1
|
Ben Hamed S, Myers JF, Chandwani A, Wirblich C, Kurup D, Paran N, Schnell MJ. Toward the Development of a Pan-Lyssavirus Vaccine. Viruses 2024; 16:1107. [PMID: 39066269 PMCID: PMC11281706 DOI: 10.3390/v16071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
In addition to the rabies virus (RABV), 16 more lyssavirus species have been identified worldwide, causing a disease similar to RABV. Non-rabies-related human deaths have been described, but the number of cases is unknown, and the potential of such lyssaviruses causing human disease is unpredictable. The current rabies vaccine does not protect against divergent lyssaviruses such as Mokola virus (MOKV) or Lagos bat virus (LBV). Thus, a more broad pan-lyssavirus vaccine is needed. Here, we evaluate a novel lyssavirus vaccine with an attenuated RABV vector harboring a chimeric RABV glycoprotein (G) in which the antigenic site I of MOKV replaces the authentic site of rabies virus (RABVG-cAS1). The recombinant vaccine was utilized to immunize mice and analyze the immune response compared to homologous vaccines. Our findings indicate that the vaccine RABVG-cAS1 was immunogenic and induced high antibody titers against both RABVG and MOKVG. Challenge studies with different lyssaviruses showed that replacing a single antigenic site of RABV G with the corresponding site of MOKV G provides a significant improvement over the homologous RABV vaccine and protects against RABV, Irkut virus (IRKV), and MOKV. This strategy of epitope chimerization paves the way towards a pan-lyssavirus vaccine to safely combat the diseases caused by these viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthias J. Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (N.P.)
| |
Collapse
|
2
|
Goutal S, Tran T, Leroy C, Benhamouda N, Leterrier S, Saba W, Lafont B, Tartour É, Roelens M, Tournier N. Brain Glucose Metabolism as a Readout of the Central Nervous System Impact of Cigarette Smoke Exposure and Withdrawal and the Effects of NFL-101, as an Immune-Based Drug Candidate for Smoking Cessation Therapy. ACS Chem Neurosci 2024; 15:2520-2531. [PMID: 38875216 DOI: 10.1021/acschemneuro.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Neuroimaging biomarkers are needed to investigate the impact of smoking withdrawal on brain function. NFL-101 is a denicotinized aqueous extract of tobacco leaves currently investigated as an immune-based smoking cessation therapy in humans. However, the immune response to NFL-101 and its ability to induce significant changes in brain function remain to be demonstrated. Brain glucose metabolism was investigated using [18F]fluoro-deoxy-glucose ([18F]FDG) PET imaging in a mouse model of cigarette smoke exposure (CSE, 4-week whole-body inhalation, twice daily). Compared with control animals, the relative uptake of [18F]FDG in CSE mice was decreased in the thalamus and brain stem (p < 0.001, n = 14 per group) and increased in the hippocampus, cortex, cerebellum, and olfactory bulb (p < 0.001). NFL-101 induced a humoral immune response (specific IgGs) in mice and activated human natural-killer lymphocytes in vitro. In CSE mice, but not in control mice, single-dose NFL-101 significantly increased [18F]FDG uptake in the thalamus (p < 0.01), thus restoring normal brain glucose metabolism after 2-day withdrawal in this nicotinic receptor-rich region. In tobacco research, [18F]FDG PET imaging provides a quantitative method to evaluate changes in the brain function associated with the withdrawal phase. This method also showed the CNS effects of NFL-101, with translational perspectives for future clinical evaluation in smokers.
Collapse
Affiliation(s)
- Sébastien Goutal
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Thi Tran
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Claire Leroy
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Nadine Benhamouda
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Sarah Leterrier
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Wadad Saba
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | | | - Éric Tartour
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Marie Roelens
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Nicolas Tournier
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| |
Collapse
|
3
|
Mastraccio KE, Huaman C, Coggins SA, Clouse C, Rader M, Yan L, Mandal P, Hussain I, Ahmed AE, Ho T, Feasley A, Vu BK, Smith IL, Markotter W, Weir DL, Laing ED, Broder CC, Schaefer BC. mAb therapy controls CNS-resident lyssavirus infection via a CD4 T cell-dependent mechanism. EMBO Mol Med 2023; 15:e16394. [PMID: 37767784 PMCID: PMC10565638 DOI: 10.15252/emmm.202216394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Infections with rabies virus (RABV) and related lyssaviruses are uniformly fatal once virus accesses the central nervous system (CNS) and causes disease signs. Current immunotherapies are thus focused on the early, pre-symptomatic stage of disease, with the goal of peripheral neutralization of virus to prevent CNS infection. Here, we evaluated the therapeutic efficacy of F11, an anti-lyssavirus human monoclonal antibody (mAb), on established lyssavirus infections. We show that a single dose of F11 limits viral load in the brain and reverses disease signs following infection with a lethal dose of lyssavirus, even when administered after initiation of robust virus replication in the CNS. Importantly, we found that F11-dependent neutralization is not sufficient to protect animals from mortality, and a CD4 T cell-dependent adaptive immune response is required for successful control of infection. F11 significantly changes the spectrum of leukocyte populations in the brain, and the FcRγ-binding function of F11 contributes to therapeutic efficacy. Thus, mAb therapy can drive potent neutralization-independent T cell-mediated effects, even against an established CNS infection by a lethal neurotropic virus.
Collapse
Affiliation(s)
- Kate E Mastraccio
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
- Present address:
Wadsworth CenterNew York State Department of HealthAlbanyNYUSA
| | - Celeste Huaman
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Si'Ana A Coggins
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Caitlyn Clouse
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Madeline Rader
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Lianying Yan
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Pratyusha Mandal
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Imran Hussain
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Anwar E Ahmed
- Department of Preventive Medicine and BiostatisticsUniformed Services UniversityBethesdaMDUSA
| | - Trung Ho
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Austin Feasley
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Bang K Vu
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Present address:
Lentigen Technology, Inc.GaithersburgMDUSA
| | - Ina L Smith
- Risk Evaluation and Preparedness Program, Health and BiosecurityCSIROBlack MountainACTAustralia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Centre for Emerging Zoonotic and Parasitic DiseasesNational Institute for Communicable Diseases, National Health Laboratory ServicePretoriaSouth Africa
| | - Dawn L Weir
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Present address:
The Center for Bio/Molecular Science and EngineeringU.S. Naval Research LaboratoryWashingtonDCUSA
| | - Eric D Laing
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Christopher C Broder
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Brian C Schaefer
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| |
Collapse
|
4
|
Bai Y, Huang P, Feng N, Li Y, Huang J, Jin H, Zhang M, Sun J, Li N, Zhang H, Xia X, Tang BZ, Wang H. Treat the "Untreatable" by a Photothermal Agent: Triggering Heat and Immunological Responses for Rabies Virus Inactivation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205461. [PMID: 36385484 PMCID: PMC9839883 DOI: 10.1002/advs.202205461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Indexed: 05/05/2023]
Abstract
Rabies is a fatal neurological zoonotic disease caused by the rabies virus (RABV), and the approved post-exposure prophylaxis (PEP) procedure remains unavailable in areas with inadequate medical systems. Although strategies have been proposed for PEP and postinfection treatment (PIT), because of the complexity of the treatment procedures and the limited curative outcome, developing an effective treatment strategy remains a holy grail in rabies research. Herein, a facile approach is proposed involving photothermal therapy (PTT) and photothermally triggered immunological effects to realize effective PEP and PIT simultaneously. The designed photothermal agent (N+ TT-mCB nanoparticles) featured positively charged functional groups and high photo-to-heat efficiency, which are favorable for virus targeting and inactivation. The level of the virus at the site of infection in mice is significantly decreased upon treatment with orthotopic PTT, and the transfer of the virus to the brain is significantly inhibited. Furthermore, the survival ratio of the mice three days postinfection is increased by intracranial injection of N+ TT-mCB and laser irradiation. Overall, this work provides a platform for the effective treatment of RABV and opens a new avenue for future antiviral studies.
Collapse
Affiliation(s)
- Yujie Bai
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Pei Huang
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Na Feng
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122China
| | - Yuanyuan Li
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Jingbo Huang
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Hongli Jin
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Mengyao Zhang
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Jingxuan Sun
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Nan Li
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122China
| | - Haili Zhang
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Xianzhu Xia
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122China
| | - Ben Zhong Tang
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Hualei Wang
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062China
| |
Collapse
|
5
|
Nishi R, Ohyagi M, Nagata T, Mabuchi Y, Yokota T. Regulation of activated microglia and macrophages by systemically administered DNA/RNA heteroduplex oligonucleotides. Mol Ther 2022; 30:2210-2223. [PMID: 35189344 PMCID: PMC9171263 DOI: 10.1016/j.ymthe.2022.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Microglial activation followed by recruitment of blood-borne macrophages into the central nervous system (CNS) aggravates neuroinflammation. Specifically, in multiple sclerosis (MS) as well as in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, activated microglia and macrophages (Mg/Mφ) promote proinflammatory responses and expand demyelination in the CNS. However, a potent therapeutic approach through the systemic route for regulating their functions has not yet been developed. Here, we demonstrate that a systemically injected DNA/RNA heteroduplex oligonucleotide (HDO), composed of an antisense oligonucleotide (ASO) and its complementary RNA, conjugated to cholesterol (Chol-HDO) distributed more efficiently to demyelinating lesions of the spinal cord in EAE mice with significant gene silencing than the parent ASO. Importantly, systemic administration of Cd40-targeting Chol-HDO improved clinical signs of EAE with significant downregulation of Cd40 in Mg/Mφ. Furthermore, we successfully identify that macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of Chol-HDO by Mg/Mφ of EAE mice. Overall, our findings demonstrate the therapeutic potency of systemically administered Chol-HDO to regulate activated Mg/Mφ in neuroinflammation.
Collapse
Affiliation(s)
- Rieko Nishi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Ohyagi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
6
|
Hampe CS, Mitoma H. A Breakdown of Immune Tolerance in the Cerebellum. Brain Sci 2022; 12:brainsci12030328. [PMID: 35326284 PMCID: PMC8946792 DOI: 10.3390/brainsci12030328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cerebellar dysfunction can be associated with ataxia, dysarthria, dysmetria, nystagmus and cognitive deficits. While cerebellar dysfunction can be caused by vascular, traumatic, metabolic, genetic, inflammatory, infectious, and neoplastic events, the cerebellum is also a frequent target of autoimmune attacks. The underlying cause for this vulnerability is unclear, but it may be a result of region-specific differences in blood–brain barrier permeability, the high concentration of neurons in the cerebellum and the presence of autoantigens on Purkinje cells. An autoimmune response targeting the cerebellum—or any structure in the CNS—is typically accompanied by an influx of peripheral immune cells to the brain. Under healthy conditions, the brain is protected from the periphery by the blood–brain barrier, blood–CSF barrier, and blood–leptomeningeal barrier. Entry of immune cells to the brain for immune surveillance occurs only at the blood-CSF barrier and is strictly controlled. A breakdown in the barrier permeability allows peripheral immune cells uncontrolled access to the CNS. Often—particularly in infectious diseases—the autoimmune response develops because of molecular mimicry between the trigger and a host protein. In this review, we discuss the immune surveillance of the CNS in health and disease and also discuss specific examples of autoimmunity affecting the cerebellum.
Collapse
Affiliation(s)
- Christiane S. Hampe
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-554-9181
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo 160-0023, Japan;
| |
Collapse
|
7
|
James LM, Georgopoulos AP. At the Root of 3 “Long” Diseases: Persistent Antigens Inflicting Chronic Damage on the Brain and Other Organs in Gulf War Illness, Long-COVID-19, and Chronic Fatigue Syndrome. Neurosci Insights 2022; 17:26331055221114817. [PMID: 35910083 PMCID: PMC9335483 DOI: 10.1177/26331055221114817] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022] Open
Abstract
Several foreign antigens such as those derived from viruses and bacteria have been linked to long-term deleterious effects on the brain and other organs; yet, health outcomes subsequent to foreign antigen exposure vary depending in large part on the host’s immune system, in general, and on human leukocyte antigen (HLA) composition, in particular. Here we first provide a brief description of 3 conditions characterized by persistent long-term symptoms, namely long-COVID-19, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and Gulf War Illness (GWI), followed by a brief overview of the role of HLA in the immune response to foreign antigens. We then discuss our Persistent Antigen (PA) hypothesis and highlight associations between antigen persistence due to HLA-antigen incongruence and chronic health conditions in general and the 3 “long” diseases above in particular. This review is not intended to cover the breadth and depth of symptomatology of those diseases but is specifically focused on the hypothesis that the presence of persistent antigens underlies their pathogenesis.
Collapse
Affiliation(s)
- Lisa M James
- Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Department of Veterans Affairs Health Care System, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
8
|
Brito CVB, Rodrigues ÉDL, Martins FMS, Tavares LD, Lima ALDSN, Ferreira LC, Santana CJL, de Brito JAGDSM, Casseb LMN, Diniz JAP. Immunological impact of tetrahydrobiopterin on the central nervous system in a murine model of rabies virus infection. Rev Inst Med Trop Sao Paulo 2021; 63:e28. [PMID: 33852711 PMCID: PMC8046507 DOI: 10.1590/s1678-9946202163028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
Currently, the Milwaukee protocol presents healing results in human beings affected by the rabies virus. However, there are many points to clarify on the action of drugs and the immune mechanism involved in the evolution of the disease. One of the drugs used is biopterin, which is an important cofactor for nitric oxide, important for preventing vasospasm. Thus, we describe the effect of biopterin on some inflammatory factors in a rabies virus infection developed in an animal model. The immunological mediators studied in animals infected with rabies virus submitted to doses of sapropterin were Anti-RABV, IL-6, IL-2, IL-17a, INF-gamma and Anti-iNOS. It is suggested that the medication in the context of a RABV infection already installed, had the effect of modulating the inflammatory mechanisms mainly linked to the permeability of the blood-brain barrier and the migration of cytotoxic cells.
Collapse
Affiliation(s)
| | - Érika Dayane Leal Rodrigues
- Universidade Federal do Pará, Programa de Biologia e Agente
Infeciosos e Parasitários, Ananindeua, Pará, Brazil
| | | | - Lavinia Dias Tavares
- Instituto Evandro Chagas, Programa de Iniciação Científica,
Ananindeua, Pará, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Lebrun A, Kean RB, Hooper DC. Brain tissue-resident immune memory cells are required for long-term protection against CNS infection with rabies virus. Future Virol 2020; 15:755-761. [PMID: 33343683 DOI: 10.2217/fvl-2020-0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Immune memory cells residing in previously infected, nonlymphoid tissues play a role in immune surveillance. In the event that circulating antibodies fail to prevent virus spread to the tissues in a secondary infection, these memory cells provide an essential defense against tissue reinfection. CNS tissues are isolated from circulating immune cells and antibodies by the blood-brain barrier, making the presence of tissue-resident immune memory cells particularly needed to combat recurrent infection by neurotropic viruses. Wild-type and laboratory-engineered rabies viruses are neurotropic, differ in pathogenicity, and have varying effects on BBB functions. These viruses have proven invaluable tools in demonstrating the importance of tissue-resident immune memory cells in the reinfection of CNS tissues. Only Type 1 immune memory is effective at therapeutically clearing a secondary infection with wild-type rabies viruses from the CNS and does so despite the maintenance of blood-brain barrier integrity.
Collapse
Affiliation(s)
- Aurore Lebrun
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rhonda B Kean
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Liu X, Zhang J, Li F, Hagoss YT, Tesfagaber W, Wang L, Wang Z, Zhao D, Bu Z. Host protein ABCE1 interacts with the viral phosphoprotein and promotes rabies virus replication. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
11
|
Alfaidi M, Bhattarai U, Orr AW. Nck1, But Not Nck2, Mediates Disturbed Flow-Induced p21-Activated Kinase Activation and Endothelial Permeability. J Am Heart Assoc 2020; 9:e016099. [PMID: 32468886 PMCID: PMC7428973 DOI: 10.1161/jaha.120.016099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Alteration in hemodynamic shear stress at atheroprone sites promotes endothelial paracellular pore formation and permeability. The molecular mechanism remains unknown. Methods and Results We show that Nck (noncatalytic region of tyrosine kinase) deletion significantly ameliorates disturbed flow‐induced permeability, and selective isoform depletion suggests distinct signaling mechanisms. Only Nck1 deletion significantly reduces disturbed flow‐induced paracellular pore formation and permeability, whereas Nck2 depletion has no significant effects. Additionally, Nck1 re‐expression, but not Nck2, restores disturbed flow‐induced permeability in Nck1/2 knockout cells, confirming the noncompensating roles. In vivo, using the partial carotid ligation model of disturbed flow, Nck1 knockout prevented the increase in vascular permeability, as assessed by Evans blue and fluorescein isothiocyanate dextran extravasations and leakage of plasma fibrinogen into the vessel wall. Domain swap experiments mixing SH2 (phosphotyrosine binding) and SH3 (proline‐rich binding) domains between Nck1 and Nck2 showed a dispensable role for SH2 domains but a critical role for the Nck1 SH3 domains in rescuing disturbed flow‐induced endothelial permeability. Consistent with this, both Nck1 and Nck2 bind to platelet endothelial adhesion molecule‐1 (SH2 dependent) in response to shear stress, but only Nck1 ablation interferes with shear stress–induced PAK2 (p21‐activated kinase) membrane translocation and activation. A single point mutation into individual Nck1 SH3 domains suggests a role for the first domain of Nck1 in PAK recruitment to platelet endothelial cell adhesion molecule‐1 and activation in response to shear stress. Conclusions This work provides the first evidence that Nck1 but not the highly similar Nck2 plays a distinct role in disturbed flow‐induced vascular permeability by selective p21‐activated kinase activation.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA
| | - Umesh Bhattarai
- Department of Molecular& Cellular Physiology LSU Health-Shreveport LA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA.,Department of Molecular& Cellular Physiology LSU Health-Shreveport LA.,Department of Cell Biology and Anatomy LSU Health-Shreveport LA
| |
Collapse
|
12
|
Vattathara JJ, Prakash O, Subhramanian S, Satheeshkumar MK, Xavier T, Anil M, Pillai GS, Anandakuttan A, Radhakrishnan S, Sivanarayanan TB, Akk U, Mohan CG, Menon KN. Substrate Specific Inhibitor Designed against the Immunomodulator GMF-beta Reversed the Experimental Autoimmune Encephalomyelitis. Sci Rep 2020; 10:3790. [PMID: 32123210 PMCID: PMC7051966 DOI: 10.1038/s41598-020-60710-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/14/2020] [Indexed: 01/16/2023] Open
Abstract
The concept of substrate inhibition to prevent its phosphorylation has potential in drug discovery and is envisioned to treat the autoimmune disorder multiple sclerosis (MS). Glia maturation factor-β (GMF-β) Ser83 phosphorylation by protein kinase A (PKA) is pivotal in the activation of GMF-β-p38MAPK-NFκB biochemical pathway towards proinflammatory response induction in experimental autoimmune encephalomyelitis (EAE). Using structure-based drug design, we identified the small molecule inhibitor 1-H-indazole-4yl methanol (GMFBI.1) that specifically blocked Ser83 phosphorylation site on GMF-β substrate. Using in vitro and in vivo techniques, molecular mechanism of action of GMFBI.1’s direct interaction with GMF-β substrate and prevention of its Ser83 phosphorylation was established. GMFBI.1 down regulated p38MAPK phosphorylation and NFκB expression essential for proinflammatory response. Further, GMFBI.1 administration at peak of EAE reversed clinical symptoms, immunopathology, proinflammatory cytokine response and up regulated the anti-inflammatory cytokines. Present strategy of substrate inhibition against the key immunomodulatory target has immense therapeutic potential in MS.
Collapse
Affiliation(s)
- Jane Jose Vattathara
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Ohm Prakash
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Sunitha Subhramanian
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Madathiparambil Kumaran Satheeshkumar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Tessy Xavier
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Meenakshi Anil
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Gopal S Pillai
- Department of Ophthalmology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Anandkumar Anandakuttan
- Department of Neurology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Sureshkumar Radhakrishnan
- Department of Neurology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - T B Sivanarayanan
- Central Animal Laboratory, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Unni Akk
- Central Animal Laboratory, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Chethampadi Gopi Mohan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India.
| | - Krishnakumar N Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India.
| |
Collapse
|
13
|
Takahashi T, Shimohata T. Vascular Dysfunction Induced by Mercury Exposure. Int J Mol Sci 2019; 20:E2435. [PMID: 31100949 PMCID: PMC6566353 DOI: 10.3390/ijms20102435] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Methylmercury (MeHg) causes severe damage to the central nervous system, and there is increasing evidence of the association between MeHg exposure and vascular dysfunction, hemorrhage, and edema in the brain, but not in other organs of patients with acute MeHg intoxication. These observations suggest that MeHg possibly causes blood-brain barrier (BBB) damage. MeHg penetrates the BBB into the brain parenchyma via active transport systems, mainly the l-type amino acid transporter 1, on endothelial cell membranes. Recently, exposure to mercury has significantly increased. Numerous reports suggest that long-term low-level MeHg exposure can impair endothelial function and increase the risks of cardiovascular disease. The most widely reported mechanism of MeHg toxicity is oxidative stress and related pathways, such as neuroinflammation. BBB dysfunction has been suggested by both in vitro and in vivo models of MeHg intoxication. Therapy targeted at both maintaining the BBB and suppressing oxidative stress may represent a promising therapeutic strategy for MeHg intoxication. This paper reviews studies on the relationship between MeHg exposure and vascular dysfunction, with a special emphasis on the BBB.
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Department of Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata 950-2085, Japan.
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| |
Collapse
|
14
|
Tyler CR, Noor S, Young TL, Rivero V, Sanchez B, Lucas S, Caldwell KK, Milligan ED, Campen MJ. Aging Exacerbates Neuroinflammatory Outcomes Induced by Acute Ozone Exposure. Toxicol Sci 2019; 163:123-139. [PMID: 29385576 DOI: 10.1093/toxsci/kfy014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of environmental stressors, particularly exposure to air pollution, in the development of neurodegenerative disease remains underappreciated. We examined the neurological effects of acute ozone (O3) exposure in aged mice, where increased blood-brain barrier (BBB) permeability may confer vulnerability to neuroinflammatory outcomes. C57BL/6 male mice, aged 8-10 weeks or 12-18 months were exposed to either filtered air or 1.0 ppm O3 for 4 h; animals received a single IP injection of sodium fluorescein (FSCN) 20 h postexposure. One-hour post-FSCN injection, animals were transcardially perfused for immunohistochemical analysis of BBB permeability. β-amyloid protein expression was assessed via ELISA. Flow cytometric characterization of infiltrating immune cells, including neutrophils, macrophages, and microglia populations was performed 20 h post-O3 exposure. Flow cytometry analysis of brains revealed increased microglia "activation" and presentation of CD11b, F4/80, and MHCII in aged animals relative to younger ones; these age-induced differences were potentiated by acute O3 exposure. Cortical and limbic regions in aged brains had increased reactive microgliosis and β-amyloid protein expression after O3 insult. The aged cerebellum was particularly vulnerable to acute O3 exposure with increased populations of infiltrating neutrophils, peripheral macrophages/monocytes, and Ly6C+ inflammatory monocytes after insult, which were not significantly increased in the young cerebellum. O3 exposure increased the penetration of FSCN beyond the BBB, the infiltration of peripheral immune cells, and reactive gliosis of microglia. Thus, the aged BBB is vulnerable to insult and becomes highly penetrable in response to O3 exposure, leading to greater neuroinflammatory outcomes.
Collapse
Affiliation(s)
- Christina R Tyler
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, NM 87545.,Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico Health Sciences Center, School of Medicine, Albuquerque, New Mexico 87131-0001
| | - Tamara L Young
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| | - Valeria Rivero
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| | - Bethany Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| | - Kevin K Caldwell
- Department of Neurosciences, University of New Mexico Health Sciences Center, School of Medicine, Albuquerque, New Mexico 87131-0001
| | - Erin D Milligan
- Department of Neurosciences, University of New Mexico Health Sciences Center, School of Medicine, Albuquerque, New Mexico 87131-0001
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87108
| |
Collapse
|
15
|
Henrich-Noack P, Nikitovic D, Neagu M, Docea AO, Engin AB, Gelperina S, Shtilman M, Mitsias P, Tzanakakis G, Gozes I, Tsatsakis A. The blood–brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:359-379. [DOI: 10.1016/j.nano.2019.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
|
16
|
Caveolin1 Is Required for Th1 Cell Infiltration, but Not Tight Junction Remodeling, at the Blood-Brain Barrier in Autoimmune Neuroinflammation. Cell Rep 2018; 21:2104-2117. [PMID: 29166603 DOI: 10.1016/j.celrep.2017.10.094] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/16/2017] [Accepted: 10/25/2017] [Indexed: 01/24/2023] Open
Abstract
Lymphocytes cross vascular boundaries via either disrupted tight junctions (TJs) or caveolae to induce tissue inflammation. In the CNS, Th17 lymphocytes cross the blood-brain barrier (BBB) before Th1 cells; yet this differential crossing is poorly understood. We have used intravital two-photon imaging of the spinal cord in wild-type and caveolae-deficient mice with fluorescently labeled endothelial tight junctions to determine how tight junction remodeling and caveolae regulate CNS entry of lymphocytes during the experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis. We find that dynamic tight junction remodeling occurs early in EAE but does not depend upon caveolar transport. Moreover, Th1, but not Th17, lymphocytes are significantly reduced in the inflamed CNS of mice lacking caveolae. Therefore, tight junction remodeling facilitates Th17 migration across the BBB, whereas caveolae promote Th1 entry into the CNS. Moreover, therapies that target both tight junction degradation and caveolar transcytosis may limit lymphocyte infiltration during inflammation.
Collapse
|
17
|
Garcia SA, Lebrun A, Kean RB, Craig Hooper D. Clearance of attenuated rabies virus from brain tissues is required for long-term protection against CNS challenge with a pathogenic variant. J Neurovirol 2018; 24:606-615. [PMID: 29987584 DOI: 10.1007/s13365-018-0655-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022]
Abstract
Rabies virus is a neurotropic lyssavirus which is 100% fatal in its pathogenic form when reaching unprotected CNS tissues. Death can be prevented by mechanisms delivering appropriate immune effectors across the blood-brain barrier which normally remains intact during pathogenic rabies virus infection. One therapeutic approach is to superinfect CNS tissues with attenuated rabies virus which induces blood-brain barrier permeability and immune cell entry. Current thinking is that peripheral rabies immunization is sufficient to protect against a challenge with pathogenic rabies virus. While this is undoubtedly the case if the virus is confined to the periphery, what happens if the virus reaches the CNS is less well-understood. In the current study, we find that peripheral immunization does not fully protect mice long-term against an intranasal challenge with pathogenic rabies virus. Protection is significantly better in mice that have cleared attenuated virus from the CNS and is associated with a more robust CNS recall response evidently due to the presence in CNS tissues of elevated numbers of lymphocytes phenotypically resembling long-term resident immune cells. Adoptive transfer of cells from rabies-immune mice fails to protect against CNS challenge with pathogenic rabies virus further supporting the concept that long-term resident immune cell populations must be established in brain tissues to protect against a subsequent CNS challenge with pathogenic rabies virus.
Collapse
Affiliation(s)
- Samantha A Garcia
- Department of Cancer Biology, Thomas Jefferson University, 1020 Locust Street, JAH Rm 452, Philadelphia, PA, 19107-6731, USA
| | - Aurore Lebrun
- Department of Cancer Biology, Thomas Jefferson University, 1020 Locust Street, JAH Rm 452, Philadelphia, PA, 19107-6731, USA
| | - Rhonda B Kean
- Department of Cancer Biology, Thomas Jefferson University, 1020 Locust Street, JAH Rm 452, Philadelphia, PA, 19107-6731, USA
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, 1020 Locust Street, JAH Rm 452, Philadelphia, PA, 19107-6731, USA. .,Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Wang J, Wang X, Chen X, Lu S, Kuang Y, Fei J, Wang Z. Gpr97/Adgrg3 ameliorates experimental autoimmune encephalomyelitis by regulating cytokine expression. Acta Biochim Biophys Sin (Shanghai) 2018; 50:666-675. [PMID: 29860267 DOI: 10.1093/abbs/gmy060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis and its primary animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS) characterized by immune-mediated demyelination and neurodegeneration that may be mediated by inhibition of the nuclear factor-κB (NF-κB) signaling pathway. Gpr97, encoded by Adgrg3, has been reported to regulate the activity of NF-κB. In this study, using a previously established Adgrg3-knockout mouse model, we investigated the roles of Gpr97 in the development of autoimmune CNS disease in mice. We found a marked increase in the expression of Adgrg3 in spinal cords of mice with EAE. Adgrg3-deficient (Adgrg3-/-) mice with EAE exhibited increases in peak severity and the cumulative disease score compared with littermate controls, followed by a notable increase of leukocyte infiltration and more extensive demyelination. The percentages of Th1/Th17 cells in the CNS were significantly increased in Adgrg3-/- mice and accompanied by high levels of interleukin (IL)-6, interferon-γ, tumor necrosis factor-α, and IL-17. An in vitro culture assay verified that Gpr97 regulated proinflammatory cytokine production. Taken together, our results show that Gpr97 plays an important role in the development of EAE and may have a therapeutic potential for the treatment of CNS autoimmunity.
Collapse
Affiliation(s)
- Jinjin Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Xiyi Wang
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xuejiao Chen
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Zhugang Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai, China
| |
Collapse
|
19
|
Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 2018; 135:311-336. [PMID: 29411111 PMCID: PMC6781630 DOI: 10.1007/s00401-018-1815-1] [Citation(s) in RCA: 595] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
The adult quiescent blood-brain barrier (BBB), a structure organised by endothelial cells through interactions with pericytes, astrocytes, neurons and microglia in the neurovascular unit, is highly regulated but fragile at the same time. In the past decade, there has been considerable progress in understanding not only the molecular pathways involved in BBB development, but also BBB breakdown in neurological diseases. Specifically, the Wnt/β-catenin, retinoic acid and sonic hedgehog pathways moved into the focus of BBB research. Moreover, angiopoietin/Tie2 signalling that is linked to angiogenic processes has gained attention in the BBB field. Blood vessels play an essential role in initiation and progression of many diseases, including inflammation outside the central nervous system (CNS). Therefore, the potential influence of CNS blood vessels in neurological diseases associated with BBB alterations or neuroinflammation has become a major focus of current research to understand their contribution to pathogenesis. Moreover, the BBB remains a major obstacle to pharmaceutical intervention in the CNS. The complications may either be expressed by inadequate therapeutic delivery like in brain tumours, or by poor delivery of the drug across the BBB and ineffective bioavailability. In this review, we initially describe the cellular and molecular components that contribute to the steady state of the healthy BBB. We then discuss BBB alterations in ischaemic stroke, primary and metastatic brain tumour, chronic inflammation and Alzheimer's disease. Throughout the review, we highlight common mechanisms of BBB abnormalities among these diseases, in particular the contribution of neuroinflammation to BBB dysfunction and disease progression, and emphasise unique aspects of BBB alteration in certain diseases such as brain tumours. Moreover, this review highlights novel strategies to monitor BBB function by non-invasive imaging techniques focussing on ischaemic stroke, as well as novel ways to modulate BBB permeability and function to promote treatment of brain tumours, inflammation and Alzheimer's disease. In conclusion, a deep understanding of signals that maintain the healthy BBB and promote fluctuations in BBB permeability in disease states will be key to elucidate disease mechanisms and to identify potential targets for diagnostics and therapeutic modulation of the BBB.
Collapse
Affiliation(s)
- Stefan Liebner
- Institute of Neurology, Goethe University Clinic, Frankfurt am Main, Germany.
- Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Partner site Frankfurt, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Frankfurt/Mainz, Frankfurt am Main, Germany.
| | - Rick M Dijkhuizen
- Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Yvonne Reiss
- Institute of Neurology, Goethe University Clinic, Frankfurt am Main, Germany
- Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Partner site Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karl H Plate
- Institute of Neurology, Goethe University Clinic, Frankfurt am Main, Germany
- Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Partner site Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dritan Agalliu
- Departments of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
- Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
- Departments of Pharmacology, Columbia University Medical Center, New York, NY, 10032, USA
- Departments of Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, 10032, USA
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
20
|
|
21
|
Bongiorno EK, Garcia SA, Sauma S, Hooper DC. Type 1 Immune Mechanisms Driven by the Response to Infection with Attenuated Rabies Virus Result in Changes in the Immune Bias of the Tumor Microenvironment and Necrosis of Mouse GL261 Brain Tumors. THE JOURNAL OF IMMUNOLOGY 2017; 198:4513-4523. [PMID: 28461570 DOI: 10.4049/jimmunol.1601444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/03/2017] [Indexed: 12/23/2022]
Abstract
Immunotherapeutic strategies for malignant glioma have to overcome the immunomodulatory activities of M2 monocytes that appear in the circulation and as tumor-associated macrophages (TAMs). M2 cell products contribute to the growth-promoting attributes of the tumor microenvironment (TME) and bias immunity toward type 2, away from the type 1 mechanisms with antitumor properties. To drive type 1 immunity in CNS tissues, we infected GL261 tumor-bearing mice with attenuated rabies virus (RABV). These neurotropic viruses spread to CNS tissues trans-axonally, where they induce a strong type 1 immune response that involves Th1, CD8, and B cell entry across the blood-brain barrier and virus clearance in the absence of overt sequelae. Intranasal infection with attenuated RABV prolonged the survival of mice bearing established GL261 brain tumors. Despite the failure of virus spread to the tumor, infection resulted in significantly enhanced tumor necrosis, extensive CD4 T cell accumulation, and high levels of the proinflammatory factors IFN-γ, TNF-α, and inducible NO synthase in the TME merely 4 d postinfection, before significant virus spread or the appearance of RABV-specific immune mechanisms in CNS tissues. Although the majority of infiltrating CD4 cells appeared functionally inactive, the proinflammatory changes in the TME later resulted in the loss of accumulating M2 and increased M1 TAMs. Mice deficient in the Th1 transcription factor T-bet did not gain any survival advantage from RABV infection, exhibiting only limited tumor necrosis and no change in TME cytokines or TAM phenotype and highlighting the importance of type 1 mechanisms in this process.
Collapse
Affiliation(s)
- Emily K Bongiorno
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Samantha A Garcia
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Sami Sauma
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and .,Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
22
|
Achariyar TM, Li B, Peng W, Verghese PB, Shi Y, McConnell E, Benraiss A, Kasper T, Song W, Takano T, Holtzman DM, Nedergaard M, Deane R. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener 2016; 11:74. [PMID: 27931262 PMCID: PMC5146863 DOI: 10.1186/s13024-016-0138-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it’s expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation. Methods We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student’s t- test. Results We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2 > apoE3 > apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state. Conclusions Thus, choroid plexus/CSF provides an additional source of apoE and the glymphatic fluid transporting system delivers it to brain via the periarterial space. By implication, failure in this essential physiological role of the glymphatic fluid flow and ISF clearance may also contribute to apoE isoform-specific disorders in the long term. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0138-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thiyagaragan M Achariyar
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Baoman Li
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA.,Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Weiguo Peng
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Philip B Verghese
- Department of Neurology, Hope Center for Neurological Disorders, and the Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Yang Shi
- Department of Neurology, Hope Center for Neurological Disorders, and the Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Evan McConnell
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine, Division of Cell and Gene Therapy, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Tristan Kasper
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Wei Song
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Takahiro Takano
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and the Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Rashid Deane
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
23
|
Lebrun A, Portocarrero C, Kean RB, Barkhouse DA, Faber M, Hooper DC. T-bet Is Required for the Rapid Clearance of Attenuated Rabies Virus from Central Nervous System Tissue. THE JOURNAL OF IMMUNOLOGY 2015; 195:4358-68. [PMID: 26408670 DOI: 10.4049/jimmunol.1501274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/02/2015] [Indexed: 12/25/2022]
Abstract
Much of our understanding of CNS immunity has been gained from models involving pathological inflammation. Attenuated rabies viruses (RABV) are unique tools to study CNS immunity in the absence of conventional inflammatory mechanisms, as they spread from the site of inoculation to the CNS transaxonally, thereby bypassing the blood-brain barrier (BBB), and are cleared without neutrophil or monocyte infiltration. To better understand the role of CD4 T cell subsets in the clearance of the virus from CNS tissues, we examined the development of antiviral immunity in wild-type (WT) and T-bet knockout mice (T-bet(-/-)), which lack Th1 cells. Early control of RABV replication in the CNS tissues of WT mice is associated with the production of IFN-γ, with antiviral effects likely mediated through the enhanced expression of type I IFNs. Of interest, IFN-α and -γ are overexpressed in the infected T-bet(-/-) by comparison with WT CNS tissues, and the initial control of RABV infection is similar. Ultimately, attenuated RABV are cleared from the CNS tissues of WT mice by Ab locally produced by the activities of infiltrating T and B cells. Although T and B cell infiltration into the CNS of infected T-bet(-/-) mice is comparable, their activities are not, the consequence being delayed, low-level Ab production and prolonged RABV replication. More importantly, neither T-bet(-/-) mice immunized with an attenuated virus, nor WT mice with Th2 RABV-specific immunity induced by immunization with inactivated virus, are protected in the long term against challenge with a pathogenic RABV.
Collapse
Affiliation(s)
- Aurore Lebrun
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Carla Portocarrero
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Rhonda B Kean
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Darryll A Barkhouse
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
24
|
Abstract
BACKGROUND Rabies is an acute fatal encephalitis caused by all members of the Lyssavirus genus. The first human rabies survivor without benefit of prior vaccination was reported from Milwaukee in 2005. We report a second unvaccinated patient who showed early recovery from rabies and then died accidentally during convalescence, providing an unparalleled opportunity to examine the histopathology as well as immune and virological correlates of early recovery from human rabies. METHODS Case report, rapid fluorescent focus inhibition test, enzyme-linked immunosorbent assay, indirect and direct fluorescent antibody assays, reverse-transcriptase polymerase chain reaction, phylogenetic reconstruction, isolation in tissue culture, pathology and immunohistochemistry. RESULTS The 9 year old died 76 days after presenting with rabies of vampire bat phylogeny transmitted by cat bite. Antibody response in serum and cerebrospinal fluid was robust and associated with severe cerebral edema. No rabies virus was cultured at autopsy. Rabies virus antigen was atypical in size and distribution. Rabies virus genome was present in neocortex but absent in brainstem. CONCLUSIONS Clinical recovery was associated with detection of neutralizing antibody and clearance of infectious rabies virus in the central nervous system by 76 days but not clearance of detectable viral subcomponents such as nucleoprotein antigen or RNA in brain.
Collapse
|
25
|
Abstract
Rabies is a highly lethal disease caused by the neurotropic rabies virus (RABV), and it remains an important public health problem globally. Effective vaccines have been developed for pre- and post-exposure prophylaxis (PEP). PEP is only effective if it is initiated promptly after recognizing exposure. Once neurological symptoms develop, however, it is widely accepted that there is no effective treatment available. Recent studies indicate that the presence of RABV-specific immunity (i.e. Virus neutralizing antibodies, VNA) and the transient enhancement of the BBB permeability are absolutely required for effective virus clearance from the CNS. In principle, it has been shown in mice using various live-attenuated RABVs or recombinant RABVs expressing three copies of the G or expressing chemokine/cytokines, which can induce high levels of VNA in the serum and also capable of transiently enhancing the BBB permeability that it is possible to clear the virus from CNS. Also, it has been demonstrated that, intravenous administration of VNA together with MCP-1 (shown to transiently open up BBB) can clear RABV from the CNS in both immunocompetent and immunocompromised mice, as late as 5 days after lethal challenge. Novel therapeutic approaches aimed at allowing the peripheral VNA to cross the BBB by administration of the VNA in combination with biological or chemical agents that can transiently open up the BBB would be useful to establish an effective therapy for rabies in humans. In this review, we focus on the some of the approaches that can be used to meet the challenges in the field of rabies treatment.
Collapse
Affiliation(s)
- C W Gnanadurai
- Department of Pathology, College of Veterinary Medicine, University of Georgia Athens, USA
| | - C T Huang
- Department of Pathology, College of Veterinary Medicine, University of Georgia Athens, USA
| | - D Kumar
- Department of Pathology, College of Veterinary Medicine, University of Georgia Athens, USA
| | - Zhen F Fu
- Department of Pathology, College of Veterinary Medicine, University of Georgia Athens, USA; State-key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China
| |
Collapse
|
26
|
Shityakov S, Salvador E, Pastorin G, Förster C. Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate. Int J Nanomedicine 2015; 10:1703-13. [PMID: 25784800 PMCID: PMC4356663 DOI: 10.2147/ijn.s68429] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT–FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood–brain barrier. The results indicated that the MWCNT–FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT–FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT–FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCNT–FITC rapid dissociation as an intermediate phase.
Collapse
Affiliation(s)
- Sergey Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Ellaine Salvador
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore
| | - Carola Förster
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Lin R, Cai J, Nathan C, Wei X, Schleidt S, Rosenwasser R, Iacovitti L. Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiol Dis 2015; 74:229-39. [DOI: 10.1016/j.nbd.2014.11.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023] Open
|
28
|
Barkhouse DA, Garcia SA, Bongiorno EK, Lebrun A, Faber M, Hooper DC. Expression of interferon gamma by a recombinant rabies virus strongly attenuates the pathogenicity of the virus via induction of type I interferon. J Virol 2015; 89:312-22. [PMID: 25320312 PMCID: PMC4301114 DOI: 10.1128/jvi.01572-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Previous animal model experiments have shown a correlation between interferon gamma (IFN-γ) expression and both survival from infection with attenuated rabies virus (RABV) and reduction of neurological sequelae. Therefore, we hypothesized that rapid production of murine IFN-γ by the rabies virus itself would induce a more robust antiviral response than would occur naturally in mice. To test this hypothesis, we used reverse engineering to clone the mouse IFN-γ gene into a pathogenic rabies virus backbone, SPBN, to produce the recombinant rabies virus designated SPBNγ. Morbidity and mortality were monitored in mice infected intranasally with SPBNγ or SPBN(-) control virus to determine the degree of attenuation caused by the expression of IFN-γ. Incorporation of IFN-γ into the rabies virus genome highly attenuated the virus. SPBNγ has a 50% lethal dose (LD50) more than 100-fold greater than SPBN(-). In vitro and in vivo mouse experiments show that SPBNγ infection enhances the production of type I interferons. Furthermore, knockout mice lacking the ability to signal through the type I interferon receptor (IFNAR(-/-)) cannot control the SPBNγ infection and rapidly die. These data suggest that IFN-γ production has antiviral effects in rabies, largely due to the induction of type I interferons. IMPORTANCE Survival from rabies is dependent upon the early control of virus replication and spread. Once the virus reaches the central nervous system (CNS), this becomes highly problematic. Studies of CNS immunity to RABV have shown that control of replication begins at the onset of T cell entry and IFN-γ production in the CNS prior to the appearance of virus-neutralizing antibodies. Moreover, antibody-deficient mice are able to control but not clear attenuated RABV from the CNS. We find here that IFN-γ triggers the early production of type I interferons with the expected antiviral effects. We also show that engineering a lethal rabies virus to express IFN-γ directly in the infected tissue reduces rabies virus replication and spread, limiting its pathogenicity in normal and immunocompromised mice. Therefore, vector delivery of IFN-γ to the brain may have the potential to treat individuals who would otherwise succumb to infection with rabies virus.
Collapse
Affiliation(s)
- Darryll A Barkhouse
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Samantha A Garcia
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Emily K Bongiorno
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Aurore Lebrun
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Shen R, Deng W, Li C, Zeng G. A natural flavonoid glucoside icariin inhibits Th1 and Th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis. Int Immunopharmacol 2014; 24:224-231. [PMID: 25528476 DOI: 10.1016/j.intimp.2014.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that is characterized by recurrent episodes of T cell-mediated immune attack on central nervous system (CNS) myelin, leading to axon damage and progressive disability. Icariin, a natural flavonoid glucoside isolated from plants in the Epimedium family, has been proved to have various pharmacological activities. However, the effect of icariin on experimental autoimmune encephalomyelitis (EAE) has never been investigated. In our current study, we found that icariin treatment leads to alleviated inflammatory infiltration and reduced blood-brain barrier leakage (BBB) of the paracellular tracer (FITC-dextran) in EAE. Mice that received icariin-treated T cells also displayed lower EAE scores and better clinical recovery from EAE. Icariin administration suppresses the frequencies of Th1 and Th17 cells in the splenocytes and lymph node cells. Icariin-treated mice also show lower frequency of Th17 cells in CNS mononuclear cells. The effect of icariin on Th1 and Th17 cell differentiation may be mediated via modulation of dendritic cells (DCs). Furthermore, icariin suppresses the proliferation of T cells and the differentiation of Th1 and Th17 cells in vitro. In conclusion, icariin ameliorates EAE and this was associated with suppressed Th1 and Th17 cell differentiation.
Collapse
Affiliation(s)
- Ruile Shen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China; Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, China.
| | - Wenjing Deng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China
| | - Chun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China
| | - Guangwei Zeng
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, China
| |
Collapse
|
30
|
Amenta PS, Jallo JI, Tuma RF, Hooper DC, Elliott MB. Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J Neuroinflammation 2014; 11:191. [PMID: 25416141 PMCID: PMC4248435 DOI: 10.1186/s12974-014-0191-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunomodulatory therapies have been identified as interventions for secondary injury after traumatic brain injury (TBI). The cannabinoid receptor type-2 (CB2R) is proposed to play an important, endogenous role in regulating inflammation. The effects of CB2R stimulation, blockade, and deletion on the neurovascular inflammatory responses to TBI were assessed. METHODS Wild-type C57BL/6 or CB2R knockout mice were randomly assigned to controlled cortical impact (CCI) injury or to craniotomy control groups. The effects of treatment with synthetic, selective CB2R agonists (0-1966 and JWH-133), a selective CB2R antagonist, or vehicle solution administered to CCI groups were assessed at 1-day after injury. Changes in TNF-α, intracellular adhesion molecule (ICAM-1), inducible nitric oxide synthase (iNOS), macrophage/microglial ionized calcium-binding adaptor molecule, and blood-brain-barrier (BBB) permeability were assessed using ELISA, quantitative RT-PCR, immunohistochemistry, and fluorometric analysis of sodium fluorescein uptake. CB2R knockouts and wild-type mice with CCI injury were treated with a CB2R agonist or vehicle treatment. RESULTS TNF-α mRNA increased at 6 hours and 1 to 3 days after CCI; a CB2R antagonist and genetic knockout of the CB2R exacerbated TNF-α mRNA expression. Treatment with a CB2R agonist attenuated TNF-α protein levels indicating post-transcriptional mechanisms. Intracellular adhesion molecule (ICAM-1) mRNA was increased at 6 hours, and at 1 to 2 days after CCI, reduced in mice treated with a CB2R agonist, and increased in CB2R knockout mice with CCI. Sodium fluorescein uptake was increased in CB2R knockouts after CCI, with and without a CB2R agonist. iNOS mRNA expression peaked early (6 hours) and remained increased from 1 to 3 days after injury. Treatment with a CB2R agonist attenuated increases in iNOS mRNA expression, while genetic deletion of the CB2R resulted in substantial increases in iNOS expression. Double label immunohistochemistry confirmed that iNOS was expressed by macrophage/microglia in the injured cortex. CONCLUSION Findings demonstrate that the endogenous cannabinoid system and CB2R play an important role in regulating inflammation and neurovascular responses in the traumatically injured brain. CB2R stimulation with two agonists (0-1966 and JWH-133) dampened post-traumatic inflammation, while blockade or deletion of the CB2R worsened inflammation. Findings support previous evidence that modulating the CB2R alters infiltrating macrophages and activated resident microglia. Further investigation into the role of the CB2R on specific immune cell populations in the injured brain is warranted.
Collapse
Affiliation(s)
- Peter S Amenta
- Department of Neurological Surgery, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Jack I Jallo
- Department of Neurological Surgery, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Ronald F Tuma
- Department of Physiology, Temple University School of Medicine, 3500 N Broad St, Philadelphia, PA, 19140, USA.
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Melanie B Elliott
- Department of Neurological Surgery, Thomas Jefferson University Hospital, 1020 Locust Street, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
31
|
Zhang B, Gensel J. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Exp Neurol 2014; 258:112-20. [DOI: 10.1016/j.expneurol.2014.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022]
|
32
|
Aubé B, Lévesque SA, Paré A, Chamma É, Kébir H, Gorina R, Lécuyer MA, Alvarez JI, De Koninck Y, Engelhardt B, Prat A, Côté D, Lacroix S. Neutrophils mediate blood-spinal cord barrier disruption in demyelinating neuroinflammatory diseases. THE JOURNAL OF IMMUNOLOGY 2014; 193:2438-54. [PMID: 25049355 DOI: 10.4049/jimmunol.1400401] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration. We observed a loss in BSCB integrity within a day of disease onset, which paralleled the infiltration of GFP(+) cells into the CNS and lasted for ∼4 d. Neutrophils accounted for a significant proportion of the circulating and CNS-infiltrating myeloid cells during the preclinical phase of EAE, and their depletion delayed the onset and reduced the severity of EAE while maintaining BSCB integrity. We also show that neutrophils collected from the blood or bone marrow of EAE mice transmigrate more efficiently than do neutrophils of naive animals in a BBB cell culture model. Moreover, using intravital videomicroscopy, we demonstrate that the IL-1R type 1 governs the firm adhesion of neutrophils to the inflamed spinal cord vasculature. Finally, immunostaining of postmortem CNS material obtained from an acutely ill multiple sclerosis patient and two neuromyelitis optica patients revealed instances of infiltrated neutrophils associated with regions of BBB or BSCB leakage. Taken together, our data provide evidence that neutrophils are involved in the initial events that take place during EAE and that they are intimately linked with the status of the BBB/BSCB.
Collapse
Affiliation(s)
- Benoit Aubé
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de l'Université Laval, Quebec, Quebec G1V 4G2, Canada; Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 0A6, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Quebec G1J 2G3, Canada; Centre d'Optique, Photonique et Laser, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Sébastien A Lévesque
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de l'Université Laval, Quebec, Quebec G1V 4G2, Canada; Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Alexandre Paré
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de l'Université Laval, Quebec, Quebec G1V 4G2, Canada; Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Émilie Chamma
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Quebec G1J 2G3, Canada; Centre d'Optique, Photonique et Laser, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Hania Kébir
- Unité de Neuroimmunologie, Centre d'Excellence en Neuromique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada; and
| | - Roser Gorina
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Marc-André Lécuyer
- Unité de Neuroimmunologie, Centre d'Excellence en Neuromique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada; and
| | - Jorge I Alvarez
- Unité de Neuroimmunologie, Centre d'Excellence en Neuromique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada; and
| | - Yves De Koninck
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Quebec G1J 2G3, Canada
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Alexandre Prat
- Unité de Neuroimmunologie, Centre d'Excellence en Neuromique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada; and
| | - Daniel Côté
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec, Quebec G1J 2G3, Canada; Centre d'Optique, Photonique et Laser, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Steve Lacroix
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de l'Université Laval, Quebec, Quebec G1V 4G2, Canada; Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, Quebec G1V 0A6, Canada;
| |
Collapse
|
33
|
Piazza J, Hoare T, Molinaro L, Terpstra K, Bhandari J, Selvaganapathy PR, Gupta B, Mishra RK. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)–block-poly(d,l)-lactic-co-glycolic acid (PEG–PLGA) nanoparticles for the treatment of schizophrenia. Eur J Pharm Biopharm 2014; 87:30-9. [DOI: 10.1016/j.ejpb.2014.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 01/16/2023]
|
34
|
Lopez‐Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King‐Robson J, Kay O, Vries HE, Hirst MC, Sharrack B, Baker D, Male DK, Michael GJ, Romero IA. MicroRNA‐155 negatively affects blood–brain barrier function during neuroinflammation. FASEB J 2014; 28:2551-65. [DOI: 10.1096/fj.13-248880] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Dongsheng Wu
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| | - Gareth Pryce
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Julie E. Simpson
- Sheffield Institute for Translational NeuroscienceSheffield Teaching Hospitals National Health Service (NHS) TrustUniversity of SheffieldSheffieldUK
| | - Arie Reijerkerk
- Blood–Brain Barrier Research Group, Molecular Cell Biology and ImmunologyVU University Medical CenterAmsterdamThe Netherlands
| | - Josh King‐Robson
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Oliver Kay
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Helga E. Vries
- Blood–Brain Barrier Research Group, Molecular Cell Biology and ImmunologyVU University Medical CenterAmsterdamThe Netherlands
| | - Mark C. Hirst
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| | - Basil Sharrack
- Department of NeurologySheffield Teaching Hospitals National Health Service (NHS) TrustUniversity of SheffieldSheffieldUK
| | - David Baker
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - David Kingsley Male
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| | - Gregory J. Michael
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Ignacio Andres Romero
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| |
Collapse
|
35
|
Wang L, Cao Y, Tang Q, Liang G. Role of the blood-brain barrier in rabies virus infection and protection. Protein Cell 2013; 4:901-3. [PMID: 24264143 PMCID: PMC4875407 DOI: 10.1007/s13238-013-3918-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rabies is an acute, progressive encephalitis caused by infection with rabies virus (RABV). It is one of the most important zoonotic infections and causes more than 70,000 human deaths annually ( http://www.rabiescontrol.net ). It has long been held that a rabies infection is lethal in humans once the causative RABV reaches the central nervous system (CNS); however, this concept was challenged by the recent recovery of a small number of rabies patients. An analysis of these patients revealed that the bloodbrain barrier (BBB) played a major role in protection against the virus. The main reason for the survival of these patients was enhanced BBB permeability after infection with the causative agent (usually bat-originated RABV showing reduced pathogenicity), which allowed immune cells to enter the tissues of the CNS and clear the infection (Willoughby et al., 2005). These findings have been confirmed in animal infection experiments (Wang et al., 2005; Roy and Hooper, 2007, 2008; Faber et al., 2009). Thus, the BBB has attracted the attention of scientists interested in the pathogenesis of, and therapeutic approaches, for rabies. This paper introduces the role of the BBB in rabies infections and protection of the CNS and provides insight into future treatments for patients with clinical rabies.
Collapse
Affiliation(s)
- Lihua Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 China
| | - Yuxi Cao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 China
| | - Qing Tang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 China
| | - Guodong Liang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 China
| |
Collapse
|
36
|
Yamada K, Noguchi K, Nishizono A. Efficient N-glycosylation at position 37, but not at position 146, in the street rabies virus glycoprotein reduces pathogenicity. Virus Res 2013; 179:169-76. [PMID: 24177272 DOI: 10.1016/j.virusres.2013.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/29/2022]
Abstract
Most street rabies viruses have two N-glycosylation sites in their glycoproteins (G proteins), i.e., at Asn(37) and Asn(319), but Asn(37) is usually not core-glycosylated in an efficient manner. Previously, we reported the possible roles of single additional N-glycosylations at Asn(194) or Asn(247) in the cell adaptation and reduced pathogenicity of a street rabies virus, which suggest that N-glycosylation is closely related to the evolution of rabies viruses. In this study, we characterized two novel N-glycosylation-modified variants, N5C#7 and N5C#8, which were cloned using the limiting dilution method after serial passaging of the street rabies virus strain 1088 in mouse neuroblastoma-derived NA cells. N5C#7 had an L38R mutation in the G protein, which led to efficient core glycosylation at Asn(37). On the other hand, N5C#8 had a D146N mutation in the G protein, which led to an additional N-glycosylation at position 146. Both variants replicated highly efficiently in NA cells compared with the parental strain. Like the parental strain, both variants caused lethal infections in adult mice after intracerebral inoculation. However, N5C#7 exhibited reduced pathogenicity after intramuscular inoculation, whereas N5C#8 displayed the same level of pathogenicity as the parental strain. In summary, the efficient core glycosylation at position 37 was related to cell adaptation and the reduced pathogenicity of the street rabies virus. By contrast, despite of being related to cell adaptation, the additional N-glycosylation at position 146 did not affect the pathogenicity, which is consistent with a report that street rabies virus strains with N-glycosylation sites at positions 37, 146, and 319 have been isolated from rabid animals. Thus, the results of the present study provide additional evidence that supports the relationship between G protein N-glycosylation and rabies virus evolution.
Collapse
Affiliation(s)
- Kentaro Yamada
- School of Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan; Research Promotion Institute, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan.
| | - Kazuko Noguchi
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Akira Nishizono
- School of Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan; Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| |
Collapse
|
37
|
Characterization of street rabies virus variants with an additional N-glycan at position 247 in the glycoprotein. Arch Virol 2013; 159:207-16. [DOI: 10.1007/s00705-013-1805-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/24/2013] [Indexed: 02/02/2023]
|
38
|
Zhang G, Wang H, Mahmood F, Fu ZF. Rabies virus glycoprotein is an important determinant for the induction of innate immune responses and the pathogenic mechanisms. Vet Microbiol 2013; 162:601-613. [PMID: 23265241 PMCID: PMC3568536 DOI: 10.1016/j.vetmic.2012.11.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 12/24/2022]
Abstract
Our previous studies have suggested that street and fixed rabies viruses (RABVs) induce diseases in the mouse model via different mechanisms. In the present study, attempts were made to determine if it is the glycoprotein (G) that is responsible for the observed differences in the pathogenic mechanisms. To this end, an infectious clone from fixed virus B2c was established and used as a backbone for exchange of the G from street viruses. The rate of viral replication, expression of viral proteins, and the induction of innate immune responses were compared in cells or in mice infected with each of the viruses. Furthermore, the infiltration of inflammatory cells into the CNS and the enhancement of blood-brain barrier (BBB) permeability were also compared. It was found that fixed viruses induced stronger innate immune responses (expression of chemokines, infiltration of inflammatory cells, and enhancement of BBB permeability) than street RABV or recombinant viruses expressing the G from street RABVs. Fixed viruses induce disease via an immune-mediated pathogenic mechanism while street viruses or recombinant viruses expressing the G from street RABVs induce diseases via a mechanism other than immune-mediated pathogenesis. Therefore, RABV G is an important determinant for the induction of innate immune responses and consequently the pathogenic mechanisms.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Hualei Wang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Fazal Mahmood
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Zhen F Fu
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; State-Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
Phares TW, Stohlman SA, Bergmann CC. Intrathecal humoral immunity to encephalitic RNA viruses. Viruses 2013; 5:732-52. [PMID: 23435240 PMCID: PMC3640523 DOI: 10.3390/v5020732] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 12/21/2022] Open
Abstract
The nervous system is the target for acute encephalitic viral infections, as well as a reservoir for persisting viruses. Intrathecal antibody (Ab) synthesis is well documented in humans afflicted by infections associated with neurological complications, as well as the demyelinating disease, multiple sclerosis. This review focuses on the origin, recruitment, maintenance, and biological relevance of Ab-secreting cells (ASC) found in the central nervous system (CNS) following experimental neurotropic RNA virus infections. We will summarize evidence for a highly dynamic, evolving humoral response characterized by temporal alterations in B cell subsets, proliferation, and differentiation. Overall local Ab plays a beneficial role via complement-independent control of virus replication, although cross or self-reactive Ab to CNS antigens may contribute to immune-mediated pathogenesis during some infections. Importantly, protective Ab exert anti-viral activity not only by direct neutralization, but also by binding to cell surface-expressed viral glycoproteins. Ab engagement of viral glycoproteins blocks budding and mediates intracellular signaling leading to restored homeostatic and innate functions. The sustained Ab production by local ASC, as well as chemokines and cytokines associated with ASC recruitment and retention, are highlighted as critical components of immune control.
Collapse
Affiliation(s)
- Timothy W Phares
- Departments of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
40
|
Zhang F, Wei W, Chai H, Xie X. Aurintricarboxylic acid ameliorates experimental autoimmune encephalomyelitis by blocking chemokine-mediated pathogenic cell migration and infiltration. THE JOURNAL OF IMMUNOLOGY 2012; 190:1017-25. [PMID: 23267022 DOI: 10.4049/jimmunol.1201994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are autoimmune diseases characterized by the immune-mediated demyelination and neurodegeneration of the CNS. Overactivation of CD4(+) T cells, especially the Th1 and Th17 subpopulations, is thought to be the direct cause of this disease. Aurintricarboxylic acid (ATA), an inhibitor of protein-nucleic acid interaction, has been reported to block with the JAK/STAT signaling pathway that is critical for Th cell differentiation. In this study, we discovered that ATA treatment significantly reduces the clinical score of EAE, but it does not directly inhibit the differentiation of Th1 and Th17 cells in vitro. ATA was found to block the chemotaxis and accumulation of dendritic cells in the spleen of EAE mice before the onset of the disease and to reduce the percentage of Th1 and Th17 cells in the spleen. Further study revealed that ATA also blocks the infiltration of pathogenic T cells into the CNS and blocks the onset of passive EAE. ATA was found to inhibit the functions of many chemokine receptors. By blocking chemokine-mediated migration of dendritic cells and pathogenic T cells, ATA alleviates the pathogenesis of EAE and might be used to treat autoimmune diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Feifei Zhang
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | |
Collapse
|
41
|
Lin CY, Lee YS, Lin VW, Silver J. Fibronectin inhibits chronic pain development after spinal cord injury. J Neurotrauma 2012; 29:589-99. [PMID: 22022865 DOI: 10.1089/neu.2011.2059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic pain following spinal cord injury (SCI) is a highly prevalent clinical condition that is difficult to treat. Using both von Frey filaments and radiant infrared heat to assess mechanical allodynia and thermal hyperalgesia, respectively, we have demonstrated that a one-time injection of fibronectin (50 μg/mL) into the spinal dorsal column (1 μL/min each injection for a total of 5 μL) immediately after SCI inhibits the development of mechanical allodynia (but not thermal hyperalgesia) over an 8-month observation period following spinal cord dorsal column crush (DCC). DCC will only induce mechanical Allodynia, but not thermal hyperalgesia or overt motor deficits. By applying various fibronectin fragments as well as competitive inhibitors, these effects were shown to be dependent on the connecting segment-1 (CS-1) motif of fibronectin. Furthermore, we found that acute fibronectin treatment diminished inflammation and blood-spinal cord barrier permeability, which in turn leads to enhanced fiber sparing and sprouting. In particular, the reduction of serotonin (5-HT) in the superficial dorsal horn, an important descending brainstem system in the modulation of pain, was blocked with fibronectin treatment. We conclude that treatment of SCI with fibronectin preserves sensory regulation and prevents the development of chronic allodynia, providing a potential therapeutic intervention to treat chronic pain following SCI.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Neuroscience, Lerner Research Institute, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
42
|
Sosa RA, Forsthuber TG. The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis. J Interferon Cytokine Res 2011; 31:753-68. [PMID: 21919736 PMCID: PMC3189551 DOI: 10.1089/jir.2011.0052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4(+) T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process.
Collapse
Affiliation(s)
- Rebecca A Sosa
- Department of Biology, University of Texas at San Antonio, Texas 78249, USA
| | | |
Collapse
|
43
|
Abstract
Rabies, a neurological disease associated with replication in central nervous system (CNS) tissues of any of a number of rabies viruses endemic in nature, is generally fatal. Prophylactic medical intervention is immune mediated and directed at preventing the spread of the virus from a peripheral site of exposure to the CNS. While individuals rarely develop immune responses capable of clearing the virus from CNS tissues, a variety of laboratory-attenuated rabies viruses are readily cleared from the CNS tissues in animal models. By comparing immune responses to wild-type and attenuated rabies viruses in these models, we have discovered that the latter induce processes required for immune effector infiltration into CNS tissues that are absent from lethal infections. Predominant among these are activities of cells of the neurovascular unit (NVU) that promote an interaction with circulating immune cells. In the absence of this interaction, the specialized barrier function of the NVU remains intact and circulating virus-specific immune effectors are largely excluded from infected CNS tissues. Studies of mixed infections with wild-type and attenuated rabies viruses reveal that wild-type rabies viruses fail to trigger, rather than inhibit, the interactions between immune cells and the NVU required for virus clearance from the CNS. These studies provide insights into how immune effectors with the capacity to clear the virus may be delivered into CNS tissues to contain a wild-type rabies virus infection. However, to apply immunotherapeutic strategies beyond the initial stages of CNS infection, further insights into the fate of the infected cells during virus clearance are needed.
Collapse
Affiliation(s)
- D Craig Hooper
- Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
45
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
46
|
Wang L, Du C, Lv J, Wei W, Cui Y, Xie X. Antiasthmatic drugs targeting the cysteinyl leukotriene receptor 1 alleviate central nervous system inflammatory cell infiltration and pathogenesis of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2011; 187:2336-45. [PMID: 21804021 DOI: 10.4049/jimmunol.1100333] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cysteinyl leukotrienes (CysLTs) are potent proinflammatory mediators and are considered to play a key role in inflammatory diseases such as asthma. Antagonists targeting the receptor of CysLTs (CysLT1) are currently used as antiasthmatic drugs. CysLTs have also been implicated in other inflammatory reactions. In this study, we report that in experimental autoimmune encephalomyelitis animals, CysLT1 is upregulated in immune tissue and the spinal cord, and CysLT levels in the blood and cerebrospinal fluid are also higher than in normal mice. Two clinically used antiasthma drugs, montelukast and zafirlukast, both targeting CysLT1, effectively block the CNS infiltration of inflammatory cells and thus reduce the incidence, peak severity, and cumulative clinical scores. Further study indicated that CysLT1 signaling does not affect the differentiation of pathogenic T helper cells. It might affect the pathogenesis of experimental autoimmune encephalomyelitis by increasing the secretion of IL-17 from myelin oligodendrocyte glycoprotein-specific T cells, increasing the permeability of the blood-brain barrier and inducing chemotaxis of T cells. These effects can be blocked by CysLT1 antagonists. Our findings indicate that the antiasthmatic drugs against CysLT1 can also be used to treat multiple sclerosis.
Collapse
Affiliation(s)
- Liefeng Wang
- Laboratory of Receptor-Based BioMedicine, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role of the RIG-I-mediated innate immune response in RABV pathogenesis. After infection, LGP2 TG mice exhibited reduced expression of inflammatory/chemoattractive molecules, beta interferon (IFN-β), and IFN-stimulated genes in their NS compared to wild-type (WT) mice, demonstrating the inhibitory function of LGP2 in the innate immune response to RABV. Surprisingly, LGP2 TG mice showed more viral clearance in the brain and lower morbidity than WT mice, indicating that the host innate immune response, paradoxically, favors RABV neuroinvasiveness and morbidity. LGP2 TG mice exhibited similar neutralizing antibodies and microglia activation to those of WT mice but showed a reduction of infiltrating CD4(+) T cells and less disappearance of infiltrating CD8(+) T cells. This occurred concomitantly with reduced neural expression of the IFN-inducible protein B7-H1, an immunoevasive protein involved in the elimination of infiltrated CD8(+) T cells. Our study shows that the host innate immune response favors the infiltration of T cells and, at the same time, promotes CD8(+) T cell elimination. Thus, to a certain extent, RABV exploits the innate immune response to develop its immunoevasive strategy.
Collapse
|
48
|
Castegna A, Palmieri L, Spera I, Porcelli V, Palmieri F, Fabis-Pedrini MJ, Kean RB, Barkhouse DA, Curtis MT, Hooper DC. Oxidative stress and reduced glutamine synthetase activity in the absence of inflammation in the cortex of mice with experimental allergic encephalomyelitis. Neuroscience 2011; 185:97-105. [PMID: 21536110 DOI: 10.1016/j.neuroscience.2011.04.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/31/2011] [Accepted: 04/16/2011] [Indexed: 01/19/2023]
Abstract
Pathological changes occur in areas of CNS tissue remote from inflammatory lesions in multiple sclerosis (MS) and its animal model experimental allergic encephalomyelitis (EAE). To determine if oxidative stress is a significant contributor to this non-inflammatory pathology, cortex tissues from mice with clinical signs of EAE were examined for evidence of inflammation and oxidative stress. Histology and gene expression analysis showed little evidence of immune/inflammatory cell invasion but reductions in natural antioxidant levels and increased protein oxidation that paralleled disease severity. Two-dimensional oxyblots and mass-spectrometry-based protein fingerprinting identified glutamine synthetase (GS) as a particular target of oxidation. Oxidation of GS was associated with reductions in enzyme activity and increased glutamate/glutamine levels. The possibility that this may cause neurodegeneration through glutamate excitotoxicity is supported by evidence of increasing cortical Ca(2+) levels in cortex extracts from animals with greater disease severity. These findings indicate that oxidative stress occurs in brain areas that are not actively undergoing inflammation in EAE and that this can lead to a neurodegenerative process due to the susceptibility of GS to oxidative inactivation.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Calcium/metabolism
- Cerebral Cortex/enzymology
- Chromatography, High Pressure Liquid/methods
- Disease Models, Animal
- Electrophoresis, Gel, Two-Dimensional
- Encephalitis/pathology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Glutamate-Ammonia Ligase/analysis
- Glutamate-Ammonia Ligase/metabolism
- Glutamic Acid/metabolism
- Glutamine/metabolism
- Glutathione/metabolism
- Glutathione Disulfide/metabolism
- Guinea Pigs
- Mice
- Myelin Basic Protein/adverse effects
- Myelin Basic Protein/immunology
- NAD/metabolism
- NADP/metabolism
- Nitric Oxide Synthase Type II/metabolism
- Oxidative Stress/physiology
- Tandem Mass Spectrometry/methods
Collapse
Affiliation(s)
- A Castegna
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hooper DC, Roy A, Kean RB, Phares TW, Barkhouse DA. Therapeutic immune clearance of rabies virus from the CNS. Future Virol 2011; 6:387-397. [PMID: 21686076 PMCID: PMC3114627 DOI: 10.2217/fvl.10.88] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The long-held concept that rabies infection is lethal in humans once the causative rabies virus has reached the CNS has been called into question by the recent survival of a number of patients with clinical rabies. Studies in animal models provide insight into why survival from a rabies virus infection that has spread to the CNS is possible and the immune mechanisms involved. In the CNS, both innate mechanisms capable of inhibiting virus replication and the activity of infiltrating rabies virus-specific T and B cells with the capacity to clear the virus are required. Deficiencies in the induction of either aspect of rabies immunity can lead to lethal consequences but may be overcome by novel approaches to active and passive immunization.
Collapse
Affiliation(s)
- D Craig Hooper
- Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, 233 S. 10th Street, PA 19107, USA
| | - Anirban Roy
- Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, 233 S. 10th Street, PA 19107, USA
| | - Rhonda B Kean
- Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, 233 S. 10th Street, PA 19107, USA
| | - Timothy W Phares
- Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, 233 S. 10th Street, PA 19107, USA
| | - Darryll A Barkhouse
- Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, 233 S. 10th Street, PA 19107, USA
| |
Collapse
|
50
|
Human brain endothelial cells are responsive to adenosine receptor activation. Purinergic Signal 2011; 7:265-73. [PMID: 21484089 DOI: 10.1007/s11302-011-9222-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/31/2011] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) of the central nervous system (CNS) consists of a unique subset of endothelial cells that possess tight junctions which form a relatively impervious physical barrier to a large variety of blood components. Until recently, there have been no good in vitro models for studying the human BBB without the co-culture of feeder cells. The hCMEC/D3 cell line is the first stable, well-differentiated human brain endothelial cell line that grows independently in culture with characteristics that closely resemble those of resident human brain endothelial cells. As our previously published findings demonstrated the importance of adenosine receptor (AR) signaling for lymphocyte entry into the CNS, we wanted to determine if human brain endothelial cells possess the capacity to generate and respond to extracellular adenosine. Utilizing the hCMEC/D3 cell line, we determined that these cells express CD73, the cell surface enzyme that converts extracellular AMP to adenosine. When grown under normal conditions, these cells also express the A(1), A(2A), and A(2B) AR subtypes. Additionally, hCMEC/D3 cells are responsive to extracellular AR signaling, as cAMP levels increase following the addition of the broad spectrum AR agonist 5'-N-ethylcarboxamidoadenosine (NECA). Overall, these results indicate that human brain endothelial cells, and most likely the human BBB, have the capacity to synthesize and respond to extracellular adenosine.
Collapse
|