics both in healthy and diseased states.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry and Purdue University Center of Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| | - Sandra Rossie
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
34
|
Oliveros A, Starski P, Lindberg D, Choi S, Heppelmann CJ, Dasari S, Choi DS. Label-Free Neuroproteomics of the Hippocampal-Accumbal Circuit Reveals Deficits in Neurotransmitter and Neuropeptide Signaling in Mice Lacking Ethanol-Sensitive Adenosine Transporter. J Proteome Res 2017; 16:1445-1459. [PMID: 27998058 DOI: 10.1021/acs.jproteome.6b00830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The neural circuit of the dorsal hippocampus (dHip) and nucleus accumbens (NAc) contributes to cue-induced learning and addictive behaviors, as demonstrated by the escalation of ethanol-seeking behaviors observed following deletion of the adenosine equilibrative nucleoside transporter 1 (ENT1-/-) in mice. Here we perform quantitative LC-MS/MS neuroproteomics in the dHip and NAc of ENT1-/- mice. Using Ingenuity Pathway Analysis, we identified proteins associated with increased long-term potentiation, ARP2/3-mediated actin cytoskeleton signaling and protein expression patterns suggesting deficits in glutamate degradation, GABAergic signaling, as well as significant changes in bioenergetics and energy homeostasis (oxidative phosphorylation, TCA cycle, and glycolysis). These pathways are consistent with previously reported behavioral and biochemical phenotypes that typify mice lacking ENT1. Moreover, we validated decreased expression of the SNARE complex protein VAMP1 (synaptobrevin-1) in the dHip as well as decreased expression of pro-dynorphin (PDYN), neuroendocrine convertase (PCSK1), and Leu-Enkephalin (dynorphin-A) in the NAc. Taken together, our proteomic approach provides novel pathways indicating that ENT1-regulated signaling is essential for neurotransmitter release and neuropeptide processing, both of which underlie learning and reward-seeking behaviors.
Collapse
Affiliation(s)
- Alfredo Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Phillip Starski
- Neurobiology of Disease Program, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Daniel Lindberg
- Neurobiology of Disease Program, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Carrie J Heppelmann
- Proteomics Research Center, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Rochester, Minnesota 55905, United States.,Neurobiology of Disease Program, Mayo Clinic , Rochester, Minnesota 55905, United States.,Department of Psychiatry and Psychology, Mayo Clinic , Rochester, Minnesota 55905, United States
| |
Collapse
|
35
|
Hyun HW, Min SJ, Kim JE. CDK5 inhibitors prevent astroglial apoptosis and reactive astrogliosis by regulating PKA and DRP1 phosphorylations in the rat hippocampus. Neurosci Res 2017; 119:24-37. [PMID: 28153522 DOI: 10.1016/j.neures.2017.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
Abstract
Status epilepticus (SE) results in the unique pattern of dynamin-related protein 1 (DRP1)-mediated mitochondrial dynamics, which is associated with astroglial apoptosis and reactive astrogliosis in the regional-specific pattern representing the differential astroglial properties. However, less defined are the epiphenomena/upstream effecters for DRP1 phosphorylation in this process. Since cyclin-dependent kinase 5 (CDK5) is involved in reactive astrogliosis, CDK5 is one of the possible upstream regulators for DRP1 phosphorylation. In the present study, both olomoucine and roscovitine (CDK5 inhibitors) effectively ameliorated SE-induced astroglial apoptosis in the dentate gyrus without changed seizure susceptibility. In addition, they inhibited reactive astrogliosis in the CA1 region independent of neuronal death induced by SE. These effects of CDK5 inhibitors were relevant to abrogation of altered DRP1 phosphorylation ratio and mitochondrial length induced by SE. CDK5 inhibitors also negatively regulated protein kinase A (PKA) activity in astrocytes. Therefore, our findings suggest that CDK5 inhibitors may mitigate astroglial apoptosis and reactive astrogliosis accompanied by modulations of DRP1-mediated mitochondrial dynamics.
Collapse
Affiliation(s)
- Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| |
Collapse
|
36
|
Over Six Decades of Discovery and Characterization of the Architecture at Mitochondria-Associated Membranes (MAMs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:13-31. [PMID: 28815519 DOI: 10.1007/978-981-10-4567-7_2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of proteins regulating ER-mitochondria tethering including phosphofurin acidic cluster sorting protein 2 (PACS-2) and mitofusin-2 has pushed contact sites between the endoplasmic reticulum (ER) and mitochondria into the spotlight of cell biology. While the field is developing rapidly and controversies have come and gone multiple times during its history, it is sometimes overlooked that significant research has been done decades ago with the original discovery of these structures in the 1950s and the first characterization of their function (and coining of the term mitochondria-associated membrane, MAM) in 1990. Today, an ever-increasing array of proteins localize to the MAM fraction of the endoplasmic reticulum (ER) to regulate the interaction of this organelle with mitochondria. These mitochondria-ER contacts, sometimes referred to as MERCs, regulate a multitude of biological functions, including lipid metabolism, Ca2+ signaling, bioenergetics, inflammation, autophagy, mitochondrial structure, and apoptosis.
Collapse
|
37
|
Ferrari I, Crespi A, Fornasari D, Pietrini G. Novel localisation and possible function of LIN7 and IRSp53 in mitochondria of HeLa cells. Eur J Cell Biol 2016; 95:285-93. [DOI: 10.1016/j.ejcb.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 05/24/2016] [Indexed: 01/07/2023] Open
|
38
|
Abstract
Neurons demand vast and vacillating supplies of energy. As the key contributors of this energy, as well as primary pools of calcium and signaling molecules, mitochondria must be where the neuron needs them, when the neuron needs them. The unique architecture and length of neurons, however, make them a complex system for mitochondria to navigate. To add to this difficulty, mitochondria are synthesized mainly in the soma, but must be transported as far as the distant terminals of the neuron. Similarly, damaged mitochondria-which can cause oxidative stress to the neuron-must fuse with healthy mitochondria to repair the damage, return all the way back to the soma for disposal, or be eliminated at the terminals. Increasing evidence suggests that the improper distribution of mitochondria in neurons can lead to neurodegenerative and neuropsychiatric disorders. Here, we will discuss the machinery and regulatory systems used to properly distribute mitochondria in neurons, and how this knowledge has been leveraged to better understand neurological dysfunction.
Collapse
Affiliation(s)
- Meredith M Course
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
39
|
Ko AR, Hyun HW, Min SJ, Kim JE. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci 2016; 10:124. [PMID: 27242436 PMCID: PMC4870264 DOI: 10.3389/fncel.2016.00124] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/29/2016] [Indexed: 11/13/2022] Open
Abstract
The response and susceptibility to astroglial degenerations are relevant to the distinctive properties of astrocytes in a hemodynamic-independent manner following status epilepticus (SE). Since impaired mitochondrial fission plays an important role in mitosis, apoptosis and programmed necrosis, we investigated whether the unique pattern of mitochondrial dynamics is involved in the characteristics of astroglial death induced by SE. In the present study, SE induced astroglial apoptosis in the molecular layer of the dentate gyrus, accompanied by decreased mitochondrial length. In contrast, clasmatodendritic (autophagic) astrocytes in the CA1 region showed mitochondrial elongation induced by SE. Mdivi-1 (an inhibitor of mitochondrial fission) effectively attenuated astroglial apoptosis, but WY14643 (an enhancer of mitochondrial fission) aggravated it. In addition, Mdivi-1 accelerated clasmatodendritic changes in astrocytes. These regional specific mitochondrial dynamics in astrocytes were closely correlated with dynamin-related protein 1 (DRP1; a mitochondrial fission protein) phosphorylation, not optic atrophy 1 (OPA1; a mitochondrial fusion protein) expression. To the best of our knowledge, the present data demonstrate for the first time the novel role of DRP1-mediated mitochondrial fission in astroglial loss. Thus, the present findings suggest that the differential astroglial mitochondrial dynamics may participate in the distinct characteristics of astroglial death induced by SE.
Collapse
Affiliation(s)
- Ah-Reum Ko
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| |
Collapse
|
40
|
Transcriptional changes of mouse splenocyte organelle components following acute infection with Toxoplasma gondii. Exp Parasitol 2016; 167:7-16. [PMID: 27132051 DOI: 10.1016/j.exppara.2016.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023]
Abstract
Toxoplasmosis is a globally spread zoonosis. The pathogen Toxoplasma gondii can hijack cellular organelles of host for replication. Although a number of important cellular life events are controlled by cell organelles, very little is known of the transcriptional changes of host cellular organelles after infection with T. gondii. Herein, we performed RNA-sequencing (RNA-seq) and bioinformatics analyses to study the global organelle component changes. It was found that many transcripts of the mouse spleen cellular organelle components were altered by acute T. gondii infection with the RH strain (Type I). Most differentially expressed transcripts of mitochondrial components were downregulated, especially those involved in biosynthetic and metabolic processes. Moreover, mitochondria based apoptosis process was downregulated. In terms of cytoskeleton, most differentially expressed transcript of cytoskeleton components were also downregulated, including septin cytoskeleton, cytoskeleton organization, centrosome and myosin. For endolysosomal system, ion transporters were downregulated at mRNA level, whereas the cytolytic components were increased, such as granzymes, Rab27a and perforin1 (Prf1). The main transcripts of Golgi apparatus components involved in sialylation or vesicle-mediated transportation were downregulated, while immune related components were upregulated. For endoplasmic reticulum (ER), posttranslational modification, drug metabolism and material transportation related transcripts were downregulated. In addition, T. gondii antigen cross-presentation by MHC-I complex could be downregulated by the downregulation of CD76 and ubiquitination related transcripts. The present study, for the first time, described the transcriptional changes of the mouse spleen cellular organelles following acute T. gondii infection, which provides a foundation to study the interaction between T. gondii and host cells at the sub-cellular level.
Collapse
|
41
|
Zhang Z, Wu B, Chai W, Cao L, Wang Y, Yu Y, Yang L. Knockdown of WAVE1 enhances apoptosis of leukemia cells by downregulating autophagy. Int J Oncol 2016; 48:2647-56. [PMID: 27035872 DOI: 10.3892/ijo.2016.3446] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/20/2016] [Indexed: 11/05/2022] Open
Abstract
Chemoresistance of leukemia constitutes a great challenge for successful treatment of leukemia. Autophagy has recently attracted increasing attention for its role in conferring resistance to various conventional anti-neoplastic regiments. In the present study, the authors showed that WAVE1, a member of WASP family verprolin-homologous proteins, is a critical regulator of chemoresistance during autophagy. It is positively correlated with clinical status in pediatric acute myeloblastic leukemia (AML) and leukemia cell lines. The knockdown of WAVE1 expression decreased autophagy was accompanied by an upregulation of autophagic marker microtubule-associated protein light chain 3 (LC3)-Ⅱ, a degradation of SQSTM1/sequestosome 1 (p62) and the formation of autophagosomes. Moreover, a suppression of WAVE1 expression increased the sensitivity of leukemia cells to chemotherapy and apoptosis, and depletion of WAVE1 expression promoted the translocation of Bcl-2 from mitochondria into the cytoplasm. In addition, a knockdown of PI3K-Ⅲ expression significantly inhibited WAVE1-mediated autophagy. Furthermore, suppression of WAVE1 expression blocked the interactions between Beclin1 and PI3K-Ⅲ and the disassociation of Beclin1-Bcl-2 during enhanced autophagy. The above results suggested that WAVE1 is a critical pro-autophagic protein capable of enhancing cell survival and regulating chemoresistance in leukemia cells potentially through the Beclin1/Bcl-2 and Beclin1/PI3K-Ⅲ complex-dependent pathways.
Collapse
Affiliation(s)
- Zhaoxia Zhang
- Department of Pediatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Benqing Wu
- Department of Pediatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Wenwen Chai
- Department of Nuclear Medicine, Hu Nan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yangping Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
42
|
Methyl-Arginine Profile of Brain from Aged PINK1-KO+A53T-SNCA Mice Suggests Altered Mitochondrial Biogenesis. PARKINSONS DISEASE 2016; 2016:4686185. [PMID: 27034888 PMCID: PMC4791501 DOI: 10.1155/2016/4686185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
Abstract
Hereditary Parkinson's disease can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) or the autosomal recessive deficiency of PINK1. We recently showed that the combination of PINK1-knockout with overexpression of A53T-SNCA in double mutant (DM) mice potentiates phenotypes and reduces survival. Now we studied brain hemispheres of DM mice at age of 18 months in a hypothesis-free approach, employing a quantitative label-free global proteomic mass spectrometry scan of posttranslational modifications focusing on methyl-arginine. The strongest effects were documented for the adhesion modulator CMAS, the mRNA decapping/deadenylation factor PATL1, and the synaptic plasticity mediator CRTC1/TORC1. In addition, an intriguing effect was observed for the splicing factor PSF/SFPQ, known to interact with the dopaminergic differentiation factor NURR1 as well as with DJ-1, the protein responsible for the autosomal recessive PARK7 variant of PD. CRTC1, PSF, and DJ-1 are modulators of PGC1alpha and of mitochondrial biogenesis. This pathway was further stressed by dysregulations of oxygen sensor EGLN3 and of nuclear TMPO. PSF and TMPO cooperate with dopaminergic differentiation factors LMX1B and NURR1. Further dysregulations concerned PRR18, TRIO, HNRNPA1, DMWD, WAVE1, ILDR2, DBNDD1, and NFM. Thus, we report selective novel endogenous stress responses in brain, which highlight early dysregulations of mitochondrial homeostasis and midbrain vulnerability.
Collapse
|
43
|
Barnhart EL. Mechanics of mitochondrial motility in neurons. Curr Opin Cell Biol 2016; 38:90-9. [DOI: 10.1016/j.ceb.2016.02.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 11/17/2022]
|
44
|
Linking Mitochondria to Synapses: New Insights for Stress-Related Neuropsychiatric Disorders. Neural Plast 2016; 2016:3985063. [PMID: 26885402 PMCID: PMC4738951 DOI: 10.1155/2016/3985063] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
The brain evolved cellular mechanisms for adapting synaptic function to energy supply. This is particularly evident when homeostasis is challenged by stress. Signaling loops between the mitochondria and synapses scale neuronal connectivity with bioenergetics capacity. A biphasic “inverted U shape” response to the stress hormone glucocorticoids is demonstrated in mitochondria and at synapses, modulating neural plasticity and physiological responses. Low dose enhances neurotransmission, synaptic growth, mitochondrial functions, learning, and memory whereas chronic, higher doses produce inhibition of these functions. The range of physiological effects by stress and glucocorticoid depends on the dose, duration, and context at exposure. These criteria are met by neuronal activity and the circadian, stress-sensitive and ultradian, stress-insensitive modes of glucocorticoid secretion. A major hallmark of stress-related neuropsychiatric disorders is the disrupted glucocorticoid rhythms and tissue resistance to signaling with the glucocorticoid receptor (GR). GR resistance could result from the loss of context-dependent glucocorticoid signaling mediated by the downregulation of the activity-dependent neurotrophin BDNF. The coincidence of BDNF and GR signaling changes glucocorticoid signaling output with consequences on mitochondrial respiration efficiency, synaptic plasticity, and adaptive trajectories.
Collapse
|
45
|
Zhang P, Fu WY, Fu AKY, Ip NY. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength. Nat Commun 2015; 6:8665. [PMID: 26503494 PMCID: PMC4639907 DOI: 10.1038/ncomms9665] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022] Open
Abstract
Precise regulation of synaptic strength requires coordinated activity and functions of synaptic proteins, which is controlled by a variety of post-translational modification. Here we report that S-nitrosylation of p35, the activator of cyclin-dependent kinase 5 (Cdk5), by nitric oxide (NO) is important for the regulation of excitatory synaptic strength. While blockade of NO signalling results in structural and functional synaptic deficits as indicated by reduced mature dendritic spine density and surface expression of glutamate receptor subunits, phosphorylation of numerous synaptic substrates of Cdk5 and its activity are aberrantly upregulated following reduced NO production. The results show that the NO-induced reduction in Cdk5 activity is mediated by S-nitrosylation of p35, resulting in its ubiquitination and degradation by the E3 ligase PJA2. Silencing p35 protein in hippocampal neurons partially rescues the NO blockade-induced synaptic deficits. These findings collectively demonstrate that p35 S-nitrosylation by NO signalling is critical for regulating hippocampal synaptic strength. Phosphorylation of synaptic substrates by Cdk5 plays an essential role in synapse development. Here Zhang et al. reveal that S-nitrosylation of the activator of Cdk5, p35, by nitric oxide results in its degradation and reduced Cdk5 activity, leading to alterations in synaptic strength.
Collapse
Affiliation(s)
- Peng Zhang
- Divison of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wing-Yu Fu
- Divison of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Amy K Y Fu
- Divison of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Nancy Y Ip
- Divison of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
46
|
Dayer AG, Jacobshagen M, Chaumont-Dubel S, Marin P. 5-HT6 Receptor: A New Player Controlling the Development of Neural Circuits. ACS Chem Neurosci 2015; 6:951-60. [PMID: 25590789 DOI: 10.1021/cn500326z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
5-HT6 receptor (5-HT6R) is a G protein-coupled receptor that has recently emerged as a new regulator of neural development. In addition to the canonical Gs adenylyl cyclase pathway, recent proteomics approaches reveal that 5-HT6R is able to engage key developmental signaling pathways controlling neuronal circuit formation, neuronal connectivity, and psychiatric-relevant behaviors. For example, at early stages of neuronal development, expression of 5-HT6R constitutively regulates the activity of the cyclin-dependent kinase (Cdk)5 and, through this mechanism, controls cellular processes involved in circuit formation, including neuronal migration and neurite outgrowth. In addition to the Cdk5 pathway, 5-HT6R modulates a variety of key developmental targets such as Fyn, Jab1, and mammalian target of rapamycin (mTOR). Engagement of developmental pathways through 5-HT6R pharmacological manipulation has led to interesting new therapeutic perspectives in the field of psychiatric-related disorders. Indeed, 5-HT6R blockade can rescue a pathological overactivation of the mTOR pathway induced by early life insults in rodents and normalizes the associated social and episodic memory deficits. Here, we review recent evidence supporting the notion that 5-HT6R is at the interface of key developmental signaling pathways and a novel actor in the orchestration of neural circuit formation.
Collapse
Affiliation(s)
| | | | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, Universités Montpellier I & II, 34094 Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, Universités Montpellier I & II, 34094 Montpellier, France
| |
Collapse
|
47
|
Jahani-Asl A, Huang E, Irrcher I, Rashidian J, Ishihara N, Lagace DC, Slack RS, Park DS. CDK5 phosphorylates DRP1 and drives mitochondrial defects in NMDA-induced neuronal death. Hum Mol Genet 2015; 24:4573-83. [PMID: 26002103 DOI: 10.1093/hmg/ddv188] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022] Open
Abstract
Defects in mitochondrial fission and cyclin dependent kinase 5 (CDK5) activation are early events that precede neuronal loss following NMDA-induced neuronal death. Here, we report that the cytoplasmic CDK5 tightly regulates mitochondrial morphology defects associated with NMDA-induced neuronal injury via regulation of the mitochondrial fission protein, dynamin-related protein 1 (DRP1). We show that DRP1 is a direct target of CDK5. CDK5-mediated phosphorylation of DRP1 at a conserved Serine residue, S585, is elevated at the mitochondria and is associated with increased mitochondrial fission. Ectopic expression of a cytoplasmic CDK5 or mutant DRP1-S585D results in increased mitochondrial fragmentation in primary neurons. Conversely, expression of a dominant negative form of cytoplasmic CDK5 or mutant DRP1-S585A results in elongated mitochondria. In addition, pharmacological inhibition of CDK5 by Roscovitine inhibits DRP1 phosphorylation and mitochondrial fission associated with NMDA-induced neuronal loss. Importantly, conditional deletion of CDK5 significantly attenuates DRP1 phosphorylation at S585 and rescues mitochondrial fission defects in neurons exposed to NMDA. Our studies delineate an important mechanism by which CDK5 regulates mitochondrial morphology defects associated with neuronal injury.
Collapse
Affiliation(s)
- Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5, Department of Oncology, Faculty of Medicine, McGill University and Lady Davis Institute at Jewish General Hospital, 3755 Ch de la Côte-Sainte-Catherine, Montréal QC, Canada H3T 1E2
| | - En Huang
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Isabella Irrcher
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5, Department of Ophthalmology, Queen's University and Hotel Dieu Hospital, Kingston, Ontario, Canada K7L 5G2 and
| | - Juliet Rashidian
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Naotada Ishihara
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume 839-0864, Japan
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5,
| | - David S Park
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5,
| |
Collapse
|
48
|
Brusco J, Haas K. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity. J Physiol 2015; 593:3471-81. [PMID: 25581818 DOI: 10.1113/jphysiol.2014.282459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
The classical view of mitochondria as housekeeping organelles acting in the background to simply maintain cellular energy demands has been challenged by mounting evidence of their direct and active participation in synaptic plasticity in neurons. Time-lapse imaging has revealed that mitochondria are motile in dendrites, with their localization and fusion and fission events regulated by synaptic activity. The positioning of mitochondria directly influences function of nearby synapses through multiple pathways including control over local concentrations of ATP, Ca(2+) and reactive oxygen species. Recent studies have also shown that mitochondrial protein cascades, classically associated with apoptosis, are involved in neural plasticity in healthy cells. These findings link mitochondria to the plasticity- and metaplasticity-associated activity-dependent transcription factor myocyte enhancer factor 2 (MEF2), further repositioning mitochondria as potential command centres for regulation of synaptic plasticity. Intriguingly, MEF2 and mitochondrial functions appear to be intricately intertwined, as MEF2 is a target of mitochondrial apoptotic caspases and, in turn, MEF2 regulates mitochondrial genome transcription essential for production of superoxidase and hydrogen peroxidase. Here, we review evidence supporting mitochondria as central organelles controlling the spatiotemporal expression of neuronal plasticity, and attempt to disentangle the MEF2-mitochondria relationship mediating these functions.
Collapse
Affiliation(s)
- Janaina Brusco
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| | - Kurt Haas
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| |
Collapse
|
49
|
Mishiba T, Tanaka M, Mita N, He X, Sasamoto K, Itohara S, Ohshima T. Cdk5/p35 functions as a crucial regulator of spatial learning and memory. Mol Brain 2014; 7:82. [PMID: 25404232 PMCID: PMC4239319 DOI: 10.1186/s13041-014-0082-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclin-dependent kinase 5 (Cdk5), which is activated by binding to p35 or p39, is involved in synaptic plasticity and affects learning and memory formation. In Cdk5 knockout (KO) mice and p35 KO mice, brain development is severely impaired because neuronal migration is impaired and lamination is disrupted. To avoid these developmental confounders, we generated inducible CreER-p35 conditional (cKO) mice to study the role of Cdk5/p35 in higher brain function. RESULTS CreER-p35 cKO mice exhibited spatial learning and memory impairments and reduced anxiety-like behavior. These phenotypes resulted from a decrease in the dendritic spine density of CA1 pyramidal neurons and defective long-term depression induction in the hippocampus. CONCLUSIONS Taken together, our findings reveal that Cdk5/p35 regulates spatial learning and memory, implicating Cdk5/p35 as a therapeutic target in neurological disorders.
Collapse
Affiliation(s)
- Tomohide Mishiba
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Mika Tanaka
- Laboratory for Behavioral Genetics, Brain Science Institute, RIKEN, Saitama, 351-0198, Japan.
| | - Naoki Mita
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Xiaojuan He
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Kodai Sasamoto
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Brain Science Institute, RIKEN, Saitama, 351-0198, Japan.
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
50
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|