1
|
Schulz MT, Rink L. Zinc deficiency as possible link between immunosenescence and age-related diseases. Immun Ageing 2025; 22:19. [PMID: 40390089 PMCID: PMC12087153 DOI: 10.1186/s12979-025-00511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/23/2025] [Indexed: 05/21/2025]
Abstract
As global life expectancy increases, research reveals a critical challenge in aging: the progressive deterioration of immune function, termed immunosenescence. This age-related immune decline is characterized by a complex dysregulation of immune responses, which leaves older adults increasingly vulnerable to infections, chronic inflammatory states, and various degenerative diseases. Without intervention, immunosenescence significantly contributes to morbidity and mortality among the elderly, intensifying healthcare burdens and diminishing quality of life on both individual and societal levels. This review explores the essential role of zinc, a trace element critical for immune health, in mitigating the impact of immunosenescence and slowing the cascade of immunological dysfunctions associated with aging. By modulating the activity of key immune cells and pathways, zinc supplementation emerges as a promising approach to strengthen immunity, reduce oxidative stress, and counteract "inflammaging," a state of chronic, low-grade inflammation that accelerates tissue damage and drives disease progression. Zinc's involvement in cellular defense and repair mechanisms across the immune system highlights its ability to enhance immune cell functionality, resilience, and adaptability, strengthening the body's resistance to infection and its ability to manage stressors that contribute to diseases of aging. Indeed, zinc has demonstrated potential to improve immune responses, decrease inflammation, and mitigate the risk of age-related conditions including diabetes, depression, cardiovascular disease, and vision loss. Given the prevalent barriers to adequate zinc intake among older adults, including dietary limitations, decreased absorption, and interactions with medications, this review underscores the urgent need to address zinc deficiency in aging populations. Recent findings on zinc's cellular and molecular effects on immune health present zinc supplementation as a practical, accessible intervention for supporting healthier aging and improving quality of life. By integrating zinc into targeted strategies, public health efforts may not only sustain immunity in the elderly but also extend healthy longevity, reduce healthcare costs, and potentially mitigate the incidence and impact of chronic diseases that strain healthcare systems worldwide.
Collapse
Affiliation(s)
- Michael Tobias Schulz
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Cancro MP. B cells and aging: a historical perspective. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:853-858. [PMID: 40107285 DOI: 10.1093/jimmun/vkaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/21/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Michael P Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Rovira II, Biragyn A, Brown LL, Galis ZS, Klauzinska M, Kotliarova SE, Simmons JM, Wali A, Xi D, Yarden RI, Riscuta G. Health and aging trajectories: shared and competing risks and resiliencies for chronic diseases associated with aging. A NIH-wide workshop. Front Public Health 2025; 13:1462217. [PMID: 40376061 PMCID: PMC12078139 DOI: 10.3389/fpubh.2025.1462217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/15/2025] [Indexed: 05/18/2025] Open
Affiliation(s)
- Ilsa I. Rovira
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology (LMBI), Immunoregulation Section, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, United States
| | - LaVerne L. Brown
- Resilience and Health Studies Program, National Institutes of Health (NIH), Office of Dietary Supplements (ODS), Bethesda, MD, United States
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Malgorzata Klauzinska
- Division of Cancer Biology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Svetlana E. Kotliarova
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Janine M. Simmons
- Office of Behavioral and Social Sciences Research (OBSSR), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Anil Wali
- Center to Reduce Cancer Health Disparities, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dan Xi
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ronit I. Yarden
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Gabriela Riscuta
- Division of Cancer Prevention, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
4
|
Gasmi M, Hejazi M, Muscella A, Marsigliante S, Sharma A. Aging-associated changes in immunological parameters: Implications for COVID-19 immune response in the elderly. Physiol Rep 2025; 13:e70364. [PMID: 40405557 PMCID: PMC12098970 DOI: 10.14814/phy2.70364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/07/2025] [Accepted: 04/26/2025] [Indexed: 05/24/2025] Open
Abstract
Aging has a profound impact on the immune system, leading to a gradual decline in its function and increased systemic inflammation, collectively known as immunosenescence and inflammaging. These changes make older adults more susceptible to infections, including COVID-19, and contribute to worse clinical outcomes, such as higher morbidity and mortality rates. This review explores immunological changes associated with aging, including impaired innate immune responses, reduced T- and B-cell function, and altered cytokine profiles. A comprehensive literature search identified relevant studies on the topic, and inclusion criteria focused on studies addressing age-related immune changes and their impact on responses to COVID-19. The findings underscore the need for targeted healthcare strategies to mitigate the negative effects of aging on immunity and improve immune resilience, and ultimately clinical outcomes and quality of life for this vulnerable population.
Collapse
Affiliation(s)
- Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar SaidTunisTunisia
| | - Mahdi Hejazi
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Antonella Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA)University of SalentoLecceItaly
| | - Santo Marsigliante
- Department of Biological and Environmental Science and Technologies (DiSTeBA)University of SalentoLecceItaly
| | - Aastha Sharma
- Department of Basic and Applied Science, School of Engineering and ScienceUniversity‐GD Goenka University GurugramGurugramIndia
| |
Collapse
|
5
|
Kim D, Kim J, Yeo H, Chung Y. Immunometabolic regulation of germinal centers and its implications for aging. Curr Opin Immunol 2024; 91:102485. [PMID: 39357081 DOI: 10.1016/j.coi.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Aging, metabolism, and immunity have long been considered distinct domains. Aging is primarily associated with the gradual decline of physiological functions, metabolism regulates energy production and maintains cellular processes, and the immune system manages innate and adaptive responses against pathogens and vaccines. However, recent studies have revealed that these three systems are intricately interconnected, collectively influencing an individual's response to stress and disease. This review explores the interplay between immunometabolism, T follicular helper cells, B cells, and aging, focusing on how these interactions impact immune function in the elderly.
Collapse
Affiliation(s)
- Daehong Kim
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Jaemin Kim
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Hyeonuk Yeo
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Yeonseok Chung
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Zhang C, Ren T, Zhao X, Su Y, Wang Q, Zhang T, He B, Chen Y, Wu LY, Sun L, Zhang B, Xia Z. Biologically informed machine learning modeling of immune cells to reveal physiological and pathological aging process. Immun Ageing 2024; 21:74. [PMID: 39449067 PMCID: PMC11515583 DOI: 10.1186/s12979-024-00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The immune system undergoes progressive functional remodeling from neonatal stages to old age. Therefore, understanding how aging shapes immune cell function is vital for precise treatment of patients at different life stages. Here, we constructed the first transcriptomic atlas of immune cells encompassing human lifespan, ranging from newborns to supercentenarians, and comprehensively examined gene expression signatures involving cell signaling, metabolism, differentiation, and functions in all cell types to investigate immune aging changes. By comparing immune cell composition among different age groups, HLA highly expressing NK cells and CD83 positive B cells were identified with high percentages exclusively in the teenager (Tg) group, whereas unknown_T cells were exclusively enriched in the supercentenarian (Sc) group. Notably, we found that the biological age (BA) of pediatric COVID-19 patients with multisystem inflammatory syndrome accelerated aging according to their chronological age (CA). Besides, we proved that inflammatory shift- myeloid abundance and signature correlate with the progression of complications in Kawasaki disease (KD). The shift- myeloid signature was also found to be associated with KD treatment resistance, and effective therapies improve treatment outcomes by reducing this signaling. Finally, based on those age-related immune cell compositions, we developed a novel BA prediction model PHARE ( https://xiazlab.org/phare/ ), which can apply to both scRNA-seq and bulk RNA-seq data. Using this model, we found patients with coronary artery disease (CAD) also exhibit accelerated aging compared to healthy individuals. Overall, our study revealed changes in immune cell proportions and function associated with aging, both in health and disease, and provided a novel tool for successfully capturing features that accelerate or delay aging.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tao Ren
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofan Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Qianhao Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tianzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Boxiao He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yabing Chen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ling-Yun Wu
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Biomedical Data Science, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
7
|
Fonte C, Jacob P, Vanet A, Ghislin S, Frippiat JP. Hindlimb unloading, a physiological model of microgravity, modifies the murine bone marrow IgM repertoire in a similar manner as aging but less strongly. Immun Ageing 2023; 20:64. [PMID: 37986079 PMCID: PMC10659048 DOI: 10.1186/s12979-023-00393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The spaceflight environment is an extreme environment that affects the immune system of approximately 50% of astronauts. With planned long-duration missions, such as the deployment of the Lunar Gateway and possible interplanetary missions, it is mandatory to determine how all components of the immune system are affected, which will allow the establishment of countermeasures to preserve astronaut health. However, despite being an important component of the immune system, antibody-mediated humoral immunity has rarely been investigated in the context of the effects of the space environment. It has previously been demonstrated that 30 days aboard the BION-M1 satellite and 21 days of hindlimb unloading (HU), a model classically used to mimic the effects of microgravity, decrease murine B lymphopoiesis. Furthermore, modifications in B lymphopoiesis reported in young mice subjected to 21 days of HU were shown to be similar to those observed in aged mice (18-22 months). Since the primary antibody repertoire composed of IgM is created by V(D) J recombination during B lymphopoiesis, the objective of this study was to assess the degree of similarity between changes in the bone marrow IgM repertoire and in the V(D)J recombination process in 2.5-month-old mice subjected to 21 days of HU and aged (18 months) mice. RESULTS We found that in 21 days, HU induced changes in the IgM repertoire that were approximately 3-fold less than those in aged mice, which is a rapid effect. Bone remodeling and epigenetics likely mediate these changes. Indeed, we previously demonstrated a significant decrease in tibial morphometric parameters from day 6 of HU and a progressive reduction in these parameters until day 21 of HU, and it has been shown that age and microgravity induce epigenetic changes. CONCLUSION These data reveal novel immune changes that are akin to advanced aging and underline the importance of studying the effects of spaceflight on antibody-mediated humoral immunity.
Collapse
Affiliation(s)
- Coralie Fonte
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Pauline Jacob
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Anne Vanet
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Stéphanie Ghislin
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France.
| |
Collapse
|
8
|
Sottini A, Quaresima V, Barbaro M, Moiola L, Filippi M, Malentacchi M, Capobianco M, Puthenparampil M, Gallo P, Cocco E, Frau J, Zaffaroni M, Guaschino C, Stampatori C, Mancinelli C, Brambilla L, Clerici VT, Vianello M, Vitetta F, Ferraro D, Rosettani P, Danni MC, Conti M, Grimoldi M, Capra R, Imberti L. Clinical relevance of thymic and bone marrow outputs in multiple sclerosis patients treated with alemtuzumab. J Neuroimmunol 2023; 382:578170. [PMID: 37579546 DOI: 10.1016/j.jneuroim.2023.578170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
Thymic and bone marrow outputs were evaluated in 13 sequential samples of 68 multiple sclerosis patients who initiated alemtuzumab and were clinically followed for 48 months. Three months after alemtuzumab infusions, the levels of new T lymphocytes were significantly reduced, but progressively increased reaching the highest values at 36 months, indicating the remarkable capacity of thymic function recovery. Newly produced B cells exceeded baseline levels as early as 3 months after alemtuzumab initiation. Heterogeneous patterns of new T- and B-cell recovery were identified, but without associations with age, sex, previous therapies, development of secondary autoimmunity or infections, and disease re-emergence. Trial registration version 2.0-27/01/2016.
Collapse
Affiliation(s)
- Alessandra Sottini
- Diagnostic Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy.
| | - Virginia Quaresima
- Diagnostic Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Mosè Barbaro
- Diagnostic Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy; Laboratorio analisi, Ospedale Civile di Sondrio, ASST Valtellina e Alto Lario, Sondrio, Italy
| | - Lucia Moiola
- Neurology Department-Multiple Sclerosis Center, IRCCS San Raffaele Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Units, MS Center, Headache Center, Epilepsy Center, and Stroke Unit, Neurophysiology Service, and Neuroimaging Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Malentacchi
- SCDO Neurologia e Centro di Riferimento Regionale Sclerosi Multipla, AOU San Luigi Gonzaga, Orbassano, Italy
| | - Marco Capobianco
- SCDO Neurologia e Centro di Riferimento Regionale Sclerosi Multipla, AOU San Luigi Gonzaga, Orbassano, Italy
| | - Marco Puthenparampil
- Department of Neuroscience (DNS), School of Medicine - University of Padua, Padua, Italy
| | - Paolo Gallo
- Department of Neuroscience (DNS), School of Medicine - University of Padua, Padua, Italy
| | - Eleonora Cocco
- Centro Sclerosi Multipla AOU Cagliari - University of Cagliari, Italy
| | | | - Mauro Zaffaroni
- Centro Sclerosi Multipla, Ospedale di Gallarate, ASST della Valle Olona, Gallarate, Italy
| | - Clara Guaschino
- Centro Sclerosi Multipla, Ospedale di Gallarate, ASST della Valle Olona, Gallarate, Italy
| | - Chiara Stampatori
- Centro Regionale per la Sclerosi Multipla, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Chiara Mancinelli
- Centro Regionale per la Sclerosi Multipla, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy; U.O. Neuroimmunologia e Malattie Neuromuscolari, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Brambilla
- U.O. Neuroimmunologia e Malattie Neuromuscolari, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valentina Torri Clerici
- U.O. Neuroimmunologia e Malattie Neuromuscolari, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Francesca Vitetta
- Centro Malattie Demielinizzanti, Ospedale Civile Baggiovara, AOU Modena, Italy
| | - Diana Ferraro
- Centro Malattie Demielinizzanti, Ospedale Civile Baggiovara, AOU Modena, Italy
| | - Pamela Rosettani
- Clinica Neurologica, Azienda Ospedaliero Universitaria delle Marche, Torrette, Ancona, Italy
| | - Maura Chiara Danni
- Clinica Neurologica, Azienda Ospedaliero Universitaria delle Marche, Torrette, Ancona, Italy
| | - Marta Conti
- Department of Neurology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Maria Grimoldi
- Department of Neurology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ruggero Capra
- Centro Regionale per la Sclerosi Multipla, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Luisa Imberti
- Diagnostic Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy; Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, Brescia, Italy
| |
Collapse
|
9
|
Konturek-Ciesla A, Dhapola P, Zhang Q, Säwén P, Wan H, Karlsson G, Bryder D. Temporal multimodal single-cell profiling of native hematopoiesis illuminates altered differentiation trajectories with age. Cell Rep 2023; 42:112304. [PMID: 36961818 DOI: 10.1016/j.celrep.2023.112304] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
Aging negatively affects hematopoiesis, with consequences for immunity and acquired blood cell disorders. Although impairments in hematopoietic stem cell (HSC) function contribute to this, the in vivo dynamics of such changes remain obscure. Here, we integrate extensive longitudinal functional assessments of HSC-specific lineage tracing with single-cell transcriptome and epitope profiling. In contrast to recent suggestions from single-cell RNA sequencing alone, our data favor a defined structure of HSC/progenitor differentiation that deviates substantially from HSC-derived hematopoiesis following transplantation. Native age-dependent attrition in HSC differentiation manifests as drastically reduced lymphoid output through an early lymphoid-primed progenitor (MPP Ly-I). While in vitro activation fails to rescue lymphoid differentiation from most aged HSCs, robust lymphopoiesis can be achieved by culturing elevated numbers of candidate HSCs. Therefore, our data position rare chronologically aged HSC clones, fully competent at producing lymphoid offspring, as a prime target for approaches aimed to improve lymphopoiesis in the elderly.
Collapse
Affiliation(s)
- Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Parashar Dhapola
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Qinyu Zhang
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Petter Säwén
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Haixia Wan
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Kugler‐Umana O, Zhang W, Kuang Y, Liang J, Castonguay CH, Tonkonogy SL, Marshak‐Rothstein A, Devarajan P, Swain SL. IgD + age-associated B cells are the progenitors of the main T-independent B cell response to infection that generates protective Ab and can be induced by an inactivated vaccine in the aged. Aging Cell 2022; 21:e13705. [PMID: 36056604 PMCID: PMC9577953 DOI: 10.1111/acel.13705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Age-associated B cells (ABC) accumulate with age and are associated with autoimmunity and chronic infection. However, their contributions to acute infection in the aged and their developmental pathways are unclear. We find that the response against influenza A virus infection in aged mice is dominated by a Fas+ GL7- effector B cell population we call infection-induced ABC (iABC). Most iABC express IgM and include antibody-secreting cells in the spleen, lung, and bone marrow. We find that in response to influenza, IgD+ CD21- CD23- ABC are the precursors of iABC and become memory B cells. These IgD+ ABC develop in germ-free mice, so are independent of foreign antigen recognition. The response of ABC to influenza infection, resulting in iABC, is T cell independent and requires both extrinsic TLR7 and TLR9 signals. In response to influenza infection, IgD+ ABC can induce a faster recovery of weight and higher total anti-influenza IgG and IgM titers that can neutralize virus. Immunization with whole inactivated virus also generates iABC in aged mice. Thus, in unimmunized aged mice, whose other B and T cell responses have waned, IgD+ ABC are likely the naive B cells with the potential to become Ab-secreting cells and to provide protection from infection in the aged.
Collapse
Affiliation(s)
- Olivia Kugler‐Umana
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Wenliang Zhang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Yi Kuang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Jialing Liang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Catherine H. Castonguay
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Susan L. Tonkonogy
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ann Marshak‐Rothstein
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Susan L. Swain
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
11
|
Myc-Interacting Zinc Finger Protein 1 (Miz-1) Is Essential to Maintain Homeostasis and Immunocompetence of the B Cell Lineage. BIOLOGY 2022; 11:biology11040504. [PMID: 35453704 PMCID: PMC9027237 DOI: 10.3390/biology11040504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Aging of the immune system is described as a progressive loss of the ability to respond to immunologic stimuli and is commonly referred to as immunosenescence. B cell immunosenescence is characterized by a decreased differentiation rate in the bone marrow and accumulation of antigen-experienced and age-associated B cells in secondary lymphoid organs (SLOs). A specific deletion of the POZ-domain of the transcription factor Miz-1 in pro-B cells, which is known to be involved in bone marrow hematopoiesis, leads to premature aging of the B cell lineage. In mice, this causes a severe reduction in bone marrow-derived B cells with a drastic decrease from the pre-B cell stage on. Further, mature, naïve cells in SLOs are reduced at an early age, while post-activation-associated subpopulations increase prematurely. We propose that Miz-1 interferes at several key regulatory checkpoints, critical during B cell aging, and counteracts a premature loss of immunocompetence. This enables the use of our mouse model to gain further insights into mechanisms of B cell aging and it can significantly contribute to understand molecular causes of impaired adaptive immune responses to counteract loss of immunocompetence and restore a functional immune response in the elderly.
Collapse
|
12
|
Harada T, Tsuboi I, Hino H, Yuda M, Hirabayashi Y, Hirai S, Aizawa S. Age-related exacerbation of hematopoietic organ damage induced by systemic hyper-inflammation in senescence-accelerated mice. Sci Rep 2021; 11:23250. [PMID: 34853370 PMCID: PMC8636590 DOI: 10.1038/s41598-021-02621-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyper-inflammatory disorder. The mortality of HLH is higher in the elderly than in young adults. Senescence-accelerated mice (SAMP1/TA-1) exhibit characteristic accelerated aging after 30 weeks of age, and HLH-like features, including hematopoietic organ damage, are seen after lipopolysaccharide (LPS) treatment. Thus, SAMP1/TA-1 is a useful model of hematological pathophysiology in the elderly with HLH. In this study, dosing of SAMP1/TA-1 mice with LPS revealed that the suppression of myelopoiesis and B-lymphopoiesis was more severe in aged mice than in young mice. The bone marrow (BM) expression of genes encoding positive regulators of myelopoiesis (G-CSF, GM-CSF, and IL-6) and of those encoding negative regulators of B cell lymphopoiesis (TNF-α) increased in both groups, while the expression of genes encoding positive-regulators of B cell lymphopoiesis (IL-7, SDF-1, and SCF) decreased. The expression of the GM-CSF-encoding transcript was lower in aged mice than in young animals. The production of GM-CSF by cultured stromal cells after LPS treatment was also lower in aged mice than in young mice. The accumulation of the TNF-α-encoding transcript and the depletion of the IL-7-encoding transcript were prolonged in aged mice compared to young animals. LPS dosing led to a prolonged increase in the proportion of BM M1 macrophages in aged mice compared to young animals. The expression of the gene encoding p16INK4a and the proportion of β-galactosidase- and phosphorylated ribosomal protein S6-positive cells were increased in cultured stromal cells from aged mice compared to those from young animals, while the proportion of Ki67-positive cells was decreased in stromal cells from aged mice. Thus, age-related deterioration of stromal cells probably causes the suppression of hematopoiesis in aged mice. This age-related latent organ dysfunction may be exacerbated in elderly people with HLH, resulting in poor prognosis.
Collapse
Affiliation(s)
- Tomonori Harada
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Isao Tsuboi
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hirotsugu Hino
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Miyuki Yuda
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yoko Hirabayashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, 210-9501, Japan
| | - Shuichi Hirai
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
13
|
Age-related changes in the TRB and IGH repertoires in healthy adult males and females. Immunol Lett 2021; 240:71-76. [PMID: 34666136 DOI: 10.1016/j.imlet.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
A diverse immune repertoire is capable of recognizing the enormous universe of foreign antigens encountered over life. Aging has a profound impact on the immune repertoires. However, whether continuous age-related changes in the immune repertoires differ between sexes is unclear. In this study, the characteristics of immune repertoires stratified by sex during aging are deciphered by analyzing T-cell receptor β-chain (TRB) and immunoglobulin heavy chain (IGH) sequences in 361 healthy adults. A similar change was observed between males and females across their lifespan, whereas age-subgroup analysis revealed sex-specific signatures in TRB and IGH repertoires. In regard to TRB, in males, repertoire richness and evenness increases slightly before the age of 32 years and 45 years respectively, and decreases sharply thereafter. Intriguingly, in females, they decrease significantly until around the age 57 years old, and subsequently undergo a stable stage up to the age of 83 years. Although IGH repertoire evenness increases significantly with age in both sexes, richness decreases significantly with age in males but remains stable in females. Moreover, average length of IGH CDR3 increases with age. In conclusion, these findings provide fundamental insights into the mechanisms underlying sex differences in adaptive immunity.
Collapse
|
14
|
de Mol J, Kuiper J, Tsiantoulas D, Foks AC. The Dynamics of B Cell Aging in Health and Disease. Front Immunol 2021; 12:733566. [PMID: 34675924 PMCID: PMC8524000 DOI: 10.3389/fimmu.2021.733566] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Aging is considered to be an important risk factor for several inflammatory diseases. B cells play a major role in chronic inflammatory diseases by antibody secretion, antigen presentation and T cell regulation. Different B cell subsets have been implicated in infections and multiple autoimmune diseases. Since aging decreases B cell numbers, affects B cell subsets and impairs antibody responses, the aged B cell is expected to have major impacts on the development and progression of these diseases. In this review, we summarize the role of B cells in health and disease settings, such as atherosclerotic disease. Furthermore, we provide an overview of age-related changes in B cell development and function with respect to their impact in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
15
|
Swain SL, Kugler-Umana O, Tonkonogy SL. "An Intrinsic Program Determines Key Age-Associated Changes in Adaptive Immunity that Limit Response to Non-Pathogens.". FRONTIERS IN AGING 2021; 2:701900. [PMID: 35382063 PMCID: PMC8979546 DOI: 10.3389/fragi.2021.701900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/09/2021] [Indexed: 01/14/2023]
Abstract
As mice age their adaptive immune system changes dramatically, leading to weakened responses to newly encountered antigens and poor efficacy of vaccines. A shared pattern emerges in the aged, with both CD4 T and B cell responses requiring higher levels of pathogen recognition. Moreover, in aged germ-free mice we find accumulation of the same novel age-associated T and B cell subsets that we and others have previously identified using mice maintained in normal laboratory animal housing conditions, suggesting that their development follows an intrinsic program.
Collapse
Affiliation(s)
- Susan L. Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Olivia Kugler-Umana
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Susan L. Tonkonogy
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
16
|
Kibler A, Budeus B, Homp E, Bronischewski K, Berg V, Sellmann L, Murke F, Heinold A, Heinemann FM, Lindemann M, Bekeredjian-Ding I, Horn PA, Kirschning CJ, Küppers R, Seifert M. Systematic memory B cell archiving and random display shape the human splenic marginal zone throughout life. J Exp Med 2021; 218:e20201952. [PMID: 33538775 PMCID: PMC7868796 DOI: 10.1084/jem.20201952] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Human memory B cells (MBCs) are generated and diversified in secondary lymphoid tissues throughout the organism. A paired immunoglobulin (Ig)-gene repertoire analysis of peripheral blood (PB) and splenic MBCs from infant, adult, and elderly humans revealed that throughout life, circulating MBCs are comprehensively archived in the spleen. Archive MBC clones are systematically preserved and uncoupled from class-switching. Clonality in the spleen increases steadily, but boosts at midlife, thereby outcompeting small clones. The splenic marginal zone (sMZ) represents a primed MBC compartment, generated from a stochastic exchange within the archive memory pool. This is supported by functional assays, showing that PB and splenic CD21+ MBCs acquire transient CD21high expression upon NOTCH2-stimulation. Our study provides insight that the human MBC system in PB and spleen is composed of three interwoven compartments: the dynamic relationship of circulating, archive, and its subset of primed (sMZ) memory changes with age, thereby contributing to immune aging.
Collapse
Affiliation(s)
- Artur Kibler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ekaterina Homp
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Kevin Bronischewski
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Victoria Berg
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ludger Sellmann
- Department of Haematology, University Hospital Essen, Essen, Germany
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Heinold
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Falko M. Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
Xie X, Shrimpton J, Doody GM, Conaghan PG, Ponchel F. B-cell capacity for differentiation changes with age. Aging Cell 2021; 20:e13341. [PMID: 33711204 PMCID: PMC8045946 DOI: 10.1111/acel.13341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/18/2021] [Accepted: 02/21/2021] [Indexed: 01/17/2023] Open
Abstract
Background Age‐related immune deficiencies are thought to be responsible for increased susceptibility to infection in older adults, with alterations in lymphocyte populations becoming more prevalent over time. The loss of humoral immunity in ageing was attributed to the diminished numbers of B cells and the reduced ability to generate immunoglobulin. Aims To compare the intrinsic B‐cell capacity for differentiation into mature plasma cells (PCs), between young and old donors, using in vitro assays, providing either effective T‐cell help or activation via TLR engagement. Methods B cells were isolated from healthy individuals, in younger (30–38 years) and older (60–64 years) donors. An in vitro model system of B‐cell differentiation was used, analysing 5 differentiation markers by flow cytometry, under T‐dependent (TD: CD40/BCR stimulation) or T‐independent (TI: TLR7/BCR activation) conditions. Antibody secretion was measured by ELISA and gene expression using qPCR. Results TI and TD differentiation resulted in effective proliferation of B cells followed by their differentiation into PC. B‐cell‐executed TI differentiation was faster, all differentiation marker and genes being expressed earlier than under TD differentiation (day 6), although generating less viable cells and lower antibody levels (day 13). Age‐related differences in B‐cell capacity for differentiation were minimal in TD differentiation. In contrast, in TI differentiation age significantly affected proliferation, viability, differentiation, antibody secretion and gene expression, older donors being more efficient. Conclusion Altogether, B‐cell differentiation into PC appeared similar between age groups when provided with T‐cell help, in contrast to TI differentiation, where multiple age‐related changes suggest better capacities in older donors. These new findings may help explain the emergence of autoantibodies in ageing.
Collapse
Affiliation(s)
- Xuanxiao Xie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Leeds Biomedical Research Centre University of Leeds Leeds UK
| | - Jennifer Shrimpton
- Division of Haematology and Immunology Leeds Institute of Medical Research University of Leeds Leeds UK
| | - Gina M. Doody
- Division of Haematology and Immunology Leeds Institute of Medical Research University of Leeds Leeds UK
| | - Philip G. Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Leeds Biomedical Research Centre University of Leeds Leeds UK
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Leeds Biomedical Research Centre University of Leeds Leeds UK
| |
Collapse
|
18
|
Fenner BP, Darden DB, Kelly LS, Rincon J, Brakenridge SC, Larson SD, Moore FA, Efron PA, Moldawer LL. Immunological Endotyping of Chronic Critical Illness After Severe Sepsis. Front Med (Lausanne) 2021; 7:616694. [PMID: 33659259 PMCID: PMC7917137 DOI: 10.3389/fmed.2020.616694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Improved management of severe sepsis has been one of the major health care accomplishments of the last two decades. Due to enhanced recognition and improved management of severe sepsis, in-hospital mortality has been reduced by up to 40%. With that good news, a new syndrome has unfortunately replaced in-hospital multi-organ failure and death. This syndrome of chronic critical illness (CCI) includes sepsis patients who survive the early "cytokine or genomic storm," but fail to fully recover, and progress into a persistent state of manageable organ injury requiring prolonged intensive care. These patients are commonly discharged to long-term care facilities where sepsis recidivism is high. As many as 33% of sepsis survivors develop CCI. CCI is the result, at least in part, of a maladaptive host response to chronic pattern-recognition receptor (PRR)-mediated processes. This maladaptive response results in dysregulated myelopoiesis, chronic inflammation, T-cell atrophy, T-cell exhaustion, and the expansion of suppressor cell functions. We have defined this panoply of host responses as a persistent inflammatory, immune suppressive and protein catabolic syndrome (PICS). Why is this important? We propose that PICS in survivors of critical illness is its own common, unique immunological endotype driven by the constant release of organ injury-associated, endogenous alarmins, and microbial products from secondary infections. While this syndrome can develop as a result of a diverse set of pathologies, it represents a shared outcome with a unique underlying pathobiological mechanism. Despite being a common outcome, there are no therapeutic interventions other than supportive therapies for this common disorder. Only through an improved understanding of the immunological endotype of PICS can rational therapeutic interventions be designed.
Collapse
Affiliation(s)
- Brittany P Fenner
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - D B Darden
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lauren S Kelly
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar Rincon
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Frederick A Moore
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
19
|
Szade K, Zukowska M, Szade A, Nowak W, Skulimowska I, Ciesla M, Bukowska‐Strakova K, Gulati GS, Kachamakova‐Trojanowska N, Kusienicka A, Einwallner E, Kijowski J, Czauderna S, Esterbauer H, Benes V, L Weissman I, Dulak J, Jozkowicz A. Heme oxygenase-1 deficiency triggers exhaustion of hematopoietic stem cells. EMBO Rep 2020; 21:e47895. [PMID: 31885181 PMCID: PMC7001511 DOI: 10.15252/embr.201947895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023] Open
Abstract
While intrinsic changes in aging hematopoietic stem cells (HSCs) are well characterized, it remains unclear how extrinsic factors affect HSC aging. Here, we demonstrate that cells in the niche-endothelial cells (ECs) and CXCL12-abundant reticular cells (CARs)-highly express the heme-degrading enzyme, heme oxygenase 1 (HO-1), but then decrease its expression with age. HO-1-deficient animals (HO-1-/- ) have altered numbers of ECs and CARs that produce less hematopoietic factors. HSCs co-cultured in vitro with HO-1-/- mesenchymal stromal cells expand, but have altered kinetic of growth and differentiation of derived colonies. HSCs from young HO-1-/- animals have reduced quiescence and regenerative potential. Young HO-1-/- HSCs exhibit features of premature exhaustion on the transcriptional and functional level. HO-1+/+ HSCs transplanted into HO-1-/- recipients exhaust their regenerative potential early and do not reconstitute secondary recipients. In turn, transplantation of HO-1-/- HSCs to the HO-1+/+ recipients recovers the regenerative potential of HO-1-/- HSCs and reverses their transcriptional alterations. Thus, HSC-extrinsic activity of HO-1 prevents HSCs from premature exhaustion and may restore the function of aged HSCs.
Collapse
Affiliation(s)
- Krzysztof Szade
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
| | - Monika Zukowska
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Agata Szade
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Witold Nowak
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Izabella Skulimowska
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Maciej Ciesla
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Karolina Bukowska‐Strakova
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Department of Clinical ImmunologyInstitute of PediatricsJagiellonian University Medical CollegeKrakowPoland
| | - Gunsagar Singh Gulati
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
| | - Neli Kachamakova‐Trojanowska
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Malopolska Centre of BiotechnologyJagiellonian UniversityKrakowPoland
| | - Anna Kusienicka
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Elisa Einwallner
- Department of Laboratory MedicineCenter of Translational ResearchMedical University of ViennaViennaAustria
| | - Jacek Kijowski
- Department of TransplantationInstitute of PediatricsJagiellonian University Medical CollegeKrakowPoland
| | - Szymon Czauderna
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Harald Esterbauer
- Department of Laboratory MedicineCenter of Translational ResearchMedical University of ViennaViennaAustria
| | | | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
| | - Jozef Dulak
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Malopolska Centre of BiotechnologyJagiellonian UniversityKrakowPoland
| | - Alicja Jozkowicz
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| |
Collapse
|
20
|
Kugler-Umana O, Devarajan P, Swain SL. Understanding the Heterogeneous Population of Age-Associated B Cells and Their Contributions to Autoimmunity and Immune Response to Pathogens. Crit Rev Immunol 2020; 40:297-309. [PMID: 33426819 PMCID: PMC8118092 DOI: 10.1615/critrevimmunol.2020034934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In humans and mice, susceptibility to infections and autoimmunity increases with age due to age-associated changes in innate and adaptive immune responses. Aged innate cells are also less active, leading to decreased naive T- and B-cell responses. Aging innate cells contribute to an overall heightened inflammatory environment. Naive T and B cells undergo cell-intrinsic age-related changes that result in reduced effector and memory responses. However, previously established B- and T-cell memory responses persist with age. One dramatic change is the appearance of a newly recognized population of age-associated B cells (ABCs) that has a unique cluster of differentiation (CD)21-CD23- phenotype. Here, we discuss the discovery and origins of the naive phenotype immunoglobulin (Ig)D+ versus activated CD11c+T-bet+ ABCs, with a focus on protective and pathogenic properties. In humans and mice, antigen-experienced CD11c+T-bet+ ABCs increase with autoimmunity and appear in response to bacterial and viral infections. However, our analyses indicate that CD21-CD23- ABCs include a resting, naive, progenitor ABC population that expresses IgD. Similar to generation of CD11c+T-bet+ ABCs, naive ABC response to pathogens depends on toll-like receptor stimulation, making this a key feature of ABC activation. Here, we put forward a potential developmental map of distinct subsets from putative naive ABCs. We suggest that defining signals that can harness the naive ABC response may contribute to protection against pathogens in the elderly. CD11c+T-bet+ ABCs may be useful targets for therapeutic strategies to counter autoimmunity.
Collapse
Affiliation(s)
- Olivia Kugler-Umana
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Susan L. Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
21
|
Avivi I, Zisman‐Rozen S, Naor S, Dai I, Benhamou D, Shahaf G, Tabibian‐Keissar H, Rosenthal N, Rakovsky A, Hanna A, Shechter A, Peled E, Benyamini N, Dmitrukha E, Barshack I, Mehr R, Melamed D. Depletion of B cells rejuvenates the peripheral B-cell compartment but is insufficient to restore immune competence in aging. Aging Cell 2019; 18:e12959. [PMID: 31056853 PMCID: PMC6612643 DOI: 10.1111/acel.12959] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/03/2019] [Accepted: 02/23/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is associated with increasing prevalence and severity of infections caused by a decline in bone marrow (BM) lymphopoiesis and reduced B‐cell repertoire diversity. The current study proposes a strategy to enhance immune responsiveness in aged mice and humans, through rejuvenation of the B lineage upon B‐cell depletion. We used hCD20Tg mice to deplete peripheral B cells in old and young mice, analyzing B‐cell subsets, repertoire and cellular functions in vitro, and immune responsiveness in vivo. Additionally, elderly patients, previously treated with rituximab healthy elderly and young individuals, were vaccinated against hepatitis B (HBV) after undergoing a detailed analysis for B‐cell compartments. B‐cell depletion in old mice resulted in rejuvenated B‐cell population that was derived from de novo synthesis in the bone marrow. The rejuvenated B cells exhibited a "young"‐like repertoire and cellular responsiveness to immune stimuli in vitro. Yet, mice treated with B‐cell depletion did not mount enhanced antibody responses to immunization in vivo, nor did they survive longer than control mice in "dirty" environment. Consistent with these results, peripheral B cells from elderly depleted patients showed a "young"‐like repertoire, population dynamics, and cellular responsiveness to stimulus. Nevertheless, the response rate to HBV vaccination was similar between elderly depleted and nondepleted subjects, although antibody titers were higher in depleted patients. This study proposes a proof of principle to rejuvenate the peripheral B‐cell compartment in aging, through B‐cell depletion. Further studies are warranted in order to apply this approach for enhancing humoral immune responsiveness among the elderly population.
Collapse
Affiliation(s)
- Irit Avivi
- Department of Hematology Tel Aviv Sourasky Medical Center Tel Aviv Israel
- Sackler Medical School Tel‐Aviv University Tel Aviv Israel
| | - Simona Zisman‐Rozen
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Shulamit Naor
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Isabelle Dai
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - David Benhamou
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Gitit Shahaf
- The Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat‐Gan Israel
| | | | - Noemie Rosenthal
- The Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat‐Gan Israel
| | - Aviya Rakovsky
- The Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat‐Gan Israel
| | - Ammuri Hanna
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Arik Shechter
- Department of Family Medicine Technion Faculty of Medicine Clalit Health Services and Neuro‐urology Unit RAMBAM Medical Center Haifa Israel
| | - Eli Peled
- Orthopedic Division Rambam Health Care Campus Haifa Israel
| | - Noam Benyamini
- Department of Hematology RAMBAM Medical Center Haifa Israel
| | | | - Iris Barshack
- Department of Pathology Sheba Medical Center Ramat Gan Israel
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat‐Gan Israel
| | - Doron Melamed
- Department of Immunology Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| |
Collapse
|
22
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp Gerontol 2019; 124:110632. [PMID: 31201918 DOI: 10.1016/j.exger.2019.110632] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Immunosenescence contributes to a decreased capacity of the immune system to respond effectively to infections or vaccines in the elderly. The full extent of the biological changes that lead to immunosenescence are unknown, but numerous cell types involved in innate and adaptive immunity exhibit altered phenotypes and function as a result of aging. These manifestations of immunosenescence at the cellular level are mediated by dysregulation at the genetic level, and changes throughout the immune system are, in turn, propagated by numerous cellular interactions. Environmental factors, such as nutrition, also exert significant influence on the immune system during aging. While the mechanisms that govern the onset of immunosenescence are complex, systems biology approaches allow for the identification of individual contributions from each component within the system as a whole. Although there is still much to learn regarding immunosenescence, systems-level studies of vaccine responses have been highly informative and will guide the development of new vaccine candidates, novel adjuvant formulations, and immunotherapeutic drugs to improve vaccine responses among the aging population.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
23
|
Moura J, Madureira P, Leal EC, Fonseca AC, Carvalho E. Immune aging in diabetes and its implications in wound healing. Clin Immunol 2019; 200:43-54. [PMID: 30735729 PMCID: PMC7322932 DOI: 10.1016/j.clim.2019.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Immune systems have evolved to recognize and eliminate pathogens and damaged cells. In humans, it is estimated to recognize 109 epitopes and natural selection ensures that clonally expanded cells replace unstimulated cells and overall immune cell numbers remain stationary. But, with age, it faces continuous repertoire restriction and concomitant accumulation of primed cells. Changes shaping the aging immune system have bitter consequences because, as inflammatory responses gain intensity and duration, tissue-damaging immunity and inflammatory disease arise. During inflammation, the glycolytic flux cannot cope with increasing ATP demands, limiting the immune response's extent. In diabetes, higher glucose availability stretches the glycolytic limit, dysregulating proteostasis and increasing T-cell expansion. Long-term hyperglycemia exerts an accumulating effect, leading to higher inflammatory cytokine levels and increased cytotoxic mediator secretion upon infection, a phenomenon known as diabetic chronic inflammation. Here we review the etiology of diabetic chronic inflammation and its consequences on wound healing.
Collapse
Affiliation(s)
- J Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, University of Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| | - P Madureira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal; Immunethep, Biocant Park, Cantanhede, Portugal
| | - E C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - A C Fonseca
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - E Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Coimbra, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
24
|
Horiguchi H, Loftus TJ, Hawkins RB, Raymond SL, Stortz JA, Hollen MK, Weiss BP, Miller ES, Bihorac A, Larson SD, Mohr AM, Brakenridge SC, Tsujimoto H, Ueno H, Moore FA, Moldawer LL, Efron PA. Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy. Front Immunol 2018; 9:595. [PMID: 29670613 PMCID: PMC5893931 DOI: 10.3389/fimmu.2018.00595] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical and technological advances promoting early hemorrhage control and physiologic resuscitation as well as early diagnosis and optimal treatment of sepsis have significantly decreased in-hospital mortality for many critically ill patient populations. However, a substantial proportion of severe trauma and sepsis survivors will develop protracted organ dysfunction termed chronic critical illness (CCI), defined as ≥14 days requiring intensive care unit (ICU) resources with ongoing organ dysfunction. A subset of CCI patients will develop the persistent inflammation, immunosuppression, and catabolism syndrome (PICS), and these individuals are predisposed to a poor quality of life and indolent death. We propose that CCI and PICS after trauma or sepsis are the result of an inappropriate bone marrow response characterized by the generation of dysfunctional myeloid populations at the expense of lympho- and erythropoiesis. This review describes similarities among CCI/PICS phenotypes in sepsis, cancer, and aging and reviews the role of aberrant myelopoiesis in the pathophysiology of CCI and PICS. In addition, we characterize pathogen recognition, the interface between innate and adaptive immune systems, and therapeutic approaches including immune modulators, gut microbiota support, and nutritional and exercise therapy. Finally, we discuss the future of diagnostic and prognostic approaches guided by machine and deep-learning models trained and validated on big data to identify patients for whom these approaches will yield the greatest benefits. A deeper understanding of the pathophysiology of CCI and PICS and continued investigation into novel therapies harbor the potential to improve the current dismal long-term outcomes for critically ill post-injury and post-infection patients.
Collapse
Affiliation(s)
- Hiroyuki Horiguchi
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.,Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Tyler J Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Russell B Hawkins
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Steven L Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - McKenzie K Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Brett P Weiss
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Elizabeth S Miller
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | | |
Collapse
|
25
|
Grebenciucova E, Berger JR. Immunosenescence: the Role of Aging in the Predisposition to Neuro-Infectious Complications Arising from the Treatment of Multiple Sclerosis. Curr Neurol Neurosci Rep 2018; 17:61. [PMID: 28669032 DOI: 10.1007/s11910-017-0771-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review highlights some of the important changes in the immune system that occur in the process of normal aging. Immunosenescence as a concept is directly relevant to the world of neuro-inflammation, as it may be a contributing factor to the risks associated with some of the current immunosuppressive and immunomodulatory therapies used in treating multiple sclerosis (MS) and other inflammatory disorders. RECENT FINDINGS Profound qualitative and quantitative changes occur in the adaptive and innate immunity compartments during aging. These changes may explain why patients of older age are at an increased risk of infections and infection-associated mortality. Immunosenescence-associated changes may be additive or synergistic with the effects produced by immunomodulatory and immunosuppressive medications. Clinicians should exercise a high level of vigilance in monitoring the risk of infections in older patients on these treatments.
Collapse
Affiliation(s)
- Elena Grebenciucova
- Multiple Sclerosis Division, The Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA.
| | - Joseph R Berger
- Multiple Sclerosis Division, The Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA
| |
Collapse
|
26
|
Bulati M, Caruso C, Colonna-Romano G. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by "inflamm-ageing". Ageing Res Rev 2017; 36:125-136. [PMID: 28396185 DOI: 10.1016/j.arr.2017.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/26/2022]
Abstract
Ageing is a complex process characterized by a general decline in physiological functions with increasing morbidity and mortality. The most important aspect of ageing is the chronic inflammatory status, named "inflamm-ageing", strictly associated with the deterioration of the immune function, termed "immunosenescence". Both are causes of increased susceptibility of elderly to infectious diseases, cancer, dementia, cardiovascular diseases and autoimmunity, and of a decreased response to vaccination. It has been widely demonstrated that ageing has a strong impact on the remodelling of the B cell branch of immune system. The first evident effect is the significant decrease in circulating B cells, primarily due to the reduction of new B cell coming from bone marrow (BM) progenitors, as inflammation directly impacts on B lymphopoiesis. Besides, in aged individuals, there is a shift from naïve to memory immunoglobulins production, accompanied by the impaired ability to produce high affinity protective antibodies against newly encountered antigens. This is accompanied by the increase of expanded clones of B cells, which correlates with poor health status. Age-related modifications also occur in naïve/memory B cells subsets. Indeed, in the elderly, there is a reduction of naïve B cells, accompanied by the expansion of memory B cells that show a senescence-associated phenotype. Finally, elderly show the impaired ability of memory B cells to differentiate into plasma cells. It can be concluded that inflammation is the leading cause of the age-related impairment of B cell compartment, which play certainly a key role in the development of age-related diseases. This makes study of B cells in the aged an important tool for monitoring immunosenescence, chronic inflammatory disorders and the effectiveness of vaccines or pharmacological therapies.
Collapse
|
27
|
Khomtchouk K, Alter S, Ratliff M, Blomberg BB, Riley RL. In old BALB/c mice, bone marrow pre-B cell and surrogate light chain reduction is associated with increased B cell reactivity to phosphorylcholine, but reduced T15 idiotype dominance. Mech Ageing Dev 2017; 162:53-62. [PMID: 27876385 PMCID: PMC5381390 DOI: 10.1016/j.mad.2016.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 10/12/2016] [Accepted: 11/15/2016] [Indexed: 01/10/2023]
Abstract
In young adult BALB/c mice, antibodies to phosphorylcholine (PC) bearing the T15 (TEPC 15) idiotype confer protection against pneumococcal infections. In old age, even though PC reactive B cells are often increased, the proportion of T15+ antibodies declines. We hypothesize that limited surrogate light chain (SLC) and compromise of the pre-B cell receptor checkpoint in old mice contribute to both reduced new B cell generation and changes in the anti-PC antibodies seen in old age. In old mice: 1) early pre-B cell loss is most pronounced at the preBCR checkpoint; however, the reduced pool of early pre-B cells continues to proliferate consistent with preBCR signaling; 2) increased PC reactivity is seen in bone marrow immature B cells; 3) deficient SLC promotes increased B cell PC reactivity and diminished T15 idiotype expression; and 4) as pre-B cell losses and reduced SLC become progressively more severe, increased T15 negative PC reactive B cells occur. These results associate a reduction in pre-B cells, imposed at the preBCR checkpoint, with increased reactivity to PC, but more limited expression of the protective T15 idiotype among PC reactive antibodies in old age.
Collapse
Affiliation(s)
- Kelly Khomtchouk
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, United States
| | - Sarah Alter
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, United States
| | - Michelle Ratliff
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, United States
| | - Bonnie B Blomberg
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, United States
| | - Richard L Riley
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, United States.
| |
Collapse
|
28
|
Lugaajju A, Reddy SB, Wahlgren M, Kironde F, Persson KEM. Development of Plasmodium falciparum specific naïve, atypical, memory and plasma B cells during infancy and in adults in an endemic area. Malar J 2017; 16:37. [PMID: 28109284 PMCID: PMC5251336 DOI: 10.1186/s12936-017-1697-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/13/2017] [Indexed: 11/12/2022] Open
Abstract
Background B-cells are essential in immunity against malaria, but which sub-sets of B-cells specifically recognize Plasmodium falciparum and when they appear is still largely unknown. Results Using the flow cytometry technique for detection of P. falciparum specific (Pf+) B-cells, this study for the first time measured the development of Pf+ B cell (CD19+) phenotypes in Ugandan babies from birth up to nine months, and in their mothers. The babies showed increases in Pf+ IgG memory B-cells (MBCs), atypical MBCs, and plasma cells/blasts over time, but the proportion of these cells were still lower than in the mothers who displayed stable levels (5, 18, and 3%, respectively). Pf+ non-IgG+ MBCs and naïve B-cells binding to P. falciparum antigens were higher in the babies compared to the mothers (12 and 50%). In ELISA there was an increase in IgG and IgM antibodies over time in babies, and stable levels in mothers. At baby delivery, multigravidae mothers had a higher proportion of Pf+ IgG MBCs and less Pf+ naïve B-cells than primigravidae mothers. Conclusions In newborns, naïve B-cells are a major player in recognizing P. falciparum. In adults, the high proportion of Pf+ atypical MBCs suggests a major role for these cells. Both in infants and adults, non-IgG+ MBCs were higher than IgG MBCs, indicating that these cells deserve more focus in future. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1697-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Allan Lugaajju
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.,Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sreenivasulu B Reddy
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fred Kironde
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.,Habib Medical School, Islamic University in Uganda (IUIU), Kampala, Uganda
| | - Kristina E M Persson
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden. .,Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
29
|
Biragyn A, Aliseychik M, Rogaev E. Potential importance of B cells in aging and aging-associated neurodegenerative diseases. Semin Immunopathol 2017; 39:283-294. [PMID: 28083646 DOI: 10.1007/s00281-016-0615-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer's disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.
Collapse
Affiliation(s)
- Arya Biragyn
- Immunoregulation section, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| | - Maria Aliseychik
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evgeny Rogaev
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Genomics and Human Genetics, Russian Academy of Sciences, Institute of General Genetics, Moscow, Russia.,Center for Brain Neurobiology and Neurogenetics, Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russia
| |
Collapse
|
30
|
Kennedy DE, Witte PL, Knight KL. Bone marrow fat and the decline of B lymphopoiesis in rabbits. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:30-9. [PMID: 26577994 PMCID: PMC4775299 DOI: 10.1016/j.dci.2015.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/05/2015] [Indexed: 05/03/2023]
Abstract
B lymphopoiesis is necessary to generate a diverse pool of naïve B cells that are able to respond to a broad spectrum of antigens during immune responses to pathogens and to vaccination. Rabbits have been utilized for many years to generate high affinity monoclonal and polyclonal antibodies. Specific antibodies generated in rabbits have greatly advanced scientific discoveries, but the unique qualities of rabbit B cell development have been underappreciated. Unlike in humans and mice, where B lymphopoiesis declines in mid to late life, B lymphopoiesis in rabbits arrests early in life, between 2 and 4 months of age. This review focuses on the early loss of B cell development in rabbits and the contribution of the bone marrow microenvironment to this process. We also propose directions for future research in this area, and discuss how the rabbit can be used as a model to understand the decline of B lymphopoiesis that occurs in humans late in life. Such studies will be important for developing therapeutics targeted to prevent and/or reverse declining B lymphopoiesis in the elderly, as well as boosting immunity and antibody responses after infection or vaccination.
Collapse
Affiliation(s)
- Domenick E Kennedy
- Loyola University Chicago, Department of Microbiology and Immunology, USA
| | - Pamela L Witte
- Loyola University Chicago, Department of Microbiology and Immunology, USA
| | - Katherine L Knight
- Loyola University Chicago, Department of Microbiology and Immunology, USA.
| |
Collapse
|
31
|
Lee-Chang C, Bodogai M, Moritoh K, Chen X, Wersto R, Sen R, Young HA, Croft M, Ferrucci L, Biragyn A. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3385-97. [PMID: 26983789 PMCID: PMC4821757 DOI: 10.4049/jimmunol.1502034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/04/2016] [Indexed: 12/15/2022]
Abstract
B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article, we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result, activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus, for the first time, to our knowledge, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224; INSERM UMR995, Lille Inflammation Research International Center, F-59000 Lille, France; University of Lille, F-59000 Lille, France
| | - Monica Bodogai
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224
| | - Kanako Moritoh
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, People's Republic of China; Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Robert Wersto
- Flow Cytometry Unit, National Institute on Aging, Baltimore, MD 21244
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224
| | - Howard A Young
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224
| | - Arya Biragyn
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224;
| |
Collapse
|
32
|
Martelli S, Pender SLF, Larbi A. Compartmentalization of immunosenescence: a deeper look at the mucosa. Biogerontology 2015; 17:159-76. [PMID: 26689202 DOI: 10.1007/s10522-015-9628-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022]
Abstract
Developments in medical care and living conditions led to an astonishing increase in life-span perspective and subsequently a rise in the old population. This can be seen as a success for public health policies but it also challenges society to adapt, in order to cope with the potentially overwhelming cost for the healthcare system. A fast-growing number of older people lose their ability to live independently because of diseases and disabilities, frailty or cognitive impairment. Many require long-term care, including home-based nursing, communities and hospital-based care. Immunosenescence, an age-related deterioration in immune functions, is considered a major contributory factor for the higher prevalence and severity of infectious diseases and the poor efficacy of vaccination in the elderly. When compared with systemic immunosenescence, alterations in the mucosal immune system with age are less well understood. For this reason, this area deserves more extensive and intensive research and support. In this article, we provide an overview of age-associated changes occurring in systemic immunity and discuss the distinct features of mucosal immunosenescence.
Collapse
Affiliation(s)
- Serena Martelli
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Sylvia L F Pender
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
33
|
Kennedy DE, Witte PL, Knight KL. Withdrawn: Bone marrow fat and the decline of B lymphopoiesis in rabbits. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015:S0145-305X(15)30071-9. [PMID: 26550685 DOI: 10.1016/j.dci.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Domenick E Kennedy
- Loyola University Chicago, Department of Microbiology and Immunology, USA
| | - Pamela L Witte
- Loyola University Chicago, Department of Microbiology and Immunology, USA
| | - Katherine L Knight
- Loyola University Chicago, Department of Microbiology and Immunology, USA.
| |
Collapse
|
34
|
Henry CJ, Casás-Selves M, Kim J, Zaberezhnyy V, Aghili L, Daniel AE, Jimenez L, Azam T, McNamee EN, Clambey ET, Klawitter J, Serkova NJ, Tan AC, Dinarello CA, DeGregori J. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors. J Clin Invest 2015; 125:4666-80. [PMID: 26551682 DOI: 10.1172/jci83024] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022] Open
Abstract
The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.
Collapse
|
35
|
Abstract
While many age-associated immune changes have been reported, a comprehensive set of metrics of immune aging is lacking. Here we report data from 243 healthy adults aged 40–97, for whom we measured clinical and functional parameters, serum cytokines, cytokines and gene expression in stimulated and unstimulated PBMC, PBMC phenotypes, and cytokine-stimulated pSTAT signaling in whole blood. Although highly heterogeneous across individuals, many of these assays revealed trends by age, sex, and CMV status, to greater or lesser degrees. Age, then sex and CMV status, showed the greatest impact on the immune system, as measured by the percentage of assay readouts with significant differences. An elastic net regression model could optimally predict age with 14 analytes from different assays. This reinforces the importance of multivariate analysis for defining a healthy immune system. These data provide a reference for others measuring immune parameters in older people.
Collapse
|
36
|
Lavinder JJ, Horton AP, Georgiou G, Ippolito GC. Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Curr Opin Chem Biol 2014; 24:112-20. [PMID: 25461729 DOI: 10.1016/j.cbpa.2014.11.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Recent developments of high-throughput technologies are enabling the molecular-level analysis and bioinformatic mining of antibody-mediated (humoral) immunity in humans at an unprecedented level. These approaches explore either the sequence space of B-cell receptor repertoires using next-generation deep sequencing (BCR-seq), or the amino acid identities of antibody in blood using protein mass spectrometry (Ig-seq), or both. Generalizable principles about the molecular composition of the protective humoral immune response are being defined, and as such, the field could supersede traditional methods for the development of diagnostics, vaccines, and antibody therapeutics. Three key challenges remain and have driven recent advances: (1) incorporation of innovative techniques for paired BCR-seq to ascertain the complete antibody variable-domain VH:VL clonotype, (2) integration of proteomic Ig-seq with BCR-seq to reveal how the serum antibody repertoire compares with the antibody repertoire encoded by circulating B cells, and (3) a demand to link antibody sequence data to functional meaning (binding and protection).
Collapse
Affiliation(s)
- Jason J Lavinder
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Andrew P Horton
- Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712-1062, USA.
| |
Collapse
|
37
|
Báez A, Álvarez-Laderas I, Piruat JI, Caballero-Velázquez T, Barbado MV, Millán-Uclés Á, Medrano M, García-Guerrero E, Sánchez-Abarca LI, Pérez-Simón JA. The CD27 + memory B cells display changes in the gene expression pattern in elderly individuals. Immunology 2014; 144:395-404. [PMID: 25196729 PMCID: PMC4557676 DOI: 10.1111/imm.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/30/2014] [Accepted: 08/27/2014] [Indexed: 11/27/2022] Open
Abstract
Memory B cells (MBCs) have a very long life-span as compared to naïve B cells (NBCs), remaining viable for years. It could predispose them to suffer misbalances in the gene expression pattern at the long term, which might be involved in the development of age-related B-cell disorders. In order to identify genes whose expression might change during life, we analyzed the gene expression patterns of CD27- NBCs versus CD27+ MBCs in young and old subjects. Using microarray assays we observed that the expression pattern of CD27- NBCs versus CD27+ MBCs is significantly different. Furthermore, in order to evaluate the age effect, we compared the gene expression pattern of young versus aged subjects in both cell populations. Interestingly, we did not find significant differences in the CD27- NBC population between young and aged individuals, whereas we found 925 genes differentially expressed in CD27+ MBCs. Among these genes, 193 were also differentially expressed in CD27+ MBCs as compared to CD27- NBCs, most of them involved in cell survival, cell growth and proliferation, cellular development and gene expression. We conclude that gene expression profiles of CD27- NBCs and CD27+ MBCs are different. Moreover, whereas the gene expression pattern of CD27+ MBCs varies with age, the same does not happen in CD27- NBCs. This suggests that MBCs undergo time-dependent changes which could underlie a higher susceptibility to dysfunction with age. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alicia Báez
- Haematology Department, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocio/CSIC/University of SevilleSeville, Spain
| | - Isabel Álvarez-Laderas
- Haematology Department, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocio/CSIC/University of SevilleSeville, Spain
| | - José I Piruat
- Haematology Department, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocio/CSIC/University of SevilleSeville, Spain
| | - Teresa Caballero-Velázquez
- Haematology Department, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocio/CSIC/University of SevilleSeville, Spain
| | - María Victoria Barbado
- Haematology Department, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocio/CSIC/University of SevilleSeville, Spain
| | - África Millán-Uclés
- Haematology Department, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocio/CSIC/University of SevilleSeville, Spain
| | - Mayte Medrano
- Haematology Department, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocio/CSIC/University of SevilleSeville, Spain
| | - Estefanía García-Guerrero
- Haematology Department, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocio/CSIC/University of SevilleSeville, Spain
| | - Luis Ignacio Sánchez-Abarca
- Haematology Department, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocio/CSIC/University of SevilleSeville, Spain
| | - José Antonio Pérez-Simón
- Haematology Department, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocio/CSIC/University of SevilleSeville, Spain
| |
Collapse
|
38
|
Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood 2014; 124:1450-9. [PMID: 25037628 DOI: 10.1182/blood-2014-03-563940] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the accumulation of highly-differentiated and granzyme B (GrB)-expressing CD8(+)CD28(-) T cells has been associated with aging, the mechanism for their enrichment and contribution to immune function remains poorly understood. Here we report a novel B-cell subset expressing 4-1BBL, which increases with age in humans, rhesus macaques, and mice, and with immune reconstitution after chemotherapy and autologous progenitor cell transplantation. These cells (termed 4BL cells) induce GrB(+)CD8(+) T cells by presenting endogenous antigens and using the 4-1BBL/4-1BB axis. We found that the 4BL cells increase antitumor responses in old mice, which may explain in part the paradox of retarded tumor growth in the elderly. 4BL cell accumulation and its capacity to evoke the generation of GrB(+)CD8(+) T cells can be eliminated by inducing reconstitution of B cells in old mice, suggesting that the age-associated skewed cellular immune responses are reversible. We propose that 4BL cells and the 4-1BBL signaling pathway are useful targets for improved effectiveness of natural antitumor defenses and therapeutic immune manipulations in the elderly.
Collapse
|
39
|
Bai L, Shi G, Zhang L, Guan F, Ma Y, Li Q, Cong YS, Zhang L. Cav-1 deletion impaired hematopoietic stem cell function. Cell Death Dis 2014; 5:e1140. [PMID: 24675458 PMCID: PMC3973224 DOI: 10.1038/cddis.2014.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 12/21/2022]
Abstract
A tightly controlled balance between hematopoietic stem and progenitor cell compartments is required to maintain normal blood cell homeostasis throughout life, and this balance is regulated by intrinsic and extrinsic cellular factors. Cav-1 is a 22-kDa protein that is located in plasma membrane invaginations and is implicated in regulating neural stem cell and embryonic stem cell proliferation. However, the role of Cav-1 in hematopoietic stem cell (HSC) function is largely unknown. In this study, we used Cav-1−/− mice to investigate the role of Cav-1 in HSCs function during aging. The results showed that Cav-1−/− mice displayed a decreased percentage of B cells and an increased percentage of M cells in the bone marrow and peripheral blood, and these changes were due to an increased number of HSCs. FACS analysis showed that the numbers of Lin−Sca1+c-kit+ cells (LSKs), long-term HSCs (LT-HSCs), short-term HSCs and multipotent progenitors were increased in Cav-1−/− mice compared with Cav-1+/+ mice, and this increase became more pronounced with aging. An in vitro clonogenic assay showed that LT-HSCs from Cav-1−/− mice had reduced ability to self-renew. Consistently, an in vivo competitive transplantation assay showed that Cav-1−/− mice failed to reconstitute hematopoiesis. Moreover, a Cav-1 deletion disrupted the quiescence of LSKs and promoted cell cycle progression through G2/M phase. In addition, we found that Cav-1 deletion impaired the ability of HSCs to differentiate into mature blood cells. Taken together, these data suggest that Cav-1-deficient cells impaired HSCs quiescence and induced environmental alterations, which limited HSCs self-renewal and function.
Collapse
Affiliation(s)
- L Bai
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - G Shi
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - L Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - F Guan
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Y Ma
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Q Li
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 310036, China
| | - Y-S Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 310036, China
| | - L Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
40
|
Qi Q, Zhang DW, Weyand CM, Goronzy JJ. Mechanisms shaping the naïve T cell repertoire in the elderly - thymic involution or peripheral homeostatic proliferation? Exp Gerontol 2014; 54:71-4. [PMID: 24440389 PMCID: PMC4096164 DOI: 10.1016/j.exger.2014.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/21/2013] [Accepted: 01/06/2014] [Indexed: 12/14/2022]
Abstract
The ability of the human immune system to repel infections is drastically diminished with age. Elderly individuals are more susceptible to new threats and are less able to control endogenous infections. The thymus, which is the sole source of new T cells, has been proposed as a target for regenerative efforts to improve immune competence, as thymic activity is dramatically reduced after puberty. In this review, we review the role of the thymus in the maintenance of T cell homeostasis throughout life and contrast the differences in mice and humans. We propose that in humans, lack of thymic T cell generation does not explain a decline in T cell receptor diversity nor would thymic rejuvenation restore diversity. Initial studies using next generation sequencing are beginning to establish lower boundaries of T cell receptor diversity. With increasing sequencing depth and the development of new statistical models, we are now in the position to test this model and to assess the impact of age on T cell diversity and clonality.
Collapse
Affiliation(s)
- Qian Qi
- Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, United States; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - David W Zhang
- Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, United States; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Cornelia M Weyand
- Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, United States; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Jörg J Goronzy
- Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, United States; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
41
|
|
42
|
Nacionales DC, Gentile LF, Vanzant E, Lopez MC, Cuenca A, Cuenca AG, Ungaro R, Li Y, Baslanti TO, Bihorac A, Moore FA, Baker HV, Leeuwenburgh C, Moldawer LL, Efron PA. Aged mice are unable to mount an effective myeloid response to sepsis. THE JOURNAL OF IMMUNOLOGY 2013; 192:612-22. [PMID: 24337739 DOI: 10.4049/jimmunol.1302109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The elderly have increased morbidity and mortality following sepsis; however, the cause(s) remains unclear. We hypothesized that these poor outcomes are due in part to defects in innate immunity, rather than to an exaggerated early inflammatory response. Young (6-12 wk) or aged (20-24 mo) mice underwent polymicrobial sepsis, and subsequently, the aged mice had increased mortality and defective peritoneal bacterial clearance compared with young mice. No differences were found in the magnitude of the plasma cytokine responses. Although septic aged mice displayed equivalent or increased numbers of circulating, splenic, and bone marrow myeloid cells, some of these cells exhibited decreased phagocytosis, reactive oxygen species production, and chemotaxis. Blood leukocyte gene expression was less altered in aged versus young mice 1 d after sepsis. Aged mice had a relative inability to upregulate gene expression of pathways related to neutrophil-mediated protective immunity, chemokine/chemokine receptor binding, and responses to exogenous molecules. Expression of most MHC genes remained more downregulated in aged mice at day 3. Despite their increased myeloid response to sepsis, the increased susceptibility of aged mice to sepsis appears not to be due to an exaggerated inflammatory response, but rather, a failure to mount an effective innate immune response.
Collapse
Affiliation(s)
- Dina C Nacionales
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Aging of the hematopoietic system is associated with myeloid malignancies, anemia and immune dysfunction. As hematopoietic stem cells (HSCs) generate all cells of the hematopoietic system, age-associated changes in HSCs may underlie many features of the aged hematopoietic system. Recent findings on age-associated changes in HSCs are reviewed here. RECENT FINDINGS Aged HSCs are myeloid biased, have acquired DNA damage and are functionally compromised. However, overall function of the HSC compartment is well maintained through age-associated expansion of HSCs. Many age-related changes in the hematopoietic system, in particular the clonal myeloid bias of HSCs and the decrease in B and T-cell development, in fact begin during development. Furthermore, HSCs possess specific protective mechanisms aimed at maintaining their number, even at the expense of accumulating damaged cells. SUMMARY We argue that age-related changes in HSCs and in the hematopoietic system may not entirely be due to a degenerative aging process, but are the result of developmental and stem cell-protective mechanisms aimed at maximizing fitness during reproductive life. These mechanisms may be disadvantageous later in life as damaged HSCs accumulate and establishment of responses to neoantigens becomes compromised because of the reduced generation of naive T and B cells.
Collapse
|
44
|
Understanding immunosenescence to improve responses to vaccines. Nat Immunol 2013; 14:428-36. [PMID: 23598398 DOI: 10.1038/ni.2588] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/15/2013] [Indexed: 12/13/2022]
Abstract
In the older adult, the benefits of vaccination to prevent infectious disease are limited, mainly because of the adaptive immune system's inability to generate protective immunity. The age-dependent decrease in immunological competence, often referred to as 'immunosenescence', results from the progressive deterioration of innate and adaptive immune responses. Most insights into mechanisms of immunological aging have been derived from studies of mouse models. In this Review, we explore how well such models are applicable to understanding the aging process throughout the 80-100 years of human life and discuss recent advances in identifying and characterizing the mechanisms that underlie age-associated defective adaptive immunity in humans.
Collapse
|
45
|
Ratliff M, Alter S, Frasca D, Blomberg BB, Riley RL. In senescence, age-associated B cells secrete TNFα and inhibit survival of B-cell precursors. Aging Cell 2013; 12:303-11. [PMID: 23410004 PMCID: PMC3716274 DOI: 10.1111/acel.12055] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 01/08/2023] Open
Abstract
Aged mice exhibit ~ 5-10-fold increases in an ordinarily minor CD21/35(-) CD23(-) mature B-cell subset termed age-associated B cells (ABCs). ABCs from old, but not young, mice induce apoptosis in pro-B cells directly through secretion of TNFα. In addition, aged ABCs, via TNFα, stimulate bone marrow cells to suppress pro-B-cell growth. ABC effects can be prevented by the anti-inflammatory cytokine IL-10. Notably, CD21/35(+) CD23(+) follicular (FO) splenic and FO-like recirculating bone marrow B cells in both young and aged mice contain a subpopulation that produces IL-10. Unlike young adult FO B cells, old FO B cells also produce TNFα; however, secretion of IL-10 within this B-cell population ameliorates the TNFα-mediated effects on B-cell precursors. Loss of B-cell precursors in the bone marrow of old mice in vivo was significantly associated with increased ABC relative to recirculating FO-like B cells. Adoptive transfer of aged ABC into RAG-2 KO recipients resulted in significant losses of pro-B cells within the bone marrow. These results suggest that alterations in B-cell composition during old age, in particular, the increase in ABC within the B-cell compartments, contribute to a pro-inflammatory environment within the bone marrow. This provides a mechanism of inappropriate B-cell 'feedback' that promotes down-regulation of B lymphopoiesis in old age.
Collapse
Affiliation(s)
- Michelle Ratliff
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Sarah Alter
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Daniela Frasca
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Bonnie B. Blomberg
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Richard L. Riley
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
46
|
Kogut I, Scholz JL, Cancro MP, Cambier JC. B cell maintenance and function in aging. Semin Immunol 2012; 24:342-9. [PMID: 22560930 DOI: 10.1016/j.smim.2012.04.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/03/2012] [Accepted: 04/09/2012] [Indexed: 01/10/2023]
Abstract
In this review we discuss the changes that occur in the B lymphocyte compartment of mice and humans as they progress to old age, focusing on recent advances in this important area of research. Primary areas considered include increased morbidity and mortality in the elderly following infection, and decreased responsiveness to vaccines that evoke primary humoral immune responses, as well as those that evoke responses by memory B cells generated following vaccination and natural infection earlier in life. We then consider some of the mechanisms that may underlie these observed declines in humoral immune function. This includes a discussion of alterations in B cell repertoire and subcompartment distribution, as well as defects in B lymphopoiesis, cell development and homeostasis that may contribute to these alterations, and ultimately to declining protective quality of antibodies produced in the elderly.
Collapse
Affiliation(s)
- Igor Kogut
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Aging and the physiologic decline of tissues and cells were once thought to be irreversible. However, recent studies suggest that various tissues, especially parts of the hematopoietic system, can be rejuvenated. Here we review potential mechanisms for this process and how they may be used to reverse age-related disorders and aging in general. We propose the novel hypothesis that altering the homeostatic process during cellular depletion can reverse aging in the hematopoietic system.
Collapse
|
48
|
Abstract
For decades, hematopoietic stem cells (HSCs) were thought to be a homogeneous population of cells with flexible behavior. Now a new picture has emerged: The HSC compartment consists of several subpopulations of HSCs each with distinct, preprogrammed differentiation and proliferation behaviors. These programs are epigenetically fixed and are stably bequeathed to all daughter HSCs on self-renewal. HSCs within each subset are remarkably similar in their self- renewal and differentiation behaviors, to the point where their life span can be predicted with mathematical certainty. Three subsets can be distinguished when HSCs are classified by their differentiation capacity: myeloid-biased, balanced, and lymphoid-biased HSCs. The relative number of the HSC subsets is developmentally regulated. Lymphoid-biased HSCs are found predominantly early in the life of an organism, whereas myeloid-biased HSCs accumulate in aged mice and humans. Thus, the discovery of distinct subpopulations of HSCs has led to a new understanding of HCS aging. This finding has implications for other aspects of HSC biology and applications in re-generative medicine. The possibility that other adult tissue stem cells show similar heterogeneity and mechanisms of aging is discussed.
Collapse
|
49
|
Henry CJ, Marusyk A, DeGregori J. Aging-associated changes in hematopoiesis and leukemogenesis: what's the connection? Aging (Albany NY) 2011; 3:643-56. [PMID: 21765201 PMCID: PMC3164372 DOI: 10.18632/aging.100351] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging is associated with a marked increase in a number of diseases, including many types of cancer. Due to the complex and multi-factorial nature of both aging and cancer, accurate deciphering of causative links between aging and cancer remains a major challenge. It is generally accepted that initiation and progression of cancers are driven by a process of clonal evolution. In principle, this somatic evolution should follow the same Darwinian logic as evolutionary processes in populations in nature: diverse heritable types arising as a result of mutations are subjected to selection, resulting in expansion of the fittest clones. However, prevalent paradigms focus primarily on mutational aspects in linking aging and cancer. In this review, we will argue that age-related changes in selective pressures are likely to be equally important. We will focus on aging-related changes in the hematopoietic system, where age-associated alterations are relatively well studied, and discuss the impact of these changes on the development of leukemias and other malignancies.
Collapse
Affiliation(s)
- Curtis J Henry
- Department of Biochemistry and Molecular Genetics, Integrated Department of Immunology, Program in Molecular Biology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | | | | |
Collapse
|
50
|
Frasca D, Blomberg BB. Aging impairs murine B cell differentiation and function in primary and secondary lymphoid tissues. Aging Dis 2011; 2:361-373. [PMID: 22396888 PMCID: PMC3295082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 05/31/2023] Open
Abstract
Age-related changes in humoral immunity are responsible for the reduced vaccine responses observed in elderly individuals. Although aging has been shown to affect T cells, dendritic cells and macrophages and these effects significantly impact humoral responses, intrinsic alterations in B cells also occur. We here provide an overview of age-related changes in mouse B cells. In particular, we summarize data from the literature showing age-related changes in B cell differentiation in the bone marrow, in B cell marker expression and cell survival in the periphery and in the ability to make specific antibodies in both splenic and mucosal tissues. Moreover, we summarize the results from our studies showing that the ability to undergo class switch recombination, the enzyme activation-induced cytidine deaminase and the transcription factor E47 are all decreased in stimulated B cells from old mice. The defects presented in this review for aged B cells should allow the discovery of strategies for improvement of humoral immune responses in both humans and mice in the near future.
Collapse
Affiliation(s)
| | - Bonnie B Blomberg
- Correspondence should be addressed to: Bonnie B. Blomberg, Ph.D., Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami FL 33101, USA.
| |
Collapse
|