1
|
Rosado-Sánchez I, Herrero-Fernández I, Sobrino S, Carvajal AE, Genebat M, Tarancón-Díez L, Garcia-Guerrero MC, Puertas MC, de Pablos RM, Ruiz R, Martinez-Picado J, Leal M, Pacheco YM. Caecum OX40+CD4 T-cell subset associates with mucosal damage and key markers of disease in treated HIV-infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1129-1138. [PMID: 37704537 DOI: 10.1016/j.jmii.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Blood OX40-expressing CD4 T-cells from antiretroviral (ART)-treated people living with HIV (PWH) were found to be enriched for clonally-expanded HIV sequences, hence contributing to the HIV reservoir. OX40-OX40L is also a checkpoint regulator of inflammation in multiple diseases. We explored gut mucosal OX40+CD4+ T-cells and their potential significance in HIV disease. METHODS Biopsies of caecum and terminal-ileum of ART-treated PWH (n = 32) were obtained and mucosal damage and HIV reservoir were assessed. Mucosal OX40+ and Ki67+ CD4 T-cell subsets, as well as several tissue T-cell subsets modulating mucosal integrity and homeostasis (Th17, Th22, Treg, Tc17, Tc22, IL17+TCRγδ, IL22+TCRγδ) were quantified. Inflammatory-related markers, T-cell activation and thymic output were also determined in blood samples. Correlations were explored using Spearman rank test and corrected for multiple comparisons by Benjamini-Hochberg. RESULTS Compared to healthy controls, a high frequency of mucosal, mainly caecum, CD4 T-cells were OX40+ in PWH. Such frequency strongly correlated with nadir CD4 (r = -0.836; p < 0.0001), CD4/CD8 ratio (r = -0.630; p = 0.002), caecum mucosal damage (r = 0.606; p = 0.008), caecum Th22 (r = -0.635; p = 0.002), caecum Th17 (r = 0.474; p = 0.03) and thymic output (r = -0.686; p < 0.001). It also correlated with Neutrophil-to-Lymphocyte Ratio and blood CD4 T-cell activation and tended to with mucosal HIV reservoir. CONCLUSION High frequencies of caecum OX40+CD4 T-cells are found in people with HIV (PWH) and successful viral control. Interestingly, this cellular subset reflects key markers of disease and peripheral T-cell activation, as well as HIV-driven mucosal damage. OX40+CD4 T-cells deserve further investigation since they could expand because of T-cell homeostatic proliferation and relate to the Th22/Th17 gut mucosal ratio.
Collapse
Affiliation(s)
- Isaac Rosado-Sánchez
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | - Inés Herrero-Fernández
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | - Salvador Sobrino
- Digestive Endoscopy Unit, Virgen del Rocío University Hospital, Seville 41013, Spain.
| | - Ana E Carvajal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
| | - Miguel Genebat
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | - Laura Tarancón-Díez
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain.
| | | | - María Carmen Puertas
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Barcelona, Catalonia, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Rocío M de Pablos
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
| | - Rocío Ruiz
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Barcelona, Catalonia, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Manuel Leal
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Internal Medicine Service, Viamed-Santa Ángela Hospital, Seville 41014, Spain.
| | - Yolanda M Pacheco
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville 41013, Spain; Universidad Loyola Andalucía, Facultad de Ciencias de la Salud, Campus Sevilla, 41704, Dos Hermanas, Sevilla, Spain.
| |
Collapse
|
2
|
Lancaster JN, Keatinge‐Clay DE, Srinivasan J, Li Y, Selden HJ, Nam S, Richie ER, Ehrlich LIR. Central tolerance is impaired in the middle-aged thymic environment. Aging Cell 2022; 21:e13624. [PMID: 35561351 PMCID: PMC9197411 DOI: 10.1111/acel.13624] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
One of the earliest hallmarks of immune aging is thymus involution, which not only reduces the number of newly generated and exported T cells, but also alters the composition and organization of the thymus microenvironment. Thymic T‐cell export continues into adulthood, yet the impact of thymus involution on the quality of newly generated T‐cell clones is not well established. Notably, the number and proportion of medullary thymic epithelial cells (mTECs) and expression of tissue‐restricted antigens (TRAs) decline with age, suggesting the involuting thymus may not promote efficient central tolerance. Here, we demonstrate that the middle‐aged thymic environment does not support rapid motility of medullary thymocytes, potentially diminishing their ability to scan antigen presenting cells (APCs) that display the diverse self‐antigens that induce central tolerance. Consistent with this possibility, thymic slice assays reveal that the middle‐aged thymic environment does not support efficient negative selection or regulatory T‐cell (Treg) induction of thymocytes responsive to either TRAs or ubiquitous self‐antigens. This decline in central tolerance is not universal, but instead impacts lower‐avidity self‐antigens that are either less abundant or bind to TCRs with moderate affinities. Additionally, the decline in thymic tolerance by middle age is accompanied by both a reduction in mTECs and hematopoietic APC subsets that cooperate to drive central tolerance. Thus, age‐associated changes in the thymic environment result in impaired central tolerance against moderate‐avidity self‐antigens, potentially resulting in export of increasingly autoreactive naive T cells, with a deficit of Treg counterparts by middle age.
Collapse
Affiliation(s)
- Jessica N. Lancaster
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
| | | | - Jayashree Srinivasan
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
| | - Yu Li
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
| | - Hilary J. Selden
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
| | - Seohee Nam
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
| | - Ellen R. Richie
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Lauren I. R. Ehrlich
- Department of Molecular Biosciences The University of Texas at Austin Austin Texas USA
- Department of Oncology Dell Medical School at The University of Texas at Austin Austin Texas USA
| |
Collapse
|
3
|
Frange P, Montange T, Le Chenadec J, Batalie D, Fert I, Dollfus C, Faye A, Blanche S, Chacé A, Fourcade C, Hau I, Levine M, Mahlaoui N, Marcou V, Tabone MD, Veber F, Hoctin A, Wack T, Avettand-Fenoël V, Warszawski J, Buseyne F. Impact of Early Versus Late Antiretroviral Treatment Initiation on Naive T Lymphocytes in HIV-1-Infected Children and Adolescents - The-ANRS-EP59-CLEAC Study. Front Immunol 2021; 12:662894. [PMID: 33968064 PMCID: PMC8100053 DOI: 10.3389/fimmu.2021.662894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background The early initiation of antiretroviral therapy (ART) in HIV-1-infected infants reduces mortality and prevents early CD4 T-cell loss. However, the impact of early ART on the immune system has not been thoroughly investigated in children over five years of age or adolescents. Here, we describe the levels of naive CD4 and CD8 T lymphocytes (CD4/CD8TN), reflecting the quality of immune reconstitution, as a function of the timing of ART initiation (early (<6 months) versus late (≥24 months of age)). Methods The ANRS-EP59-CLEAC study enrolled 27 children (5-12 years of age) and nine adolescents (13-17 years of age) in the early-treatment group, and 19 children (L-Ch) and 21 adolescents (L-Ado) in the late-treatment group. T lymphocytes were analyzed by flow cytometry and plasma markers were analyzed by ELISA. Linear regression analysis was performed with univariate and multivariate models. Results At the time of evaluation, all patients were on ART and had a good immunovirological status: 83% had HIV RNA loads below 50 copies/mL and the median CD4 T-cell count was 856 cells/µL (interquartile range: 685-1236 cells/µL). In children, early ART was associated with higher CD8TN percentages (medians: 48.7% vs. 31.0%, P = 0.001), and a marginally higher CD4TN (61.2% vs. 53.1%, P = 0.33). In adolescents, early ART was associated with low CD4TN percentages and less differentiated memory CD8 T cells. CD4TN and CD8TN levels were inversely related to cellular activation and gut permeability. Conclusion In children and adolescents, the benefits of early ART for CD8TN were clear after long-term ART. The impact of early ART on CD4TN appears to be modest, because pediatric patients treated late respond to HIV-driven CD4 T-lymphocyte loss by the de novo production of TN cells in the thymus. Our data also suggest that current immune activation and/or gut permeability has a negative impact on TN levels. Clinical Trial Registration ClinicalTrials.gov, identifier NCT02674867.
Collapse
Affiliation(s)
- Pierre Frange
- Immunologie, hématologie et rhumatologie pédiatrique, hôpital Necker–Enfants malades, AP–HP- Centre – Université de Paris, Paris, France
- Laboratoire de microbiologie clinique, hôpital Necker–Enfants malades, AP–HP-Centre – Université de Paris, Paris, France
- EHU 7328 PACT, Institut Imagine, Université de Paris, Paris, France
| | - Thomas Montange
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- Département de Virologie, UMR CNRS 3569 Institut Pasteur, Paris, France
| | - Jérôme Le Chenadec
- Départment d’épidémiologie, Centre de Recherche en Épidémiologie et Santé des Populations, INSERM U1018, Le Kremlin-Bicêtre, Villejuif, France
| | - Damien Batalie
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- Département de Virologie, UMR CNRS 3569 Institut Pasteur, Paris, France
| | - Ingrid Fert
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- Département de Virologie, UMR CNRS 3569 Institut Pasteur, Paris, France
| | - Catherine Dollfus
- Hémato-oncologie pédiatrique, Hôpital Trousseau, AP-HP, Paris, France
| | - Albert Faye
- Pédiatrie Générale, Hôpital Robert Debré, AP-HP, Paris, France
| | - Stéphane Blanche
- Immunologie, hématologie et rhumatologie pédiatrique, hôpital Necker–Enfants malades, AP–HP- Centre – Université de Paris, Paris, France
| | - Anne Chacé
- Pédiatrie et néonatologie, Centre hospitalier intercommunal de Villeuneuve-Saint-Georges, Villeuneuve-Saint-Georges, France
| | | | - Isabelle Hau
- Pédiatrie Générale, Centre hospitalier intercommunal de Créteil, Créteil, France
| | - Martine Levine
- Immuno-hématologie pédiatrique, Hôpital Robert Debré, AP-HP, Paris, France
| | - Nizar Mahlaoui
- Immunologie, hématologie et rhumatologie pédiatrique, hôpital Necker–Enfants malades, AP–HP- Centre – Université de Paris, Paris, France
| | - Valérie Marcou
- Médecine et réanimation néonatale, Hôpital Cochin, AP-HP-Centre – Université de Paris, Paris, France
| | | | - Florence Veber
- Immunologie, hématologie et rhumatologie pédiatrique, hôpital Necker–Enfants malades, AP–HP- Centre – Université de Paris, Paris, France
| | - Alexandre Hoctin
- Départment d’épidémiologie, Centre de Recherche en Épidémiologie et Santé des Populations, INSERM U1018, Le Kremlin-Bicêtre, Villejuif, France
| | - Thierry Wack
- Départment d’épidémiologie, Centre de Recherche en Épidémiologie et Santé des Populations, INSERM U1018, Le Kremlin-Bicêtre, Villejuif, France
| | - Véronique Avettand-Fenoël
- Laboratoire de microbiologie clinique, hôpital Necker–Enfants malades, AP–HP-Centre – Université de Paris, Paris, France
- CNRS 8104/INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Josiane Warszawski
- Départment d’épidémiologie, Centre de Recherche en Épidémiologie et Santé des Populations, INSERM U1018, Le Kremlin-Bicêtre, Villejuif, France
- INED, Université Paris Sud, Le Kremlin-Bicêtre, Orsay, France
| | - Florence Buseyne
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- Département de Virologie, UMR CNRS 3569 Institut Pasteur, Paris, France
| |
Collapse
|
4
|
Immune Activation, Inflammation, and Non-AIDS Co-Morbidities in HIV-Infected Patients under Long-Term ART. Viruses 2019; 11:v11030200. [PMID: 30818749 PMCID: PMC6466530 DOI: 10.3390/v11030200] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Despite effective antiretroviral therapy (ART), people living with HIV (PLWH) still present persistent chronic immune activation and inflammation. This condition is the result of several factors including thymic dysfunction, persistent antigen stimulation due to low residual viremia, microbial translocation and dysbiosis, caused by the disruption of the gut mucosa, co-infections, and cumulative ART toxicity. All of these factors can create a vicious cycle that does not allow the full control of immune activation and inflammation, leading to an increased risk of developing non-AIDS co-morbidities such as metabolic syndrome and cardiovascular diseases. This review aims to provide an overview of the most recent data about HIV-associated inflammation and chronic immune exhaustion in PLWH under effective ART. Furthermore, we discuss new therapy approaches that are currently being tested to reduce the risk of developing inflammation, ART toxicity, and non-AIDS co-morbidities.
Collapse
|
5
|
Behrens NE, Wertheimer A, Klotz SA, Ahmad N. Reduction in terminally differentiated T cells in virologically controlled HIV-infected aging patients on long-term antiretroviral therapy. PLoS One 2018; 13:e0199101. [PMID: 29897981 PMCID: PMC5999291 DOI: 10.1371/journal.pone.0199101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
Several studies have shown an increased accumulation of terminally differentiated T cells during HIV infection, suggestive of exhaustion/senescence, causing dysregulation of T cell homeostasis and function and rapid HIV disease progression. We have investigated whether long-term antiretroviral therapy (ART), which controls viremia and restores CD4 T cell counts, is correlated with reduction in terminally differentiated T cells, improved ratios of naïve to memory and function of T cells in 100 virologically controlled HIV-infected patients. We show that while the median frequencies of terminally differentiated CD4+ and CD8+ T cells (CD28-, CD27-, CD57+ and CD28-CD57+), were higher in the virologically controlled HIV-infected patients’ cohort compared with uninfected individuals’ cohort, the frequencies of these cells significantly decreased with increasing CD4 T cell counts in HIV-infected patients. Although, the naïve CD4+ and CD8+ T cells were lower in HIV patients’ cohort than uninfected cohort, there was a significant increase in both naïve CD4+ and CD8+ T cells with increasing CD4 T cell counts in HIV-infected patients. The underlying mechanism behind this increased naïve CD4+ and CD8+ T cells in HIV-infected patients was due to an increase in recent thymic emigrants, CD4+CD31+, as compared to CD4+CD31-. The CD4+ T cells of HIV-infected patients produced cytokines, including IL-2, IL-10 and IFN-γ comparable to uninfected individuals. In conclusion, virologically controlled HIV-infected patients on long-term ART show a significant reduction in terminally differentiated T cells, suggestive of decreased exhaustion/senescence, and improvement in the ratios of naïve to memory and function of T cells.
Collapse
Affiliation(s)
- Nicole E Behrens
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Anne Wertheimer
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America.,Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, United States of America.,Bio5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Stephen A Klotz
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
6
|
Modeling the Adaptive Immunity and Both Modes of Transmission in HIV Infection. COMPUTATION 2018. [DOI: 10.3390/computation6020037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Askenasy N. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation. Immunol Res 2016; 64:360-8. [PMID: 26639356 DOI: 10.1007/s12026-015-8753-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, 49202, Petach Tikva, Israel.
| |
Collapse
|
8
|
Vianna PHO, Canto FB, Nogueira JS, Nunes CFCG, Bonomo AC, Fucs R. Critical influence of the thymus on peripheral T cell homeostasis. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:474-486. [PMID: 27980781 PMCID: PMC5134722 DOI: 10.1002/iid3.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 01/24/2023]
Abstract
Introduction A tight balance between regulatory CD4+Foxp3+ (Treg) and conventional CD4+Foxp3− (Tconv) T cell subsets in the peripheral compartment, maintained stable throughout most of lifetime, is essential for preserving self‐tolerance along with efficient immune responses. An excess of Treg cells, described for aged individuals, may critically contribute to their reported immunodeficiency. In this work, we investigated if quantitative changes in thymus emigration may alter the Treg/Tconv homeostasis regardless of the aging status of the peripheral compartment. Methods We used two different protocols to modify the rate of thymus emigration: thymectomy of adult young (4–6 weeks old) mice and grafting of young thymus onto aged (18 months old) hosts. Additionally, lymphoid cells from young and aged B6 mice were intravenously transferred to B6.RAG2−/− mice. Alterations in Treg and Tconv peripheral frequencies following these protocols were investigated after 30 days by flow cytometry. Results Thymectomized young mice presented a progressive increase in the Treg cell frequency, while the grafting of a functional thymus in aged mice restored the young‐like physiological Treg/Tconv proportion. Strikingly, T cells derived from young or aged splenocytes colonized the lymphopenic periphery of RAG−/− hosts to the same extent, giving rise to similarly elevated Treg cell levels irrespective of the age of the donor population. In the absence of thymus output, the Treg subset seems to survive longer, as confirmed by their lower proportion of Annexin‐V+ cells. Conclusions Our data suggest that the thymus‐emigrating population, harboring an adequate proportion of Treg/Tconv lymphocytes, may be essential to keep the Treg cell balance, independently of age‐related shifts intrinsic to the peripheral environment or to the T cell biology.
Collapse
Affiliation(s)
- Pedro Henrique Oliveira Vianna
- Departamento de ImunologiaInstituto de Microbiologia Paulo de Goés (IMPG)-Universidade Federal do Rio de JaneiroRio de Janeiro-RJBrazil; Departamento de ImunobiologiaInstituto de Biologia-Universidade Federal FluminenseNiterói-RJBrazil
| | - Fábio B Canto
- Departamento de ImunologiaInstituto de Microbiologia Paulo de Goés (IMPG)-Universidade Federal do Rio de JaneiroRio de Janeiro-RJBrazil; Departamento de ImunobiologiaInstituto de Biologia-Universidade Federal FluminenseNiterói-RJBrazil
| | - Jeane S Nogueira
- Departamento de ImunologiaInstituto de Microbiologia Paulo de Goés (IMPG)-Universidade Federal do Rio de JaneiroRio de Janeiro-RJBrazil; Departamento de ImunobiologiaInstituto de Biologia-Universidade Federal FluminenseNiterói-RJBrazil
| | - Caroline Fraga Cabral Gomes Nunes
- Departamento de ImunologiaInstituto de Microbiologia Paulo de Goés (IMPG)-Universidade Federal do Rio de JaneiroRio de Janeiro-RJBrazil; Departamento de ImunobiologiaInstituto de Biologia-Universidade Federal FluminenseNiterói-RJBrazil
| | - Adriana César Bonomo
- Programa FIOCANCER VPPLR-Instituto Oswaldo Cruz-FIOCRUZ Rio de Janeiro-RJ Brazil
| | - Rita Fucs
- Departamento de Imunobiologia Instituto de Biologia-Universidade Federal Fluminense Niterói-RJ Brazil
| |
Collapse
|
9
|
Askenasy N. Mechanisms of diabetic autoimmunity: II--Is diabetes a central or peripheral disorder of effector and regulatory cells? Immunol Res 2016; 64:36-43. [PMID: 26482052 DOI: 10.1007/s12026-015-8725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two competing hypotheses aiming to explain the onset of autoimmune reactions are discussed in the context of genetic and environmental predisposition to type 1 diabetes (T1D). The first hypothesis has evolved along characterization of the mechanisms of self-discrimination and attributes diabetic autoimmunity to escape of reactive T cells from central regulation in the thymus. The second considers frequent occurrence of autoimmune reactions within the immune homunculus, which are adequately suppressed by regulatory T cells originating from the thymus, and occasionally, insufficient suppression results in autoimmunity. Besides thymic dysfunction, deregulation of both effector and suppressor cells can in fact result from homeostatic aberrations at the peripheral level during initial stages of evolution of adaptive immunity. Pathogenic cells sensitized in the islets are efficiently expanded in the target tissue and pancreatic lymph nodes of lymphopenic neonates. In parallel, the same mechanisms of peripheral sensitization contribute to tolerization through education of naïve/effector T cells and expansion of regulatory T cells. Experimental evidence presented for each individual mechanism implies that T1D may result from a primary effector or suppressor immune abnormality. Disturbed self-tolerance leading to T1D may well result from peripheral deregulation of innate and adaptive immunity, with variable contribution of central thymic dysfunction.
Collapse
|
10
|
Manjati T, Nkambule B, Ipp H. Immune activation is associated with decreased thymic function in asymptomatic, untreated HIV-infected individuals. South Afr J HIV Med 2016; 17:445. [PMID: 29568606 PMCID: PMC5843076 DOI: 10.4102/sajhivmed.v17i1.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/25/2016] [Indexed: 11/15/2022] Open
Abstract
Background Reduced thymic function causes poor immunological reconstitution in human immunodeficiency virus (HIV)-positive patients on combined antiretroviral therapy (cART). The association between immune activation and thymic function in asymptomatic HIV-positive treatment-naive individuals has thus far not been investigated. Aims and objectives To optimise a five-colour flow cytometric assay for measurement of thymic function by measuring recent thymic emigrants (RTEs) in treatment-naive HIV-infected patients and healthy controls and correlate results with levels of immune activation, CD4 counts and viral load. Methods Blood obtained from 53 consenting HIV-positive individuals and 32 controls recruited from HIV prevention and testing clinic in Cape Town, South Africa. RTEs were measured (CD3+/CD4+/CD45RA+/CD31+/CD62L+) and levels were correlated with CD4 counts of HIV-infected individuals, log viral load and levels of immune activation (CD8+/CD38+ T-cells). Results HIV-infected individuals had reduced frequencies of RTEs when compared to controls (p = 0.0035). Levels of immune activation were inversely correlated with thymic function (p = 0.0403), and the thymic function in HIV-infected individuals showed no significant correlation with CD4 counts (p = 0.31559) and viral load (p = 0.20628). Conclusions There was impaired thymic function in HIV-infected individuals, which was associated with increased levels of immune activation. The thymic dysfunction was not associated with CD4 counts and viral load. Immune activation may result in inflammatory damage to the thymus and subsequent thymic dysfunction, and CD4 counts and viral load may not necessarily reflect thymic dysfunction in HIV.
Collapse
Affiliation(s)
- Thandiwe Manjati
- Division of Haematology, Department of Pathology, Stellenbosch University, South Africa.,Division of Haematopathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Bongani Nkambule
- Division of Haematopathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa.,Department of Physiology, School of Laboratory and Medical Sciences, University of KwaZulu-Natal, South Africa
| | - Hayley Ipp
- Division of Haematology, Department of Pathology, Stellenbosch University, South Africa.,Division of Haematopathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
11
|
Zlamy M, Almanzar G, Parson W, Schmidt C, Leierer J, Weinberger B, Jeller V, Unsinn K, Eyrich M, Würzner R, Prelog M. Efforts of the human immune system to maintain the peripheral CD8+ T cell compartment after childhood thymectomy. IMMUNITY & AGEING 2016; 13:3. [PMID: 26839574 PMCID: PMC4736487 DOI: 10.1186/s12979-016-0058-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/15/2016] [Indexed: 12/19/2022]
Abstract
Background Homeostatic mechanisms to maintain the T cell compartment diversity indicate an ongoing process of thymic activity and peripheral T cell renewal during human life. These processes are expected to be accelerated after childhood thymectomy and by the influence of cytomegalovirus (CMV) inducing a prematurely aged immune system. The study aimed to investigate proportional changes and replicative history of CD8+ T cells, of recent thymic emigrants (RTEs) and CD103+ T cells (mostly gut-experienced) and the role of Interleukin-(IL)-7 and IL-7 receptor (CD127)-expressing T cells in thymectomized patients compared to young and old healthy controls. Results Decreased proportions of naive and CD31 + CD8+ T cells were demonstrated after thymectomy, with higher proliferative activity of CD127-expressing T cells and significantly shorter relative telomere lengths (RTLs) and lower T cell receptor excision circles (TRECs). Increased circulating CD103+ T cells and a skewed T cell receptor (TCR) repertoire were found after thymectomy similar to elderly persons. Naive T cells were influenced by age at thymectomy and further decreased by CMV. Conclusions After childhood thymectomy, the immune system demonstrated constant efforts of the peripheral CD8+ T cell compartment to maintain homeostasis. Supposedly it tries to fill the void of RTEs by peripheral T cell proliferation, by at least partly IL-7-mediated mechanisms and by proportional increase of circulating CD103+ T cells, reminiscent of immune aging in elderly. Although other findings were less significant compared to healthy elderly, early thymectomy demonstrated immunological alterations of CD8+ T cells which mimic features of premature immunosenescence in humans.
Collapse
Affiliation(s)
- Manuela Zlamy
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria
| | - Giovanni Almanzar
- Department of Pediatrics, University Hospital Wuerzburg, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Walther Parson
- Institute of Legal Medicine, Medical University Innsbruck, Innsbruck, Austria ; Penn State Eberly College of Science, University Park, PA USA
| | - Christian Schmidt
- Department of Haematology and Oncology, University of Greifswald, Greifswald, Germany
| | - Johannes Leierer
- Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Verena Jeller
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria
| | - Karin Unsinn
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Eyrich
- Department of Pediatrics, University Hospital Wuerzburg, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Reinhard Würzner
- Department of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| |
Collapse
|
12
|
Maziane M, Lotfi EM, Hattaf K, Yousfi N. Dynamics of a Class of HIV Infection Models with Cure of Infected Cells in Eclipse Stage. Acta Biotheor 2015; 63:363-80. [PMID: 26082312 DOI: 10.1007/s10441-015-9263-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Abstract
In this paper, we propose two HIV infection models with specific nonlinear incidence rate by including a class of infected cells in the eclipse phase. The first model is described by ordinary differential equations (ODEs) and generalizes a set of previously existing models and their results. The second model extends our ODE model by taking into account the diffusion of virus. Furthermore, the global stability of both models is investigated by constructing suitable Lyapunov functionals. Finally, we check our theoretical results with numerical simulations.
Collapse
Affiliation(s)
- Mehdi Maziane
- Department of Mathematics and Computer Science, Faculty of Sciences Ben M'sik, Hassan II University, P.O. Box 7955, Sidi Othman, Casablanca, Morocco
| | - El Mehdi Lotfi
- Department of Mathematics and Computer Science, Faculty of Sciences Ben M'sik, Hassan II University, P.O. Box 7955, Sidi Othman, Casablanca, Morocco
| | - Khalid Hattaf
- Department of Mathematics and Computer Science, Faculty of Sciences Ben M'sik, Hassan II University, P.O. Box 7955, Sidi Othman, Casablanca, Morocco.
- Centre Régional des Métiers de l'Education et de la Formation (CRMEF), 20340, Derb Ghalef, Casablanca, Morocco.
| | - Noura Yousfi
- Department of Mathematics and Computer Science, Faculty of Sciences Ben M'sik, Hassan II University, P.O. Box 7955, Sidi Othman, Casablanca, Morocco
| |
Collapse
|
13
|
Lythe G, Callard RE, Hoare RL, Molina-París C. How many TCR clonotypes does a body maintain? J Theor Biol 2015; 389:214-24. [PMID: 26546971 PMCID: PMC4678146 DOI: 10.1016/j.jtbi.2015.10.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/13/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
Abstract
We consider the lifetime of a T cell clonotype, the set of T cells with the same T cell receptor, from its thymic origin to its extinction in a multiclonal repertoire. Using published estimates of total cell numbers and thymic production rates, we calculate the mean number of cells per TCR clonotype, and the total number of clonotypes, in mice and humans. When there is little peripheral division, as in a mouse, the number of cells per clonotype is small and governed by the number of cells with identical TCR that exit the thymus. In humans, peripheral division is important and a clonotype may survive for decades, during which it expands to comprise many cells. We therefore devise and analyse a computational model of homeostasis of a multiclonal population. Each T cell in the model competes for self pMHC stimuli, cells of any one clonotype only recognising a small fraction of the many subsets of stimuli. A constant mean total number of cells is maintained by a balance between cell division and death, and a stable number of clonotypes by a balance between thymic production of new clonotypes and extinction of existing ones. The number of distinct clonotypes in a human body may be smaller than the total number of naive T cells by only one order of magnitude. The number of T cells of one clonotype is an integer. The history of a clonotype starts with release from the thymus, and ends with extinction. Competition and cross-reactivity are included in a natural way. The average number of cells per clonotype, in a human body, is only of order 10.
Collapse
Affiliation(s)
- Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
| | - Robin E Callard
- Institute for Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1N 1EH, UK
| | - Rollo L Hoare
- Institute for Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1N 1EH, UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
14
|
Sun Q, Min L, Kuang Y. Global stability of infection-free state and endemic infection state of a modified human immunodeficiency virus infection model. IET Syst Biol 2015; 9:95-103. [PMID: 26021330 DOI: 10.1049/iet-syb.2014.0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study proposes a modified human immunodeficiency virus (HIV) infection differential equation model with a saturated infection rate. This model has an infection-free equilibrium point and an endemic infection equilibrium point. Using Lyapunov functions and LaSalle's invariance principle shows that if the model's basic reproductive number R0 < 1, the infection-free equilibrium point is globally asymptotically stable, otherwise the endemic infection equilibrium point is globally asymptotically stable. It is shown that a forward bifurcation will occur when R0 = 1. The basic reproductive number R0 of the modified model is independent of plasma total CD4⁺ T cell counts and thus the modified model is more reasonable than the original model proposed by Buonomo and Vargas-De-León. Based on the clinical data from HIV drug resistance database of Stanford University, using the proposed model simulates the dynamics of two group patients' anti-HIV infection treatments. The simulation results have shown that the first 4 weeks' treatments made the two group patients' R'0 < 1, respectively. After the period, drug resistance made the two group patients' R'0 > 1. The results explain why the two group patients' mean CD4⁺ T cell counts raised and mean HIV RNA levels declined in the first period, but contrary in the following weeks.
Collapse
Affiliation(s)
- Qilin Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Lequan Min
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Temp AZ 85287-1804, USA
| |
Collapse
|
15
|
Echeverría A, Moro-García MA, Asensi V, Cartón JA, López-Larrea C, Alonso-Arias R. CD4⁺CD28null T lymphocytes resemble CD8⁺CD28null T lymphocytes in their responses to IL-15 and IL-21 in HIV-infected patients. J Leukoc Biol 2015; 98:373-84. [PMID: 26034206 DOI: 10.1189/jlb.1a0514-276rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 05/01/2015] [Indexed: 01/09/2023] Open
Abstract
HIV-infected individuals suffer from accelerated immunologic aging. One of the most prominent changes during T lymphocyte aging is the accumulation of CD28(null) T lymphocytes, mainly CD8(+) but also CD4(+) T lymphocytes. Enhancing the functional properties of these cells may be important because they provide antigen-specific defense against chronic infections. The objective of this study was to compare the responses of CD4(+)CD28(null) and CD8(+)CD28(null) T lymphocytes from HIV-infected patients to the immunomodulatory effects of cytokines IL-15 and IL-21. We quantified the frequencies of CD4(+)CD28(null) and CD8(+)CD28(null) T lymphocytes in peripheral blood from 110 consecutive, HIV-infected patients and 25 healthy controls. Patients showed increased frequencies of CD4(+)CD28(null) and CD8(+)CD28(null). Both subsets were positively correlated to each other and showed an inverse correlation with the absolute counts of CD4(+) T lymphocytes. Higher frequencies of HIV-specific and CMV-specific cells were found in CD28(null) than in CD28(+) T lymphocytes. Activation of STAT5 by IL-15 and STAT3 by IL-21 was higher in CD28(null) compared with CD28(+) T lymphocytes. Proliferation, expression of CD69, and IFN-γ production in CD28(null) T lymphocytes were increased after treatment with IL-15, and IL-21 potentiated most of those effects. Nevertheless, IL-21 alone reduced IFN-γ production in response to anti-CD3 stimulation but increased CD28 expression, even counteracting the inhibitory effect of IL-15. Intracytoplasmic stores of granzyme B and perforin were increased by IL-15, whereas IL-21 and simultaneous treatment with the 2 cytokines also significantly enhanced degranulation in CD4(+)CD28(null) and CD8(+)CD28(null) T lymphocytes. IL-15 and IL-21 could have a role in enhancing the effector response of CD28(null) T lymphocytes against their specific chronic antigens in HIV-infected patients.
Collapse
Affiliation(s)
- Ainara Echeverría
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Marco A Moro-García
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Víctor Asensi
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - José A Cartón
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Carlos López-Larrea
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Rebeca Alonso-Arias
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| |
Collapse
|
16
|
Schim van der Loeff I, Hsu LY, Saini M, Weiss A, Seddon B. Zap70 is essential for long-term survival of naive CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:2873-80. [PMID: 25092893 DOI: 10.4049/jimmunol.1400858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Survival of naive T cells requires engagement of TCR with self-peptide major histocompatibility Ags. The signaling pathways required to transmit this survival signal are poorly understood. In this study, we asked whether the tyrosine kinase Zap70 is required to transmit survival signals in naive CD8 T cells. In the absence of Zap70 expression, thymic development is completely blocked. Using a tetracycline-inducible Zap70 transgene (TetZap70), thymic development of Zap70-deficient TCR transgenic F5 mice was restored. Feeding mice doxycycline to induce Zap70 expression resulted in repopulation of the peripheral naive compartment. Zap70 transgene expression was then ablated by withdrawal of doxycycline. Survival of Zap70-deficient naive CD8 T cells depended on host environment. In hosts with a replete T cell compartment, naive T cells died rapidly in the absence of Zap70 expression. In lymphopenic hosts, Zap70-deficient T cells survived far longer, in an IL-7-dependent manner, but failed to undergo lymphopenia-induced proliferation. Analyzing mixed bone marrow chimeras revealed that intact Zap70-dependent signaling was important for integration of recent thymic emigrants into the mature naive compartment. Finally, we asked whether adaptor function conferred by Zap70 tyrosines 315 and 319 was necessary for transmission of homeostatic TCR signals. This was done by analyzing F5 mice expressing mutant Zap70 in which these residues had been mutated to alanines (Zap70(YYAA)). Inducible Zap70 expression rescued thymic development in F5 TetZap70 Zap70(YYAA) mice. However, in the absence of wild-type Zap70 expression, the Zap70(YYAA) mutant failed to transmit either survival or proliferative homeostatic signals.
Collapse
Affiliation(s)
- Ina Schim van der Loeff
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Lih-Yun Hsu
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Manoj Saini
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Art Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Benedict Seddon
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| |
Collapse
|
17
|
Lanzer KG, Johnson LL, Woodland DL, Blackman MA. Impact of ageing on the response and repertoire of influenza virus-specific CD4 T cells. IMMUNITY & AGEING 2014; 11:9. [PMID: 24999367 PMCID: PMC4082670 DOI: 10.1186/1742-4933-11-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/04/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ageing has been shown to reduce CD8 T cell repertoire diversity and immune responses against influenza virus infection in mice. In contrast, less is known about the impact of ageing on CD4 T cell repertoire diversity and immune response to influenza virus infection. RESULTS The CD4 T cell response was followed after infection of young and aged C57BL/6 mice with influenza virus using a tetramer specific for an immunodominant MHC class II epitope of the influenza virus nucleoprotein. The appearance of virus-specific CD4 T cells in the lung airways of aged mice was delayed compared to young mice, but the overall peak number and cytokine secretion profile of responding CD4 T cells was not greatly perturbed. In addition, the T cell repertoire of responding cells, determined using T cell receptor Vβ analysis, failed to show the profound effect of age we previously described for CD8 T cells. The reduced impact of age on influenza-specific CD4 T cells was consistent with a reduced effect of age on the overall CD4 compared with the CD8 T cell repertoire in specific pathogen free mice. Aged mice that were thymectomized as young adults showed an enhanced loss of the epitope-specific CD4 T cell response after influenza virus infection compared with age-matched sham-thymectomized mice, suggesting that a reduced repertoire can contribute to impaired responsiveness. CONCLUSIONS The diversity of the CD4 T cell repertoire and response to influenza virus is not as profoundly impaired by ageing in C57BL/6 mice as previously shown for CD8 T cells. However, adult thymectomy enhanced the impact of ageing on the response. Understanding the impact of ageing on CD4 T cell responses to influenza virus infection is an important prerequisite for developing better vaccines for the elderly.
Collapse
Affiliation(s)
| | | | - David L Woodland
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, USA ; Keystone Symposia, 160 US Highway 6, Suite 200, Silverthorne, CO 80498, USA
| | | |
Collapse
|
18
|
Martinet KZ, Bloquet S, Bourgeois C. Ageing combines CD4 T cell lymphopenia in secondary lymphoid organs and T cell accumulation in gut associated lymphoid tissue. IMMUNITY & AGEING 2014; 11:8. [PMID: 24829607 PMCID: PMC4020584 DOI: 10.1186/1742-4933-11-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/29/2014] [Indexed: 12/11/2022]
Abstract
Background CD4 T cell lymphopenia is an important T cell defect associated to ageing. Higher susceptibility to infections, cancer, or autoimmune pathologies described in aged individuals is thought to partly rely on T cell lymphopenia. We hypothesize that such diverse effects may reflect anatomical heterogeneity of age related T cell lymphopenia. Indeed, no data are currently available on the impact of ageing on T cell pool recovered from gut associated lymphoid tissue (GALT), a crucial site of CD4 T cell accumulation. Results Primary, secondary and tertiary lymphoid organs of C57BL/6 animals were analysed at three intervals of ages: 2 to 6 months (young), 10 to 14 months (middle-aged) and 22 to 26 months (old). We confirmed that ageing preferentially impacted CD4 T cell compartment in secondary lymphoid organs. Importantly, a different picture emerged from gut associated mucosal sites: during ageing, CD4 T cell accumulation was progressively developing in colon and small intestine lamina propria and Peyer’s patches. Similar trend was also observed in middle-aged SJL/B6 F1 mice. Interestingly, an inverse correlation was detected between CD4 T cell numbers in secondary lymphoid organs and colonic lamina propria of C57BL/6 mice whereas no increase in proliferation rate of GALT CD4 T cells was detected. In contrast to GALT, no CD4 T cell accumulation was detected in lungs and liver in middle-aged animals. Finally, the concomitant accumulation of CD4 T cell in GALT and depletion in secondary lymphoid organs during ageing was detected both in male and female animals. Conclusions Our data thus demonstrate that T cell lymphopenia in secondary lymphoid organs currently associated to ageing is not sustained in gut or lung mucosa associated lymphoid tissues or non-lymphoid sites such as the liver. The inverse correlation between CD4 T cell numbers in secondary lymphoid organs and colonic lamina propria and the absence of overt proliferation in GALT suggest that marked CD4 T cell decay in secondary lymphoid organs during ageing reflect redistribution of CD4 T cells rather than generalized CD4 T cell decay. Such anatomical heterogeneity may provide an important rationale for the diversity of immune defects observed during ageing.
Collapse
Affiliation(s)
- Kim Zita Martinet
- INSERM U1012, Faculté de Médecine Paris-Sud, 63 rue Gabriel Péri, 94276 Le Kremlin-Bicêtre, France ; Univ Paris-Sud, UMR-S1012, Le Kremlin-Bicêtre, France
| | - Stéphane Bloquet
- Univ Paris-Sud, UMR-S1012, Le Kremlin-Bicêtre, France ; Animalerie centrale, Faculté de Médecine Paris-Sud, Univ Paris-Sud, Le Kremlin-Bicêtre, France
| | - Christine Bourgeois
- INSERM U1012, Faculté de Médecine Paris-Sud, 63 rue Gabriel Péri, 94276 Le Kremlin-Bicêtre, France ; Univ Paris-Sud, UMR-S1012, Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Sun Q, Min L. Dynamics analysis and simulation of a modified HIV infection model with a saturated infection rate. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:145162. [PMID: 24829609 PMCID: PMC3981026 DOI: 10.1155/2014/145162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/28/2014] [Indexed: 11/17/2022]
Abstract
This paper studies a modified human immunodeficiency virus (HIV) infection differential equation model with a saturated infection rate. It is proved that if the basic virus reproductive number R 0 of the model is less than one, then the infection-free equilibrium point of the model is globally asymptotically stable; if R 0 of the model is more than one, then the endemic infection equilibrium point of the model is globally asymptotically stable. Based on the clinical data from HIV drug resistance database of Stanford University, using the proposed model simulates the dynamics of the two groups of patients' anti-HIV infection treatment. The numerical simulation results are in agreement with the evolutions of the patients' HIV RNA levels. It can be assumed that if an HIV infected individual's basic virus reproductive number R 0 < 1 then this person will recover automatically; if an antiretroviral therapy makes an HIV infected individual's R 0 < 1, this person will be cured eventually; if an antiretroviral therapy fails to suppress an HIV infected individual's HIV RNA load to be of unpredictable level, the time that the patient's HIV RNA level has achieved the minimum value may be the starting time that drug resistance has appeared.
Collapse
Affiliation(s)
- Qilin Sun
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lequan Min
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
20
|
Khailaie S, Bahrami F, Janahmadi M, Milanez-Almeida P, Huehn J, Meyer-Hermann M. A mathematical model of immune activation with a unified self-nonself concept. Front Immunol 2013; 4:474. [PMID: 24409179 PMCID: PMC3872974 DOI: 10.3389/fimmu.2013.00474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022] Open
Abstract
The adaptive immune system reacts against pathogenic nonself, whereas it normally remains tolerant to self. The initiation of an immune response requires a critical antigen(Ag)-stimulation and a critical number of Ag-specific T cells. Autoreactive T cells are not completely deleted by thymic selection and partially present in the periphery of healthy individuals that respond in certain physiological conditions. A number of experimental and theoretical models are based on the concept that structural differences discriminate self from nonself. In this article, we establish a mathematical model for immune activation in which self and nonself are not distinguished. The model considers the dynamic interplay of conventional T cells, regulatory T cells (Tregs), and IL-2 molecules and shows that the renewal rate ratio of resting Tregs to naïve T cells as well as the proliferation rate of activated T cells determine the probability of immune stimulation. The actual initiation of an immune response, however, relies on the absolute renewal rate of naïve T cells. This result suggests that thymic selection reduces the probability of autoimmunity by increasing the Ag-stimulation threshold of self reaction which is established by selection of a low number of low-avidity autoreactive T cells balanced with a proper number of Tregs. The stability analysis of the ordinary differential equation model reveals three different possible immune reactions depending on critical levels of Ag-stimulation: a subcritical stimulation, a threshold stimulation inducing a proper immune response, and an overcritical stimulation leading to chronic co-existence of Ag and immune activity. The model exhibits oscillatory solutions in the case of persistent but moderate Ag-stimulation, while the system returns to the homeostatic state upon Ag clearance. In this unifying concept, self and nonself appear as a result of shifted Ag-stimulation thresholds which delineate these three regimes of immune activation.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Fariba Bahrami
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran , Tehran , Iran
| | - Mahyar Janahmadi
- Neuroscience Research Centre and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Pedro Milanez-Almeida
- Department of Experimental Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany ; Bio Centre for Life Science, Technische Universität Braunschweig , Braunschweig , Germany
| |
Collapse
|
21
|
Abstract
Age-related regression of the thymus is associated with a decline in naïve T cell output. This is thought to contribute to the reduction in T cell diversity seen in older individuals and linked with increased susceptibility to infection, autoimmune disease, and cancer. Thymic involution is one of the most dramatic and ubiquitous changes seen in the aging immune system, but the mechanisms which underlying this process are poorly understood. However, a picture is emerging, implicating the involvement of both extrinsic and intrinsic factors. In this review we assess the role of the thymic microenvironment as a potential target that regulates thymic involution, question whether thymocyte development in the aged thymus is functionally impaired, and explore the kinetics of thymic involution.
Collapse
Affiliation(s)
- Donald B Palmer
- Infection and Immunity Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London , London , UK
| |
Collapse
|
22
|
Vahl JC, Heger K, Knies N, Hein MY, Boon L, Yagita H, Polic B, Schmidt-Supprian M. NKT cell-TCR expression activates conventional T cells in vivo, but is largely dispensable for mature NKT cell biology. PLoS Biol 2013; 11:e1001589. [PMID: 23853545 PMCID: PMC3708704 DOI: 10.1371/journal.pbio.1001589] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/07/2013] [Indexed: 12/24/2022] Open
Abstract
Natural killer T (NKT) cell development depends on recognition of self-glycolipids via their semi-invariant Vα14i-TCR. However, to what extent TCR-mediated signals determine identity and function of mature NKT cells remains incompletely understood. To address this issue, we developed a mouse strain allowing conditional Vα14i-TCR expression from within the endogenous Tcrα locus. We demonstrate that naïve T cells are activated upon replacement of their endogenous TCR repertoire with Vα14i-restricted TCRs, but they do not differentiate into NKT cells. On the other hand, induced TCR ablation on mature NKT cells did not affect their lineage identity, homeostasis, or innate rapid cytokine secretion abilities. We therefore propose that peripheral NKT cells become unresponsive to and thus are independent of their autoreactive TCR. Immune system natural killer T (NKT) cells help to protect against certain strains of bacteria and viruses, and suppress the development of autoimmune diseases and cancer. However, NKT cells are also central mediators of allergic responses. The recognition of one's own glycolipid antigens (self-glycolipids) in the thymus via the unique Vα14i T cell receptor, Vα14i-TCR, triggers the NKT cell developmental program, which differs considerably from that of conventional T cells. We generated a mouse model to investigate whether the Vα14i-TCR on mature NKT cells constantly recognizes self-glycolipids and to assess whether this TCR is required for survival and continued NKT cell identity. Switching the peptide-recognizing TCR of a mature conventional T cell to a glycolipid-recognizing Vα14i-TCR led to activation of the T cells, indicating that this TCR is also autoreactive on peripheral T cells or can signal autonomously. But TCR ablation did not affect the half-life, characteristic gene expression or innate functions of mature NKT cells. Therefore, the inherently autoreactive Vα14i-TCR is dispensable for the functions of mature peripheral NKT cells after instructing thymic NKT cell development. Thus the Vα14i-TCR serves a similar function to pattern-recognition receptors, in mediating immune recognition of foreign invasion or diseased cells.
Collapse
Affiliation(s)
- J. Christoph Vahl
- Molecular Immunology and Signaltransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Klaus Heger
- Molecular Immunology and Signaltransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nathalie Knies
- Molecular Immunology and Signaltransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marco Y. Hein
- Molecular Immunology and Signaltransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Louis Boon
- Bioceros, Yalelaan 46, Utrecht, The Netherlands
| | - Hideo Yagita
- Juntendo University School of Medicine, Tokyo, Japan
| | - Bojan Polic
- University of Rijeka School of Medicine, Rijeka, Croatia
| | - Marc Schmidt-Supprian
- Molecular Immunology and Signaltransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail:
| |
Collapse
|
23
|
Zhou H, Zhao H, Hao Y, Song C, Han J, Zhang J, Gao G, Han N, Yang D, Li Y, Zhang F, Zeng H. Excessive conversion and impaired thymic output contribute to disturbed regulatory T-cell homeostasis in AIDS patients with low CD4 cell counts. AIDS 2013; 27:1059-69. [PMID: 23299175 DOI: 10.1097/qad.0b013e32835e2b99] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE T regulatory (Treg) cells are a heterogeneous population that consists of CD4(+)CD25(low)CD45RA(+) [naive Treg (nTreg) cells] and CD4(+)CD25(high)CD45RA(-) [activated Treg (aTreg) cells] subsets. We investigated the effects of HIV infection and HAART on distinct Treg subsets. METHODS HIV-infected adult patients naive to HAART (n=57), patients with acute HIV infection (n=13), and healthy controls (n=92) were recruited for a cross-sectional study. Patients receiving HAART were followed up in a longitudinal study. RESULTS Compared with healthy controls, we observed a reduced proportion of nTreg cells and an elevated frequency of aTreg cells in peripheral blood from HAART-naïve patients. Moreover, nTreg cells showed a decreased CD31(+) frequency, whereas aTreg cells showed an increased CD31(+) frequency, indicating impaired thymic output and excessive conversion from nTreg to aTreg cells. nTreg and aTreg cells both displayed higher levels of Ki67(+), reflecting hyperproliferation. The longitudinal study showed that HAART successfully recovered nTreg but not aTreg cell frequency. Higher baseline naïve CD4 T-cell percentages were associated with faster reconstitution of nTreg cell frequency as well as CD4(+) T-cell count. CONCLUSION Our data suggest that the disturbed homeostasis of Treg cells in HIV-infected patients is probably caused by excessive conversion from nTreg to aTreg cells, and impaired thymic output of nTreg cells. nTreg cells can be recovered by HAART, which was associated with baseline naive CD4(+) T-cell percentages, indicating that reconstitution of nTreg cells may benefit from earlier antiretroviral treatment.
Collapse
|
24
|
Affiliation(s)
- Pamela J. Fink
- Department of Immunology, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
25
|
Li HW, Sachs J, Pichardo C, Bronson R, Zhao G, Sykes M. Nonalloreactive T cells prevent donor lymphocyte infusion-induced graft-versus-host disease by controlling microbial stimuli. THE JOURNAL OF IMMUNOLOGY 2012; 189:5572-81. [PMID: 23136200 DOI: 10.4049/jimmunol.1200045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mice, graft-versus-host reactions, associated with powerful graft-versus-tumor effects, can be achieved without graft-versus-host disease (GVHD) by delayed administration of donor lymphocyte infusions (DLI) to established mixed chimeras. However, GVHD sometimes occurs after DLI in established mixed chimeric patients. In contrast to mice, in which T cell recovery from the thymus occurs prior to DLI administration, human T cell reconstitution following T cell-depleted hematopoietic cell transplantation is slow, resulting in lymphopenia at the time of DLI. We demonstrate in this study that T cell lymphopenia is an independent risk factor for GVHD following DLI in the absence of known inflammatory stimuli. DLI-induced GVHD was prevented in lymphopenic recipients by prior administration of a small number of nonalloreactive polyclonal T cells, insufficient to prevent lymphopenia-associated expansion of subsequently administered T cells, through a regulatory T cell-independent mechanism. GVHD was not inhibited by T cells with irrelevant specificity. Moreover, administration of antibiotics reduced the severity of GVHD in lymphopenic hosts. Accumulation of DLI-derived effector T cells and host hematopoietic cell elimination were markedly diminished by regulatory T cell-depleted, nonalloreactive T cells. Finally, thymectomized mixed chimeras showed increased GVHD following delayed DLI. Collectively, our data demonstrate that in the absence of known conditioning-induced inflammatory stimuli, T cell lymphopenia is a risk factor for GVHD in mixed chimeras receiving delayed DLI. Our data suggest that the predisposition to GVHD can at least in part be explained by the presence of occult inflammatory stimuli due to the absence of T cells to control microbial infections.
Collapse
Affiliation(s)
- Hao Wei Li
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
26
|
Hu P, Nebreda AR, Liu Y, Carlesso N, Kaplan M, Kapur R. p38α protein negatively regulates T helper type 2 responses by orchestrating multiple T cell receptor-associated signals. J Biol Chem 2012; 287:33215-26. [PMID: 22859305 DOI: 10.1074/jbc.m112.355594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitogen-activated protein kinase p38α is a critical regulator of certain inflammatory diseases. However, its role in T helper type 2 (Th2) responses and allergic inflammation remains unknown. Here we show an increase in the production of interleukin-4 (IL-4) in p38α(-/-) CD4(+) T cells in response to antigen stimulation. p38α-deficient naïve CD4(+) T cells preferentially differentiate into Th2 cells through increased endogenous production of IL-4. Consistent with those results, we also observed decreased expression of p38α during T helper cell differentiation. Furthermore, deficiency of p38α alters the balance in the expression of NFATc1 and NFATc2 under steady-state conditions and enhances the expression and nuclear translocation of NFATc1 in CD4(+) T cells upon antigen stimulation. Knockdown of NFATc1 significantly inhibits Th2 differentiation in p38α(-/-) T cells but not in p38α(+/-) T cells. p38α deficiency also inhibits the activation of Akt but enhances the activation of ERK in response to T cell receptor engagement without impacting IL-2/Stat5 signaling. In a model of ovalbumin-induced acute allergic airway inflammation, mice with induced deletion of p38α show elevated serum ovalbumin-specific IgE level, increased infiltration of eosinophils, and higher concentrations of Th2 cytokines including IL-4 and IL-5 in the bronchoalveolar lavage fluid relative to control mice. Taken together, p38α regulates multiple T cell receptor-associated signals and negatively influences Th2 differentiation and allergic inflammation.
Collapse
Affiliation(s)
- Ping Hu
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Control of the alloimmune response requires elimination and/or suppression of alloreactive immune cells. Lymphodepleting induction therapies are increasingly used to accomplish this goal, both as part of tolerance induction protocols or to reduce the requirements for maintenance immunosuppression in the peritransplant setting. However, it is well recognized that lymphopenia induces compensatory proliferation of immune cells, generally termed ``homeostatic proliferation,'' which favors the emergence of memory T cells. Paradoxically therefore, the result may be a situation that favors graft rejection and/or makes tolerance difficult to achieve or sustain. Yet all depletion is not alike, particularly with respect to the timing of reconstitution and the types of cells that repopulate the host. Thus, to design more effective induction strategies it is important to understand the homeostatic mechanisms, which exist to maintain a balanced repertoire of naïve and memory T and B cells in the periphery and how they respond to lymphodepletion. Here we will review the biology of homeostatic proliferation stimulated by lymphopenia, the effects of specific depleting agents on reconstitution of the T- and B-cell immune repertoire, drawing from both from animal models and human experience, and potential strategies to enhance allodepletion while minimizing the adverse effects of homeostatic proliferation.
Collapse
Affiliation(s)
- N K Tchao
- Immune Tolerance Network, San Francisco, CA, USA
| | | |
Collapse
|
28
|
AbuAttieh M, Bender D, Liu E, Wettstein P, Platt JL, Cascalho M. Affinity maturation of antibodies requires integrity of the adult thymus. Eur J Immunol 2011; 42:500-10. [PMID: 22105515 DOI: 10.1002/eji.201141889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/06/2011] [Accepted: 11/11/2011] [Indexed: 01/23/2023]
Abstract
The generation of B-cell responses to proteins requires a functional thymus to produce CD4(+) T cells which helps in the activation and differentiation of B cells. Because the mature T-cell repertoire has abundant cells with the helper phenotype, one might predict that in mature individuals, the generation of B-cell memory would proceed independently of the thymus. Contrary to that prediction, we show here that the removal of the thymus after the establishment of the T-cell compartment or sham surgery without removal of the thymus impairs the affinity maturation of antibodies. Because removal or manipulation of the thymus did not decrease the frequency of mutation of the Ig variable heavy chain exons encoding antigen-specific antibodies, we conclude that the thymus controls affinity maturation of antibodies in the mature individual by facilitating the selection of B cells with high-affinity antibodies.
Collapse
Affiliation(s)
- Mouhammed AbuAttieh
- Department of Surgery, Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
29
|
Fernandez S, Tanaskovic S, Helbig K, Rajasuriar R, Kramski M, Murray JM, Beard M, Purcell D, Lewin SR, Price P, French MA. CD4+ T-cell deficiency in HIV patients responding to antiretroviral therapy is associated with increased expression of interferon-stimulated genes in CD4+ T cells. J Infect Dis 2011; 204:1927-35. [PMID: 22006994 DOI: 10.1093/infdis/jir659] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most patients with human immunodeficiency virus (HIV) who remain CD4(+) T-cell deficient on antiretroviral therapy (ART) exhibit marked immune activation. As CD4(+) T-cell activation may be mediated by microbial translocation or interferon-alpha (IFN-α), we examined these factors in HIV patients with good or poor CD4(+) T-cell recovery on long-term ART. Messenger RNA levels for 3 interferon-stimulated genes were increased in CD4(+) T cells of patients with poor CD4(+) T-cell recovery, whereas levels in patients with good recovery did not differ from those in healthy controls. Poor CD4(+) T-cell recovery was also associated with CD4(+) T-cell expression of markers of activation, senescence, and apoptosis, and with increased serum levels of the lipopolysaccharide receptor and soluble CD14, but these were not significantly correlated with expression of the interferon-stimulated genes. Therefore, CD4(+) T-cell recovery may be adversely affected by the effects of IFN-α, which may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Sonia Fernandez
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Llibre JM, Buzón MJ, Massanella M, Esteve A, Dahl V, Puertas MC, Domingo P, Gatell JM, Larrouse M, Gutierrez M, Palmer S, Stevenson M, Blanco J, Martinez-Picado J, Clotet B. Treatment intensification with raltegravir in subjects with sustained HIV-1 viraemia suppression: a randomized 48-week study. Antivir Ther 2011; 17:355-64. [PMID: 22290239 DOI: 10.3851/imp1917] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Residual viraemia is a major obstacle to HIV-1 eradication in subjects receiving HAART. The intensification with raltegravir could impact latent reservoirs and might lead to a reduction of plasma HIV-1 viraemia (viral load [VL]), complementary DNA intermediates and immune activation. METHODS This was a prospective, open-label, randomized study comprising 69 individuals on suppressive HAART randomly assigned 2:1 to add raltegravir during 48 weeks. RESULTS Total and integrated HIV-1 DNA, and ultrasensitive VL remained stable despite intensification. There was a significant increase in episomal HIV DNA at weeks 2-4 in the raltegravir group returning to baseline levels at week 48. Median CD4(+) T-cell counts increased 124 and 80 cells/µl in the intensified and control groups after 48 weeks (P=0.005 and P=0.027, respectively), without significant differences between groups. No major changes were observed in activation of CD4(+) T-cells. Conversely, raltegravir intensification significantly reduced activation of CD8(+) T-cells at week 48 (HLA-DR(+)CD38(+), P=0.005), especially in the memory compartment (CD38(+) of CD8(+)CD45RO(+), P<0.0001). Linear mix models also depicted a larger decrease in CD8(+) T-cell activation in the intensification group (P=0.036 and P=0.010, respectively). Raltegravir intensification was not associated to any particular adverse event. CONCLUSIONS Intensification of HAART with raltegravir during 48 weeks was safe and associated with a significant decrease in CD8(+) T-cell activation, and a transient increase of episomal HIV-1 DNA. However, raltegravir did not significantly contribute to changes in CD4(+) T-cell counts, ultrasensitive VL, and total and integrated HIV-1 DNA. These findings suggest that raltegravir impacts residual HIV-1 replication and support new strategies to impair HIV-1 persistence. ClinicalTrials.gov identifier: NCT00554398.
Collapse
Affiliation(s)
- Josep M Llibre
- Lluita contra la SIDA Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Khoury G, Rajasuriar R, Cameron PU, Lewin SR. The role of naïve T-cells in HIV-1 pathogenesis: an emerging key player. Clin Immunol 2011; 141:253-67. [PMID: 21996455 DOI: 10.1016/j.clim.2011.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
Functional naïve T-cells are critical for an effective immune response to multiple pathogens. HIV leads to a significant reduction in CD4+ naïve T-cell number and impaired function and there is incomplete recovery following combination antiretroviral therapy (cART). Here we review the basic homeostatic mechanisms that maintain naïve CD4+ T-cells and discuss recent developments in understanding the impact of HIV infection on naïve CD4+ T-cells. Finally we review therapeutic interventions in HIV-infected individuals aimed at specifically enhancing recovery of naïve CD4+ T-cells.
Collapse
Affiliation(s)
- Gabriela Khoury
- Department of Medicine, Monash University, Melbourne Victoria, 3004, Australia
| | | | | | | |
Collapse
|
32
|
Fink PJ, Hendricks DW. Post-thymic maturation: young T cells assert their individuality. Nat Rev Immunol 2011; 11:544-9. [PMID: 21779032 DOI: 10.1038/nri3028] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cell maturation was once thought to occur entirely within the thymus. Now, evidence is mounting that the youngest peripheral T cells in both mice and humans comprise a distinct population from their more mature, yet still naive, counterparts. These cells, termed recent thymic emigrants (RTEs), undergo a process of post-thymic maturation that can be monitored at the levels of cell phenotype and immune function. Understanding this final maturation step in the process of generating useful and safe T cells is of clinical relevance, given that RTEs are over-represented in neonates and in adults recovering from lymphopenia. Post-thymic maturation may function to ensure T cell fitness and self tolerance.
Collapse
Affiliation(s)
- Pamela J Fink
- Department of Immunology, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
33
|
Ferrando-Martínez S, Ruiz-Mateos E, Hernández A, Gutiérrez E, Rodríguez-Méndez MDM, Ordoñez A, Leal M. Age-related deregulation of naive T cell homeostasis in elderly humans. AGE (DORDRECHT, NETHERLANDS) 2011; 33:197-207. [PMID: 20700658 PMCID: PMC3127472 DOI: 10.1007/s11357-010-9170-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 07/15/2010] [Indexed: 05/20/2023]
Abstract
Immunosenescence is characterized by phenotypic and functional changes of effector memory T cells. In spite of the well-described senescent defects of these experienced T cells, immune responses to new pathogens are also deeply affected in elderly humans, suggesting that naive T cells could also show age-related defects. It has been reported in both, animal models and humans, alterations of the naive T cell turnover associated to advanced age or low thymic function. However, as far as we know, homeostatic mechanisms involved in the deregulation of naive T cell peripheral dynamics and their consequences are still not well understood. Thus, the aim of our study was to analyze homeostatic parameters of peripheral naive T cells and their relationship with thymic function in young and elderly humans. Our results show that lower naive T cell numbers were associated with a lower thymic function and higher activation and proliferating naive T cell levels. We then analyzed sjTREC numbers and relative telomere length from sorted naive T cells. Our results show that the aberrant activation and proliferation status was related to lower sjTREC numbers (a peripheral proliferation marker) and both, higher CD57 expression levels and shortened telomeres (replicative senescence-related markers). Elderly individuals show a greater contraction of the CD8 naive T cell numbers and all homeostatic alterations were more severe in this compartment. In addition, we found that low functional thymus show a CD4-biased thymocyte production. Taken together, our results suggest a homeostatic deregulation, affecting mostly the naive CD8 T cell subset, leading to the accumulation of age-associated defects in, otherwise, phenotypically naive T cells.
Collapse
Affiliation(s)
- Sara Ferrando-Martínez
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Department of Clinical Biochemistry, IBIS/CSIC/University of Seville, Virgen del Rocío University Hospital, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
| | - Ana Hernández
- Cardiac Surgery, Virgen del Rocio University Hospital, Seville, Spain
| | | | - Maria del Mar Rodríguez-Méndez
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Department of Clinical Biochemistry, IBIS/CSIC/University of Seville, Virgen del Rocío University Hospital, Seville, Spain
| | - Antonio Ordoñez
- Cardiac Surgery, Virgen del Rocio University Hospital, Seville, Spain
| | - Manuel Leal
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
| |
Collapse
|
34
|
Gayathri V, Asha VV, John JA, Subramoniam A. Protection of immunocompromised mice from fungal infection with a thymus growth-stimulatory component from Selaginella involvens, a fern. Immunopharmacol Immunotoxicol 2011; 33:351-359. [PMID: 21554105 DOI: 10.3109/08923973.2010.518617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Recent studies have shown that the water extract of Selaginella involvens (Sw.) Spring, a wild fern, exhibits thymus growth-stimulatory activity in adult mice (reversal of involution of thymus) and remarkable anti-lipid peroxidation activity. Follow-up studies were carried out in the present study. MATERIALS AND METHODS Activity-guided isolation of the active component (AC) was carried out. The effect of AC on immune function was studied using fungal (Aspergillus fumigatus) challenge in cortisone-treated mice. The in vitro antifungal activity of AC was assayed using disc diffusion assay. In vitro and in vivo effect of AC on DNA synthesis in thymus was studied using (3)H-thymidine incorporation. In in vitro anti-lipid peroxidation, hydroxyl radical scavenging and inhibition of superoxide production were assayed. RESULTS The active principle/component (AC) was isolated in a chromatographically pure form from the water extract of S. involvens. AC showed positive reaction to glycosides. AC possessed both thymus growth-stimulatory and antioxidant properties. It protected cortisone-treated mice from A. fumigatus challenge. It did not exhibit in vitro antifungal activity. Increased (3)H-thymidine incorporation was observed in the reticuloepithelium of thymus obtained from AC-treated mice. However, in vitro AC treatment to thymus for 5 h did not result in an increase in (3)H-thymidine incorporation. DISCUSSION AND CONCLUSION AC (named as Selagin), from S. involvens, could reverse involution of thymus to a large extent, exhibit remarkable antioxidant activity, and protect immunocompromised mice from fungal infection. Therefore, it is very promising for the development of a drug to ameliorate old age-related health problems and prolong lifespan.
Collapse
Affiliation(s)
- V Gayathri
- Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram 695 562, Kerala State, India
| | | | | | | |
Collapse
|
35
|
Yang Z, Wang ZE, Doulias PT, Wei W, Ischiropoulos H, Locksley RM, Liu L. Lymphocyte development requires S-nitrosoglutathione reductase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6664-9. [PMID: 20980633 PMCID: PMC3070165 DOI: 10.4049/jimmunol.1000080] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
NO is critical to immunity, but its role in the development of the immune system is unknown. In this study, we show that S-nitrosoglutathione reductase (GSNOR), a protein key to the control of protein S-nitrosylation, is important for the development of lymphocytes. Genetic deletion of GSNOR in mice results in significant decrease in both T and B lymphocytes in the periphery. In thymus, GSNOR deficiency causes excessive protein S-nitrosylation, increases apoptosis, and reduces the number of CD4 single-positive thymocytes. Lymphopenia and increase in S-nitrosylation and apoptosis in GSNOR-deficient mice are largely abolished by genetic deletion of inducible NO synthase. Furthermore, the protection of lymphocyte development by GSNOR is apparently intrinsic to hematopoietic cells. Thus, GSNOR, likely through regulation of S-nitrosylation and apoptosis, physiologically plays a protective role in the development of the immune system.
Collapse
Affiliation(s)
- Zhiyong Yang
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Zhi-En Wang
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Paschalis-Thomas Doulias
- Children’s Hospital of Philadelphia Research Institute, Departments of Pediatrics and Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
| | - Wei Wei
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Harry Ischiropoulos
- Children’s Hospital of Philadelphia Research Institute, Departments of Pediatrics and Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
| | - Richard M. Locksley
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Francisco, CA 94143
| | - Limin Liu
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW HIV infection is characterized by chronic immune system activation and inflammatory cytokine production. This review will highlight recent developments using plasma and cellular biomarkers of immune system activation and dysfunction to predict mortality and opportunistic disease in HIV-infected individuals. RECENT FINDINGS HIV infection results in features characteristic of early aging of the immune system or 'immune senescence', driven by chronic antigen exposure and immune system activation. Microbial translocation of gut bacterial components is associated with chronic immune activation and possibly systemic inflammation. Antiretroviral therapy may not fully normalize this condition. Baseline elevations of certain biomarkers of inflammation or coagulopathy, notably interleukin-6 (IL-6), C-reactive protein (CRP), and D-dimer, have been associated with mortality or opportunistic disease, after adjustment for appropriate variables, in several large randomized clinical trials. It is not known if elevated IL-6 or CRP causes this morbidity and mortality or if they are simply surrogate markers of a global inflammatory state. SUMMARY Several inflammatory biomarkers appear to add to our ability to predict mortality or opportunistic disease in HIV-infected individuals. Before biomarkers will be useful, it will be necessary to identify interventions that moderate biomarker levels, and then determine if this moderation attenuates disease outcomes.
Collapse
Affiliation(s)
- Daniel E Nixon
- Virginia Commonwealth University, Richmond, Virginia 23298-0049, USA.
| | | |
Collapse
|
37
|
Askenasy EM, Askenasy N, Askenasy JJ. Does lymphopenia preclude restoration of immune homeostasis? The particular case of type 1 diabetes. Autoimmun Rev 2010; 9:687-90. [DOI: 10.1016/j.autrev.2010.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 05/24/2010] [Indexed: 11/27/2022]
|
38
|
Abstract
Non-AIDS-defining co-morbidities that occur despite viral suppression and immune reconstitution using antiretroviral therapy depict early aging process in HIV-infected individuals. During aging, a reduction in T-cell renewal, together with a progressive enrichment of terminally differentiated T cells, translates into a general decline of the immune system, gradually leading to immunosenescence. Inflammation is a hallmark of age-associated comorbidities, and immune activation is a hallmark of HIV disease. Constant stimulation of the immune system by HIV or due to co-infections activates the innate and adaptive immune system, resulting in release of mediators of inflammation. Immune activation coupled with lack of anti-inflammatory responses likely results in accelerated aging in HIV disease. Dysfunctional thymic output, along with HIV-mediated disruption of the gastrointestinal barrier leading to microbial translocation, contributes to the circulating antigenic load driving early senescence in HIV disease.
Collapse
Affiliation(s)
- Seema Desai
- Department of Immunology/Microbiology, Rush University Medical Center, 1735 W. Harrison Street, Room 660 Cohn, Chicago, IL, 60612, USA.
| | | |
Collapse
|
39
|
Abstract
Hematopoietic stem cells (HSCs) save lives in routine clinical practice every day, as they are the key element in transplantation-based therapies for hematologic malignancies. The success of clinical stem cell transplantation critically relies on the ability of stem cells to reconstitute the hematopoietic system for many decades after the administration of the powerful chemotherapy and/or irradiation that is required to eradicate malignant cells, but also irreversibly ablates patients’ own blood forming capacity. Surprisingly, despite enormous efforts and continuous progress in the field, our understanding of the basic biology of HSCs is still rather incomplete. Several recent studies substantially refine our understanding of the cells at the very top of the hematopoietic hierarchy, and suggest that we may need to revise the criteria we typically use to identify and define HSCs.
Collapse
Affiliation(s)
- Hanno Hock
- The Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
40
|
CD4 T-cell hyperactivation and susceptibility to cell death determine poor CD4 T-cell recovery during suppressive HAART. AIDS 2010; 24:959-68. [PMID: 20177358 DOI: 10.1097/qad.0b013e328337b957] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The failure to increase CD4 T-cell counts in some HAART-treated HIV-infected patients with satisfactory virological responses has been related to low CD4 T-cell production, high turnover and death. However, the relative contribution of these factors is still unclear, strongly limiting the definition of appropriate therapeutic strategies for these patients. METHODS A cross-sectional study was designed to evaluate the contribution of thymic activity, microbial translocation, cellular activation and death to CD4 T-cell recovery. We included 230 HIV-infected individuals on suppressive HAART (>2 years); 95 of them were considered 'discordant' (CD4 T-cell count <350 cells/mul) and 135 were considered 'concordant'. Comparative and logistic regression analyses were performed. RESULTS Discordant patients showed higher levels of activated [human leukocyte antigen (HLA)-DRCD95 and CD38CD45RA] cells in both the CD8 and CD4 T-cell compartments. Notably, the most significant differences were observed in CD4 T cells. Discordant patients showed lower naive CD4 T-cell production (CD45RACD31 cells), higher spontaneous ex-vivo CD4 T-cell death and higher plasma levels of soluble CD14. Multivariate analysis showed that activation and death of CD4 T cells, along with nadir CD4 T-cell counts, were the only predictive factors for poor immune recovery. Moreover, the low correlations found between CD4 T-cell activation or death with thymic output and bacterial translocation suggest that additional factors modulate cellular activation and death and, in turn, CD4 T-cell recovery. CONCLUSION CD4 T-cell repopulation during HAART is determined by CD4 T-cell activation and death. Therefore, strategies aimed to reduce these parameters should be envisaged to treat discordant patients.
Collapse
|
41
|
J Buzón M, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, Gatell JM, Domingo P, Paredes R, Sharkey M, Palmer S, Stevenson M, Clotet B, Blanco J, Martinez-Picado J. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 2010; 16:460-5. [DOI: 10.1038/nm.2111] [Citation(s) in RCA: 454] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 02/08/2010] [Indexed: 11/09/2022]
|
42
|
Boding L, Bonefeld CM, Nielsen BL, Lauritsen JPH, von Essen MR, Hansen AK, Larsen JM, Nielsen MM, Odum N, Geisler C. TCR down-regulation controls T cell homeostasis. THE JOURNAL OF IMMUNOLOGY 2009; 183:4994-5005. [PMID: 19801521 DOI: 10.4049/jimmunol.0901539] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR and cytokine receptor signaling play key roles in the complex homeostatic mechanisms that maintain a relative stable number of T cells throughout life. Despite the homeostatic mechanisms, a slow decline in naive T cells is typically observed with age. The CD3gamma di-leucine-based motif controls TCR down-regulation and plays a central role in fine-tuning TCR expression and signaling in T cells. In this study, we show that the age-associated decline of naive T cells is strongly accelerated in CD3gammaLLAA knock-in mice homozygous for a double leucine to alanine mutation in the CD3gamma di-leucine-based motif, whereas the number of memory T cells is unaffected by the mutation. This results in premature T cell population senescence with a severe dominance of memory T cells and very few naive T cells in middle-aged to old CD3gamma mutant mice. The reduced number of naive T cells in CD3gamma mutant mice was caused by the combination of reduced thymic output, decreased T cell apoptosis, and increased transition of naive T cells to memory T cells. Experiments with bone marrow chimeric mice confirmed that the CD3gammaLLAA mutation exerted a T cell intrinsic effect on T cell homeostasis that resulted in an increased transition of CD3gammaLLAA naive T cells to memory T cells and a survival advantage of CD3gammaLLAA T cells compared with wild-type T cells. The experimental observations were further supported by mathematical modeling of T cell homeostasis. Our study thus identifies an important role of CD3gamma-mediated TCR down-regulation in T cell homeostasis.
Collapse
Affiliation(s)
- Lasse Boding
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gagnerault MC, Lanvin O, Pasquier V, Garcia C, Damotte D, Lucas B, Lepault F. Autoimmunity during Thymectomy-Induced Lymphopenia: Role of Thymus Ablation and Initial Effector T Cell Activation Timing in Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:4913-20. [DOI: 10.4049/jimmunol.0901954] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Gress RE, Deeks SG. Reduced thymus activity and infection prematurely age the immune system. J Clin Invest 2009; 119:2884-7. [PMID: 19770512 DOI: 10.1172/jci40855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aging process affects all aspects of the immune system, particularly the T cells. The immune system in older individuals is often characterized by lower T cell numbers, lower naive/memory T cell ratios, and lower T cell diversity. Most measures of inflammation increase with age. Why this happens, and why there is so much person-to-person variability in these changes, is not known. In this issue of the JCI, Sauce and colleagues show that removal of the thymus during infancy results in premature onset of many of these age-associated changes to the immune system (see the related article beginning on page 3070). The effect of thymectomy was particularly notable in those individuals who acquired CMV infection. Data from this study, as well as data from other observational settings, suggest that reduced thymic function and persistent viral infections combine to accelerate a decline in immunologic function.
Collapse
Affiliation(s)
- Ronald E Gress
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
45
|
Sauce D, Larsen M, Fastenackels S, Duperrier A, Keller M, Grubeck-Loebenstein B, Ferrand C, Debré P, Sidi D, Appay V. Evidence of premature immune aging in patients thymectomized during early childhood. J Clin Invest 2009; 119:3070-8. [PMID: 19770514 DOI: 10.1172/jci39269] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/16/2009] [Indexed: 12/31/2022] Open
Abstract
While the thymus is known to be essential for the initial production of T cells during early life, its contribution to immune development remains a matter of debate. In fact, during cardiac surgery in newborns, the thymus is completely resected to enable better access to the heart to correct congenital heart defects, suggesting that it may be dispensable during childhood and adulthood. Here, we show that young adults thymectomized during early childhood exhibit an altered T cell compartment. Specifically, absolute CD4+ and CD8+ T cell counts were decreased, and these T cell populations showed substantial loss of naive cells and accumulation of oligoclonal memory cells. A subgroup of these young patients (22 years old) exhibited a particularly altered T cell profile that is usually seen in elderly individuals (more than 75 years old). This condition was directly related to CMV infection and the induction of strong CMV-specific T cell responses, which may exhaust the naive T cell pool in the absence of adequate T cell renewal from the thymus. Together, these marked immunological alterations are reminiscent of the immune risk phenotype, which is defined by a cluster of immune markers predictive of increased mortality in the elderly. Overall, our data highlight the importance of the thymus in maintaining the integrity of T cell immunity during adult life.
Collapse
Affiliation(s)
- Delphine Sauce
- Infections and Immunity, INSERM UMRS 945, Avenir Group, Hôpital Pitié-Salpêtrière, UPMC University of Paris 06, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Adult AIDS-like disease in a novel inducible human immunodeficiency virus type 1 Nef transgenic mouse model: CD4+ T-cell activation is Nef dependent and can occur in the absence of lymphophenia. J Virol 2009; 83:11830-46. [PMID: 19740990 DOI: 10.1128/jvi.01466-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CD4C/HIV(nef) transgenic (Tg) mice express Nef in CD4+ T cells and in the cells of the macrophage/monocyte/dendritic lineage, and they develop an AIDS-like disease similar to human AIDS. In these mice, Nef is constitutively expressed throughout life. To rule out the contribution of any developmental defects caused by early expression of Nef, we generated inducible human immunodeficiency virus type 1 (HIV-1) Nef Tg mice by using the tetracycline-inducible system. Faithful expression of the Nef transgene was induced in (CD4C/rtTA x TRE/HIV(Nef)) or (CD4C/rtTA2S-M2 x TRE/HIV(Nef)) double-Tg mice upon doxycycline (DOX) treatment in drinking water. Long-term treatment of these mice with DOX also led to loss, apoptosis, and activation of CD4+ T cells, this latter phenotype being observed even with low levels of Nef. These phenotypes could be transferred by bone marrow (BM) transplantation, indicating a hematopoietic cell autonomous effect. In addition, in mixed Tg:non-Tg BM chimeras, only Tg and not non-Tg CD4+ T cells exhibited an effector/memory phenotype in the absence of lymphopenia. Finally, the DOX-induced double-Tg mice developed nonlymphoid organ diseases similar to those of CD4C/HIV(Nef) Tg mice and of humans infected with HIV-1. These results show for the first time that adult mice are susceptible to the detrimental action of Nef and that Nef-mediated T-cell activation can be independent of lymphopenia. These Tg mice represent a unique model which is likely to be instrumental for understanding the cellular and molecular pathways of Nef action as well as the main characteristics of immune reconstitution following DOX withdrawal.
Collapse
|
47
|
Hofer U, Speck RF. Disturbance of the gut-associated lymphoid tissue is associated with disease progression in chronic HIV infection. Semin Immunopathol 2009; 31:257-66. [PMID: 19484240 DOI: 10.1007/s00281-009-0158-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/14/2009] [Indexed: 02/06/2023]
Abstract
Why and how HIV makes people sick is highly debated. Recent evidence implicates heightened immune activation due to breakdown of the gastrointestinal barrier as a determining factor of lentiviral pathogenesis. HIV-mediated loss of Th17 cells from the gut-associated lymphoid tissue (GALT) impairs mucosal integrity and innate defense mechanisms against gut microbes. Translocation of microbial products from the gut, in turn, correlates with increased immune activation in chronic HIV infection and may further damage the immune system by increasing viral and activation-induced T cell death, by reducing T cell reconstitution due to tissue scarring, and by impairing the function of other cell types, such as gammadelta T cells and epithelial cells. Maintaining a healthy GALT may be the key to reducing the pathogenic potential of HIV.
Collapse
Affiliation(s)
- Ursula Hofer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
48
|
Anz D, Thaler R, Stephan N, Waibler Z, Trauscheid MJ, Scholz C, Kalinke U, Barchet W, Endres S, Bourquin C. Activation of melanoma differentiation-associated gene 5 causes rapid involution of the thymus. THE JOURNAL OF IMMUNOLOGY 2009; 182:6044-50. [PMID: 19414755 DOI: 10.4049/jimmunol.0803809] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the course of infection, the detection of pathogen-associated molecular patterns by specialized pattern recognition receptors in the host leads to activation of the innate immune system. Whereas the subsequent induction of adaptive immune responses in secondary lymphoid organs is well described, little is known about the effects of pathogen-associated molecular pattern-induced activation on primary lymphoid organs. Here we show that activation of innate immunity through the virus-sensing melanoma differentiation-associated gene 5 (MDA-5) receptor causes a rapid involution of the thymus. We observed a strong decrease in thymic cellularity associated with characteristic alterations in thymic subpopulations and microanatomy. In contrast, immune stimulation with potent TLR agonists did not lead to thymic involution or induce changes in thymic subpopulations, demonstrating that thymic pathology is not a general consequence of innate immune activation. We determined that suppression of thymocyte proliferation and enhanced apoptosis are the essential cellular mechanisms involved in the decrease in thymic size upon MDA-5 activation. Further, thymic involution critically depended on type I IFN. Strikingly however, no direct action of type I IFN on thymocytes was required, given that the decrease in thymic size was still observed in mice with a selective deletion of the type I IFN receptor on T cells. All changes observed were self-limiting, given that cessation of MDA-5 activation led to a rapid recovery of thymic size. We show for the first time that the in vivo activation of the virus-sensing MDA-5 receptor leads to a rapid and reversible involution of the thymus.
Collapse
Affiliation(s)
- David Anz
- Division of Clinical Pharmacology, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Han GM, Zhao B, Jeyaseelan S, Feng JM. Age-associated parallel increase of Foxp3(+)CD4(+) regulatory and CD44(+)CD4(+) memory T cells in SJL/J mice. Cell Immunol 2009; 258:188-96. [PMID: 19482268 PMCID: PMC2706307 DOI: 10.1016/j.cellimm.2009.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/27/2009] [Accepted: 05/06/2009] [Indexed: 12/31/2022]
Abstract
Effector/memory T cells (Tem) are required to maintain successful immunity, while regulatory T cells (Treg) are required to prevent excessive/uncontrolled inflammation and/or autoimmunity. Although both Tem and Treg cells are increased during aging, the relationship between the increased proportion of Foxp3(+) Treg cells and CD44(+) Tem cells with aging is not clearly understood. We found in this report that Foxp3(+) Treg cells are increased in parallel with CD44(+) Tem cells in SJL/J mice with aging, and that all Foxp3(+) Treg cells are of CD44(+) Tem phenotype, suggesting that the increased Foxp3(+) Treg cells originated from the expanded pool of CD44(+) Tem cells with aging. Our in vitro kinetic studies further suggested that Foxp3(+) Treg cells are converted through the CD44(+) stage. Furthermore, we observed that although the balance between Foxp3(+) Treg and CD44(+)Foxp3(-) Tem cells remained with aging, the aged mice have higher ratios of both Tem and Treg cells vs. naïve T cells resulting in the "shrunken" naïve T cell pools. Our results suggest that an age-associated imbalance of T cell repertoire is a mechanism that contributes to spontaneous occurrence of Hodgkin's-like lymphoma in aged SJL/J mice.
Collapse
Affiliation(s)
- Guang-Ming Han
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University [LSU], Baton Rouge, Louisiana 70803
| | - Baohua Zhao
- College of Life Sciences, Hebei Normal University, P.R. China
| | - Samithamby Jeyaseelan
- Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, LSU, Baton Rouge, LA 70803
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112
| | - Ji-Ming Feng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University [LSU], Baton Rouge, Louisiana 70803
| |
Collapse
|
50
|
Geng EH, Deeks SG. CD4+ T cell recovery with antiretroviral therapy: more than the sum of the parts. Clin Infect Dis 2009; 48:362-4. [PMID: 19123869 DOI: 10.1086/595889] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|