1
|
Metko D, Mehta S, Huang R, Mukovozov I. Adalimumab-Induced Vitiligo: A Systematic Review. J Cutan Med Surg 2025; 29:98-99. [PMID: 39445461 DOI: 10.1177/12034754241292642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Affiliation(s)
- Dea Metko
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Shanti Mehta
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ryan Huang
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
3
|
Ge J, Yin X, Chen L. Regulatory T cells: masterminds of immune equilibrium and future therapeutic innovations. Front Immunol 2024; 15:1457189. [PMID: 39290699 PMCID: PMC11405253 DOI: 10.3389/fimmu.2024.1457189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Regulatory T cells (Tregs), a subset of CD4+T cells marked by the expression of the transcription factor forkhead box protein 3 (Foxp3), are pivotal in maintaining immune equilibrium and preventing autoimmunity. In our review, we addressed the functional distinctions between Foxp3+Tregs and other T cells, highlighting their roles in autoimmune diseases and cancer. We uncovered the dual nature of Tregs: they prevented autoimmune diseases by maintaining self-tolerance while contributing to tumor evasion by suppressing anti-tumor immunity. This study underscored the potential for targeted therapeutic strategies, such as enhancing Treg activity to restore balance in autoimmune diseases or depleting Foxp3+Tregs to augment anti-tumor immune responses in cancer. These insights laid the groundwork for future research and clinical applications, emphasizing the critical role of Foxp3+Tregs in immune regulation and the advancement of next-generation immunotherapies.
Collapse
Affiliation(s)
- Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xuan Yin
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
4
|
Korde SB, Pillewan SR, Dumbre SR, Bandgar AR, Shinde PS, Gairola S, Nikam VS. Significance of Bacillus Calmette-Guerin (BCG) vaccine intervention for patients with Type 1 Diabetes (T1D): A systematic review and meta-analysis. Diabetes Metab Syndr 2024; 18:103102. [PMID: 39173532 DOI: 10.1016/j.dsx.2024.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Immunotherapy is an emerging therapeutic modality for many autoimmune, oncology, and infectious diseases to cure or prevent the underlying causes. Several immunotherapeutic agents are investigated for their beneficial potential in patients with diabetes. However, none have culminated into a successful therapy. The present comprehensive meta-analysis and systematic review covers the last two decades of historical research evaluating the Bacillus Calmette-Guerin (BCG) vaccine as an immunotherapeutic agent in diabetes, along with updated information on similar recent publications. METHOD A total of 278 articles were retrieved through literature databases, and after applying inclusion and exclusion criteria as per PRISMA guidelines, seven studies were selected for meta-analysis using Cochrane Q statistics. RESULTS Our meta-analysis revealed marginal benefits, lowering glycosylated/glycated haemoglobin (HbA1C) levels and glutamic-acid-decarboxylase (GAD) autoantibodies in BCG treated people with Type 1 Diabetes (T1D) compared to the matched control individuals. The BCG intervention found to be ineffective in regulating C-peptide (connecting peptide) and clinical remission (CR) i.e. improved glycemic regulation, though beneficial tendency was observed. CONCLUSION Our systematic review and meta-analysis revealed benefits of BCG vaccine intervention in T1D patients, including improved HbA1C and GAD autoantibody levels. However, the study has several limitations stemming from BCG vaccine-related factors and patient characteristics. Therefore, a large clinical trial with an enhanced study design is needed to validate the immunity-related benefits of the BCG vaccine for glucose metabolism in patients with T1D.
Collapse
Affiliation(s)
- Sunil B Korde
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, Maharashtra, India
| | - Smita R Pillewan
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, Maharashtra, India
| | - Sanket R Dumbre
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, Maharashtra, India
| | - Anjali R Bandgar
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, Maharashtra, India
| | - Prajakta S Shinde
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, Maharashtra, India
| | - Sunil Gairola
- Serum Institute of India Private Ltd., Pune 411028, Maharashtra, India
| | - Vandana S Nikam
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, Maharashtra, India.
| |
Collapse
|
5
|
Park JY, Choe YJ, Lim Y, Kim H, Kim J. Association between the incidence of type 1 diabetes mellitus and tuberculosis or bacillus Calmette-Guérin immunization in children and adolescents. Ann Pediatr Endocrinol Metab 2023; 28:251-257. [PMID: 38173381 PMCID: PMC10765028 DOI: 10.6065/apem.2244254.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE The correlation between the incidence of type 1 diabetes mellitus (T1DM) and tuberculosis or bacillus Calmette-Guérin (BCG) vaccination rate in individuals aged <15 years was investigated using worldwide data. METHODS The incidence of T1DM, rate of BCG vaccination, and incidence of tuberculosis were obtained from the Diabetes Atlas 9th edition of the International Diabetes Federation and the Global Health Observatory data repository of the World Health Organization. Gross domestic product (GDP) per capita and population data by country were obtained from the World Bank and United Nations, respectively. RESULTS GDP per capita negatively correlated with the incidence of tuberculosis and positively correlated with the incidence of T1DM (coefficient=-0.630 and 0.596, respectively; all P<0.001). The incidence of T1DM and tuberculosis was significantly associated with the Organisation for Economic Cooperation and Development (OECD) status (P<0.001). After adjusting for GDP per capita, regional grouping, and OECD status, the incidence of T1DM negatively correlated with that of tuberculosis (R2 =0.729, P=0.009). However, there was no association between the BCG vaccination rate and incidence of T1DM (P=0.890). CONCLUSION There was a negative correlation between the incidence of tuberculosis and T1DM in children and adolescents aged <15 years at the country level.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Korea
| | - Young June Choe
- Department of Pediatrics, Korea University Anam Hospital, Seoul, Korea
| | - Yaeji Lim
- Department of Applied Statistics, Chung-Ang University, Seoul, Korea
| | - Hyunsung Kim
- Department of Applied Statistics, Chung-Ang University, Seoul, Korea
| | - Jaehyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Sharifkhodaei Z, Liu CY, Girish N, Huang Y, Punit S, Washington MK, Polk DB. Colitis-induced upregulation of tumor necrosis factor receptor-2 (TNFR2) terminates epithelial regenerative signaling to restore homeostasis. iScience 2023; 26:107829. [PMID: 37736049 PMCID: PMC10510063 DOI: 10.1016/j.isci.2023.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Colonic epithelial repair is a key determinant of health. Repair involves changes in epithelial differentiation, an extensive proliferative response, and upregulation of regeneration-associated "fetal-like" transcripts, including Ly6a (Sca-1), that represent Yap1 and interferon targets. However, little is known about how this regenerative program terminates and how homeostasis is restored during injury and inflammation. Here we show that, after the initial entry into the regenerative state, the subsequent upregulation of tumor necrosis factor (TNF) receptor 2 (R2, TNFR2, Tnfrsf1b) clears the regenerative signaling and restores homeostatic patterns of epithelial differentiation. Targeted deletion of epithelial TNFR2 in vivo and in colonoid cultures revealed persistent expression of Ly6a, hyperproliferation, and reduced secretory differentiation. Moreover, mice lacking epithelial TNFR2 also failed to complete colon ulcer healing, suggesting that partial resolution of regenerative signaling is essential for the completion of the repair process. These results demonstrate how epithelial cells dynamically leverage a colitis-associated cytokine to choreograph repair.
Collapse
Affiliation(s)
- Zohreh Sharifkhodaei
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Cambrian Y. Liu
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Nandini Girish
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Ying Huang
- The Saban Research Institute, Division of Pediatric Gastroenterology, Hepatology Nutrition, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Shivesh Punit
- The Saban Research Institute, Division of Pediatric Gastroenterology, Hepatology Nutrition, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - M. Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - D. Brent Polk
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
7
|
Chen Y, Jiang M, Chen X. Therapeutic potential of TNFR2 agonists: a mechanistic perspective. Front Immunol 2023; 14:1209188. [PMID: 37662935 PMCID: PMC10469862 DOI: 10.3389/fimmu.2023.1209188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
TNFR2 agonists have been investigated as potential therapies for inflammatory diseases due to their ability to activate and expand immunosuppressive CD4+Foxp3+ Treg cells and myeloid-derived suppressor cells (MDSCs). Despite TNFR2 being predominantly expressed in Treg cells at high levels, activated effector T cells also exhibit a certain degree of TNFR2 expression. Consequently, the role of TNFR2 signaling in coordinating immune or inflammatory responses under different pathological conditions is complex. In this review article, we analyze possible factors that may determine the therapeutic outcomes of TNFR2 agonism, including the levels of TNFR2 expression on different cell types, the biological properties of TNFR2 agonists, and disease status. Based on recent progress in the understanding of TNFR2 biology and the study of TNFR2 agonistic agents, we discuss the future direction of developing TNFR2 agonists as a therapeutic agents.
Collapse
Affiliation(s)
- Yibo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Mengmeng Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, Macau SAR, China
| |
Collapse
|
8
|
Bianchi A, De Castro Silva I, Deshpande NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS, Saigh SJ, Wieder E, Rafie CI, Dosch AR, Zhou Z, Umland O, Amirian H, Ogobuiro IC, Zhang J, Ban Y, Shiau C, Nagathihalli NS, Montgomery EA, Hwang WL, Brambilla R, Komanduri K, Villarino AV, Toska E, Stanger BZ, Gabrilovich DI, Merchant NB, Datta J. Cell-Autonomous Cxcl1 Sustains Tolerogenic Circuitries and Stromal Inflammation via Neutrophil-Derived TNF in Pancreatic Cancer. Cancer Discov 2023; 13:1428-1453. [PMID: 36946782 PMCID: PMC10259764 DOI: 10.1158/2159-8290.cd-22-1046] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Anna Bianchi
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Iago De Castro Silva
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nilesh U. Deshpande
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Samara Singh
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Siddharth Mehra
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vanessa T. Garrido
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xinyu Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luis A. Nivelo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Despina S. Kolonias
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Eric Wieder
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Christine I. Rafie
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Austin R. Dosch
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhiqun Zhou
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Haleh Amirian
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ifeanyichukwu C. Ogobuiro
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Zhang
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences; University of Miami Miller School of Medicine, Miami, FL, USA Miami, FL, USA
| | - Carina Shiau
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nagaraj S. Nagathihalli
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Elizabeth A. Montgomery
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William L. Hwang
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krishna Komanduri
- Department of Medicine, University of California San Francisco Health, San Francisco, CA, USA
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Nipun B. Merchant
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jashodeep Datta
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
9
|
Jamshidi P, Danaei B, Mohammadzadeh B, Arbabi M, Nayebzade A, Sechi LA, Nasiri MJ. BCG Vaccination and the Risk of Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Pathogens 2023; 12:pathogens12040581. [PMID: 37111467 PMCID: PMC10141056 DOI: 10.3390/pathogens12040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Type 1 diabetes mellitus (T1D) is an autoimmune disease characterized by progressive and irreversible autoimmune destruction of pancreatic beta cell islets, resulting in absolute insulin deficiency. To date, several epidemiologic and observational studies have evaluated the possible impact of BCG vaccination on T1D development, but the results are controversial. To elucidate this issue, we aimed to conduct a systematic review and meta-analysis of published cohort studies in this field. (2) Methods: A systematic search was performed for relevant studies published up to 20 September 2022 using Pubmed/Medline, Embase, and Scopus. Cohort studies, containing original information about the association between T1D and BCG vaccination, were included for further analysis. Pooled estimates and 95% confidence intervals (CI) for the risk ratio of T1D in BCG-vaccinated individuals compared to unvaccinated ones were assessed using the fixed effect model. (3) Results: Out of 630 potentially relevant articles, five cohort studies met the inclusion criteria. The total population of all included studies was 864,582. The overall pooled risk ratio of T1D development in BCG vaccinated and unvaccinated individuals was found to be 1.018 (95% CI 0.908-1.141, I2: 0%). (4) Conclusions: Our study revealed no protective or facilitative effect of prior BCG vaccination in T1D development.
Collapse
Affiliation(s)
- Parnian Jamshidi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Center of Public Health, Environmental and Occupational Hazards Control, Shahid Beheshti University of Medical Science, Tehran 1985717443, Iran
| | - Bardia Danaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Benyamin Mohammadzadeh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mahta Arbabi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Amirhossein Nayebzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- SC Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| |
Collapse
|
10
|
Plocica J, Guo F, Das JK, Kobayashi KS, Ficht TA, Alaniz RC, Song J, de Figueiredo P. Engineering live attenuated vaccines: Old dogs learning new tricks. J Transl Autoimmun 2023; 6:100198. [PMID: 37090898 PMCID: PMC10113845 DOI: 10.1016/j.jtauto.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Autoimmune diseases such as rheumatoid arthritis and type 1 diabetes are increasingly common global problems. Concerns about increases in the prevalence of such diseases and the limited efficacy of conventional treatment regimens necessitates new therapies to address these challenges. Autoimmune disease severity and dysbiosis are interconnected. Although probiotics have been established as a therapy to rebalance the microbiome and suppress autoimmune symptoms, these microbes tend to lack a number of advantageous qualities found in non-commensal bacteria. Through attenuation and genetic manipulation, these non-commensal bacteria have been engineered into recombinant forms that offer malleable platforms capable of addressing the immune imbalances found in RA and T1D. Such bacteria have been engineered to express valuable gene products known to suppress autoimmunity such as anti-inflammatory cytokines, autoantigens, and enzymes synthesizing microbial metabolites. This review will highlight current and emerging trends in the field and discuss how they may be used to prevent and control autoimmune diseases.
Collapse
Affiliation(s)
- Julia Plocica
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Fengguang Guo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Koichi S. Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Department of Immunology, Graduate School of Medicine, Hokkaido University Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
- Institute of Vaccine Research and Development, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77845, USA
| | - Robert C. Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77845, USA
| |
Collapse
|
11
|
Halder S, Chatterjee S. Bistability regulates TNFR2-mediated survival and death of T-regulatory cells. J Biol Phys 2023; 49:95-119. [PMID: 36780123 PMCID: PMC9958227 DOI: 10.1007/s10867-023-09625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/13/2023] [Indexed: 02/14/2023] Open
Abstract
A subgroup of T cells called T-regulatory cells (Tregs) regulates the body's immune responses to maintain homeostasis and self-tolerance. Tregs are crucial for preventing illnesses like cancer and autoimmunity. However, contrasting patterns of Treg frequency are observed in different autoimmune diseases. The commonality of tumour necrosis factor receptor 2 (TNFR2) defects and decrease in Treg frequency on the onset of autoimmunity demands an in-depth study of the TNFR2 pathway. To unravel this mystery, we need to study the mechanism of cell survival and death in Tregs. Here, we construct an ordinary differential equation (ODE)-based model to capture the mechanism of cell survival and apoptosis in Treg cells via TNFR2 signalling. The sensitivity analysis reveals that the input stimulus, the concentration of tumour necrosis factor (TNF), is the most sensitive parameter for the model system. The model shows that the cell goes into survival or apoptosis via bistable switching. Through hysteretic switching, the system tries to cope with the changing stimuli. In order to understand how stimulus strength and feedback strength influence cell survival and death, we compute bifurcation diagrams and obtain cell fate maps. Our results indicate that the elevated TNF concentration and increased c-Jun N-terminal kinase (JNK) phosphorylation are the major contributors to the death of T-regulatory cells. Biological evidence cements our hypothesis and can be controlled by reducing the TNF concentration. Finally, the system was studied under stochastic perturbation to see the effect of noise on the system's dynamics. We observed that introducing random perturbations disrupts the bistability, reducing the system's bistable region, which can affect the system's normal functioning.
Collapse
Affiliation(s)
- Suvankar Halder
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana India
| |
Collapse
|
12
|
Mora VP, Loaiza RA, Soto JA, Bohmwald K, Kalergis AM. Involvement of trained immunity during autoimmune responses. J Autoimmun 2022:102956. [DOI: 10.1016/j.jaut.2022.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
|
13
|
Popescu I, Snyder ME, Iasella CJ, Hannan SJ, Koshy R, Burke R, Das A, Brown MJ, Lyons EJ, Lieber SC, Chen X, Sembrat JC, Bhatt P, Deng E, An X, Linstrum K, Kitsios G, Konstantinidis I, Saul M, Kass DJ, Alder JK, Chen BB, Lendermon EA, Kilaru S, Johnson B, Pilewski JM, Kiss JE, Wells AH, Morris A, McVerry BJ, McMahon DK, Triulzi DJ, Chen K, Sanchez PG, McDyer JF. CD4 + T-Cell Dysfunction in Severe COVID-19 Disease Is Tumor Necrosis Factor-α/Tumor Necrosis Factor Receptor 1-Dependent. Am J Respir Crit Care Med 2022; 205:1403-1418. [PMID: 35348444 PMCID: PMC9875894 DOI: 10.1164/rccm.202111-2493oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/24/2022] [Indexed: 01/29/2023] Open
Abstract
Rationale: Lymphopenia is common in severe coronavirus disease (COVID-19), yet the immune mechanisms are poorly understood. As inflammatory cytokines are increased in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we hypothesized a role in contributing to reduced T-cell numbers. Objectives: We sought to characterize the functional SARS-CoV-2 T-cell responses in patients with severe versus recovered, mild COVID-19 to determine whether differences were detectable. Methods: Using flow cytometry and single-cell RNA sequence analyses, we assessed SARS-CoV-2-specific responses in our cohort. Measurements and Main Results: In 148 patients with severe COVID-19, we found lymphopenia was associated with worse survival. CD4+ lymphopenia predominated, with lower CD4+/CD8+ ratios in severe COVID-19 compared with patients with mild disease (P < 0.0001). In severe disease, immunodominant CD4+ T-cell responses to Spike-1 (S1) produced increased in vitro TNF-α (tumor necrosis factor-α) but demonstrated impaired S1-specific proliferation and increased susceptibility to activation-induced cell death after antigen exposure. CD4+TNF-α+ T-cell responses inversely correlated with absolute CD4+ counts from patients with severe COVID-19 (n = 76; R = -0.797; P < 0.0001). In vitro TNF-α blockade, including infliximab or anti-TNF receptor 1 antibodies, strikingly rescued S1-specific CD4+ T-cell proliferation and abrogated S1-specific activation-induced cell death in peripheral blood mononuclear cells from patients with severe COVID-19 (P < 0.001). Single-cell RNA sequencing demonstrated marked downregulation of type-1 cytokines and NFκB signaling in S1-stimulated CD4+ cells with infliximab treatment. We also evaluated BAL and lung explant CD4+ T cells recovered from patients with severe COVID-19 and observed that lung T cells produced higher TNF-α compared with peripheral blood mononuclear cells. Conclusions: Together, our findings show CD4+ dysfunction in severe COVID-19 is TNF-α/TNF receptor 1-dependent through immune mechanisms that may contribute to lymphopenia. TNF-α blockade may be beneficial in severe COVID-19.
Collapse
Affiliation(s)
- Iulia Popescu
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Mark E. Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Carlo J. Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | | | - Ritchie Koshy
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Robin Burke
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Antu Das
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Mark J. Brown
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Emily J. Lyons
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Xiaoping Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Payal Bhatt
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Evan Deng
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Xiaojing An
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | | | | | | | - Daniel J. Kass
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Bill B. Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine
- Aging Institute
| | | | - Silpa Kilaru
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Bruce Johnson
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | | | - Alan H. Wells
- Division of Laboratory Medicine, Department of Pathology
| | - Alison Morris
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | | | | | - Kong Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Pablo G. Sanchez
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - John F. McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine
| |
Collapse
|
14
|
Melamud MM, Ermakov EA, Boiko AS, Parshukova DA, Sizikov AE, Ivanova SA, Nevinsky GA, Buneva VN. Serum cytokine levels of systemic lupus erythematosus patients in the presence of concomitant cardiovascular diseases. Endocr Metab Immune Disord Drug Targets 2022; 22:852-861. [PMID: 35249511 DOI: 10.2174/1871530322666220304214512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is known to be associated with an increased risk of cardiovascular diseases (CVD). SLE patients suffer from CVD 3.5 times more often than healthy people. Cytokine-mediated inflammation is actively involved in the development of cardiovascular pathology. OBJECTIVE Here, we analyzed serum levels of nine cytokines of steroids treated SLE patients depending on the presence of concomitant CVD. METHODS The levels of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-10, IL-21, tumor necrosis factor α (TNFα), B-cell activating factor (BAFF), and a proliferation-inducing ligand (APRIL) were analyzed using multiplex immunoassay. RESULTS In the total group of SLE patients (n=29), the concentrations of IL-6 and IL-10 were higher, and the APRIL level decreased compared with healthy donors (n=39, p<0.05). The same changes were observed in the group of patients without CVD (n=15): the levels of IL-6 and IL-10 increased, and the level of APRIL was lower than in healthy individuals (p<0.05). In the group of SLE patients with CVD (n=14), the concentrations of IL-4, IL-6, IL-10, and TNFα increased (p<0.05). Interestingly, the levels of TNFα and BAFF in SLE patients with CVD were higher than in patients without cardiovascular pathology. Thus, TNFα and BAFF levels were significantly altered in SLE with concomitant CVD compared to SLE without CVD. CONCLUSION These findings suggest that cytokine profiles in SLE with concomitant CVD and SLE without CVD are different, which should be considered in further research with large samples.
Collapse
Affiliation(s)
- Mark M Melamud
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgeny A Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasiia S Boiko
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Daria A Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alexey E Sizikov
- Department of Rheumatology, Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana A Ivanova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Georgy A Nevinsky
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentina N Buneva
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
15
|
Jin K, Parreau S, Warrington KJ, Koster MJ, Berry GJ, Goronzy JJ, Weyand CM. Regulatory T Cells in Autoimmune Vasculitis. Front Immunol 2022; 13:844300. [PMID: 35296082 PMCID: PMC8918523 DOI: 10.3389/fimmu.2022.844300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Blood vessels are indispensable for host survival and are protected from inappropriate inflammation by immune privilege. This protection is lost in patients with autoimmune vasculitides, a heterogeneous group of diseases causing damage to arteries, arterioles, and capillaries. Vasculitis leads to vascular wall destruction and/or luminal occlusion, resulting in hemorrhage and tissue ischemia. Failure in the quantity and quality of immunosuppressive regulatory T cells (Treg) has been implicated in the breakdown of the vascular immune privilege. Emerging data suggest that Treg deficiencies are disease-specific, affecting distinct pathways in distinct vasculitides. Mechanistic studies have identified faulty CD8+ Tregs in Giant Cell Arteritis (GCA), a vasculitis of the aorta and the large aortic branch vessels. Specifically, aberrant signaling through the NOTCH4 receptor expressed on CD8+ Treg cells leads to rerouting of intracellular vesicle trafficking and failure in the release of immunosuppressive exosomes, ultimately boosting inflammatory attack to medium and large arteries. In Kawasaki’s disease, a medium vessel vasculitis targeting the coronary arteries, aberrant expression of miR-155 and dysregulated STAT5 signaling have been implicated in undermining CD4+ Treg function. Explorations of mechanisms leading to insufficient immunosuppression and uncontrolled vascular inflammation hold the promise to discover novel therapeutic interventions that could potentially restore the immune privilege of blood vessels and pave the way for urgently needed innovations in vasculitis management.
Collapse
Affiliation(s)
- Ke Jin
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Simon Parreau
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Kenneth J. Warrington
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Matthew J. Koster
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Gerald J. Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jörg J. Goronzy
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M. Weyand
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Cornelia M. Weyand,
| |
Collapse
|
16
|
Alsughayyir J, Alshaiddi W, Alsubki R, Alshammary A, Basudan AM, Alfhili MA. Geraniin inhibits whole blood IFN-γ and IL-6 and promotes IL-1β and IL-8, and stimulates calcium-dependent and sucrose-sensitive erythrocyte death. Toxicol Appl Pharmacol 2022; 436:115881. [PMID: 35026210 DOI: 10.1016/j.taap.2022.115881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Correlations between circulating cytokine levels and disease states are well established, and pharmacological modulation of the immune response is thus an important aspect of the assessment of investigational new drugs. Moreover, chemotherapy-related anemia is a major obstacle in cancer treatment. Geraniin (GRN), a tannin extracted from Geranium and other plants, possesses promising antitumor potential. However, the effect of GRN on whole blood (WB) cytokine response and RBC physiology remains unexplored. Heparinized blood from consented, healthy adults was challenged with 100 ng/mL of lipopolysaccharide (LPS) with and without pretreatment with 10 μM of GRN for 24 h at 37 °C, and tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-8, and IL-10 were assayed by ELISA. Moreover, single-cell RBC suspensions were treated with 5-100 μM of GRN for 24 or 48 h at 37 °C and cytotoxicity and canonical eryptotic markers were examined by flow cytometry. It was revealed that GRN significantly attenuated LPS-induced IFN-γ levels, increased IL-1β, decreased IL-6 only in absence of LPS, and aggravated LPS-induced IL-8 while together with LPS significantly diminished IL-10. Furthermore, GRN induced dose-responsive, Ca2+-dependent, and sucrose-sensitive hemolysis, along with phosphatidylserine exposure and Ca2+ accumulation with no appreciable cell shrinkage or oxidative damage. GRN was also selectively toxic to platelets, significantly delayed reticulocyte maturation, and significantly disrupted leukocyte proportions. In conclusion, GRN regulates the WB cytokine response and promotes premature hemolysis and eryptosis. This study provides insights into the therapeutic utility of GRN in a highly relevant cellular model system.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Wafa Alshaiddi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Roua Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Amal Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed M Basudan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia.
| |
Collapse
|
17
|
Angelidou A, Pittet LF, Faustman D, Curtis N, Levy O. BCG vaccine's off-target effects on allergic, inflammatory, and autoimmune diseases: Worth another shot? J Allergy Clin Immunol 2022; 149:51-54. [PMID: 34673049 PMCID: PMC11688639 DOI: 10.1016/j.jaci.2021.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Asimenia Angelidou
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, Mass; Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Laure F Pittet
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia; Unit of Pediatric Infectious Diseases, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Children's Hospital, University Hospitals of Geneva, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Denise Faustman
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Department of Immunobiology, Massachusetts General Hospital, Boston, Mass
| | - Nigel Curtis
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Mass.
| |
Collapse
|
18
|
Doupis J, Kolokathis K, Markopoulou E, Efthymiou V, Festas G, Papandreopoulou V, Kallinikou C, Antikidou D, Gemistou G, Angelopoulos T. The Role of Pediatric BCG Vaccine in Type 1 Diabetes Onset. Diabetes Ther 2021; 12:2971-2976. [PMID: 34596880 PMCID: PMC8519972 DOI: 10.1007/s13300-021-01163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Bacille Calmette-Guérin (BCG) vaccination has shown promising therapeutic effects for type 1 diabetes (T1D). According to recent studies, immunometabolism modification and regulation of T lymphocytes constitute the proposed mechanisms by which BCG vaccination may delay T1D onset. Clinical trial evidence from Turkey supports that two to three doses of the BCG vaccine in childhood, with the first dose administered in the first year of life, may prevent T1D. In the same study, one or zero vaccinations appeared to have no effect in T1D onset prevention. In Greece, the BCG vaccine was administered in a single dose at the age of 9 years in elementary school. BCG vaccination was not performed on a mandatory basis, creating one BCG vaccinated and one non-vaccinated population. The aim of our study was to investigate the possible effect of a single dose of BCG vaccine, at the age of 9 years, on the time of T1D onset, in a population of BCG vaccinated and non-vaccinated patients with diagnosed T1D. METHODS To test this hypothesis, a survey through the Pan-Hellenic Federation of People with Diabetes (PFPD) was performed. In this observational, retrospective study, participating patients provided information regarding age, gender, time of diagnosis, and BCG vaccination status. Patients diagnosed with T1D before the age of 9 years were excluded from the analysis. RESULTS The final sample included 196 patients (73 male and 123 female) with a mean age of 42.2 ± 14.3 years and a mean duration of diabetes of 16.8 ± 12.9 years. Mean age of T1D diagnosis in the BCG vaccinated group was 24.0 ± 19.0 years, while the mean age of T1D diagnosis in the BCG non-vaccinated group was 21.5 ± 14.3 years (p = 0.03). No interaction was found between gender and the age of diagnosis for BCG vaccinated and unvaccinated patients (p = 0.86). CONCLUSION The results of our study suggest that a single dose of BCG vaccine, performed at the age of 9 years, may delay the onset of T1D by 2.5 years. Additional studies of children receiving multiple doses of BCG should be conducted to possibly prove prolongation of the disease-free interval.
Collapse
Affiliation(s)
- John Doupis
- Internal Medicine and Diabetes Department, Salamis Naval and Veterans Hospital, Salamis, Greece.
- Iatriko Paleou Falirou Medical Center, Diabetes Clinic, Athens, Greece.
| | | | - Eftychia Markopoulou
- Internal Medicine and Diabetes Department, Salamis Naval and Veterans Hospital, Salamis, Greece
| | - Vasiliki Efthymiou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, 11527, Athens, Greece
| | - George Festas
- Internal Medicine and Diabetes Department, Salamis Naval and Veterans Hospital, Salamis, Greece
| | | | | | - Despina Antikidou
- Iatriko Paleou Falirou Medical Center, Diabetes Clinic, Athens, Greece
| | - Golfo Gemistou
- Pan-Hellenic Federation of People with Diabetes, Athens, Greece
| | | |
Collapse
|
19
|
Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat Rev Rheumatol 2021; 17:487-504. [PMID: 34226727 DOI: 10.1038/s41584-021-00639-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Treatments that block tumour necrosis factor (TNF) have major beneficial effects in several autoimmune and rheumatic diseases, including rheumatoid arthritis. However, some patients do not respond to TNF inhibitor treatment and rare occurrences of paradoxical disease exacerbation have been reported. These limitations on the clinical efficacy of TNF inhibitors can be explained by the differences between TNF receptor 1 (TNFR1) and TNFR2 signalling and by the diverse effects of TNF on multiple immune cells, including FOXP3+ regulatory T cells. This basic knowledge sheds light on the consequences of TNF inhibitor therapies on regulatory T cells in treated patients and on the limitations of such treatment in the control of diseases with an autoimmune component. Accordingly, the next generation of drugs targeting TNF is likely to be based on agents that selectively block the binding of TNF to TNFR1 and on TNFR2 agonists. These approaches could improve the treatment of rheumatic diseases in the future.
Collapse
|
20
|
Randhi R, Damon M, Dixon KJ. Selective inhibition of soluble TNF using XPro1595 relieves pain and attenuates cerulein-induced pathology in mice. BMC Gastroenterol 2021; 21:243. [PMID: 34049483 PMCID: PMC8161932 DOI: 10.1186/s12876-021-01827-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 11/12/2022] Open
Abstract
Background Symptoms associated with acute pancreatitis can be debilitating, and treatment remains a challenge. This study aimed to investigate the efficacy of selectively inhibiting the soluble form of TNF (solTNF) using the biologic XPro1595 in a mouse model of acute pancreatitis. Methods Acute pancreatitis was induced in adult male C57Bl/6J mice by administering cerulein (8 injections of 50 µg/kg I.P., spaced an hour apart), with XPro1595 (10 mg/kg, S.C.) or vehicle being administered approximately 18 h after the last injection. Serum was collected 6 or 18 h after the last cerulein injection, pancreatic tissue was collected 2 and 7 days post-induction, and brain hippocampal tissue was collected at 7 days post-induction. The animal’s pain level was assessed 3, 5 and 7 days post-induction. Results The induction of acute pancreatitis promoted a strong increase in serum amylase levels, which had receded back to baseline levels by the next morning. XPro1595 treatment began after amylase levels had subsided at 18 h, and prevented pancreatic immune cell infiltration, that subsequently prevented tissue disruption and acinar cell death. These improvements in pathology were associated with a significant reduction in mechanical hypersensitivity (neuropathic pain). XPro1595 treatment also prevented an increase in hippocampal astrocyte reactivity, that may be associated with the prevention of neuropathic pain in this mouse model. Conclusion Overall, we observed that selectively inhibiting solTNF using XPro1595 improved the pathophysiological and neurological sequelae of cerulein-induced pancreatitis in mice, which provides support of its use in patients with pancreatitis.
Collapse
Affiliation(s)
- Rajasa Randhi
- Department of Surgery, Virginia Commonwealth University, 1101 E. Marshall St, Richmond, VA, 23298, USA
| | - Melissa Damon
- Department of Surgery, Virginia Commonwealth University, 1101 E. Marshall St, Richmond, VA, 23298, USA
| | - Kirsty J Dixon
- Department of Surgery, Virginia Commonwealth University, 1101 E. Marshall St, Richmond, VA, 23298, USA.
| |
Collapse
|
21
|
Yang Y, Islam MS, Hu Y, Chen X. TNFR2: Role in Cancer Immunology and Immunotherapy. Immunotargets Ther 2021; 10:103-122. [PMID: 33907692 PMCID: PMC8071081 DOI: 10.2147/itt.s255224] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-CTLA-4 (cytotoxic T lymphocyte antigen-4) and anti-PD-1/PD-L1 (programmed death-1/programmed death-ligand 1), represent a turning point in the cancer immunotherapy. However, only a minor fraction of patients could derive benefit from such therapy. Therefore, new strategies targeting additional immune regulatory mechanisms are urgently needed. CD4+Foxp3+ regulatory T cells (Tregs) represent a major cellular mechanism in cancer immune evasion. There is compelling evidence that tumor necrosis factor (TNF) receptor type II (TNFR2) plays a decisive role in the activation and expansion of Tregs and other types of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs). Furthermore, TNFR2 is also expressed by some tumor cells. Emerging experimental evidence indicates that TNFR2 may be a therapeutic target to enhance naturally occurring or immunotherapeutic-triggered anti-tumor immune responses. In this article, we discuss recent advances in the understanding of the mechanistic basis underlying the Treg-boosting effect of TNFR2. The role of TNFR2-expressing highly suppressive Tregs in tumor immune evasion and their possible contribution to the non-responsiveness to checkpoint treatment are analyzed. Moreover, the role of TNFR2 expression on tumor cells and the impact of TNFR2 signaling on other types of cells that shape the immunological landscape in the tumor microenvironment, such as MDSCs, MSCs, ECs, EPCs, CD8+ CTLs, and NK cells, are also discussed. The reports revealing the effect of TNFR2-targeting pharmacological agents in the experimental cancer immunotherapy are summarized. We also discuss the potential opportunities and challenges for TNFR2-targeting immunotherapy.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Md Sahidul Islam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| |
Collapse
|
22
|
Coulson DJ, Bakhashab S, Latief JS, Weaver JU. MiR-126, IL-7, CXCR1/2 receptors, inflammation and circulating endothelial progenitor cells: The study on targets for treatment pathways in a model of subclinical cardiovascular disease (type 1 diabetes mellitus). J Transl Med 2021; 19:140. [PMID: 33858417 PMCID: PMC8051073 DOI: 10.1186/s12967-021-02785-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Background Type 1 diabetes (T1DM) is associated with premature cardiovascular disease (CVD) and a pro-inflammatory state whilst the proangiogenic miR-126-3p/-5p may play a role in CVD. Animal studies established miR-126 to be pro-angiogenic. We hypothesised miR-126-3p/-5p are reduced in T1DM whilst pro-inflammatory cytokines are increased. Methods 29 well controlled, T1DM patients without CVD and 20 healthy controls (HCs) were studied. MiR-126-3p/-5p were assayed in plasma and peripheral blood mononuclear cells (PBMCs) whilst Chemokine C-X-C Receptor 1/2 (CXCR1/2) mRNA in PBMCs by real-time quantitative PCR. Cytokines were assayed by the Mesoscale Discovery. Ingenuity Pathway Analysis (IPA) was used to predict target genes, cellular functions and pathological states regulated by miR-126-3p/-5p. IPA generated both direct and indirect causations between different targets and analysed whether these effects would be inhibitory or stimulatory based on the published evidence. Results T1DM patients had a relatively good diabetic control (HbA1c = 7.4 ± 0.7% or 57.3 ± 7.6 mmol/mol). Homeostatic cytokine IL-7, pro-inflammatory cytokines IL-8 and TNF-α, and vascular endothelial growth factor-C (VEGF-C) were increased in T1DM, versus HCs; p = 0.008, p = 0.003, p = 0.041 and p = 0.013 respectively. MiR-126-5p was significantly upregulated in PBMCs in T1DM versus HCs; p = 0.01, but not in plasma. MiR-126-3p was unchanged. CXCR1/2 were elevated in T1DM versus HCs; p = 0.009 and p < 0.001 respectively. MiR-126-5p was positively correlated with CXCR1/2, and with HbA1c whilst negatively correlated with circulating endothelial progenitor cells (CD34+CD133+CD45dim) and fibronectin adhesion assay in a combined group of T1DM patients and HCs; p = 0.028 p = 0.049 p = 0.035 p = 0.047 and p = 0.004 respectively. IPA predicted miR-126-5p to be anti-inflammatory through the inhibition of chemokine C–C motif ligand 27, chymotrypsin-like elastase 2A and IL-7, whilst miR-126-3p had no direct anti-inflammatory effect. Simultaneously IPA predicted IL-7 as the most upstream cytokine target. Conclusions T1DM without apparent CVD or diabetic complications is an inflammatory state characterised not only by raised pro-inflammatory cytokines but also by increased receptor CXCR1/2 and miR-126-5p. MiR-126-5p upregulation may represent a compensatory response. Pro-miR-126-5p therapies or anti-IL-7 therapies may be a new option to reduce both inflammation and CVD risk in T1DM. Further research is required in a large prospective study in patients with T1DM.
Collapse
Affiliation(s)
- David J Coulson
- Translational & Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Sherin Bakhashab
- Biochemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80218, Jeddah, Saudi Arabia
| | - Jevi Septyani Latief
- Translational & Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jolanta U Weaver
- Translational & Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK. .,Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle Upon Tyne, NE9 6SH, UK. .,Vascular Biology and Medicine, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
23
|
Inoue M, Yamashita K, Tsuji Y, Miki M, Amano S, Okumura T, Kuge K, Tone T, Enomoto S, Yoshimine C, Morita Y, Ando D, Kamada H, Mikami N, Tsutsumi Y, Tsunoda SI. Characterization of a TNFR2-Selective Agonistic TNF-α Mutant and Its Derivatives as an Optimal Regulatory T Cell Expander. THE JOURNAL OF IMMUNOLOGY 2021; 206:1740-1751. [PMID: 33782090 DOI: 10.4049/jimmunol.2000871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/02/2021] [Indexed: 12/26/2022]
Abstract
Regulatory T cells (Tregs) are a subpopulation of lymphocytes that play a role in suppressing and regulating immune responses. Recently, it was suggested that controlling the functions and activities of Tregs might be applicable to the treatment of human diseases such as autoimmune diseases, organ transplant rejection, and graft-versus-host disease. TNF receptor type 2 (TNFR2) is a target molecule that modulates Treg functions. In this study, we investigated the role of TNFR2 signaling in the differentiation and activation of mouse Tregs. We previously reported the generation of a TNFR2-selective agonist TNF mutant, termed R2agoTNF, by using our unique cytokine modification method based on phage display. R2agoTNF activates cell signaling via mouse TNFR2. In this study, we evaluated the efficacy of R2agoTNF for the proliferation and activation of Tregs in mice. R2agoTNF expanded and activated mouse CD4+CD25+ Tregs ex vivo. The structural optimization of R2agoTNF by internal cross-linking or IgG-Fc fusion selectively and effectively enhanced Treg expansion in vivo. Furthermore, the IgG-Fc fusion protein suppressed skin-contact hypersensitivity reactions in mice. TNFR2 agonists are expected to be new Treg expanders.
Collapse
Affiliation(s)
- Masaki Inoue
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan.,Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Kanako Yamashita
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Yuta Tsuji
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Midori Miki
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Shota Amano
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Taichi Okumura
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Koki Kuge
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Takao Tone
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Shota Enomoto
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Chinatsu Yoshimine
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Yuki Morita
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Daisuke Ando
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,National Institutes of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 65-0871, Japan; and
| | - Yasuo Tsutsumi
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shin-Ichi Tsunoda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan; .,Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Rivero-Calle I, Gómez-Rial J, Bont L, Gessner BD, Kohn M, Dagan R, Payne DC, Bruni L, Pollard AJ, García-Sastre A, Faustman DL, Osterhaus A, Butler R, Giménez Sánchez F, Álvarez F, Kaforou M, Bello X, Martinón-Torres F. TIPICO X: report of the 10th interactive infectious disease workshop on infectious diseases and vaccines. Hum Vaccin Immunother 2021; 17:759-772. [PMID: 32755474 PMCID: PMC7996078 DOI: 10.1080/21645515.2020.1788301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 11/03/2022] Open
Abstract
TIPICO is an expert meeting and workshop that aims to provide the most recent evidence in the field of infectious diseases and vaccination. The 10th Interactive Infectious Disease TIPICO workshop took place in Santiago de Compostela, Spain, on November 21-22, 2019. Cutting-edge advances in vaccination against respiratory syncytial virus, Streptococcus pneumoniae, rotavirus, human papillomavirus, Neisseria meningitidis, influenza virus, and Salmonella Typhi were discussed. Furthermore, heterologous vaccine effects were updated, including the use of Bacillus Calmette-Guérin (BCG) vaccine as potential treatment for type 1 diabetes. Finally, the workshop also included presentations and discussion on emergent virus and zoonoses, vaccine resilience, building and sustaining confidence in vaccination, approaches to vaccine decision-making, pros and cons of compulsory vaccination, the latest advances in decoding infectious diseases by RNA gene signatures, and the application of big data approaches.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Jose Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Louis Bont
- Wilhelmina’s Children’s Hospital University Medical Center Utrecht, The Netherlands
| | | | - Melvin Kohn
- Vaccines and Infectious Diseases Medical Affairs, Global Medical and Scientific Affairs, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel C. Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laia Bruni
- Cancer Epidemiology Research Program, Institut Català d’Oncologia (ICO) - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Andrew J. Pollard
- Oxford Vaccines Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise L. Faustman
- The Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Osterhaus
- Artemis One Health, Utrecht, The Netherlands
- Research Center Emerging Infections and Zoonoses, Hannover, Germany
| | - Robb Butler
- WHO Regional Office for Europe, Copenhagen, Denmark
| | | | | | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| |
Collapse
|
25
|
Amend A, Wickli N, Schäfer AL, Sprenger DTL, Manz RA, Voll RE, Chevalier N. Dual Role of Interleukin-10 in Murine NZB/W F1 Lupus. Int J Mol Sci 2021; 22:1347. [PMID: 33572870 PMCID: PMC7866297 DOI: 10.3390/ijms22031347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/11/2023] Open
Abstract
As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.
Collapse
Affiliation(s)
- Anaïs Amend
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Natalie Wickli
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Dalina T. L. Sprenger
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Rudolf A. Manz
- Institute for Systemic Inflammation, University of Lübeck, 23562 Lübeck, Germany;
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| |
Collapse
|
26
|
TNF-TNFR2 Signal Plays a Decisive Role in the Activation of CD4 +Foxp3 + Regulatory T Cells: Implications in the Treatment of Autoimmune Diseases and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:257-272. [PMID: 33523452 DOI: 10.1007/978-981-15-6407-9_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The puzzling biphasic or dual roles of tumor necrosis factor α (TNF) in the inflammatory and immune responses are likely to be mediated by distinct signaling pathways transduced by one of its two receptors, e.g., TNF receptor type I (TNFR1) and TNF receptor type II (TNFR2). Unlike TNFR1 that is ubiquitously expressed on almost all types of cells, the expression of TNFR2 is rather restricted to certain types of cells, such as T lymphocytes. There is now compelling evidence that TNFR2 is preferentially expressed by CD4+Foxp3+ regulatory T cells (Tregs), and TNFR2 plays a decisive role in the activation, expansion, in vivo function, and phenotypical stability of Tregs. In this chapter, the current understanding of the molecular basis and signaling pathway of TNF-TNFRs signal is introduced. Latest studies that have further supported and substantiated the pivotal role of TNF-TNFR2 interaction in Tregs biology and its molecular basis are discussed. The research progress regarding TNFR2-targeting treatment for autoimmune diseases and cancer is analyzed. Future study should focus on the further understanding of molecular mechanism underlying Treg-stimulatory effect of TNFR2 signal, as well as on the translation of research findings into therapeutic benefits of human patients with autoimmune diseases, allergy, allograft rejection, and cancer.
Collapse
|
27
|
Torrey H, Kühtreiber WM, Okubo Y, Tran L, Case K, Zheng H, Vanamee E, Faustman DL. A novel TNFR2 agonist antibody expands highly potent regulatory T cells. Sci Signal 2020; 13:13/661/eaba9600. [DOI: 10.1126/scisignal.aba9600] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Heather Torrey
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Willem M. Kühtreiber
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Yoshiaki Okubo
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Lisa Tran
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Katherine Case
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Hui Zheng
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Eva Vanamee
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Denise L. Faustman
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
28
|
Faustman DL. Benefits of BCG-induced metabolic switch from oxidative phosphorylation to aerobic glycolysis in autoimmune and nervous system diseases. J Intern Med 2020; 288:641-650. [PMID: 32107806 DOI: 10.1111/joim.13050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
The most commonly used vaccine worldwide, bacillus Calmette-Guerin (BCG), appears to have the ability to restore blood sugar control in humans with early-onset but long-duration type 1 diabetes when a repeat vaccination strategy is used. This is a process that may be driven by a metabolic switch from overactive oxidative phosphorylation to accelerated aerobic glycolysis and a reset of the immune system. BCG is a live, attenuated strain of Mycobacteria bovis, a cousin of M. tuberculosis. Humans and Mycobacteria, which are found in the environment and in warm-blooded hosts, share a long coevolutionary history. In recent times, humans have had fewer exposures to these and other microorganisms that historically helped shape the immune response. By 're-introducing' an attenuated form of Mycobacteria via BCG vaccination, humans might benefit from an immunological perspective, a concept supported by a growing body of data in autoimmunity and robust data on the nonspecific immune effects of BCG related to protection from diverse infections and early mortality. New findings of immune and metabolic defects in type 1 diabetes that can be corrected with repeat BCG vaccination suggest that this therapeutic strategy may be applicable in other diseases with inadequate aerobic glycolysis, including Parkinson's disease, dementia, depression and other disorders affecting the nervous system.
Collapse
Affiliation(s)
- D L Faustman
- From the, Department of Medicine, Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Eggenhuizen PJ, Ng BH, Ooi JD. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int J Mol Sci 2020; 21:E7015. [PMID: 32977677 PMCID: PMC7582931 DOI: 10.3390/ijms21197015] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are a small yet critical subset of CD4+ T cells, which have the role of maintaining immune homeostasis by, for example, regulating self-tolerance, tumor immunity, anti-microbial resistance, allergy and transplantation rejection. The suppressive mechanisms by which Tregs function are varied and pleiotropic. The ability of Tregs to maintain self-tolerance means they are critical for the control and prevention of autoimmune diseases. Irregularities in Treg function and number can result in loss of tolerance and autoimmune disease. Restoring immune homeostasis and tolerance through the promotion, activation or delivery of Tregs has emerged as a focus for therapies aimed at curing or controlling autoimmune diseases. Such therapies have focused on the Treg cell subset by using drugs to suppress T effector cells and promote Tregs. Other approaches have trialed inducing tolerance by administering the autoantigen via direct administration, by transient expression using a DNA vector, or by antigen-specific nanoparticles. More recently, cell-based therapies have been developed as an approach to directly or indirectly enhance Treg cell specificity, function and number. This can be achieved indirectly by transfer of tolerogenic dendritic cells, which have the potential to expand antigen-specific Treg cells. Treg cells can be directly administered to treat autoimmune disease by way of polyclonal Tregs or Tregs transduced with a receptor with high affinity for the target autoantigen, such as a high affinity T cell receptor (TCR) or a chimeric antigen receptor (CAR). This review will discuss the strategies being developed to redirect autoimmune responses to a state of immune tolerance, with the aim of the prevention or amelioration of autoimmune disease.
Collapse
Affiliation(s)
| | | | - Joshua D. Ooi
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC 3168, Australia; (P.J.E.); (B.H.N.)
| |
Collapse
|
30
|
Alves LV, Martins SR, Simões E Silva AC, Cardoso CN, Gomes KB, Mota APL. TNF, IL-6, and IL-10 cytokines levels and their polymorphisms in renal function and time after transplantation. Immunol Res 2020; 68:246-254. [PMID: 32808189 DOI: 10.1007/s12026-020-09147-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytokine polymorphisms can influence their plasma levels and thus affect the immune response in renal transplantation. A total of 146 renal transplant recipients (RTR) were classified into groups according to the estimated glomerular filtration rate (R1: < 60 and R2: ≥ 60 mL/min/1.73 m2) and time after transplantation (T1: 1 to 24, T2: 25 to 60, T3: 61 to 120, and T4: > 120 months after transplantation). The polymorphisms were genotyped by single specific primer-polymerase chain reaction. IL-10 was measured by ELISA and IL-6, and TNF levels were determined using Miliplex®. A higher frequency of the - 308G allele and the - 308G/G genotype, low-producer, was observed in the R1 group compared with R2. In addition, a higher frequency of the - 308A carriers, high-producer, was found in the R2 group. However, no significant difference was observed in cytokine levels when both groups were compared. Higher levels of IL-6 were observed in T1 compared with T2 and T4 groups. Lower IL-6 levels were found in T2 compared with T3 group. Lower levels of IL-10 were also found in T1 group in relation to T2, while higher levels of this cytokine were observed in T2 group compared with T3. The results suggest that the - 308G > A polymorphism in the TNF gene is associated with filtration function after renal transplantation, and IL-6 and IL-10 levels change according to the time after transplantation. Thus, the joint evaluation of - 308G > A polymorphism in TNF gene and IL-6 and IL-10 levels would provide a broader and effective view on the clinical monitoring of RTR.
Collapse
Affiliation(s)
- Lorraine Vieira Alves
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy - Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270901, Brazil
| | - Suellen Rodrigues Martins
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy - Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270901, Brazil
| | - Ana Cristina Simões E Silva
- Department of Pediatrics, Faculty of Medicine - Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Neris Cardoso
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy - Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270901, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy - Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270901, Brazil
| | - Ana Paula Lucas Mota
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy - Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270901, Brazil.
| |
Collapse
|
31
|
Fischer R, Kontermann RE, Pfizenmaier K. Selective Targeting of TNF Receptors as a Novel Therapeutic Approach. Front Cell Dev Biol 2020; 8:401. [PMID: 32528961 PMCID: PMC7264106 DOI: 10.3389/fcell.2020.00401] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a central regulator of immunity. Due to its dominant pro-inflammatory effects, drugs that neutralize TNF were developed and are clinically used to treat inflammatory and autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. However, despite their clinical success the use of anti-TNF drugs is limited, in part due to unwanted, severe side effects and in some diseases its use even is contraindicative. With gaining knowledge about the signaling mechanisms of TNF and the differential role of the two TNF receptors (TNFR), alternative therapeutic concepts based on receptor selective intervention have led to the development of novel protein therapeutics targeting TNFR1 with antagonists and TNFR2 with agonists. These antibodies and bio-engineered ligands are currently in preclinical and early clinical stages of development. Preclinical data obtained in different disease models show that selective targeting of TNFRs has therapeutic potential and may be superior to global TNF blockade in several disease indications.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
32
|
Case K, Tran L, Yang M, Zheng H, Kuhtreiber WM, Faustman DL. TNFR2 blockade alone or in combination with PD-1 blockade shows therapeutic efficacy in murine cancer models. J Leukoc Biol 2020; 107:981-991. [PMID: 32449229 DOI: 10.1002/jlb.5ma0420-375rrrrr] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint inhibitors are profoundly transforming cancer therapy, but response rates vary widely. The efficacy of checkpoint inhibitors, such as anti-programmed death receptor-1 (anti-PD-1), might be increased by combination therapies. TNFR2 has emerged as a new target due to its massive expression on highly immunosuppressive regulatory T cells (Tregs) in the microenvironment and on certain tumor cells. In murine colon cancer models CT26 and MC38, we evaluated the efficacy of a new anti-TNFR2 antibody alone or in combination with anti-PD-1 therapy. Tumor-bearing mice were treated with placebo, anti-PD-1 alone, anti-TNFR2 alone, or combination anti-PD-1 and anti-TNFR2. We found that combination therapy had the greatest efficacy by complete tumor regression and elimination (cure) in 65-70% of animals. The next most effective therapy was anti-TNFR2 alone (20-50% cured), whereas the least effective was anti-PD-1 alone (10-25% cured). The mode of action, according to in vivo and in vitro methods including FACS analysis, was by killing immunosuppressive Tregs in the tumor microenvironment and increasing the ratio of CD8+ T effectors (Teffs) to Tregs. We also found that sequence of antibody delivery altered outcome. The two most effective sequences were simultaneous delivery (70% cured) followed by anti-TNFR2 preceding anti-PD-1 (40% cured), and the least effective was by anti-PD-1 preceding anti-TNFR2 (10% cured). We conclude that anti-PD-1 is best enhanced by simultaneous administration with anti-TNFR2, and anti-TNFR2 alone may be potentially useful strategy for those do not respond to, or cannot tolerate, anti-PD-1 or other checkpoint inhibitors.
Collapse
Affiliation(s)
- Katherine Case
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa Tran
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Yang
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Willem M Kuhtreiber
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Denise L Faustman
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Yang M, Tran L, Torrey H, Song Y, Perkins H, Case K, Zheng H, Takahashi H, Kuhtreiber WM, Faustman DL. Optimizing TNFR2 antagonism for immunotherapy with tumor microenvironment specificity. J Leukoc Biol 2020; 107:971-980. [PMID: 32202358 DOI: 10.1002/jlb.5ab0320-415rrrrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/13/2022] Open
Abstract
Most approved cancer immunotherapies lack T-regulatory (Treg) or tumor specificity. TNF receptor 2 (TNFR2) antibody antagonism is emerging as an attractive immunotherapy due to its tumor microenvironment (TME) specificity. Here we show that the human TNFR2 receptor is overexpressed on both human tumor cells and on human tumor-residing Tregs, but negligibly expressed on beneficial T effectors (Teffs). Further, we found widespread, if variable, TNFR2 expression on 788 human tumor cell lines from diverse cancer tissues. These findings provided strong rationale for developing a targeted immunotherapy using a TNFR2 antibody antagonist. We designed a novel, human-directed TNFR2 antibody antagonist and tested it for function using three cell-based TME assays. The antagonist showed TME specificity by killing of TNFR2-expressing tumor cells and Tregs, but sparing Teffs, which proliferated. However, the antagonist shuffled between five isoforms, only one of which showed the desirable function. We designed and tested several new chimeric human versions of the antagonist, finding that the IgG2 isotype functioned better than the IgG1 isotype. To further improve function, we introduced targeted mutations to its amino acid sequence to stabilize the natural variability of the IgG2 isotype's hinge. Altogether, our findings suggest that optimal TNFR2 antagonists are of the human IgG2 isotype, have hinge stabilization, and have wide separation of antibody arms to bind to newly synthesized TNFR2 on rapidly growing tumor cells. Antagonistic antibodies with these characteristics, when bound to TNFR2, can form a nonsignaling cell surface dimer that functions with high TME specificity.
Collapse
Affiliation(s)
- Michael Yang
- Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa Tran
- Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Heather Torrey
- Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yaerin Song
- Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Haley Perkins
- Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine Case
- Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hiroyuki Takahashi
- Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Willem M Kuhtreiber
- Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Denise L Faustman
- Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Atretkhany KSN, Gogoleva VS, Drutskaya MS, Nedospasov SA. Distinct modes of TNF signaling through its two receptors in health and disease. J Leukoc Biol 2020; 107:893-905. [PMID: 32083339 DOI: 10.1002/jlb.2mr0120-510r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
TNF is a key proinflammatory and immunoregulatory cytokine whose deregulation is associated with the development of autoimmune diseases and other pathologies. Recent studies suggest that distinct functions of TNF may be associated with differential engagement of its two receptors: TNFR1 or TNFR2. In this review, we discuss the relative contributions of these receptors to pathogenesis of several diseases, with the focus on autoimmunity and neuroinflammation. In particular, we discuss the role of TNFRs in the development of regulatory T cells during neuroinflammation and recent findings concerning targeting TNFR2 with agonistic and antagonistic reagents in various murine models of autoimmune and neuroinflammatory disorders and cancer.
Collapse
Affiliation(s)
- Kamar-Sulu N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Violetta S Gogoleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
35
|
Liu Y, Liang S, Ding R, Hou Y, Deng F, Ma X, Song T, Yan D. BCG-induced trained immunity in macrophage: reprograming of glucose metabolism. Int Rev Immunol 2020; 39:83-96. [DOI: 10.1080/08830185.2020.1712379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yuntong Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Shu Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Ru Ding
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Yuyang Hou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Feier Deng
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Xiaohui Ma
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Tiantian Song
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
36
|
Padutsch T, Sendetski M, Huber C, Peters N, Pfizenmaier K, Bethea JR, Kontermann RE, Fischer R. Superior Treg-Expanding Properties of a Novel Dual-Acting Cytokine Fusion Protein. Front Pharmacol 2019; 10:1490. [PMID: 31920671 PMCID: PMC6930692 DOI: 10.3389/fphar.2019.01490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/19/2019] [Indexed: 11/13/2022] Open
Abstract
Autoimmune diseases are caused by uncontrolled endogenous immune responses against healthy cells. They may develop due to an impaired function of regulatory T cells (Tregs), which normally suppress self-specific effector immune cells. Interleukin 2 (IL-2) and tumor necrosis factor (TNF) have been identified as key players that promote expansion, function, and stability of Tregs. In vivo, both low-dose IL-2 therapy and TNF receptor 2 (TNFR2) agonism were shown to expand Tregs and alleviate autoimmunity. We here designed a novel dimeric dual-acting fusion cytokine, where mouse IL-2 is genetically linked to a TNFR2-selective single-chain TNF mutein (IL2-EHD2-sc-mTNFR2). IL2-EHD2-sc-mTNFR2 showed high affinity to TNFR2 and efficiently activated IL-2 and TNFR2-selective signaling pathways. Further, IL2-EHD2-sc-mTNFR2 promoted superior Treg expansion, with both the IL-2 and the TNFR2 agonist (sc-mTNFR2) component necessary for this biological response. Ultimately, we propose that IL2-EHD2-sc-mTNFR2 is a dual-acting cytokine that efficiently promotes Treg expansion and might have a superior therapeutic window than conventional IL-2-based drugs.
Collapse
Affiliation(s)
- Tanja Padutsch
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Maksim Sendetski
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Carina Huber
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nathalie Peters
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Department of Biology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
37
|
Geginat J, Vasco M, Gerosa M, Tas SW, Pagani M, Grassi F, Flavell RA, Meroni P, Abrignani S. IL-10 producing regulatory and helper T-cells in systemic lupus erythematosus. Semin Immunol 2019; 44:101330. [PMID: 31735515 DOI: 10.1016/j.smim.2019.101330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease characterised by the production of pathogenic autoantibodies against nuclear self-antigens. The anti-inflammatory and tolerogenic cytokine Interleukin-10 appears to play a paradoxical pathogenic role in SLE and is therefore currently therapeutically targeted in clinical trials. It is generally assumed that the pathogenic effect of IL-10 in SLE is due to its growth and differentiation factor activity on autoreactive B-cells, but effects on other cells might also play a role. To date, a unique cellular source of pathogenic IL-10 in SLE has not been identified. In this review, we focus on the contribution of different CD4+T-cell subsets to IL-10 and autoantibody production in SLE. In particular, we discuss that IL-10 produced by different subsets of adaptive regulatory T-cells, follicular helper T-cells and extra-follicular B-helper T-cells is likely to have different effects on autoreactive B-cell responses. A better understanding of the role of IL-10 in B-cell responses and lupus would allow to identify the most promising therapies for individual SLE patients in the future.
Collapse
Affiliation(s)
- J Geginat
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
| | - M Vasco
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - M Gerosa
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Italy; ASST Istituto G. Pini, Milan, Italy
| | - S W Tas
- Amsterdam UMC, University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute and Amsterdam Rheumatology & immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands
| | - M Pagani
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; Amsterdam UMC, University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute and Amsterdam Rheumatology & immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - F Grassi
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - R A Flavell
- Department of Immunobiology, and Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, USA
| | - Pl Meroni
- Istituto Auxologico Italiano, Milano, Italy
| | - S Abrignani
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy; DISCCO, Department of Clinical Science and Community Health, University of Milan, Italy
| |
Collapse
|
38
|
Herrmann O, Kuepper MK, Bütow M, Costa IG, Appelmann I, Beier F, Luedde T, Braunschweig T, Koschmieder S, Brümmendorf TH, Schemionek M. Infliximab therapy together with tyrosine kinase inhibition targets leukemic stem cells in chronic myeloid leukemia. BMC Cancer 2019; 19:658. [PMID: 31272418 PMCID: PMC6610865 DOI: 10.1186/s12885-019-5871-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/24/2019] [Indexed: 01/17/2023] Open
Abstract
Background Expression of Bcr-Abl in hematopoietic stem cells is sufficient to cause chronic myeloid leukemia (CML) and tyrosine kinase inhibitors (TKI) induce molecular remission in the majority of CML patients. However, the disease driving stem cell population is not fully targeted by TKI therapy, and leukemic stem cells (LSC) capable of re-inducing the disease can persist. Single-cell RNA-sequencing technology recently identified an enriched inflammatory gene signature with TNFα and TGFβ being activated in TKI persisting quiescent LSC. Here, we studied the effects of human TNFα antibody infliximab (IFX), which has been shown to induce anti-inflammatory effects in mice, combined with TKI treatment on LSC function. Methods We first performed GSEA-pathway analysis using our microarray data of murine LSK cells (lin−; Sca-1+; c-kit+) from the SCLtTA/Bcr-Abl CML transgenic mouse model. Bcr-Abl positive cell lines were generated by retroviral transduction. Clonogenic potential was assessed by CFU (colony forming unit). CML mice were treated with nilotinib or nilotinib plus infliximab, and serial transplantation experiments were performed. Results Likewise to human CML, TNFα signaling was specifically active in murine CML stem cells, and ectopic expression of Bcr-Abl in murine and human progenitor cell lines induced TNFα expression. In vitro exposure to human (IFX) or murine (MP6-XT22) TNFα antibody reduced clonogenic growth of CML cells. Interestingly, TNFα antibody treatment enhanced TKI-induced effects on immature cells in vitro. Additionally, in transplant and serial transplant experiments, using our transgenic CML mouse model, we could subsequently show that IFX therapy boosted TKI-induced effects and further reduced the proportion of malignant stem cells in vivo. Conclusion TNFα signaling is induced in CML stem cells, and anti-inflammatory therapy enhances TKI-induced decline of LSC, confirming that successful targeting of persisting CML stem cells can be enhanced by addressing their malignant microenvironment simultaneously. Electronic supplementary material The online version of this article (10.1186/s12885-019-5871-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oliver Herrmann
- Department of Hematology Oncology Hemostaseology and Stem Cell Transplantation Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Maja Kim Kuepper
- Department of Hematology Oncology Hemostaseology and Stem Cell Transplantation Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Marlena Bütow
- Department of Hematology Oncology Hemostaseology and Stem Cell Transplantation Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Ivan G Costa
- IZKF Research Group Bioinformatics Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Iris Appelmann
- Department of Hematology Oncology Hemostaseology and Stem Cell Transplantation Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Fabian Beier
- Department of Hematology Oncology Hemostaseology and Stem Cell Transplantation Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Till Braunschweig
- Department of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology Oncology Hemostaseology and Stem Cell Transplantation Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology Oncology Hemostaseology and Stem Cell Transplantation Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology Oncology Hemostaseology and Stem Cell Transplantation Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany.
| |
Collapse
|
39
|
Immunoreceptor Engineering and Synthetic Cytokine Signaling for Therapeutics. Trends Immunol 2019; 40:258-272. [DOI: 10.1016/j.it.2019.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/25/2022]
|
40
|
Kühtreiber WM, Faustman DL. BCG Therapy for Type 1 Diabetes: Restoration of Balanced Immunity and Metabolism. Trends Endocrinol Metab 2019; 30:80-92. [PMID: 30600132 DOI: 10.1016/j.tem.2018.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/10/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
The bacillus Calmette-Guerin (BCG) vaccine is a microorganism developed as a vaccine for tuberculosis 100 years ago and used as therapy for bladder cancer 40 years ago. More recently, BCG has shown therapeutic promise for type 1 diabetes (T1D) and several other autoimmune diseases. In T1D, BCG restored blood sugars to near normal, even in patients with advanced disease of >20 years duration. This clinically important effect may be driven by resetting of the immune system and the shifting of glucose metabolism from overactive oxidative phosphorylation, a state of minimal sugar utilization, to aerobic glycolysis, a state of high glucose utilization, for energy production. The mechanistic findings support the Hygiene Hypothesis and reveal the immune and metabolic synergy of mycobacterial reintroduction in modern humans.
Collapse
Affiliation(s)
- Willem M Kühtreiber
- Department of Medicine, Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Denise L Faustman
- Department of Medicine, Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 2018; 95:77-99. [PMID: 30174217 PMCID: PMC6289740 DOI: 10.1016/j.jaut.2018.08.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022]
Abstract
The immune system ensures optimum T-effector (Teff) immune responses against invading microbes and tumor antigens while preventing inappropriate autoimmune responses against self-antigens with the help of T-regulatory (Treg) cells. Thus, Treg and Teff cells help maintain immune homeostasis through mutual regulation. While Tregs can contribute to tumor immune evasion by suppressing anti-tumor Teff response, loss of Treg function can result in Teff responses against self-antigens leading to autoimmune disease. Thus, loss of homeostatic balance between Teff/Treg cells is often associated with both cancer and autoimmunity. Co-stimulatory and co-inhibitory receptors, collectively known as co-signaling receptors, play an indispensable role in the regulation of Teff and Treg cell expansion and function and thus play critical roles in modulating autoimmune and anti-tumor immune responses. Over the past three decades, considerable efforts have been made to understand the biology of co-signaling receptors and their role in immune homeostasis. Mutations in co-inhibitory receptors such as CTLA4 and PD1 are associated with Treg dysfunction, and autoimmune diseases in mice and humans. On the other hand, growing tumors evade immune surveillance by exploiting co-inhibitory signaling through expression of CTLA4, PD1 and PDL-1. Immune checkpoint blockade (ICB) using anti-CTLA4 and anti-PD1 has drawn considerable attention towards co-signaling receptors in tumor immunology and created renewed interest in studying other co-signaling receptors, which until recently have not been as well studied. In addition to co-inhibitory receptors, co-stimulatory receptors like OX40, GITR and 4-1BB have also been widely implicated in immune homeostasis and T-cell stimulation, and use of agonistic antibodies against OX40, GITR and 4-1BB has been effective in causing tumor regression. Although ICB has seen unprecedented success in cancer treatment, autoimmune adverse events arising from ICB due to loss of Treg homeostasis poses a major obstacle. Herein, we comprehensively review the role of various co-stimulatory and co-inhibitory receptors in Treg biology and immune homeostasis, autoimmunity, and anti-tumor immunity. Furthermore, we discuss the autoimmune adverse events arising upon targeting these co-signaling receptors to augment anti-tumor immune responses.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA; Department of Ophthalmology, Associate Dean for Technological Innovation and Training, University of Illinois College of Medicine, Room E-705, (M/C 790), 835 S. Wolcott Ave, Chicago, IL, 60612, USA.
| |
Collapse
|
42
|
Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A 2018; 115:13051-13056. [PMID: 30498033 PMCID: PMC6304938 DOI: 10.1073/pnas.1807499115] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In spite of TNF involvement in the pathogenesis of multiple sclerosis (MS), systemic TNF neutralization in MS patients was not successful. One of the possible reasons is that TNF possesses both pathogenic and protective features that may be related to TNFR1 versus TNFR2 receptor engagement. This study uncovers one of such protective functions of TNF mediated by intrinsic TNFR2 signaling in Treg cells. In mice bearing humanized TNF and TNFR2 genetic loci, TNFR2 ablation restricted to Treg cells led to reduced capacity to control Th17 cell responses, exacerbated experimental autoimmune encephalomyelitis (EAE) development, and affected the maintenance of Treg cells. These findings provide support for the emerging role of TNFR2 signaling in autoimmunity, as demonstrated here in mice with conditional inactivation of TNFR2. TNF is a multifunctional cytokine involved in autoimmune disease pathogenesis that exerts its effects through two distinct TNF receptors, TNFR1 and TNFR2. While TNF- and TNFR1-deficient (but not TNFR2-deficient) mice show very similar phenotypes, the significance of TNFR2 signaling in health and disease remains incompletely understood. Recent studies implicated the importance of the TNF/TNFR2 axis in T regulatory (Treg) cell functions. To definitively ascertain the significance of TNFR2 signaling, we generated and validated doubly humanized TNF/TNFR2 mice, with the option of conditional inactivation of TNFR2. These mice carry a functional human TNF-TNFR2 (hTNF-hTNFR2) signaling module and provide a useful tool for comparative evaluation of TNF-directed biologics. Conditional inactivation of TNFR2 in FoxP3+ cells in doubly humanized TNF/TNFR2 mice down-regulated the expression of Treg signature molecules (such as FoxP3, CD25, CTLA-4, and GITR) and diminished Treg suppressive function in vitro. Consequently, Treg-restricted TNFR2 deficiency led to significant exacerbation of experimental autoimmune encephalomyelitis (EAE), accompanied by reduced capacity to control Th17-mediated immune responses. Our findings expose the intrinsic and beneficial effects of TNFR2 signaling in Treg cells that could translate into protective functions in vivo, including treatment of autoimmunity.
Collapse
|
43
|
Kühtreiber WM, Tran L, Kim T, Dybala M, Nguyen B, Plager S, Huang D, Janes S, Defusco A, Baum D, Zheng H, Faustman DL. Long-term reduction in hyperglycemia in advanced type 1 diabetes: the value of induced aerobic glycolysis with BCG vaccinations. NPJ Vaccines 2018; 3:23. [PMID: 29951281 PMCID: PMC6013479 DOI: 10.1038/s41541-018-0062-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium are among the oldest co-evolutionary partners of humans. The attenuated Mycobacterium bovis Bacillus Calmette Guérin (BCG) strain has been administered globally for 100 years as a vaccine against tuberculosis. BCG also shows promise as treatment for numerous inflammatory and autoimmune diseases. Here, we report on a randomized 8-year long prospective examination of type 1 diabetic subjects with long-term disease who received two doses of the BCG vaccine. After year 3, BCG lowered hemoglobin A1c to near normal levels for the next 5 years. The BCG impact on blood sugars appeared to be driven by a novel systemic and blood sugar lowering mechanism in diabetes. We observe a systemic shift in glucose metabolism from oxidative phosphorylation to aerobic glycolysis, a state of high glucose utilization. Confirmation is gained by metabolomics, mRNAseq, and functional assays of cellular glucose uptake after BCG vaccinations. To prove BCG could induce a systemic change to promote accelerated glucose utilization and impact blood sugars, murine data demonstrated reduced blood sugars and aerobic induction in non-autoimmune mice made chemically diabetic. BCG via epigenetics also resets six central T-regulatory genes for genetic re-programming of tolerance. These findings set the stage for further testing of a known safe vaccine therapy for improved blood sugar control through changes in metabolism and durability with epigenetic changes even in advanced Type 1 diabetes. In patients with long-term type 1 diabetes, the tuberculosis vaccine BCG lowers blood sugar levels to near-normal after three years. Denise Faustman and her team from Massachusetts General Hospital and Harvard Medical School investigated a cohort of type 1 diabetics that received two doses of BCG before being monitored over eight years. After three years, vaccine-treated patients lowered their HbA1c levels—a diabetes biomarker reflecting average blood sugar over 8–12 weeks—by over 10%. This reduction increased to 18% in the fourth year, after which HbA1c levels remained low up to the final year of monitoring. The researchers report that the BCG vaccine appeared to reset diabetes-implicated parts of the immune system and, through a novel mechanism, shift glucose metabolism to lower blood sugar to healthy levels. Future studies will further classify BCG’s benefits in diabetes.
Collapse
Affiliation(s)
- Willem M Kühtreiber
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Lisa Tran
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Taesoo Kim
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Michael Dybala
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Brian Nguyen
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Sara Plager
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Daniel Huang
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Sophie Janes
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Audrey Defusco
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Danielle Baum
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Hui Zheng
- 2Department of Biostatistics, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Denise L Faustman
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| |
Collapse
|
44
|
A New Venue of TNF Targeting. Int J Mol Sci 2018; 19:ijms19051442. [PMID: 29751683 PMCID: PMC5983675 DOI: 10.3390/ijms19051442] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases.
Collapse
|
45
|
Yang S, Wang J, Brand DD, Zheng SG. Role of TNF-TNF Receptor 2 Signal in Regulatory T Cells and Its Therapeutic Implications. Front Immunol 2018; 9:784. [PMID: 29725328 PMCID: PMC5916970 DOI: 10.3389/fimmu.2018.00784] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor α (TNFα) is a pleiotropic cytokine which signals through TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Emerging evidence has demonstrated that TNFR1 is ubiquitously expressed on almost all cells, while TNFR2 exhibits a limited expression, predominantly on regulatory T cells (Tregs). In addition, the signaling pathway by sTNF via TNFR1 mainly triggers pro-inflammatory pathways, and mTNF binding to TNFR2 usually initiates immune modulation and tissue regeneration. TNFα plays a critical role in upregulation or downregulation of Treg activity. Deficiency in TNFR2 signaling is significant in various autoimmune diseases. An ideal therapeutic strategy for autoimmune diseases would be to selectively block the sTNF/TNFR1 signal through the administration of sTNF inhibitors, or using TNFR1 antagonists while keeping the TNFR2 signaling pathway intact. Another promising strategy would be to rely on TNFR2 agonists which could drive the expansion of Tregs and promote tissue regeneration. Design of these therapeutic strategies targeting the TNFR1 or TNFR2 signaling pathways holds promise for the treatment of diverse inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Sujuan Yang
- Department of Clinical Immunology, Third Hospital at Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Julie Wang
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | | | - Song Guo Zheng
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| |
Collapse
|
46
|
Urbano PCM, Koenen HJPM, Joosten I, He X. An Autocrine TNFα-Tumor Necrosis Factor Receptor 2 Loop Promotes Epigenetic Effects Inducing Human Treg Stability In Vitro. Front Immunol 2018; 9:573. [PMID: 29619032 PMCID: PMC5871762 DOI: 10.3389/fimmu.2018.00573] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
A crucial issue for Treg-based immunotherapy is to maintain a bona fide Treg phenotype as well as suppressive function during and after ex vivo expansion. Several strategies have been applied to harness Treg lineage stability. For instance, CD28 superagonist stimulation in vitro, in the absence of CD3 ligation, is more efficient in promoting Treg proliferation, and prevention of pro-inflammatory cytokine expression, such as IL-17, as compared to CD3/CD28-stimulated Treg. Addition of the mTOR inhibitor rapamycin to Treg cultures enhances FOXP3 expression and Treg stability, but does impair proliferative capacity. A tumor necrosis factor receptor 2 (TNFR2) agonist antibody was recently shown to favor homogenous expansion of Treg in vitro. Combined stimulation with rapamycin and TNFR2 agonist antibody enhanced hypo-methylation of the FOXP3 gene, and thus promoting Treg stability. To further explore the underlying mechanisms of rapamycin and TNFR2 agonist-mediated Treg stability, we here stimulated FACS-sorted human Treg with a CD28 superagonist, in the presence of rapamycin and a TNFR2 agonist. Phenotypic analysis of expanded Treg revealed an autocrine loop of TNFα-TNFR2 underlying the maintenance of Treg stability in vitro. Addition of rapamycin to CD28 superagonist-stimulated Treg led to a high expression of TNFR2, the main TNFR expressed on Treg, and additional stimulation with a TNFR2 agonist enhanced the production of soluble as well as membrane-bound TNFα. Moreover, our data showed that the expression of histone methyltransferase EZH2, a crucial epigenetic modulator for potent Treg suppressor function, was enhanced upon stimulation with CD28 superagonist. Interestingly, rapamycin seemed to downregulate CD28 superagonist-induced EZH2 expression, which could be rescued by the additional addition of TNFR2 agonist antibody. This process appeared TNFα-dependent manner, since depletion of TNFα using Etanercept inhibited EZH2 expression. To summarize, we propose that an autocrine TNFα-TNFR2 loop plays an important role in endorsing Treg stability.
Collapse
Affiliation(s)
- Paulo C M Urbano
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xuehui He
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,College of Computer Science, Qinghai Normal University, Xining, China
| |
Collapse
|
47
|
Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL. Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology. Front Immunol 2018; 9:444. [PMID: 29593717 PMCID: PMC5857565 DOI: 10.3389/fimmu.2018.00444] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor α (TNF) is a potent pro-inflammatory cytokine that has deleterious effect in some autoimmune diseases, which led to the use of anti-TNF drugs in some of these diseases. However, some rare patients treated with these drugs paradoxically develop an aggravation of their disease or new onset autoimmunity, revealing an immunosuppressive facet of TNF. A possible mechanism of this observation is the direct and positive effect of TNF on regulatory T cells (Tregs) through its binding to the TNF receptor type 2 (TNFR2). Indeed, TNF is able to increase expansion, stability, and possibly function of Tregs via TNFR2. In this review, we discuss the role of TNF in graft-versus-host disease as an example of the ambivalence of this cytokine in the pathophysiology of an immunopathology, highlighting the therapeutic potential of triggering TNFR2 to boost Treg expansion. We also describe new targets in immunotherapy of cancer, emphasizing on the putative suppressive effect of TNF in antitumor immunity and of the interest of blocking TNFR2 to regulate the Treg compartment.
Collapse
Affiliation(s)
- Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Mathieu Leclerc
- Université Paris-Est and INSERM U955, Créteil, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital H. Mondor, Créteil, France
| | - Jimena Tosello
- Center of Cancer Immunotherapy and Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Emilie Ronin
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Eliane Piaggio
- Center of Cancer Immunotherapy and Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - José L Cohen
- Université Paris-Est and INSERM U955, Créteil, France.,Centre d'Investigation Clinique Biothérapie, Assistance Publique Hôpitaux de Paris (APHP), Hôpital H. Mondor, Créteil, France
| |
Collapse
|
48
|
Kaminitz A, Ash S, Askenasy N. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes. Clin Rev Allergy Immunol 2018; 52:460-472. [PMID: 27677500 DOI: 10.1007/s12016-016-8587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Shifra Ash
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202.
| |
Collapse
|
49
|
Faustman DL. TNF, TNF inducers, and TNFR2 agonists: A new path to type 1 diabetes treatment. Diabetes Metab Res Rev 2018; 34. [PMID: 28843039 DOI: 10.1002/dmrr.2941] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022]
Abstract
In the past decade, interest in the century-old tuberculosis vaccine, bacillus Calmette-Guerin (BCG), has been revived for potential new therapeutic uses in type 1 diabetes and other forms of autoimmunity. Diverse clinical trials are now proving the value of BCG in prevention and treatment of type 1 diabetes, in the treatment of new onset multiple sclerosis and other immune conditions. BCG contains the avirulent tuberculosis strain Mycobacterium bovis, a vaccine originally developed for tuberculosis prevention. BCG induces a host response that is driven in part by tumour necrosis factor (TNF). Induction of TNF through BCG vaccination or through selective agonism of TNF receptor 2 (TNFR2) has 2 desired cellular immune effects: (1) selective death of autoreactive T cells and (2) expansion of beneficial regulatory T cells (Tregs). In human clinical trials in both type 1 diabetes and multiple sclerosis, administration of the BCG vaccine to diseased adults has shown great promise. In a Phase I trial in advanced type 1 diabetes (mean duration of diabetes 15 years), 2 BCG vaccinations spaced 4 weeks apart selectively eliminated autoreactive T cells, induced beneficial Tregs, and allowed for a transient and small restoration of insulin production. The advancing global clinical trials using BCG combined with mechanistic data on BCGs induction of Tregs suggest value in this generic agent and possible immune reversal of the type 1 diabetic autoimmune process.
Collapse
Affiliation(s)
- Denise L Faustman
- Director of Immunobiology, Massachusetts General Hospital, Boston, MA, USA
- Associate Professor of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
TNFR signalling and its clinical implications. Cytokine 2018; 101:19-25. [DOI: 10.1016/j.cyto.2016.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 01/05/2023]
|