1
|
Zhang C, Jin X, Shi Y, Yu F, Wu Y, Call DR, Zhao Z. ArcB initiates quorum sensing to regulate T3SS in Vibrio alginolyticus by recognizing bacterial and host-derived autoinducer-2 as a kinase. Cell Commun Signal 2025; 23:245. [PMID: 40437596 PMCID: PMC12117817 DOI: 10.1186/s12964-025-02258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 05/20/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND The marine pathogen Vibrio alginolyticus employs its type III secretion system (T3SS), a syringe-like secretion apparatus, to kill eukaryotic cells. Although the cascade regulation of the T3SS encoding ExsACDE operon has been described in detail for the V. alginolyticus T3SS, little is known about the signals and signaling pathways that regulate the operon. METHODS To investigate the regulation of T3SS by V. alginolyticus quorum sensing (QS) components, we measured lactate dehydrogenase (LDH) release following infection of Fathead minnow cells. A bioinformatics approach was employed to identify potential sensor kinases interacting with LuxU-LuxO. Bacterial two-hybrid assays were conducted to further elucidate interactions between these components. Phosphorylation and site-directed mutagenesis analyses were performed to delineate the phosphorelay system. The response of ArcB to autoinducer-2 (AI-2) or an AI-2 mimic was assessed using a Vibrio luminescence assay, and their interactions were quantitatively analyzed via microscale thermophoresis (MST) assays. RESULTS We observed that none of the three previously annotated sensing kinases in the V. alginolyticus QS system could regulate T3SS. Instead, the hybrid sensing kinase ArcB forms a signaling cascade with LuxU and LuxO to modulate T3SS expression. Furthermore, we confirmed that ArcB acts as a kinase in this pathway. Additionally, we found that ArcB can sense the LuxS-dependent autoinducer AI-2. Interestingly, host-derived AI-2 mimics produced during infection were also recognized by ArcB. Both signaling molecules activate the T3SS regulatory pathway. CONCLUSIONS Our findings establish the ArcB-LuxU-LuxO signaling pathway as essential for the regulation of T3SS in V. alginolyticus. We further demonstrated that ArcB initiates this cascade by acting as a sensor for bacterial autoinducer-2, a signaling molecule involved in inter-species communication. Moreover, we show that host cells produce an AI-2 mimic during infection, which is also sensed by ArcB and can activate T3SS gene expression.
Collapse
Affiliation(s)
- Ce Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Xingkun Jin
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Fei Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Ying Wu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Douglas R Call
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Huang Z, Li Y, Yu K, Ma L, Pang B, Qin Q, Li J, Wang D, Gao H, Kan B. Genome-wide expanding of genetic evolution and potential pathogenicity in Vibrio alginolyticus. Emerg Microbes Infect 2024; 13:2350164. [PMID: 38687697 PMCID: PMC11132748 DOI: 10.1080/22221751.2024.2350164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Vibrio alginolyticus, an emergent species of Vibrio genus, exists in aquatic and marine environments. It has undergone genetic diversification, but its detailed genomic diversity is still unclear. Here, we performed a multi-dimensional comparative genomic analysis to explore the population phylogeny, virulence-related genes and potential drug resistance genes of 184 V. alginolyticus isolates. Although genetic diversity is complex, we analysed the population structure using three sub-datasets, including the subdivision for three lineages into sublineages and the distribution of strains in the marine ecological niche. Accessory genes, most of which reclassified V. alginolyticus genomes as different but with relatively close affinities, were nonuniformly distributed among these isolates. We demonstrated that the spread of some post-evolutionary isolates (mainly L3 strains isolated from Chinese territorial seas) was likely to be closely related to human activities, whereas other more ancestral strains (strains in the L1 and L2) tended to be locally endemic and formed clonal complex groups. In terms of pathogenicity, the potential virulence factors were mainly associated with toxin, adherence, motility, chemotaxis, and the type III secretion system (T3SS). We also found five types of antibacterial drug resistance genes. The prevalence of β-lactam resistance genes was 100%, which indicated that there may be a potential risk of natural resistance to β-lactam drugs. Our study reveals insights into genomic characteristics, evolution and potential virulence-associated gene profiles of V. alginolyticus.
Collapse
Affiliation(s)
- Zhenzhou Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Hangzhou Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Yanjun Li
- The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Keyi Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Lizhi Ma
- The Third Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, People’s Republic of China
| | - Bo Pang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Qin Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jie Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Duochun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - He Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Paria P, Chakraborty HJ, Pakhira A, Devi MS, Das Mohapatra PK, Behera BK. Identification of virulence-associated factors in Vibrio parahaemolyticus with special reference to moonlighting protein: a secretomics study. Int Microbiol 2024; 27:765-779. [PMID: 37702858 DOI: 10.1007/s10123-023-00429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Vibrio parahaemolyticus causes seafood-borne gastroenteritis infection in human which can even lead to death. The pathogenic strain of V. parahaemolyticus secretes different types of virulence factors that are directly injected into the host cell by a different type of secretion system which helps bacteria to establish its own ecological niche within the organism. Therefore, the aim of this study was to isolate the extracellular secreted proteins from the trh positive strain of V. parahaemolyticus and identify them using two-dimensional gel electrophoresis and MALDI-TOFMS/MS. Seventeen different cellular proteins viz, Carbamoyl-phosphate synthase, 5-methyltetrahydropteroyltriglutamate, tRNA-dihydrouridine synthase, Glycerol-3-phosphate dehydrogenase, Orotidine 5'-phosphate decarboxylase, Molybdenum import ATP-binding protein, DnaJ, DNA polymerase IV, Ribosomal RNA small subunit methyltransferase G, ATP synthase subunit delta and gamma, Ribosome-recycling factor, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, tRNA pseudouridine synthase B, Ditrans, polycis-undecaprenyl-diphosphate synthase, Oxygen-dependent coproporphyrinogen-III oxidase, and Peptide deformylase 2 were identified which are mainly involved in different metabolic and biosynthetic pathways. Furthermore, the molecular function of the identified proteins were associated with catalytic activity, ligase activity, transporter, metal binding, and ATP synthase when they are intercellular. However, to understand the importance of these secreted proteins in the infection and survival of bacteria inside the host cell, pathogen-host protein-protein interactions (PPIs) were carried out which identified the association of eight secreted proteins with 41 human proteins involved in different cellular pathways, including ubiquitination degradation, adhesion, inflammation, immunity, and programmed cell death. The present study provides unreported strategies on host-cell environment's survival and adaptation mechanisms for the successful establishment of infections and intracellular propagation.
Collapse
Affiliation(s)
- Prasenjit Paria
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
- Vidyasagar University, Midnapur, West Bengal, 721102, India
| | - Hirak Jyoti Chakraborty
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Abhijit Pakhira
- Department of Zoology, Vivekananda Mahavidyalaya, Hooghly, West Bengal, 712405, India
| | - Manoharmayum Shaya Devi
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | | | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India.
| |
Collapse
|
4
|
Vidovic S, Taylor R, Hedderley D, Fletcher GC, Wei N. Detection of non-pathogenic and pathogenic populations of Vibrio parahaemolyticus in various samples by the conventional, quantitative and droplet digital PCRs. Sci Rep 2024; 14:4137. [PMID: 38374337 PMCID: PMC10876695 DOI: 10.1038/s41598-024-54753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
In this study, three generations of polymerase chain reaction (PCR) assays: (i) conventional PCR, (ii) qPCR and (iii) droplet digital PCR (ddPCR), were systematically tested for their abilities to detect non-pathogenic and pathogenic populations of Vibrio parahaemolyticus. The limit of detection (LOD) for the ddPCR was 1.1 pg/µL of purified DNA, followed by the qPCR (5.6 pg/µL) and the conventional PCR (8.8 pg/µL). Regarding the LOD for V. parahaemolyticus cells, the ddPCR assay was able to detect 29 cells, followed by the conventional PCR assay (58 cells) and the qPCR assay (115 cells). Regarding the sensitivities to detect this pathogen from PCR inhibition prone samples (naturally contaminated mussels), the ddPCR assay significantly outperformed the conventional PCR and qPCR. The ddPCR assay was able to consistently detect non-pathogenic and pathogenic populations of V. parahaemolyticus from naturally contaminated mussels, indicating its tolerance to various PCR inhibitors. This study also revealed the significant difference between conventional PCR and qPCR. The conventional PCR assay showed significantly greater sensitivity than that of the qPCR assay in detecting V. parahaemolyticus in crude samples, whereas the qPCR assay showed better sensitivity in detecting the presence of V. parahaemolyticus in purified DNA samples.
Collapse
Affiliation(s)
- Sinisa Vidovic
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, 1025, Auckland, New Zealand.
| | - Roland Taylor
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, 1025, Auckland, New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, 1025, Auckland, New Zealand
| | | |
Collapse
|
5
|
Tanabe T, Tsukamoto M, Shioda M, Nagaoka K, Funahashi T. Expression regulation of type III secretion system 2 in Vibrio parahaemolyticus by catabolite activator protein. FEMS Microbiol Lett 2024; 371:fnae054. [PMID: 39054297 DOI: 10.1093/femsle/fnae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Vibrio parahaemolyticus has two sets of type III secretion systems that are major pathogenic factors: T3SS1 (cytotoxicity) and T3SS2 (enterotoxicity). V. parahaemolyticus mainly colonizes the distal small intestine after oral infection and may be exposed to carbon-limiting stress due to the lack of readily available carbohydrates in this environment. Catabolite activator protein (CAP), a transcription factor involved in carbon-limiting metabolism in many Gram-negative bacteria, is well known to be involved in the regulation of the expression of many virulence factors. In this study, we determined the effects of CAP on the expression of T3SSs in this bacterium. Based on a lactate dehydrogenase-based cytotoxicity assay, CAP was found to have a greater contribution to the expression of T3SS2-dependent cytotoxicity than to that of T3SS1. Reverse transcription quantitative PCR revealed decreased expression of many T3SS2-related genes, including vpa1348, in the cap gene deletion mutant compared to the parent strain. CAP was demonstrated to bind near the T-rich elements within the vpa1348 promoter region in an electrophoretic mobility shift assay and DNase I footprinting. CAP also enhanced the expression of vpa1348 in a β-galactosidase reporter assay. Collectively, these results suggest that CAP is involved in T3SS2-mediated virulence by regulating the expression of vpa1348 in V. parahaemolyticus.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Mitsuki Tsukamoto
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Mahiro Shioda
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Kenjiro Nagaoka
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
6
|
Jiang T, Li Y, Hong W, Lin M. A robust CRISPR interference gene repression system in Vibrio parahaemolyticus. Arch Microbiol 2023; 206:41. [PMID: 38147133 PMCID: PMC10751265 DOI: 10.1007/s00203-023-03770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023]
Abstract
Vibrio parahaemolyticus is a significant cause of seafood-associated gastroenteritis and pestilence in aquaculture worldwide. Despite extensive research, strategies for protein depletion in this pathogen remain limited. Herein, we constructed a new CRISPR interference (CRISPRi) system for gene repression based on the combination of a shuttle vector pVv3 and the nuclease-null Cas9 variant (dead Cas9, or dCas9) from Streptococcus pyrogens. This CRISPRi is induced by adding both IPTG and arabinose. We showed that gene repression is scalable via the use of multiple sgRNAs. We also demonstrated that this gene repression can be precisely tuned by adjusting the amount of two different inducers and can be reversed by removing the inducers. This system provides a simple approach for selective gene repression on a genome-wide scale in V. parahaemolyticus. Application of this system will dramatically accelerate investigations of this bacterium, including studies of physiology, pathogenesis, and drug target discovery.
Collapse
Affiliation(s)
- Taoyuan Jiang
- Department of Respiratory Medicine, Nan'an Hospital, 330, Ximei Residential District, Xinhua Street, Quanzhou, Fujian Province, China.
| | - Yuhuan Li
- The Second People's Hospital of Three Gorges University, 18, Tiyuchang Road, Yichang, Hubei Province, China
| | - Wencong Hong
- Department of Respiratory Medicine, Nan'an Hospital, 330, Ximei Residential District, Xinhua Street, Quanzhou, Fujian Province, China
| | - Mingyu Lin
- Department of Respiratory Medicine, Nan'an Hospital, 330, Ximei Residential District, Xinhua Street, Quanzhou, Fujian Province, China
| |
Collapse
|
7
|
Zhang J, Wang W, Liang S, Zhou X, Rekha RS, Gudmundsson GH, Bergman P, Ai Q, Mai K, Wan M. Butyrate induces STAT3/HIF-1α/IL-22 signaling via GPCR and HDAC3 inhibition to activate autophagy in head kidney macrophages from turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109214. [PMID: 37977544 DOI: 10.1016/j.fsi.2023.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
As one of short-chain fatty acids, butyrate is an important metabolite of dietary fiber by the fermentation of gut commensals. Our recent study uncovered that butyrate promoted IL-22 production in fish macrophages to augment the host defense. In the current study, we further explored the underlying signaling pathways in butyrate-induced IL-22 production in fish macrophages. Our results showed that butyrate augmented the IL-22 expression in head kidney macrophages (HKMs) of turbot through binding to G-protein receptor 41 (GPR41) and GPR43. Moreover, histone deacetylase 3 (HDAC3) inhibition apparently up-regulated the butyrate-enhanced IL-22 generation, indicating HDACs were engaged in butyrate-regulated IL-22 secretion. In addition, butyrate triggered the STAT3/HIF-1α signaling to elevate the IL-22 expression in HKMs. Importantly, the evidence in vitro and in vivo was provided that butyrate activated autophagy in fish macrophages via IL-22 signaling, which contributing to the elimination of invading bacteria. In conclusion, we clarified in the current study that butyrate induced STAT3/HIF-1α/IL-22 signaling pathway via GPCR binding and HDAC3 inhibition in fish macrophages to activate autophagy that was involved in pathogen clearance in fish macrophages.
Collapse
Affiliation(s)
- Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Wentao Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Shufei Liang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Xueqi Zhou
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Rokeya Sultana Rekha
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Gudmundur H Gudmundsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China.
| |
Collapse
|
8
|
Qiao X, Lu Y, Xu J, Deng N, Lai W, Wu Z, Lin H, Zhang Y, Lu D. Integrative analyses of mRNA and microRNA expression profiles reveal the innate immune mechanism for the resistance to Vibrio parahaemolyticus infection in Epinephelus coioides. Front Immunol 2022; 13:982973. [PMID: 36059501 PMCID: PMC9437975 DOI: 10.3389/fimmu.2022.982973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus, as one of the main pathogens of marine vibriosis, has brought huge losses to aquaculture. However, the interaction mechanism between V. parahaemolyticus and Epinephelus coioides remains unclear. Moreover, there is a lack of comprehensive multi-omics analysis of the immune response of grouper spleen to V. parahaemolyticus. Herein, E. coioides was artificially injected with V. parahaemolyticus, and it was found that the mortality was 16.7% in the early stage of infection, and accompanied by obvious histopathological lesions in the spleen. Furthermore, 1586 differentially expressed genes were screened by mRNA-seq. KEGG analysis showed that genes were significantly enriched in immune-related pathways, Acute-phase immune response, Apoptosis, Complement system and Cytokine-cytokine receptor interaction. As for miRNA-seq analysis, a total of 55 significantly different miRNAs were identified. Further functional annotation analysis indicated that the target genes of differentially expressed miRNAs were enriched in three important pathways (Phosphatidylinositol signaling system, Lysosome and Focal adhesions). Through mRNA-miRNA integrated analysis, 1427 significant miRNA–mRNA pairs were obtained and “p53 signaling pathway”, “Intestinal immune network for IgA production” were considered as two crucial pathways. Finally, miR-144-y, miR-497-x, novel-m0459-5p, miR-7133-y, miR-378-y, novel-m0440-5p and novel-m0084-3p may be as key miRNAs to regulate immune signaling pathways via the miRNA-mRNA interaction network. The above results suggest that the mRNA-miRNA integrated analysis not only sheds new light on the molecular mechanisms underlying the interaction between host and V. parahaemolyticus but also provides valuable and new insights into resistance to vibrio infection.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Lai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Ocean, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| |
Collapse
|
9
|
Campbell VM, Chouljenko A, Hall SG. Depuration of live oysters to reduce Vibrio parahaemolyticus and Vibrio vulnificus: A review of ecology and processing parameters. Compr Rev Food Sci Food Saf 2022; 21:3480-3506. [PMID: 35638353 DOI: 10.1111/1541-4337.12969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
Abstract
Consumption of raw oysters, whether wild-caught or aquacultured, may increase health risks for humans. Vibrio vulnificus and Vibrio parahaemolyticus are two potentially pathogenic bacteria that can be concentrated in oysters during filter feeding. As Vibrio abundance increases in coastal waters worldwide, ingesting raw oysters contaminated with V. vulnificus and V. parahaemolyticus can possibly result in human illness and death in susceptible individuals. Depuration is a postharvest processing method that maintains oyster viability while they filter clean salt water that either continuously flows through a holding tank or is recirculated and replenished periodically. This process can reduce endogenous bacteria, including coliforms, thus providing a safer, live oyster product for human consumption; however, depuration of Vibrios has presented challenges. When considering the difficulty of removing endogenous Vibrios in oysters, a more standardized framework of effective depuration parameters is needed. Understanding Vibrio ecology and its relation to certain depuration parameters could help optimize the process for the reduction of Vibrio. In the past, researchers have manipulated key depuration parameters like depuration processing time, water salinity, water temperature, and water flow rate and explored the use of processing additives to enhance disinfection in oysters. In summation, depuration processing from 4 to 6 days, low temperature, high salinity, and flowing water effectively reduced V. vulnificus and V. parahaemolyticus in live oysters. This review aims to emphasize trends among the results of these past works and provide suggestions for future oyster depuration studies.
Collapse
Affiliation(s)
- Vashti M Campbell
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Alexander Chouljenko
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Steven G Hall
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
GSDMEa-mediated pyroptosis is bi-directionally regulated by caspase and required for effective bacterial clearance in teleost. Cell Death Dis 2022; 13:491. [PMID: 35610210 PMCID: PMC9130220 DOI: 10.1038/s41419-022-04896-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
Gasdermin (GSDM) is a family of pore-forming proteins that, after cleavage by caspase (CASP), induce a type of programmed necrotic cell death called pyroptosis. Gasdermin E (GSDME) is the only pyroptosis-inducing member of the GSDM family existing in teleost. To date, the regulation and function of teleost GSDME in response to bacterial infection remain elusive. In this study, we observed activation of GSDME, as well as multiple CASPs, in turbot Scophthalmus maximus during the infection of the bacterial pathogen Vibrio harveyi. Turbot has two GSDME orthologs named SmGSDMEa and SmGSDMEb. We found that SmGSDMEa was specifically cleaved by turbot CASP (SmCASP) 3/7 and SmCASP6, which produced two different N-terminal (NT) fragments. Only the NT fragment produced by SmCASP3/7 cleavage was able to induce pyroptosis. Ectopically expressed SmCASP3/7 activated SmGSDMEa, resulting in pyroptotic cell death. In contrast, SmCASP6 inactivated SmGSDMEa by destructive cleavage of the NT domain, thus nullifying the activation effect of SmCASP3/7. Unlike SmGSDMEa, SmGSDMEb was cleaved by SmCASP8 and unable to induce cell death. V. harveyi infection dramatically promoted the production and activation of SmGSDMEa, but not SmGSDMEb, and caused pyroptosis in turbot. Interference with SmCASP3/7 activity significantly enhanced the invasiveness and lethality of V. harveyi in a turbot infection model. Together, these results revealed a previously unrecognized bi-directional regulation mode of GSDME-mediated pyroptosis, and a functional difference between teleost GSDMEa and GSDMEb in the immune defense against bacterial infection.
Collapse
|
11
|
Mishra P, Beura S, Sikder S, Dhal AK, Vasudevan M, Roy M, Rakshit J, Budhwar R, Kundu TK, Modak R. vp1524, a Vibrio parahaemolyticus NAD+ dependent deacetylase, regulates host response during infection by induction of host histone deacetylation. J Biochem 2022; 171:673-693. [PMID: 35325168 DOI: 10.1093/jb/mvac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
Gram negative intracellular pathogen V. parahaemolyticus manifests its infection through a series of effector proteins released into the host via the type III secretion system. Most of these effector proteins alter signalling pathways of the host to facilitate survival and proliferation of bacteria inside host cells. Here, we report V. parahaemolyticus (serotype O3:K6) infection induced histone deacetylation in host intestinal epithelial cells, particularly deacetylation of H3K9, H3K56, H3K18 and H4K16 residues. We found a putative NAD+ dependent deacetylase, vp1524 (vpCobB) of Vibrio parahaemolyticus, was overexpressed during infection. Biochemical assays revealed that Vp1524 is a functional NAD+ dependent Sir2 family deacetylase in vitro, which was capable of deacetylating acetylated histones. Furthermore, we observed that vp1524 is expressed and localized to the nuclear periphery of the host cells during infection. Consequently, Vp1524 translocated to nuclear compartments of transfected cells, deacetylated histones, specifically causing deacetylation of those residues (K56, K16, K18) associated with V. parahaemolyticus infection. This infection induced deacetylation resulted in transcriptional repression of several host genes involved in epigenetic regulation, immune response, autophagy etc. Thus, our study shows that a V. parahaemolyticus lysine deacetylase Vp1524 is secreted inside the host cells during infection, modulating host gene expression through histone deacetylation.
Collapse
Affiliation(s)
- Pragyan Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| | - Shibangini Beura
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| | - Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru: 560064, INDIA
| | - Ajit Ku Dhal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| | - Madavan Vasudevan
- Theomics International Pvt Ltd, 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru - 560038, INDIA
| | - Manjima Roy
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| | - Joydeep Rakshit
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| | - Roli Budhwar
- Bionivid Technology Pvt. Ltd., 4C-209 1st Floor 4th Cross Kasturi Nagar Near New Horizon College Bangalore-560043 INDIA
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru: 560064, INDIA.,Division of Neuroscience and Ageing, Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, INDIA
| | - Rahul Modak
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar: 751024, Odisha, INDIA
| |
Collapse
|
12
|
Wang J, Zhan Y, Sun H, Fu X, Kong Q, Zhu C, Mou H. Regulation of Virulence Factors Expression During the Intestinal Colonization of Vibrio parahaemolyticus. Foodborne Pathog Dis 2022; 19:169-178. [PMID: 35085447 DOI: 10.1089/fpd.2021.0057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Colonization and adhesion are the key steps for Vibrio parahaemolyticus to infect human body and cause seafood poisoning. However, at present, there is a lack of systematic review on the regulation of virulence factors expression during the intestinal colonization of V. parahaemolyticus. This review aims to describe the virulence factors associated with the colonization and adhesion of V. parahaemolyticus (multivalent adhesion molecule 7, enolase secretion, use of flagella, biofilm formation, and the action of secretion systems) and focuses on the aspects that affect these processes in V. parahaemolyticus, including secretion systems, quorum sensing (QS), and the human gastrointestinal tract. V. parahaemolyticus regulates the expression of virulence factors by forming a virulence regulation network through QS and the core regulator, ToxR, which contributes to the early colonization of the pathogen. In the virulence regulation network, the secretion systems, type III and type VI secretion systems, help V. parahaemolyticus adhere to the distal end of the small intestine by secreting effectors that induce the lysis of epithelial cells and change the shape of the intestinal lining, which provides nutrients and a suitable environment for its growth. This review summarizes the research progress in recent years on the virulence factors associated with the colonization and adhesion of V. parahaemolyticus, which provides valuable information for the safety control of marine food.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Zhan
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal, Jinan, China
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Li H, Wu G, Zhao L, Zhang M. Suppressed inflammation in obese children induced by a high-fiber diet is associated with the attenuation of gut microbial virulence factor genes. Virulence 2021; 12:1754-1770. [PMID: 34233588 PMCID: PMC8274444 DOI: 10.1080/21505594.2021.1948252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
In our previous study, a gut microbiota-targeted dietary intervention with a high-fiber diet improved the immune status of both genetically obese (Prader-Willi Syndrome, PWS) and simple obese (SO) children. However, PWS children had higher inflammation levels than SO children throughout the trial, the gut microbiota of the two cohorts was similar. As some virulence factors (VFs) produced by the gut microbiota play a role in triggering host inflammation, this study compared the characteristics and changes of gut microbial VF genes of the two cohorts before and after the intervention using a fecal metagenomic dataset. We found that in both cohorts, the high-fiber diet reduced the abundance of VF, and particularly pathogen-specific, genes. The composition of VF genes was also modulated, especially for offensive and defensive VF genes. Furthermore, genes belonging to invasion, T3SS (type III secretion system), and adherence classes were suppressed. Co-occurrence network analysis detected VF gene clusters closely related to host inflammation in each cohort. Though these cohort-specific clusters varied in VF gene combinations and cascade reactions affecting inflammation, they mainly contained VFs belonging to iron uptake, T3SS, and invasion classes. The PWS group had a lower abundance of VF genes before the trial, which suggested that other factors could also be responsible for the increased inflammation in this cohort. This study provides insight into the modulation of VF gene structure in the gut microbiota by a high-fiber diet, with respect to reduced inflammation in obese children, and differences in VF genes between these two cohorts.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, NJ, USA
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
14
|
Ashrafudoulla M, Na KW, Hossain MI, Mizan MFR, Nahar S, Toushik SH, Roy PK, Park SH, Ha SD. Molecular and pathogenic characterization of Vibrio parahaemolyticus isolated from seafood. MARINE POLLUTION BULLETIN 2021; 172:112927. [PMID: 34526263 DOI: 10.1016/j.marpolbul.2021.112927] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Gastroenteritis infections in humans are mainly associated with consumption of Vibrio parahaemolyticus contaminated shellfish, which causes health and economic loss. Virulence factor production, antibiotic resistance profile, and biofilm-forming capacity of Vibrio parahaemolyticus isolates on food and food contact surfaces at 30 °C were investigated to evaluate the antibiotic sensitivity and pathogenic level. Strains of V. parahaemolyticus were isolated from shellfish (e.g., Crassostrea gigas, Venerupis philippinarum, Mytilus coruscus, Anadara kagoshimensis) in Korea. When examined for 17 virulence factor-encoding genes, 53.3, 73.1, 87.1, 87.9, and 90.9% of the isolates were positive for genes encoding TDH, T6SS, T3SS1, T3SS2, and Type I pilus, respectively. All isolates showed resistance to vancomycin, tetracyclines, penicillin, nalidixic acid, and doxycycline, among 26 antibiotics tested, with most isolates resistant to kanamycin (93.5%), ampicillin (96.8%), clindamycin (96.8%), tobramycin (88.7%), amikacin (83.97%), and minocycline (80.7%). Biofilm formation, cell-cell attachment, and motility were high in most isolates. These findings may assist in monitoring the epidemics of the pathogen. Continuous monitoring could help to decrease V. parahaemolyticus infections and improve seafood safety.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Republic of Korea
| | - Kyung Won Na
- Food Science and Technology Department, Chung-Ang University, Republic of Korea
| | - Md Iqbal Hossain
- Food Science and Technology Department, Chung-Ang University, Republic of Korea
| | | | - Shamsun Nahar
- Food Science and Technology Department, Chung-Ang University, Republic of Korea
| | | | - Pantu Kumar Roy
- Food Science and Technology Department, Chung-Ang University, Republic of Korea
| | - Si Hong Park
- Food Science and Technology Department, Oregon State University, Corvallis, OR 97331, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Republic of Korea.
| |
Collapse
|
15
|
Qiao X, Li P, Lin H, Zhang Y, Zhu Y, Du Z, Lu D. Chloroquine potentially modulated innate immune response to Vibrio parahaemolyticus in RAW 264.7 macrophages. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1978943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Pingchao Li
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Haoran Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
- College of Ocean, Hainan University, Haikou, People’s Republic of China
| | - Yong Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
| | - Ying Zhu
- R&D Health Food technology department, Infinitus (China) Co., LTD, Guangzhou, People’s Republic of China
| | - Zhiyun Du
- Drug and food homologous center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
16
|
Paria P, Behera BK, Mohapatra PKD, Parida PK. Virulence factor genes and comparative pathogenicity study of tdh, trh and tlh positive Vibrio parahaemolyticus strains isolated from Whiteleg shrimp, Litopenaeus vannamei (Boone, 1931) in India. INFECTION GENETICS AND EVOLUTION 2021; 95:105083. [PMID: 34536578 DOI: 10.1016/j.meegid.2021.105083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023]
Abstract
Vibrio parahaemolyticus is a gram-negative halophilic bacterium responsible for gastrointestinal infection in human and vibriosis in aquatic animals. The thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and thermolabile hemolysin (tlh) positive strains of V. parahaemolyticus were identified from brackishwater aquaculture farms of West Bengal and Andhra Pradesh, India. Moreover, the presence of other virulent genes like vcrD1, vopD, vp1680 under type three secretion system 1 (T3SS1) and vcrD2 vopD2, vopB2, vopC2 under type three secretion system 2 (T3SS2) were detected in tdh positive strain of V. parahaemolyticus. Furthermore, the study revealed that the tdh and trh positive isolates were resistant to β-lactam antibiotics and were able to lyse more than 95% of human Red Blood Cells (RBCs). In addition, both the isolates showed high cytotoxicity in Human Embryonic Kidney (HEK) cell line compared to tlh positive strain. Additionally, intraperitoneal and oral administration of tdh and trh positive strain of V. parahaemolyticus in Indian Major Carp, Labeo rohita caused 100% mortality at the level of 2.0 × 108 CFU ml-1 and 1.6 × 108 CFU ml-1, respectively. In contrast, only 10% mortality was observed in the case of tlh positive strain at the level of 2.5× 108 CFU ml-1. The histopathological changes like infiltration of blood cells and degenerated hepatic tissue in the liver of L. rohita were observed after the experimental challenge. The changes like degeneration of glomeruli, necrosis of renal tubules and Bowman's capsule were observed in the kidney section. Ragged, irregular shaped villi and necrosis of the villus were observed in the intestinal lumen. Overall, the study demonstrates that isolated V. parahaemolyticus is a potent aquatic microbial pathogen. Additionally, as V. parahaemolyticus is also a human pathogen and might pose a threat to the human population, proper management strategies are required to prevent the possible occurrence of disease.
Collapse
Affiliation(s)
- Prasenjit Paria
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India; Department of Microbiology, Vidyasagar University, Midnapure 721102, West Bengal, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | | | - Pranaya Kumar Parida
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| |
Collapse
|
17
|
De Nisco NJ, Casey AK, Kanchwala M, Lafrance AE, Coskun FS, Kinch LN, Grishin NV, Xing C, Orth K. Manipulation of IRE1-Dependent MAPK Signaling by a Vibrio Agonist-Antagonist Effector Pair. mSystems 2021; 6:e00872-20. [PMID: 33563785 PMCID: PMC7883537 DOI: 10.1128/msystems.00872-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/19/2021] [Indexed: 12/05/2022] Open
Abstract
Diverse bacterial pathogens employ effector delivery systems to disrupt vital cellular processes in the host (N. M. Alto and K. Orth, Cold Spring Harbor Perspect Biol 4:a006114, 2012, https://doi.org/10.1101/cshperspect.a006114). The type III secretion system 1 of the marine pathogen Vibrio parahaemolyticus utilizes the sequential action of four effectors to induce a rapid, proinflammatory cell death uniquely characterized by a prosurvival host transcriptional response (D. L. Burdette, M. L. Yarbrough, A Orvedahl, C. J. Gilpin, and K. Orth, Proc Natl Acad Sci USA 105:12497-12502, 2008, https://doi.org/10.1073/pnas.0802773105; N. J. De Nisco, M. Kanchwala, P. Li, J. Fernandez, C. Xing, and K. Orth, Sci Signal 10:eaa14501, 2017, https://doi.org/10.1126/scisignal.aal4501). Herein, we show that this prosurvival response is caused by the action of the channel-forming effector VopQ that targets the host V-ATPase, resulting in lysosomal deacidification and inhibition of lysosome-autophagosome fusion. Recent structural studies have shown how VopQ interacts with the V-ATPase and, while in the ER, a V-ATPase assembly intermediate can interact with VopQ, causing a disruption in membrane integrity. Additionally, we observed that VopQ-mediated disruption of the V-ATPase activates the IRE1 branch of the unfolded protein response (UPR), resulting in an IRE1-dependent activation of ERK1/2 MAPK signaling. We also find that this early VopQ-dependent induction of ERK1/2 phosphorylation is terminated by the VopS-mediated inhibitory AMPylation of Rho GTPase signaling. Since VopS dampens VopQ-induced IRE1-dependent ERK1/2 activation, we propose that IRE1 activates ERK1/2 phosphorylation at or above the level of Rho GTPases. This study illustrates how temporally induced effectors can work as in tandem as agonist/antagonist to manipulate host signaling and reveals new connections between V-ATPase function, UPR, and MAPK signaling.IMPORTANCE Vibrio parahaemolyticus is a seafood-borne pathogen that encodes two type 3 secretion systems (T3SS). The first system, T3SS1, is thought to be maintained in all strains of V. parahaemolyticus to maintain survival in the environment, whereas the second system, T3SS2, is linked to clinical isolates and disease in humans. Here, we found that first system targets evolutionarily conserved signaling systems to manipulate host cells, eventually causing a rapid, orchestrated cells death within 3 h. We have found that the T3SS1 injects virulence factors that temporally manipulate host signaling. Within the first hour of infection, the effector VopQ acts first by activating host survival signals while diminishing the host cell apoptotic machinery. Less than an hour later, another effector, VopS, reverses activation and inhibition of these signaling systems, ultimately leading to death of the host cell. This work provides example of how pathogens have evolved to manipulate the interplay between T3SS effectors to regulate host signaling pathways.
Collapse
Affiliation(s)
- Nicole J De Nisco
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Amanda K Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mohammed Kanchwala
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexander E Lafrance
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fatma S Coskun
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Yang Y, Huang X, Yuan W, Xiang Y, Guo X, Wei W, Soberón M, Bravo A, Liu K. Bacillus thuringiensis cry toxin triggers autophagy activity that may enhance cell death. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104728. [PMID: 33357550 DOI: 10.1016/j.pestbp.2020.104728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Although it is well known that Bacillus thuringiensis Cry toxins kill insect pest by disrupting midgut cells of susceptible larvae through their pore formation activity, it is not clear what intracellular events are triggered after pore formation on the cell membrane of the target cells. Here we analyzed the role of Cry toxins on autophagy activation using several cell lines as models as well as in Helicoverpa armigera larvae. The selected insect cell lines (Hi5, Sl-HP and Sf9) were susceptible to activated Cry1Ca toxin, but only Sl-HP cells were also susceptible to activated Cry1Ac toxin. In contrast, the mammalian cell line 293 T was not susceptible to Cry1Ac or to Cry1Ca. Results show that Cry toxins induced autophagy only in the susceptible cell lines as shown by the analysis of the changes in the ratio of Atg8-PE to Atg8 and by formation of autophagosome dots containing Atg8-PE. The Cry1Ac enhanced autophagy in the midgut tissue of H. armigera larvae. Silencing expression of specific genes by RNAi assays confirmed that the autophagy induced by activated Cry toxins was dependent on AMPK and JNK pathways. Finally, inhibition of autophagy in the cell lines by specific inhibitors or RNAi assays resulted in delayed cell death triggered by Cry toxins, suggesting that the increased autophagy activity observed after toxin intoxication may contribute to cell death.
Collapse
Affiliation(s)
- Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Xiaoying Huang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Wanli Yuan
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Yang Xiang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Xueqin Guo
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Wei Wei
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan 430070, China,.
| |
Collapse
|
19
|
S-nitrosylation-mediated activation of a histidine kinase represses the type 3 secretion system and promotes virulence of an enteric pathogen. Nat Commun 2020; 11:5777. [PMID: 33188170 PMCID: PMC7666205 DOI: 10.1038/s41467-020-19506-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne diarrheal diseases. Experimental overproduction of a type 3 secretion system (T3SS1) in this pathogen leads to decreased intestinal colonization, which suggests that T3SS1 repression is required for maximal virulence. However, the mechanisms by which T3SS1 is repressed in vivo are unclear. Here, we show that host-derived nitrite modifies the activity of a bacterial histidine kinase and mediates T3SS1 repression. More specifically, nitrite activates histidine kinase sensor VbrK through S-nitrosylation on cysteine 86, which results in downregulation of the entire T3SS1 operon through repression of its positive regulator exsC. Replacement of cysteine 86 with a serine (VbrK C86S mutant) leads to increased expression of inflammatory cytokines in infected Caco-2 cells. In an infant rabbit model of infection, the VbrK C86S mutant induces a stronger inflammatory response at the early stage of infection, and displays reduced intestinal colonization and virulence at the later stage of infection, in comparison with the parent strain. Our results indicate that the pathogen V. parahaemolyticus perceives nitrite as a host-derived signal and responds by downregulating a proinflammatory factor (T3SS1), thus enhancing intestinal colonization and virulence. Vibrio parahaemolyticus causes seafood-borne diarrheal diseases. Here, the authors show that the pathogen uses a histidine kinase to sense host-derived nitrite and downregulate a proinflammatory type 3 secretion system, thus enhancing intestinal colonization and virulence.
Collapse
|
20
|
Fu S, Ni P, Yang Q, Hu H, Wang Q, Ye S, Liu Y. Delineating the key virulence factors and intraspecies divergence of Vibrio harveyi via whole-genome sequencing. Can J Microbiol 2020; 67:231-248. [PMID: 32941745 DOI: 10.1139/cjm-2020-0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrio harveyi is one of the major pathogens in aquaculture. To identify the key virulence factors affecting pathogenesis of V. harveyi towards fish, we conducted a field investigation for three representative fish farms infected with V. harveyi. Multilocus sequence typing (MLST) and whole-genome sequencing were conducted to delineate the phylogenetic relationship and genetic divergence of V. harveyi. A total of 25 V. harveyi strains were isolated from the diseased fish and groundwater and were subtyped into 12 sequence types by MLST. Five virulence genes, mshB, pilA, hutR, ureB, and ureG, were variably presented in the sequenced strains. The virulence gene profiles strongly correlated with the distinct pathogenicity of V. harveyi strains, with a strain harboring all five genes exhibiting the highest virulence towards fish. Phenotype assay confirmed that reduced virulence correlated with decreased motility and biofilm formation ability. Additionally, three types of type VI secretion system, namely T6SS1, T6SS2, and T6SS3, were identified in V. harveyi strains, which can be classified into six, four, and 12 subtypes, respectively. In conclusion, the results indicated that the virulence level of V. harveyi is mainly determined by the above virulence genes, which may play vital roles in environmental adaptation for V. harveyi.
Collapse
Affiliation(s)
- Songzhe Fu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, P.R. China.,Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, P.R. China
| | - Ping Ni
- Dalian Key Laboratory of Marine Animal Disease Control and Prevention, Dalian Ocean University, Dalian, P.R. China
| | - Qian Yang
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Huizhi Hu
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environment, Hubei University, Wuhan, P.R. China
| | - Qingyao Wang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, P.R. China.,Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, P.R. China
| | - Shigen Ye
- Dalian Key Laboratory of Marine Animal Disease Control and Prevention, Dalian Ocean University, Dalian, P.R. China
| | - Ying Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, P.R. China.,Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, P.R. China
| |
Collapse
|
21
|
Abstract
Rickettsia species are Gram-negative obligate intracellular bacteria that infect a wide range of eukaryotes and vertebrates. In particular, human body louse-borne Rickettsia prowazekii and flea-borne Rickettsia typhi have historically plagued humankind and continue to reemerge globally. The unavailability of vaccines and limited effectiveness of antibiotics late in infection place lethality rates up to 30%, highlighting the need to elucidate the mechanisms of Rickettsia pathogenicity in greater detail. Here, we characterize a new effector, Risk1, as a secreted phosphatidylinositol 3-kinase (PI3K) with unique dual class I and class III activities. Risk1 is required for host colonization, and its vacuolar phosphatidylinositol 3-phosphate generation modulates endosomal trafficking to arrest autophagosomal maturation. Collectively, Risk1 facilitates R. typhi growth by altering phosphoinositide metabolism and subverting intracellular trafficking. To establish a habitable intracellular niche, various pathogenic bacteria secrete effectors that target intracellular trafficking and modulate phosphoinositide (PI) metabolism. Murine typhus, caused by the obligate intracellular bacterium Rickettsia typhi, remains a severe disease in humans. However, the mechanisms by which R. typhi effector molecules contribute to internalization by induced phagocytosis and subsequent phagosomal escape into the cytosol to facilitate the intracellular growth of the bacteria remain ill-defined. Here, we characterize a new molecule, Risk1, as a phosphatidylinositol 3-kinase (PI3K) secreted effector and the first bacterial secretory kinase with both class I and III PI3K activities. Inactivation of Risk1 PI3K activities reduced the phosphorylation of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate within the host, which consequently diminished host colonization by R. typhi. During infection, Risk1 targets the Rab5-EEA1-phosphatidylinositol 3-phosphate [PI(3)P] signaling axis to promote bacterial phagosomal escape. Subsequently, R. typhi undergoes ubiquitination and induces host autophagy; however, maturation to autolysosomes is subverted to support intracellular growth. Intriguingly, only enzymatically active Risk1 binds the Beclin-1 core complex and contributes to R. typhi-induced autophagosome formation. In sum, our data suggest that Risk1, with dual class I and class III PI3K activities, alters host PI metabolism and consequently subverts intracellular trafficking to facilitate intracellular growth of R. typhi.
Collapse
|
22
|
Peng W, Casey AK, Fernandez J, Carpinone EM, Servage KA, Chen Z, Li Y, Tomchick DR, Starai VJ, Orth K. A distinct inhibitory mechanism of the V-ATPase by Vibrio VopQ revealed by cryo-EM. Nat Struct Mol Biol 2020; 27:589-597. [PMID: 32424347 DOI: 10.1038/s41594-020-0429-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
The Vibrio parahaemolyticus T3SS effector VopQ targets host-cell V-ATPase, resulting in blockage of autophagic flux and neutralization of acidic compartments. Here, we report the cryo-EM structure of VopQ bound to the Vo subcomplex of the V-ATPase. VopQ inserts into membranes and forms an unconventional pore while binding directly to subunit c of the V-ATPase membrane-embedded subcomplex Vo. We show that VopQ arrests yeast growth in vivo by targeting the immature Vo subcomplex in the endoplasmic reticulum (ER), thus providing insight into the observation that VopQ kills cells in the absence of a functional V-ATPase. VopQ is a bacterial effector that has been discovered to inhibit a host-membrane megadalton complex by coincidentally binding its target, inserting into a membrane and disrupting membrane potential. Collectively, our results reveal a mechanism by which bacterial effectors modulate host cell biology and provide an invaluable tool for future studies on V-ATPase-mediated membrane fusion and autophagy.
Collapse
Affiliation(s)
- Wei Peng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda K Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessie Fernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Kelly A Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vincent J Starai
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Ndraha N, Wong HC, Hsiao HI. Managing the risk of Vibrio parahaemolyticus infections associated with oyster consumption: A review. Compr Rev Food Sci Food Saf 2020; 19:1187-1217. [PMID: 33331689 DOI: 10.1111/1541-4337.12557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/15/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative bacterium that is naturally present in the marine environment. Oysters, which are water filter feeders, may accumulate this pathogen in their soft tissues, thus increasing the risk of V. parahaemolyticus infection among people who consume oysters. In this review, factors affecting V. parahaemolyticus accumulation in oysters, the route of the pathogen from primary production to consumption, and the potential effects of climate change were discussed. In addition, intervention strategies for reducing accumulation of V. parahaemolyticus in oysters were presented. A literature review revealed the following information relevant to the present study: (a) managing the safety of oysters (for human consumption) from primary production to consumption remains a challenge, (b) there are multiple factors that influence the concentration of V. parahaemolyticus in oysters from primary production to consumption, (c) climate change could possibly affect the safety of oysters, both directly and indirectly, placing public health at risk, (d) many intervention strategies have been developed to control and/or reduce the concentration of V. parahaemolyticus in oysters to acceptable levels, but most of them are mainly focused on the downstream steps of the oyster supply chain, and (c) although available regulation and/or guidelines governing the safety of oyster consumption are mostly available in developed countries, limited food safety information is available in developing countries. The information provided in this review may serve as an early warning for managing the future effects of climate change on the safety of oyster consumption.
Collapse
Affiliation(s)
- Nodali Ndraha
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| | - Hin-Chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan (R.O.C.)
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.).,Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| |
Collapse
|
24
|
Zhang W, Xie R, Zhang XD, Lee LTO, Zhang H, Yang M, Peng B, Zheng J. Organism dual RNA-seq reveals the importance of BarA/UvrY in Vibrio parahaemolyticus virulence. FASEB J 2020; 34:7561-7577. [PMID: 32281204 DOI: 10.1096/fj.201902630r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 01/12/2023]
Abstract
Elucidation of host-pathogen interaction is essential for developing effective strategies to combat bacterial infection. Dual RNA-Seq using cultured cells or tissues/organs as the host of pathogen has emerged as a novel strategy to understand the responses concurrently from both pathogen and host at cellular level. However, bacterial infection mostly causes systematic responses from the host at organism level where the interplay is urgently to be understood but inevitably being neglected by the current practice. Here, we developed an approach that simultaneously monitor the genome-wide infection-linked transcriptional alterations in both pathogenic Vibrio parahaemolyticus and the infection host nematode Caenorhabditis elegans. Besides the dynamic alterations in transcriptomes of both C. elegans and V. parahaemolyticus during infection, we identify a two-component system, BarA/UvrY, that is important for virulence in host. BarA/UvrY not only controls the virulence factors in V. parahaemolyticus including Type III and Type VI secretion systems, but also attenuates innate immune responses in C. elegans, including repression on the MAP kinase-mediated cascades. Thus, our study exemplifies the use of dual RNA-Seq at organism level to uncover previously unrecognized interplay between host and pathogen.
Collapse
Affiliation(s)
- Wenwen Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ruiqiang Xie
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | | | - Leo Tsz On Lee
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Bo Peng
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, University of Macau, Macau SAR, China
| |
Collapse
|
25
|
Meparambu Prabhakaran D, Ramamurthy T, Thomas S. Genetic and virulence characterisation of Vibrio parahaemolyticus isolated from Indian coast. BMC Microbiol 2020; 20:62. [PMID: 32293257 PMCID: PMC7092547 DOI: 10.1186/s12866-020-01746-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/05/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND V. parahaemolyticus is autochthonous to the marine environment and causes seafood-borne gastroenteritis in humans. Generally, V. parahaemolyticus recovered from the environment and/or seafood is thought to be non-pathogenic and the relationship between environmental isolates and acute diarrhoeal disease is poorly understood. In this study, we explored the virulence potential of environmental V. parahaemolyticus isolated from water, plankton and assorted seafood samples collected from the Indian coast. RESULTS Twenty-two V. parahaemolyticus isolates from seafood harboured virulence associated genes encoding the thermostable-direct haemolysin (TDH), TDH-related haemolysin (TRH), and Type 3 secretion systems (T3SS) and 95.5% of the toxigenic isolates had pandemic strain attributes (toxRS/new+). Nine serovars, with pandemic strain traits were newly identified and an O4:K36 tdh-trh+V. parahaemolyticus bearing pandemic marker gene was recognised for the first time. Results obtained by reverse transcription PCR showed trh, T3SS1 and T3SS2β to be functional in the seafood isolates. Moreover, the environmental strains were cytotoxic and could invade Caco-2 cells upon infection as well as induce changes to the tight junction protein, ZO-1 and the actin cytoskeleton. CONCLUSION Our study provides evidence that environmental isolates of V. parahaemolyticus are potentially invasive and capable of eliciting pathogenic characteristics typical of clinical strains and present a potential health risk. We also demonstrate that virulence of this pathogen is highly complex and hence draws attention for the need to investigate more reliable virulence markers in order to distinguish the environmental and clinical isolates, which will be crucial for the pathogenomics and control of this pathogen.
Collapse
Affiliation(s)
- Divya Meparambu Prabhakaran
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695 014, India
| | - Thandavarayan Ramamurthy
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Sabu Thomas
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695 014, India.
| |
Collapse
|
26
|
A Novel Mouse Model of Enteric Vibrio parahaemolyticus Infection Reveals that the Type III Secretion System 2 Effector VopC Plays a Key Role in Tissue Invasion and Gastroenteritis. mBio 2019; 10:mBio.02608-19. [PMID: 31848276 PMCID: PMC6918077 DOI: 10.1128/mbio.02608-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Gram-negative marine bacterium Vibrio parahaemolyticus is a common cause of infectious gastroenteritis due to the ingestion of contaminated seafood. Most virulent V. parahaemolyticus strains encode two type III secretion systems (T3SS1 and T3SS2); however, the roles they and their translocated effectors play in causing intestinal disease remain unclear. While studies have identified T3SS1 effectors as responsible for killing epithelial cells in culture, the T3SS2 effectors caused massive epithelial cell disruption in a rabbit ileal loop model. Additional models are thus needed to clarify the pathogen-host interactions that drive V. parahaemolyticus-associated gastroenteritis. Germfree mice were infected with a pathogenic clinical isolate of V. parahaemolyticus, RIMD2210633 (RIMD). The pathogen was found to adhere to as well as invade the cecal mucosa, accompanied by severe inflammation and dramatic mucosal damage, including widespread sloughing of infected epithelial cells. Mice infected with a V. parahaemolyticus strain lacking the T3SS1 (POR2) also developed severe pathology, similar to that seen with RIMD. In contrast, the ΔT3SS2 strain (POR3) appeared unable to invade the intestinal mucosa or cause any mucosal pathology. Confirming a role for TS332 effectors, a strain expressing the T3SS2 but lacking VopC (POR2ΔvopC), a T3SS2 effector implicated in epithelial cell invasion in culture, was strongly attenuated in invading the intestinal mucosa and in causing gastroenteritis, although infection with this mutant resulted in more pathology than the ΔT3SS2 strain. We thus present an experimental system that enables further characterization of T3SS effectors as well as the corresponding host inflammatory response involved in the gastroenteritis caused by invasive V. parahaemolyticus IMPORTANCE Vibrio parahaemolyticus causes severe gastroenteritis following consumption of contaminated seafood. Global warming has allowed this pathogen to spread worldwide, contributing to recent outbreaks. Clinical isolates are known to harbor an array of virulence factors, including T3SS1 and T3SS2; however, the precise role these systems play in intestinal disease remains unclear. There is an urgent need to improve our understanding of how V. parahaemolyticus infects hosts and causes disease. We present a novel mouse model for this facultative intracellular pathogen and observe that the T3SS2 is essential to pathogenicity. Moreover, we show that the T3SS2 effector VopC, previously shown to be a Rac and Cdc42 deamidase that facilitates bacterial uptake by nonphagocytic cells, also plays a key role in the ability of V. parahaemolyticus to invade the intestinal mucosa and cause gastroenteritis. This experimental model thus provides a valuable tool for future elucidation of virulence mechanisms used by this facultative intracellular pathogen during in vivo infection.
Collapse
|
27
|
Li N, Zhou X, Song Q, Zhou M, Shi X. Antimicrobial resistance, virulence, and molecular characterization of aquatic, clinical, and environmental Vibrio parahaemolyticusisolated from Ningbo, China. J Food Saf 2019. [DOI: 10.1111/jfs.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nuo Li
- MOST‐USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial MetabolismShanghai Jiao Tong University Shanghai China
| | - Xiujuan Zhou
- MOST‐USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial MetabolismShanghai Jiao Tong University Shanghai China
| | - Qifa Song
- Institute of Microbiology, Ningbo Center for Disease Control and Prevention Ningbo Zhejiang China
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University Wuhan Hubei China
| | - Xianming Shi
- MOST‐USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial MetabolismShanghai Jiao Tong University Shanghai China
| |
Collapse
|
28
|
De Souza Santos M, Orth K. The Role of the Type III Secretion System in the Intracellular Lifestyle of Enteric Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0008-2019. [PMID: 31152523 PMCID: PMC11026088 DOI: 10.1128/microbiolspec.bai-0008-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Several pathogens have evolved to infect host cells from within, which requires subversion of many host intracellular processes. In the case of Gram-negative pathogenic bacteria, adaptation to an intracellular life cycle relies largely on the activity of type III secretion systems (T3SSs), an apparatus used to deliver effector proteins into the host cell, from where these effectors regulate important cellular functions such as vesicular trafficking, cytoskeleton reorganization, and the innate immune response. Each bacterium is equipped with a unique suite of these T3SS effectors, which aid in the development of an individual intracellular lifestyle for their respective pathogens. Some bacteria adapt to reside and propagate within a customized vacuole, while others establish a replicative niche in the host cytosol. In this article, we review the mechanisms by which T3SS effectors contribute to these different lifestyles. To illustrate the formation of a vacuolar and a cytosolic lifestyle, we discuss the intracellular habitats of the enteric pathogens Salmonella enterica serovar Typhimurium and Shigella flexneri, respectively. These represent well-characterized systems that function as informative models to contribute to our understanding of T3SS-dependent subversion of intracellular processes. Additionally, we present Vibrio parahaemolyticus, another enteric Gram-negative pathogen, as an emerging model for future studies of the cytosolic lifestyle.
Collapse
Affiliation(s)
- Marcela De Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biochemistry and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
29
|
Caspase -1, -3, -8 and antioxidant enzyme genes are key molecular effectors following Vibrio parahaemolyticus and Aeromonas veronii infection in fish leukocytes. Immunobiology 2018; 223:562-576. [DOI: 10.1016/j.imbio.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023]
|
30
|
Liu M, Yang S, Zheng C, Luo X, Bei W, Cai P. Binding to type I collagen is essential for the infectivity of Vibrio parahaemolyticus to host cells. Cell Microbiol 2018; 20:e12856. [PMID: 29763968 DOI: 10.1111/cmi.12856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023]
Abstract
Vibrio parahaemolyticus is a globally present marine bacterium that often leads to acute gastroenteritis. Two type III secretion systems (T3SSs), T3SS1 and T3SS2, are important for host infection. Type I collagen is a component of the extracellular matrix and is abundant in the small intestine. However, whether type I collagen serves as the cellular receptor for V. parahaemolyticus infection of host cells remains enigmatic. In this study, we discovered that type I collagen is not only important for the attachment of V. parahaemolyticus to host cells but is also involved in T3SS1-dependent cytotoxicity. In addition, 2 virulence factors, MAM7 and VpadF enable V. parahaemolyticus to interact with type I collagen and mediate T3SS2-dependent host cell invasion. Type I collagen, the collagen receptor α1 integrin, and its downstream factor phosphatidylinositol 3-kinase (PI3K) are responsible for V. parahaemolyticus invasion of host cells. Further biochemical studies revealed that VpadF mainly relies on the C-terminal region for type I collagen binding and MAM7 relies on mce domains to bind to type I collagen. As MAM7 and/or VpadF homologues are widely distributed in the genus Vibrio, we propose that Vibrios have evolved a unique strategy to infect host cells by binding to type I collagen.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Bei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Affiliation(s)
- Carlos R Osorio
- a Departamento de Microbioloxía e Parasitoloxía , Instituto de Acuicultura, Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| |
Collapse
|
32
|
Munang'andu HM. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish. Microorganisms 2018; 6:microorganisms6020033. [PMID: 29690563 PMCID: PMC6027125 DOI: 10.3390/microorganisms6020033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022] Open
Abstract
Aquaculture is one of the most rapidly expanding farming systems in the world. Its rapid expansion has brought with it several pathogens infecting different fish species. As a result, there has been a corresponding expansion in vaccine development to cope with the increasing number of infectious diseases in aquaculture. The success of vaccine development for bacterial diseases in aquaculture is largely attributed to empirical vaccine designs based on inactivation of whole cell (WCI) bacteria vaccines. However, an upcoming challenge in vaccine design is the increase of intracellular bacterial pathogens that are not responsive to WCI vaccines. Intracellular bacterial vaccines evoke cellular mediated immune (CMI) responses that “kill” and eliminate infected cells, unlike WCI vaccines that induce humoral immune responses whose protective mechanism is neutralization of extracellular replicating pathogens by antibodies. In this synopsis, I provide an overview of the intracellular bacterial pathogens infecting different fish species in aquaculture, outlining their mechanisms of invasion, replication, and survival intracellularly based on existing data. I also bring into perspective the current state of CMI understanding in fish together with its potential application in vaccine development. Further, I highlight the immunological pitfalls that have derailed our ability to produce protective vaccines against intracellular pathogens for finfish. Overall, the synopsis put forth herein advocates for a shift in vaccine design to include CMI-based vaccines against intracellular pathogens currently adversely affecting the aquaculture industry.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146, Dep NO-0033, 046 Oslo, Norway.
| |
Collapse
|
33
|
Mishra SK, Gao YG, Deng Y, Chalfant CE, Hinchcliffe EH, Brown RE. CPTP: A sphingolipid transfer protein that regulates autophagy and inflammasome activation. Autophagy 2018; 14:862-879. [PMID: 29164996 PMCID: PMC6070007 DOI: 10.1080/15548627.2017.1393129] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 02/01/2023] Open
Abstract
The macroautophagy/autophagy and inflammasome pathways are linked through their roles in innate immunity and chronic inflammatory disease. Ceramide-1-phosphate (C1P) is a bioactive sphingolipid that regulates pro-inflammatory eicosanoid production. Whether C1P also regulates autophagy and inflammasome assembly/activation is not known. Here we show that CPTP (a protein that traffics C1P from its site of phosphorylation in the trans-Golgi to target membranes) regulates both autophagy and inflammasome activation. In human epithelial cells, knockdown of CPTP (but not GLTP [glycolipid transfer protein]) or expression of C1P binding-site point mutants, stimulated an 8- to 10-fold increase in autophagosomes and altered endogenous LC3-II and SQSTM1/p62 protein expression levels. CPTP depletion-induced autophagy elevated early markers of autophagosome formation (Golgi-derived ATG9A-vesicles, WIPI1), required key phagophore assembly and elongation factors (ATG5, ATG7, ULK1), and suppressed MTOR phosphorylation and that of its downstream target, RPS6KB1/p70S6K. Wild-type CPTP overexpression exerted a protective effect against starvation-induced autophagy. In THP-1 macrophage-like surveillance cells, CPTP knockdown induced not only autophagy but also elevated CASP1/caspase-1 levels, and strongly increased IL1B/interleukin-1β and IL18 release via a NLRP3 (but not NLRC4) inflammasome-based mechanism, while only moderately increasing inflammatory (pyroptotic) cell death. Inflammasome assembly and activation stimulated by CPTP depletion were autophagy dependent. Elevation of intracellular C1P by exogenous C1P treatment (instead of CPTP inhibition) also induced autophagy and IL1B release. Our findings identify human CPTP as an endogenous regulator of early-stage autophagosome assembly and inflammasome-driven, pro-inflammatory cytokine generation and release.
Collapse
Affiliation(s)
| | - Yong-Guang Gao
- Hormel Institute, University of Minnesota, Austin, MN USA
| | - Yibin Deng
- Hormel Institute, University of Minnesota, Austin, MN USA
| | - Charles E. Chalfant
- Department of Biochemistry & Molecular Biology, VCU Massey Cancer Center, VCU Institute of Molecular Medicine, VCU Johnson Center for Critical Care and Pulmonary Research, Virginia Commonwealth University, Richmond, VA USA
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA USA
| | | | | |
Collapse
|
34
|
Osei-Adjei G, Gao H, Zhang Y, Zhang L, Yang W, Yang H, Yin Z, Huang X, Zhang Y, Zhou D. Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus. Oncotarget 2017; 8:65809-65822. [PMID: 29029474 PMCID: PMC5630374 DOI: 10.18632/oncotarget.19498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-associated gastroenteritis. Type III secretion system 1 (T3SS1) is one of the virulence determinants of this bacteria. T3SS1 expression is regulated by ToxR and CalR. ToxR represses the transcription of T3SS1 genes via activation of CalR, which acts as a transcriptional repressor of T3SS1 genes. However, the transcriptional regulation mechanisms have not been elucidated. As showing in the present work, ToxR binds to the promoter DNA region of calR to activate its transcription. CalR occupies the promoter-proximal regions of each detected target operons in T3SS1 loci to repress their transcription, and thereby inhibiting T3SS1-dependent cytotoxicity. Moreover, a feedback CalR inhibits toxR and its own gene in a direct manner. Collectively, this work reported an interesting gene regulatory network involving the reciprocal regulation of ToxR and CalR, and their regulation on T3SS1 genes transcription in V. parahaemolyticus.
Collapse
Affiliation(s)
| | - He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Lingyu Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinxiang Huang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
35
|
de Souza Santos M, Salomon D, Orth K. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus. PLoS Pathog 2017. [PMID: 28640881 PMCID: PMC5481031 DOI: 10.1371/journal.ppat.1006438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH) oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS) production using the Type III Secretion System 2 (T3SS2) effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires. Appl Environ Microbiol 2017; 83:AEM.00737-17. [PMID: 28432099 DOI: 10.1128/aem.00737-17] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a newly emerging shrimp disease that has severely damaged the global shrimp industry. AHPND is caused by toxic strains of Vibrio parahaemolyticus that have acquired a "selfish plasmid" encoding the deadly binary toxins PirAvp/PirBvp To better understand the repertoire of virulence factors in AHPND-causing V. parahaemolyticus, we conducted a comparative analysis using the genome sequences of the clinical strain RIMD2210633 and of environmental non-AHPND and toxic AHPND isolates of V. parahaemolyticus Interestingly, we found that all of the AHPND strains, but none of the non-AHPND strains, harbor the antibacterial type VI secretion system 1 (T6SS1), which we previously identified and characterized in the clinical isolate RIMD2210633. This finding suggests that the acquisition of this T6SS might confer to AHPND-causing V. parahaemolyticus a fitness advantage over competing bacteria and facilitate shrimp infection. Additionally, we found highly dynamic effector loci in the T6SS1 of AHPND-causing strains, leading to diverse effector repertoires. Our discovery provides novel insights into AHPND-causing pathogens and reveals a potential target for disease control.IMPORTANCE Acute hepatopancreatic necrosis disease (AHPND) is a serious disease that has caused severe damage and significant financial losses to the global shrimp industry. To better understand and prevent this shrimp disease, it is essential to thoroughly characterize its causative agent, Vibrio parahaemolyticus Although the plasmid-encoded binary toxins PirAvp/PirBvp have been shown to be the primary cause of AHPND, it remains unknown whether other virulent factors are commonly present in V. parahaemolyticus and might play important roles during shrimp infection. Here, we analyzed the genome sequences of clinical, non-AHPND, and AHPND strains to characterize their repertoires of key virulence determinants. Our studies reveal that an antibacterial type VI secretion system is associated with the AHPND strains and differentiates them from non-AHPND strains, similar to what was seen with the PirA/PirB toxins. We propose that T6SS1 provides a selective advantage during shrimp infections.
Collapse
|
37
|
De Nisco NJ, Kanchwala M, Li P, Fernandez J, Xing C, Orth K. The cytotoxic type 3 secretion system 1 of Vibrio rewires host gene expression to subvert cell death and activate cell survival pathways. Sci Signal 2017; 10:10/479/eaal4501. [PMID: 28512145 DOI: 10.1126/scisignal.aal4501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacterial effectors potently manipulate host signaling pathways. The marine bacterium Vibrio parahaemolyticus (V. para) delivers effectors into host cells through two type 3 secretion systems (T3SSs). T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate nonapoptotic cell death. To understand how the concerted action of T3SS1 effectors globally affects host cell signaling, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1+) to those in cells infected with V. para lacking T3SS1 (T3SS1-). Overall, the host transcriptional response to both T3SS1+ and T3SS1-V. para was rapid, robust, and temporally dynamic. T3SS1 rewired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors targeted host cells at the posttranslational level to cause cytotoxicity, V. para T3SS1 also precipitated a host transcriptional response that initially activated cell survival and repressed cell death networks. The increased expression of several key prosurvival transcripts mediated by T3SS1 depended on a host signaling pathway that is silenced posttranslationally later in infection. Together, our analysis reveals a complex interplay between the roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling.
Collapse
Affiliation(s)
- Nicole J De Nisco
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mohammed Kanchwala
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peng Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessie Fernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
38
|
Li Z, Deng H, Zhou Y, Tan Y, Wang X, Han Y, Liu Y, Wang Y, Yang R, Bi Y, Zhi F. Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection in Mice. Front Cell Infect Microbiol 2017; 7:170. [PMID: 28553617 PMCID: PMC5425466 DOI: 10.3389/fcimb.2017.00170] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022] Open
Abstract
Bacteroides fragilis is an anaerobic, Gram-negative, commensal bacterium of the human gut. It plays an important role in promoting the maturation of the immune system, as well as suppressing abnormal inflammation. Many recent studies have focused on the relationship between B. fragilis and human immunity, and indicate that B. fragilis has many useful probiotic effects. As inhibition of intestinal pathogens is an important characteristic of probiotic strains, this study examined whether B. fragilis could inhibit pathogenic bacteria. Results showed that Vibrio parahaemolyticus was inhibited by B. fragilis in vitro, and that B. fragilis could protect both RAW 264.7 and LoVo cells from damage caused by V. parahaemolyticus. Using in vivo imaging, we constructed a light-emitting V. parahaemolyticus strain and showed that B. fragilis might shorten the colonization time and reduce the number of lux-expressing bacteria in a mouse model. These results provide useful information for developing B. fragilis into a probiotic product, and also indicate that this commensal bacterium might aid in the clinical treatment of gastroenteritis caused by V. parahaemolyticus.
Collapse
Affiliation(s)
- Zhengchao Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Huimin Deng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yangyang Liu
- Guangzhou ZhiYi Biotechnology Co. Ltd.Guangzhou, China
| | - Ye Wang
- Guangzhou ZhiYi Biotechnology Co. Ltd.Guangzhou, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
39
|
Blondel CJ, Park JS, Hubbard TP, Pacheco AR, Kuehl CJ, Walsh MJ, Davis BM, Gewurz BE, Doench JG, Waldor MK. CRISPR/Cas9 Screens Reveal Requirements for Host Cell Sulfation and Fucosylation in Bacterial Type III Secretion System-Mediated Cytotoxicity. Cell Host Microbe 2016; 20:226-37. [PMID: 27453484 DOI: 10.1016/j.chom.2016.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/24/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
Abstract
Type III secretion systems (T3SSs) inject bacterial effector proteins into host cells and underlie the virulence of many gram-negative pathogens. Studies have illuminated bacterial factors required for T3SS function, but the required host processes remain largely undefined. We coupled CRISPR/Cas9 genome editing technology with the cytotoxicity of two Vibrio parahaemolyticus T3SSs (T3SS1 and T3SS2) to identify human genome disruptions conferring resistance to T3SS-dependent cytotoxicity. We identity non-overlapping genes required for T3SS1- and T3SS2-mediated cytotoxicity. Genetic ablation of cell surface sulfation reduces bacterial adhesion and thereby alters the kinetics of T3SS1-mediated cytotoxicity. Cell surface fucosylation is required for T3SS2-dependent killing, and genetic inhibition of fucosylation prevents membrane insertion of the T3SS2 translocon complex. These findings reveal the importance of ubiquitous surface modifications for T3SS function, potentially explaining the broad tropism of V. parahaemolyticus, and highlight the utility of genome-wide CRISPR/Cas9 screens to discover processes underlying host-pathogen interactions.
Collapse
Affiliation(s)
- Carlos J Blondel
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph S Park
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Boston University School of Medicine, Boston, MA 02118, USA
| | - Troy P Hubbard
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alline R Pacheco
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Carole J Kuehl
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Brigid M Davis
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Abstract
Bacterial pathogens encode a wide variety of effectors and toxins that hijack host cell structure and function. Of particular importance are virulence factors that target actin cytoskeleton dynamics critical for cell shape, stability, motility, phagocytosis, and division. In addition, many bacteria target organelles of the general secretory pathway (e.g., the endoplasmic reticulum and the Golgi complex) and recycling pathways (e.g., the endolysosomal system) to establish and maintain an intracellular replicative niche. Recent research on the biochemistry and structural biology of bacterial effector proteins and toxins has begun to shed light on the molecular underpinnings of these host-pathogen interactions. This exciting work is revealing how pathogens gain control of the complex and dynamic host cellular environments, which impacts our understanding of microbial infectious disease, immunology, and human cell biology.
Collapse
Affiliation(s)
- Alyssa Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Didi Chen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| |
Collapse
|
41
|
Serogroup, virulence, and molecular traits of Vibrio parahaemolyticus isolated from clinical and cockle sources in northeastern Thailand. INFECTION GENETICS AND EVOLUTION 2016; 39:212-218. [DOI: 10.1016/j.meegid.2016.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 01/07/2023]
|
42
|
Silveira DR, Milan C, Rosa JVD, Timm CD. Fatores de patogenicidade de Vibrio spp. de importância em doenças transmitidas por alimentos. ARQUIVOS DO INSTITUTO BIOLÓGICO 2016. [DOI: 10.1590/1808-1657001252013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO: As bactérias do gênero Vibrio habitam ambiente tipicamente marinho e estuarino, sendo comumente isoladas de pescados. As principais espécies de Vibrio reportadas como agentes de infecções em humanos são V. vulnificus , V. parahaemolyticus , V. cholerae e V. mimicus . V. vulnificus é considerado o mais perigoso, podendo causar septicemia e levar à morte. V. parahaemolyticus é um patógeno importante nas regiões costeiras de clima temperado e tropical em todo o mundo e tem sido responsável por casos de gastroenterites associadas ao consumo de peixes, moluscos e crustáceos marinhos. V. cholerae causa surtos, epidemias e pandemias relacionados com ambientes estuarinos. V. mimicus pode causar episódios esporádicos de gastroenterite aguda e infecções de ouvido. A patogenicidade das bactérias está ligada à habilidade do micro-organismo em iniciar uma doença (incluindo entrada, colonização e multiplicação no corpo humano). Para que isso ocorra, os micro-organismos fazem uso de diversos fatores. O objetivo desta revisão foi sintetizar o conhecimento disponível na literatura sobre os fatores de patogenicidade de V. vulnificus , V. parahaemolyticus , V. cholerae e V. mimicus .
Collapse
|
43
|
Liu M, Chen S. A novel adhesive factor contributing to the virulence of Vibrio parahaemolyticus. Sci Rep 2015; 5:14449. [PMID: 26399174 PMCID: PMC4585867 DOI: 10.1038/srep14449] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/26/2015] [Indexed: 11/25/2022] Open
Abstract
Bacterial adhesins play a pivotal role in the tight bacteria-host cells attachment to initiate the downstream processes and bacterial infection of hosts. In this study, we identified a novel adhesin, VpadF in V. parahaemolyticus. Deletion of VpadF in V. parahaemolyticus markedly impaired its attachment and cytotoxicity to epithelial cells, as well as attenuated the virulence in murine model. Biochemical studies revealed that VpadF recognized both fibronectin and fibrinogen. The binding of VpadF to these two host receptors was mainly dependent on the its fifth bacterial immunoglobulin-like group domain and its C-terminal tail. Our finding suggested that VpadF is a major virulence factor of V. parahaemolyticus and a potential good candidate for V. parahaemolyticus infection control for both vaccine development and drug target.
Collapse
Affiliation(s)
- Ming Liu
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sheng Chen
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
44
|
Chen Y, Huang X, Wang R, Wang S, Shi N. The structure of a GFP-based antibody (fluorobody) to TLH, a toxin from Vibrio parahaemolyticus. Acta Crystallogr F Struct Biol Commun 2015; 71:913-8. [PMID: 26144238 PMCID: PMC4498714 DOI: 10.1107/s2053230x15008845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/06/2015] [Indexed: 01/27/2023] Open
Abstract
A fluorobody is a manmade hybrid molecule that is composed of green fluorescent protein (GFP) and a fragment of antibody, which combines the affinity and specificity of an antibody with the visibility of a GFP. It is able to provide a real-time indication of binding while avoiding the use of tags and secondary binding reagents. Here, the expression, purification and crystal structure of a recombinant fluorobody for TLH (thermolabile haemolysin), a toxin from the lethal food-borne disease bacterium Vibrio parahaemolyticus, are presented. This is the first structure of a fluorobody to be reported. Crystals belonging to space group P4(3)2(1)2, with unit-cell parameters a = b = 63.35, c = 125.90 Å, were obtained by vapour diffusion in hanging drops and the structure was refined to an Rfree of 16.7% at 1.5 Å resolution. The structure shows a CDR loop of the antibody on the GFP scaffold.
Collapse
Affiliation(s)
- Yaoguang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, People’s Republic of China
| | - Xiaocheng Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, People’s Republic of China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Ning Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
45
|
Hazen TH, Lafon PC, Garrett NM, Lowe TM, Silberger DJ, Rowe LA, Frace M, Parsons MB, Bopp CA, Rasko DA, Sobecky PA. Insights into the environmental reservoir of pathogenic Vibrio parahaemolyticus using comparative genomics. Front Microbiol 2015; 6:204. [PMID: 25852665 PMCID: PMC4371758 DOI: 10.3389/fmicb.2015.00204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/26/2015] [Indexed: 12/29/2022] Open
Abstract
Vibrio parahaemolyticus is an aquatic halophilic bacterium that occupies estuarine and coastal marine environments, and is a leading cause of seafood-borne food poisoning cases. To investigate the environmental reservoir and potential gene flow that occurs among V. parahaemolyticus isolates, the virulence-associated gene content and genome diversity of a collection of 133 V. parahaemolyticus isolates were analyzed. Phylogenetic analysis of housekeeping genes, and pulsed-field gel electrophoresis, demonstrated that there is genetic similarity among V. parahaemolyticus clinical and environmental isolates. Whole-genome sequencing and comparative analysis of six representative V. parahaemolyticus isolates was used to identify genes that are unique to the clinical and environmental isolates examined. Comparative genomics demonstrated an O3:K6 environmental isolate, AF91, which was cultured from sediment collected in Florida in 2006, has significant genomic similarity to the post-1995 O3:K6 isolates. However, AF91 lacks the majority of the virulence-associated genes and genomic islands associated with these highly virulent post-1995 O3:K6 genomes. These findings demonstrate that although they do not contain most of the known virulence-associated regions, some V. parahaemolyticus environmental isolates exhibit significant genetic similarity to clinical isolates. This highlights the dynamic nature of the V. parahaemolyticus genome allowing them to transition between aquatic and host-pathogen states.
Collapse
Affiliation(s)
- Tracy H Hazen
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA ; Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Patricia C Lafon
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Nancy M Garrett
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Tiffany M Lowe
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | | | - Lori A Rowe
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Michael Frace
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Michele B Parsons
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - Cheryl A Bopp
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Atlanta, GA, USA
| | - David A Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, University of Maryland Baltimore, MD, USA
| | | |
Collapse
|
46
|
Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 2015; 6:144. [PMID: 25798132 PMCID: PMC4350439 DOI: 10.3389/fmicb.2015.00144] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/07/2015] [Indexed: 12/02/2022] Open
Abstract
Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yanfang Zhong
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Xiaosong Gu
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Jun Yuan
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Abdullah F Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
47
|
Yu Y, Fang L, Zhang Y, Sheng H, Fang W. VgrG2 of type VI secretion system 2 of Vibrio parahaemolyticus induces autophagy in macrophages. Front Microbiol 2015; 6:168. [PMID: 25784905 PMCID: PMC4345815 DOI: 10.3389/fmicb.2015.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
Type VI secretion system (T6SS) is a macromolecular transenvelope machine encoded within the genomes of several proteobacteria species. Vibrio parahaemolyticus contains two putative T6SS systems, VpT6SS1 and VpT6SS2, both contributing to adherence to Caco-2 and/or HeLa cells. However, it remains unknown if these systems are involved in cellular responses. In order to exclude the effects of other virulence factors known to induce cytotoxicity or autophagy, a triple deletion mutant dTTT (with deletion of tdh, and T3SS1 and T3SS2 structural protein genes) was used as the parent strain to construct deletion mutants of T6SS genes. The mutant dTTT-ΔicmF2, but not dTTT-ΔicmF1, reduced autophagic response upon 4 h of infection of the macrophage. Further attempt was made to search for the possible effector proteins that might be responsible for direct induction of autophagy by deletion of the genes encoding Hcp2 and VgrG2, two putative translocons of T6SS2 of V. parahaemolyticus. Deletion of either hcp2 or vgrG2 did reduce the autophagic response. However, increased LC3-II lipidation was seen only in the macrophage cells transfected with pVgrG2, but not with pHcp2. Chloroquinine treatment increased accumulation of LC3-II, suggesting that VgrG2 enhanced autophagic flux. The fact that vgrG2 deletion led to reduced level of intracellular cAMP suggests a possible role of cAMP signaling in autophagic responses to the bacterium. We conclude that VgrG2 of V. parahaemolyticus induces autophagy in macrophages.
Collapse
Affiliation(s)
- Ying Yu
- Institute of Health Food, Zhejiang Academy of Medical Sciences, Hangzhou, China ; Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Lihua Fang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Hongxia Sheng
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
James LR, Xu ZQ, Sluyter R, Hawksworth EL, Kelso C, Lai B, Paterson DJ, de Jonge MD, Dixon NE, Beck JL, Ralph SF, Dillon CT. An investigation into the interactions of gold nanoparticles and anti-arthritic drugs with macrophages, and their reactivity towards thioredoxin reductase. J Inorg Biochem 2015; 142:28-38. [DOI: 10.1016/j.jinorgbio.2014.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
|
49
|
El-Malah SS, Yang Z, Hu M, Li Q, Pan Z, Jiao X. Vibrio parahaemolyticus strengthens their virulence through modulation of cellular reactive oxygen species in vitro. Front Cell Infect Microbiol 2014; 4:168. [PMID: 25566508 PMCID: PMC4269196 DOI: 10.3389/fcimb.2014.00168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/14/2014] [Indexed: 02/05/2023] Open
Abstract
Vibrio parahaemolyticus (Vp) is one of the emergent food-borne pathogens that are commensally associated with various shellfish species throughout the world. It is strictly environmental and many strains are pathogenic to humans. The virulent strains cause distinct diseases, including wound infections, septicemia, and most commonly, acute gastroenteritis, which is acquired through the consumption of raw or undercooked seafood, especially shellfish. Vp has two type three secretion systems (T3SSs), which triggering its cytotoxicity and enterotoxicity via their effectors. To better understand the pathogenesis of Vp, we established a cell infection model in vitro using a non-phagocytic cell line. Caco-2 cells were infected with different strains of Vp (pandemic and non-pandemic strains) and several parameters of cytotoxicity were measured together with adhesion and invasion indices, which reflect the pathogen's virulence. Our results show that Vp adheres to cell monolayers and can invade non-phagocytic cells. It also survives and persists in non-phagocytic cells by modulating reactive oxygen species (ROS), allowing its replication, and resulting in complete cellular destruction. We conclude that the pathogenicity of Vp is based on its capacities for adhesion and invasion. Surprisingly's; enhanced of ROS resistance period could promote the survival of Vp inside the intestinal tract, facilitating tissue infection by repressing the host's oxidative stress response.
Collapse
Affiliation(s)
- Shimaa S El-Malah
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Zhenquan Yang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China ; College of Food Science and Engineering, Yangzhou University Yangzhou, China
| | - Maozhi Hu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China ; Testing Center, Yangzhou University Yangzhou, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| |
Collapse
|
50
|
Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol 2014; 5:705. [PMID: 25566219 PMCID: PMC4263241 DOI: 10.3389/fmicb.2014.00705] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022] Open
Abstract
Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques.
Collapse
Affiliation(s)
- Vengadesh Letchumanan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Bandar Sunway, Malaysia ; Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Bandar Sunway, Malaysia
| |
Collapse
|