1
|
Zhang J, Duan Y, Liu C, Zhang M, Liu H, Ming X, Li Y, Jiao X, Wang X, Tang B. Visualizing ozone fluctuations employing a fluorescent probe in stimulated-epilepsy cell models. Chem Commun (Camb) 2025; 61:8043-8046. [PMID: 40326296 DOI: 10.1039/d4cc06310d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
BID-Ozo, a mitochondrial-targeted fluorescence probe to detect endogenous ozone (O3) was developed. A significant increase in intracellular O3 was observed in PC12 cells stimulated with high concentrations of glutamate (Glu), which is used to model epilepsy.
Collapse
Affiliation(s)
- Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, People's Republic of China
| | - Yu Duan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Chang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Mingyue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Heng Liu
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, People's Republic of China.
| | - Xingchen Ming
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
2
|
Chirumbolo S, Valdenassi L, Tirelli U, Ricevuti G, Pandolfi S, Vaiano F, Galoforo A, Loprete F, Simonetti V, Chierchia M, Bellardi D, Richelmi T, Franzini M. The Oxygen-Ozone Adjunct Medical Treatment According to the Protocols from the Italian Scientific Society of Oxygen-Ozone Therapy: How Ozone Applications in the Blood Can Influence Clinical Therapy Success via the Modulation of Cell Biology and Immunity. BIOLOGY 2023; 12:1512. [PMID: 38132338 PMCID: PMC10740843 DOI: 10.3390/biology12121512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Ozone is an allotrope of oxygen whose use in medicine has rapidly grown in recent years. Ozonated blood allows for the use of ozone in a safe modality, as plasma and blood cells are endowed with an antioxidant system able to quench ozone's pro-oxidant property and to elicit the Nrf2/Kwap1/ARE pathway. METHODS We present two clinical studies, a case-series (six patients) observational study adopting ozone as a major autohemotherapy and topical ozone to address infected post-surgical wounds with multi-drug resistant bacteria and an observational study (250 patients) using ozonated blood for treating knee osteoarthritis. RESULTS Ozonated blood via major autohemotherapy reduced the extent of infections in wounds, reduced the inflammatory biomarkers by more than 75% and improved patients' QoL, whereas ozonated blood via minor autohemotherapy improved significantly (p < 0.001) WOMAC and Lequesne's parameters in knee osteoarthritis. CONCLUSIONS The models described, i.e., ozone autohemotherapy in wound antimicrobial treatment and ozonated blood in knee osteoarthrosis, following our protocols, share the outstanding ability of ozone to modulate the innate immune response and address bacterial clearance as well as inflammation and pain.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
| | - Luigi Valdenassi
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | | | - Giovanni Ricevuti
- Department of Drug Science, University of Pavia, 27100 Pavia, Italy;
| | - Sergio Pandolfi
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Francesco Vaiano
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Antonio Galoforo
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Fortunato Loprete
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Vincenzo Simonetti
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Marianna Chierchia
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | | | - Tommaso Richelmi
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Marianno Franzini
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| |
Collapse
|
3
|
Naish E, Wood AJT, Stewart AP, Routledge M, Morris AC, Chilvers ER, Lodge KM. The formation and function of the neutrophil phagosome. Immunol Rev 2023; 314:158-180. [PMID: 36440666 PMCID: PMC10952784 DOI: 10.1111/imr.13173] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophils are the most abundant circulating leukocyte and are crucial to the initial innate immune response to infection. One of their key pathogen-eliminating mechanisms is phagocytosis, the process of particle engulfment into a vacuole-like structure called the phagosome. The antimicrobial activity of the phagocytic process results from a collaboration of multiple systems and mechanisms within this organelle, where a complex interplay of ion fluxes, pH, reactive oxygen species, and antimicrobial proteins creates a dynamic antimicrobial environment. This complexity, combined with the difficulties of studying neutrophils ex vivo, has led to gaps in our knowledge of how the neutrophil phagosome optimizes pathogen killing. In particular, controversy has arisen regarding the relative contribution and integration of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived antimicrobial agents and granule-delivered antimicrobial proteins. Clinical syndromes arising from dysfunction in these systems in humans allow useful insight into these mechanisms, but their redundancy and synergy add to the complexity. In this article, we review the current knowledge regarding the formation and function of the neutrophil phagosome, examine new insights into the phagosomal environment that have been permitted by technological advances in recent years, and discuss aspects of the phagocytic process that are still under debate.
Collapse
Affiliation(s)
- Emily Naish
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Alexander JT Wood
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of Critical CareUniversity of MelbourneMelbourneAustralia
| | | | - Matthew Routledge
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Andrew Conway Morris
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Edwin R Chilvers
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
4
|
Photo-Oxidation Mechanisms in Liquid Pharmaceutical Formulations: The Overlooked Role of Singlet Oxygen Presented as a Case Study. Pharm Res 2022; 39:2529-2540. [PMID: 36131113 DOI: 10.1007/s11095-022-03374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Oxidation is one of the most common degradation pathways for active pharmaceutical ingredients (APIs) in pharmaceutical formulations, mostly involving 1-electron processes via peroxy radicals and 2-electron processes by peroxides. In liquid pharmaceutical formulations, several factors can impact oxidative instabilities including pH, excipient impurities, headspace oxygen, and the potential for photo-oxidation. Photo-oxidation can be particularly challenging to characterize given the number of oxidative mechanisms which can occur. This was observed during formulation development of a new chemical entity, MK-1454, where a degradation peak was observed during photostability studies which was not previously observed during peroxide and peroxyradical forced stress studies. METHODS To gain a fundamental understanding of reactive oxygen species generation and its role in degradation of MK-1454, experiments were performed with materials which either generate or measure reactive oxygen species including organic hydroperoxides, singlet oxygen, and superoxide to fundamentally understand a photodegradation mechanism which was observed in the original formulation. LC-MS experiments further elucidated the structure and mechanism of this observed degradation pathway. RESULTS A clear relationship between the decrease in dissolved oxygen after light exposure and the loss of MK-1454 was established. The data indicate that singlet oxygen is the most likely contributor of a particular photodegradation product. The singlet oxygen was generated by the inactive ingredients in the formulation, and LC-MS confirm this as the most likely pathway. CONCLUSION This work highlights the importance of understanding photochemical degradation of APIs in solution formulations and provides approaches which can better elucidate those mechanisms and thereby control strategies.
Collapse
|
5
|
Feng Y, Xu S, Song ZL, Ren TB, Huan SY, Yuan L, Zhang XB. Selective detection of ozone in inflamed mice using a novel activatable chemiluminescent probe. Chem Commun (Camb) 2022; 58:4184-4187. [PMID: 35266941 DOI: 10.1039/d2cc00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here an activatable chemiluminescent probe CL-O3 for the high-contrast imaging of O3in vivo. CL-O3 exhibited a high selectivity toward O3 and was able to evaluate the degree of inflammation in mice by detecting endogenous O3 levels in acute inflamed mice.
Collapse
Affiliation(s)
- Yurong Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| | - Shuai Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| | - Zhi-Ling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| | - Shuang-Yan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical En-gineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
6
|
Goossens JF, Thuru X, Bailly C. Properties and reactivity of the folic acid and folate photoproduct 6-formylpterin. Free Radic Biol Med 2021; 171:1-10. [PMID: 33965562 DOI: 10.1016/j.freeradbiomed.2021.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
Folates (vitamin B9) are essential components of our diet and our gut microbiota. They are omnipresent in our cells and blood. Folates are necessary for DNA synthesis, methylation, and other vital bioprocesses. Folic acid (FA), as the synthetic form of folates, is largely found in supplements and fortified foods. FA and folate drugs are also extensively used as therapeutics. Therefore, we are continuously exposed to the pterin derivatives, and their photo-degradation products, such as 6-formylpterin (6-FPT) and pterin-6-carboxylic acid. During ultraviolet radiation, these two photolytic products generate reactive oxygen species (ROS) responsible for the cellular oxidative stress. 6-FPT can exhibit variable pro/anti-oxidative roles depending on the cell type and its environment (acting as a cell protector in normal cells, or as an enhancer of drug-induced cell death in cancer cells). The ROS-modulating capacity of 6-FPT is well-known, whereas its intrinsic reactivity has been much less investigated. Here, we have reviewed the properties of 6-FPT and highlighted its capacity to form covalent adducts with the ROS-scavenging drug edaravone (used to treat stroke and amyotrophic lateral sclerosis) as well as its implication in immune surveillance. 6-FPT and its analogue acetyl-6-FPT function as small molecule antigens, recognized by the major histocompatibility complex-related class I-like molecule, MR1, for presentation to mucosal-associated invariant T (MAIT) cells. As modulators of the MR1/MAIT machinery, 6-FPT derivatives could play a significant immuno-regulatory role in different diseases. This brief review shed light on the multiple properties and cellular activities of 6-FPT, well beyond its primary ROS-generating activity.
Collapse
Affiliation(s)
- Jean-François Goossens
- Univ. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France.
| | - Xavier Thuru
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France.
| | | |
Collapse
|
7
|
|
8
|
Lysine Reacts with Cholesterol Hydroperoxide to Form Secosterol Aldehydes and Lysine-Secosterol Aldehyde Adducts. J CHEM-NY 2020. [DOI: 10.1155/2020/5862645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two cholesterol secosterol aldehydes, namely, 3β-hydroxy-5-oxo-5,6-secocholestan-6-al (secosterol A) and its aldolization product 3β-hydroxy-5β-hydroxy-B-norcholestane-6β-carboxyaldehyde (secosterol B), are highly bioactive compounds which have been detected in human tissues and potentially contribute to the development of physiological dysfunctions such as atherosclerosis, Alzheimer’s disease, diabetes, and cancer. They were originally considered to be exclusive products of cholesterol ozonolysis and thus to be evidence for endogenous ozone formation. However, it was recently postulated that primary amines such as lysine may catalyse their formation from cholesterol-5α-hydroperoxide (Ch-5α-OOH), the main product of the oxidation of cholesterol with singlet oxygen. This involves cyclization of Ch-5α-OOH to an unstable dioxetane intermediate, which decomposes to form secosterol aldehydes with triplet carbonyl groups, whose return to the singlet state is at least partly coupled to the conversion of triplet molecular oxygen to singlet oxygen. Here, we subjected cholesterol to photosensitized oxidation, which predominantly produces Ch-5α-OOH and minor amounts of the 6α- and 6β-hydroperoxides, exposed the hydroperoxide mixture to lysine in the presence of the antioxidant 2,6-ditertiary-butyl-4-hydroxytoluene (BHT), and analysed the reaction mixture by liquid chromatography-electrospray ionization-mass spectrometry. Consistent with the postulated lysine-catalysed formation of secosterol aldehydes, we detected formation of the latter and several types of their lysine adducts, including carbinolamines, Schiff’s bases, and amide-type adducts. We propose that the amide type adducts, which are major biomarkers of lipid oxidation, are mainly formed by singlet oxygen-mediated oxidation of the carbinolamine adducts.
Collapse
|
9
|
|
10
|
|
11
|
Evidence for the Formation of Ozone (or Ozone-Like Oxidants) by the Reaction of Singlet Oxygen with Amino Acids. J CHEM-NY 2018. [DOI: 10.1155/2018/6145180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antibodies or some amino acids, namely, cysteine, methionine, histidine, and tryptophan, were previously reported to catalyse the conversion of singlet oxygen (1O2) to ozone (O3). The originally proposed mechanism for such biological ozone formation was that antibodies or amino acids catalyse the oxidation of water molecules by singlet oxygen to yield dihydrogen trioxide (HOOOH) as a precursor of ozone and hydrogen peroxide (H2O2). However, because HOOOH readily decomposes to form water and singlet oxygen rather than ozone and hydrogen peroxide, an alternative hypothesis has been proposed; ozone is formed due to the reaction of singlet oxygen with amino acids to form polyoxidic amino acid derivatives as ozone precursors. Evidence in support of the latter hypothesis is presented in this article, in that in the presence of singlet oxygen, methionine sulfoxide (RS(O)CH3), an oxidation product of methionine (RSCH3), was found to promote reactions that can best be attributed to the trioxidic anionic derivative RS+(OOO−)CH3 or ozone.
Collapse
|
12
|
Miyoshi N. Biochemical properties of cholesterol aldehyde secosterol and its derivatives. J Clin Biochem Nutr 2018; 62:107-114. [PMID: 29610549 PMCID: PMC5874229 DOI: 10.3164/jcbn.17-109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023] Open
Abstract
Elevated levels of cholesterol aldehyde, 3β-hydroxy-5-oxo-5,6-secocholestan-6-al (secosterol-A, also called 5,6-secosterol), and its aldolization product (secosterol-B) have been detected in human atherosclerotic plaques and tissues samples of brains affected by neurodegeneration, such as Alzheimer’s disease and Lewy body dementia suggesting that increased formation of these compounds may be associated with inflammation-related diseases. Secosterol-A and secosterol-B, and also further oxidized products seco-A-COOH and seco-B-COOH induce several pro-inflammatory activities in vitro. Accumulating evidences demonstrate that the covalent bindings of these secosterols to target proteins seem to be critical to trigger their pro-inflammatory activities. One of the molecular mechanisms of protein adduct formations is that aldehydic function of secosterol-A and secosterol-B is reactive and form Schiff bases with ε- or N-terminal amino groups of proteins. In other cases, it is recently suggested that Michael acceptor moiety formed by the dehydration of not only secosterol-A and secosterol-B but also seco-A-COOH may react with nucleophilic site on target proteins. In this review, I summarize and provide an overview of formation mechanism of secosterols in in vitro and in vivo, patho- or physiological concentrations in biological and clinical samples, and molecular mechanisms of pro-inflammatory activities of secosterols.
Collapse
Affiliation(s)
- Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
13
|
Zerbinati C, Iuliano L. Cholesterol and related sterols autoxidation. Free Radic Biol Med 2017; 111:151-155. [PMID: 28428001 DOI: 10.1016/j.freeradbiomed.2017.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022]
Abstract
Cholesterol is a unique lipid molecule providing the building block for membranes, hormones, vitamin D and bile acid synthesis. Metabolism of cholesterol involves several enzymes acting on the sterol nucleus or the isooctyl tail. In the recent years, research interest has been focused on oxysterols, cholesterol derivatives generated by the addition of oxygen to the cholesterol backbone. Oxysterols can be produced enzymatically or by autoxidation. Autoxidation of cholesterol proceeds through type I or type II mechanisms. Type I autoxidation is initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system. Type II autoxidation occurs stoichiometrically by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The vulnerability of cholesterol towards high reactive species has raised considerable interest for mechanistic studies and for the potential biological activity of oxysterols, as well as for the use of oxysterols as biomarkers for the non-invasive study of oxidative stress in vivo.
Collapse
Affiliation(s)
- Chiara Zerbinati
- Vascular Biology and Mass Spectrometry Laboratory, Department of Medical Sciences and Biotechnology, Sapienza University of Roma, Latina, Italy
| | - Luigi Iuliano
- Vascular Biology and Mass Spectrometry Laboratory, Department of Medical Sciences and Biotechnology, Sapienza University of Roma, Latina, Italy.
| |
Collapse
|
14
|
Wurtzler EM, Wendell D. Selective Photocatalytic Disinfection by Coupling StrepMiniSog to the Antibody Catalyzed Water Oxidation Pathway. PLoS One 2016; 11:e0162577. [PMID: 27617441 PMCID: PMC5019378 DOI: 10.1371/journal.pone.0162577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023] Open
Abstract
For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency than current photosensitizers, allowing for shorter irradiation times from a fully biodegradable photocatalyst. The StrepMiniSOG photodisinfection system is unable to cross cell membranes and like other consumed proteins, can be degraded by endogenous digestive enzymes in the human gut, thereby reducing the consumption risks typically associated with other disinfection agents. We demonstrate specific, multi-log removal of Listeria monocytogenes from a mixed population of bacteria, establishing the StrepMiniSOG disinfection system as a valuable tool for targeted pathogen removal, while maintaining existing microbial biodiversity.
Collapse
Affiliation(s)
- Elizabeth M. Wurtzler
- Department of Biological, Chemical, and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - David Wendell
- Department of Biological, Chemical, and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2398573. [PMID: 27042259 PMCID: PMC4799824 DOI: 10.1155/2016/2398573] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Abstract
Recent studies have shown that exposing antibodies or amino acids to singlet oxygen results in the formation of ozone (or an ozone-like oxidant) and hydrogen peroxide and that human neutrophils produce both singlet oxygen and ozone during bacterial killing. There is also mounting evidence that endogenous singlet oxygen production may be a common occurrence in cells through various mechanisms. Thus, the ozone-producing combination of singlet oxygen and amino acids might be a common cellular occurrence. This paper reviews the potential pathways of formation of singlet oxygen and ozone in vivo and also proposes some new pathways for singlet oxygen formation. Physiological consequences of the endogenous formation of these oxidants in human tissues are discussed, as well as examples of how dietary factors may promote or inhibit their generation and activity.
Collapse
|
16
|
Zhu H, Traore K, Santo A, Trush MA, Li YR. Oxygen and Oxygen Toxicity: The Birth of Concepts. ACTA ACUST UNITED AC 2016; 1:1-8. [PMID: 29707642 DOI: 10.20455/ros.2016.801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Molecular dioxygen (O2) is an essential element of aerobic life, yet incomplete reduction or excitation of O2 during aerobic metabolisms generates diverse oxygen-containing reactive species, commonly known as reactive oxygen species (ROS). On the one hand, ROS pose a serious threat to aerobic organisms via inducing oxidative damage to cellular constituents. On the other hand, these reactive species, when their generation is under homeostatic control, also play important physiological roles (e.g., constituting an important component of immunity and participating in redox signaling). This article defines oxygen and the key facts about oxygen, and discusses the relationship between oxygen and the emergence of early animals on Earth. The article then describes the discovery of oxygen by three historical figures and examines the birth of the concepts of oxygen toxicity and the underlying free radical mechanisms. The article ends with a brief introduction to the emerging field of ROS-mediated redox signaling and physiological responses.
Collapse
Affiliation(s)
- Hong Zhu
- CUSOM, Campbell University, Buies Creek, NC 27506, USA
| | - Kassim Traore
- CUSOM, Campbell University, Buies Creek, NC 27506, USA
| | - Arben Santo
- EVCOM, Virginia Tech CRC, Blacksburg, VA 24060, USA
| | - Michael A Trush
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Y Robert Li
- CUSOM, Campbell University, Buies Creek, NC 27506, USA.,Virginia Tech-Wake Forest University SBES, Blacksburg, VA 24061, USA
| |
Collapse
|
17
|
Lee R, Coote ML. Theoretical Investigation of Oxidative Cleavage of Cholesterol by Dual O2 Activation and Sulfide Reduction. Aust J Chem 2016. [DOI: 10.1071/ch16093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Theoretical calculations are used to explore a plausible mechanism for oxidative cleavage of cholesterol mediated by two ground-state O2 molecules. It is shown that cholesterol can form a stable pre-complex with the two triplet dioxygen molecules, which could be further stabilized in an enzyme environment by methionine (modelled here as Me2S). Triplet O2 can then react to form a metastable biradical species that is then further stabilized by reaction with a second triplet O2, resulting in an intermediate that undergoes an intersystem crossing to form a diperoxy intermediate. This in turn is reduced to the final cholesterol secosterol aldehyde product by the same methionine, which may provide an explanation for the presence of methionine sulfoxide fractions in Aβ amyloid peptide. The mechanistic theozyme model predicts an energetically viable pathway that is unusual in that triplet oxygen is normally considered to be unreactive in this context unless first excited to the singlet state. Although we show that the same reaction can also proceed via photosensitization of the complex if an appropriate cofactor is available, the energetics for the triplet oxygen reaction are competitive. Reactivity studies revealed that the reaction can also occur with other unsaturated substrates, with the lowest barriers occurring with more nucleophilic alkenes, or by rendering the 3O2 more electrophilic via non-covalent interactions with Me2S.
Collapse
|
18
|
Nam Y, Kim BS, Shin I. Highly sensitive and selective bioluminescence based ozone probes and their applications to detect ambient ozone. Chem Commun (Camb) 2016; 52:1128-30. [DOI: 10.1039/c5cc08622a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Highly selective and sensitive bioluminescence-based ozone probes were developed and applied to measure ozone concentrations in environmental samples.
Collapse
Affiliation(s)
- Younseok Nam
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Beom Seok Kim
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Injae Shin
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| |
Collapse
|
19
|
Chen X, Wang F, Hyun JY, Wei T, Qiang J, Ren X, Shin I, Yoon J. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 2016; 45:2976-3016. [DOI: 10.1039/c6cs00192k] [Citation(s) in RCA: 849] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Onyango AN. Alternatives to the 'water oxidation pathway' of biological ozone formation. J Chem Biol 2015; 9:1-8. [PMID: 26855676 DOI: 10.1007/s12154-015-0140-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
Recent studies have shown that ozone (O3) is endogenously generated in living tissues, where it makes both positive and negative physiological contributions. A pathway for the formation of both O3 and hydrogen peroxide (H2O2) was previously proposed, beginning with the antibody or amino acid-catalyzed oxidation of water by singlet oxygen ((1)O2) to form hydrogen trioxide (H2O3) as a key intermediate. A key pillar of this hypothesis is that some of the H2O2 molecules incorporate water-derived oxygen atoms. However, H2O3 decomposes extremely readily in water to form (1)O2 and water, rather than O3 and H2O2. This article highlights key literature indicating that the oxidation of organic molecules such as the amino acids methionine, tryptophan, histidine, and cysteine by (1)O2 is involved in ozone formation. Based on this, an alternative hypothesis for ozone formation is developed involving a further reaction of singlet oxygen with various oxidized organic intermediates. H2O2 having water-derived oxygen atoms is subsequently formed during ozone decomposition in water by known reactions.
Collapse
Affiliation(s)
- Arnold N Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000, 00200 Nairobi, Kenya
| |
Collapse
|
21
|
Itoh H, Matsuo H, Kitamura N, Yamamoto S, Higuchi T, Takematsu H, Kamikubo Y, Kondo T, Yamashita K, Sasada M, Takaori-Kondo A, Adachi S. Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains. J Leukoc Biol 2015; 98:107-17. [PMID: 25908735 PMCID: PMC4467167 DOI: 10.1189/jlb.4a0813-422rrr] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 04/06/2015] [Indexed: 12/19/2022] Open
Abstract
Autophagy occurs in human neutrophils after the phagocytosis of multidrug-resistant bacteria and drug-sensitive strains, including Escherichia coli and Pseudomonas aeruginosa. The present study detected autophagy by immunoblot analysis of LC3B conversion, by confocal scanning microscopic examination of LC3B aggregate formation and by transmission electron microscopic examination of bacteria-containing autophagosomes. Patients with severe bacterial infections are often treated with IVIG alongside antimicrobial agents. Here, we showed that IVIG induced neutrophil-mediated phagocytosis of multidrug-resistant strains. Compared with untreated neutrophils, neutrophils exposed to IVIG showed increased levels of bacterial cell killing, phagocytosis, O(2)(-) release, MPO release, and NET formation. IVIG also increased autophagy in these cells. Inhibiting the late phase of autophagy (fusion of lysosomes with autophagosomes) with bafilomycin A1-reduced, neutrophil-mediated bactericidal activity. These findings indicate that autophagy plays a critical role in the bactericidal activity mediated by human neutrophils. Furthermore, the autophagosomes within the neutrophils contained bacteria only and their organelles only, or both bacteria and their organelles, a previously undocumented observation. Taken together, these results suggest that the contents of neutrophil autophagosomes may be derived from specific autophagic systems, which provide the neutrophil with an advantage. Thus, IVIG promotes the neutrophil-mediated killing of multidrug-resistant bacteria as well as drug-sensitive strains.
Collapse
Affiliation(s)
- Hiroshi Itoh
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| | - Hidemasa Matsuo
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| | - Naoko Kitamura
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| | - Sho Yamamoto
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| | - Takeshi Higuchi
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| | - Hiromu Takematsu
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| | - Yasuhiko Kamikubo
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| | - Tadakazu Kondo
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| | - Kouhei Yamashita
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| | - Masataka Sasada
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| | - Akifumi Takaori-Kondo
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| | - Souichi Adachi
- Departments of *Human Health Sciences and Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan; and Department of Hematology and Oncology, Shiga Medical Center for Adults, Shiga, Japan
| |
Collapse
|
22
|
Anglada JM, Martins-Costa M, Francisco JS, Ruiz-López MF. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes. Acc Chem Res 2015; 48:575-83. [PMID: 25688469 DOI: 10.1021/ar500412p] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in the environment, but they can also originate endogenously, initiated by electron reduction of molecular oxygen. These molecules have important biological signaling activities, but they cause oxidative stress when dysfunction within the antioxidant system occurs. Excess ROS in living organisms can lead to problems, such as protein oxidation-through either cleavage of the polypeptide chain or modification of amino acid side chains-and lipid oxidation.
Collapse
Affiliation(s)
- Josep M. Anglada
- Departament
de Química Biològica i Modelització Molecular, IQAC-CSIC, C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - Marilia Martins-Costa
- SRSMC, University of Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
- UMR
7565, CNRS, 54506 Vandoeuvre-lès-Nancy, France
| | - Joseph S. Francisco
- College
of Arts and Sciences, University of Nebraska-Lincoln, 1223 Oldfather Hall Lincoln, Lincoln, Nebraska 68588-0312, United States
| | - Manuel F. Ruiz-López
- SRSMC, University of Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
- UMR
7565, CNRS, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
23
|
Miyoshi N, Iuliano L, Tomono S, Ohshima H. Implications of cholesterol autoxidation products in the pathogenesis of inflammatory diseases. Biochem Biophys Res Commun 2014; 446:702-8. [DOI: 10.1016/j.bbrc.2013.12.107] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022]
|
24
|
Cerkovnik J, Plesničar B. Recent advances in the chemistry of hydrogen trioxide (HOOOH). Chem Rev 2013; 113:7930-51. [PMID: 23808683 DOI: 10.1021/cr300512s] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Janez Cerkovnik
- Department of Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana , 1000 Ljubljana, Slovenia
| | | |
Collapse
|
25
|
Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:181-218. [PMID: 24050624 DOI: 10.1146/annurev-pathol-020712-164023] [Citation(s) in RCA: 913] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophils and neutrophil-like cells are the major pathogen-fighting immune cells in organisms ranging from slime molds to mammals. Central to their function is their ability to be recruited to sites of infection, to recognize and phagocytose microbes, and then to kill pathogens through a combination of cytotoxic mechanisms. These include the production of reactive oxygen species, the release of antimicrobial peptides, and the recently discovered expulsion of their nuclear contents to form neutrophil extracellular traps. Here we discuss these primordial neutrophil functions, which also play key roles in tissue injury, by providing details of neutrophil cytotoxic functions and congenital disorders of neutrophils. In addition, we present more recent evidence that interactions between neutrophils and adaptive immune cells establish a feed-forward mechanism that amplifies pathologic inflammation. These newly appreciated contributions of neutrophils are described in the setting of several inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Tanya N Mayadas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 20115;
| | | | | |
Collapse
|
26
|
Hall PR, Elmore BO, Spang CH, Alexander SM, Manifold-Wheeler BC, Castleman MJ, Daly SM, Peterson MM, Sully EK, Femling JK, Otto M, Horswill AR, Timmins GS, Gresham HD. Nox2 modification of LDL is essential for optimal apolipoprotein B-mediated control of agr type III Staphylococcus aureus quorum-sensing. PLoS Pathog 2013; 9:e1003166. [PMID: 23459693 PMCID: PMC3573103 DOI: 10.1371/journal.ppat.1003166] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/17/2012] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus contains an autoinducing quorum-sensing system encoded within the agr operon that coordinates expression of virulence genes required for invasive infection. Allelic variation within agr has generated four agr specific groups, agr I-IV, each of which secretes a distinct autoinducing peptide pheromone (AIP1-4) that drives agr signaling. Because agr signaling mediates a phenotypic change in this pathogen from an adherent colonizing phenotype to one associated with considerable tissue injury and invasiveness, we postulated that a significant contribution to host defense against tissue damaging and invasive infections could be provided by innate immune mechanisms that antagonize agr signaling. We determined whether two host defense factors that inhibit AIP1-induced agrI signaling, Nox2 and apolipoprotein B (apoB), also contribute to innate control of AIP3-induced agrIII signaling. We hypothesized that apoB and Nox2 would function differently against AIP3, which differs from AIP1 in amino acid sequence and length. Here we show that unlike AIP1, AIP3 is resistant to direct oxidant inactivation by Nox2 characteristic ROS. Rather, the contribution of Nox2 to defense against agrIII signaling is through oxidation of LDL. ApoB in the context of oxLDL, and not LDL, provides optimal host defense against S. aureus agrIII infection by binding the secreted signaling peptide, AIP3, and preventing expression of the agr-driven virulence factors which mediate invasive infection. ApoB within the context of oxLDL also binds AIP 1-4 and oxLDL antagonizes agr signaling by all four agr alleles. Our results suggest that Nox2-mediated oxidation of LDL facilitates a conformational change in apoB to one sufficient for binding and sequestration of all four AIPs, demonstrating the interdependence of apoB and Nox2 in host defense against agr signaling. These data reveal a novel role for oxLDL in host defense against S. aureus quorum-sensing signaling.
Collapse
Affiliation(s)
- Pamela R Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Current viewpoints concerning the bactericidal mechanisms of neutrophils are reviewed from a perspective that emphasizes challenges presented by the inability to duplicate ex vivo the intracellular milieu. Among the challenges considered are the influences of confinement upon substrate availability and reaction dynamics, direct and indirect synergistic interactions between individual toxins, and bacterial responses to stressors. Approaches to gauging relative contributions of various oxidative and nonoxidative toxins within neutrophils using bacteria and bacterial mimics as intrinsic probes are also discussed.
Collapse
Affiliation(s)
- James K Hurst
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
28
|
Fábián TK, Hermann P, Beck A, Fejérdy P, Fábián G. Salivary defense proteins: their network and role in innate and acquired oral immunity. Int J Mol Sci 2012; 13:4295-4320. [PMID: 22605979 PMCID: PMC3344215 DOI: 10.3390/ijms13044295] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 11/20/2022] Open
Abstract
There are numerous defense proteins present in the saliva. Although some of these molecules are present in rather low concentrations, their effects are additive and/or synergistic, resulting in an efficient molecular defense network of the oral cavity. Moreover, local concentrations of these proteins near the mucosal surfaces (mucosal transudate), periodontal sulcus (gingival crevicular fluid) and oral wounds and ulcers (transudate) may be much greater, and in many cases reinforced by immune and/or inflammatory reactions of the oral mucosa. Some defense proteins, like salivary immunoglobulins and salivary chaperokine HSP70/HSPAs (70 kDa heat shock proteins), are involved in both innate and acquired immunity. Cationic peptides and other defense proteins like lysozyme, bactericidal/permeability increasing protein (BPI), BPI-like proteins, PLUNC (palate lung and nasal epithelial clone) proteins, salivary amylase, cystatins, prolin-rich proteins, mucins, peroxidases, statherin and others are primarily responsible for innate immunity. In this paper, this complex system and function of the salivary defense proteins will be reviewed.
Collapse
Affiliation(s)
- Tibor Károly Fábián
- Clinic of Prosthetic Dentistry, Faculty of Dentistry, Semmelweis University Budapest, Szentkirályi utca 47, Budapest, H-1088, Hungary; E-Mails: (P.H.); (P.F.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +36-1-338-4380; Fax: +36-1-317-5270
| | - Péter Hermann
- Clinic of Prosthetic Dentistry, Faculty of Dentistry, Semmelweis University Budapest, Szentkirályi utca 47, Budapest, H-1088, Hungary; E-Mails: (P.H.); (P.F.)
| | - Anita Beck
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University Budapest, Nagyvárad tér 4, Budapest, H-1089, Hungary; E-Mail:
| | - Pál Fejérdy
- Clinic of Prosthetic Dentistry, Faculty of Dentistry, Semmelweis University Budapest, Szentkirályi utca 47, Budapest, H-1088, Hungary; E-Mails: (P.H.); (P.F.)
| | - Gábor Fábián
- Clinic of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Semmelweis University Budapest, Szentkirályi utca 47, Budapest, H-1088, Hungary; E-Mail:
| |
Collapse
|
29
|
Sagai M, Bocci V. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress? Med Gas Res 2011; 1:29. [PMID: 22185664 PMCID: PMC3298518 DOI: 10.1186/2045-9912-1-29] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/20/2011] [Indexed: 01/06/2023] Open
Abstract
The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not.Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB), resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2 then induces the transcription of antioxidant response elements (ARE). Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr), catalase (CAT), heme-oxygenase-1 (HO-1), NADPH-quinone-oxidoreductase (NQO-1), phase II enzymes of drug metabolism and heat shock proteins (HSP). Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT) and activated protein-1 (AP-1).Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a), which is also induced via moderate oxidative stress. Recently these concepts have become widely accepted. The versatility of ozone in treating vascular and degenerative diseases as well as skin lesions, hernial disc and primary root carious lesions in children is emphasized. Further researches able to elucidate whether the mechanisms of action of ozone therapy involve nuclear transcription factors, such as Nrf2, NFAT, AP-1, and HIF-1α are warranted.
Collapse
Affiliation(s)
- Masaru Sagai
- Department of Physiology, Viale A, Moro 2, 53100, University of Siena, Italy.
| | | |
Collapse
|
30
|
Singlet oxygen is essential for neutrophil extracellular trap formation. Biochem Biophys Res Commun 2011; 413:75-9. [DOI: 10.1016/j.bbrc.2011.08.052] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 01/24/2023]
|
31
|
Nordenfelt P, Tapper H. Phagosome dynamics during phagocytosis by neutrophils. J Leukoc Biol 2011; 90:271-84. [PMID: 21504950 DOI: 10.1189/jlb.0810457] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neutrophil is a key player in immunity, and its activities are essential for the resolution of infections. Neutrophil-pathogen interactions usually trigger a large arsenal of antimicrobial measures that leads to the highly efficient killing of pathogens. In neutrophils, the phagocytic process, including the formation and maturation of the phagosome, is in many respects very different from that in other phagocytes. Although the complex mechanisms that coordinate the membrane traffic, oxidative burst, and release of granule contents required for the microbicidal activities of neutrophils are not completely understood, it is evident that they are unique and differ from those in macrophages. Neutrophils exhibit more rapid rates of phagocytosis and higher intensity of oxidative respiratory response than do macrophages. The phagosome maturation pathway in macrophages, which is linked to the endocytic pathway, is replaced in neutrophils by the rapid delivery of preformed granules to nonacidic phagosomes. This review describes the plasticity and dynamics of the phagocytic process with a special focus on neutrophil phagosome maturation.
Collapse
Affiliation(s)
- Pontus Nordenfelt
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden.
| | | |
Collapse
|
32
|
Kurakin A. The self-organizing fractal theory as a universal discovery method: the phenomenon of life. Theor Biol Med Model 2011; 8:4. [PMID: 21447162 PMCID: PMC3080324 DOI: 10.1186/1742-4682-8-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/29/2011] [Indexed: 12/15/2022] Open
Abstract
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy.An application of the new discovery method to life sciences reveals that moving electrons represent a keystone physical force (flux) that powers, animates, informs, and binds all living structures-processes into a planetary-wide, multiscale system of electron flow/circulation, and that all living organisms and their larger-scale organizations emerge to function as electron transport networks that are supported by and, at the same time, support the flow of electrons down the Earth's redox gradient maintained along the core-mantle-crust-ocean-atmosphere axis of the planet. The presented findings lead to a radically new perspective on the nature and origin of life, suggesting that living matter is an organizational state/phase of nonliving matter and a natural consequence of the evolution and self-organization of nonliving matter.The presented paradigm opens doors for explosive advances in many disciplines, by uniting them within a single conceptual framework and providing a discovery method that allows for the systematic generation of knowledge through comparison and complementation of empirical data across different sciences and disciplines.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Chen X, Tian X, Shin I, Yoon J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 2011; 40:4783-804. [DOI: 10.1039/c1cs15037e] [Citation(s) in RCA: 818] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Tomono S, Miyoshi N, Shiokawa H, Iwabuchi T, Aratani Y, Higashi T, Nukaya H, Ohshima H. Formation of cholesterol ozonolysis products in vitro and in vivo through a myeloperoxidase-dependent pathway. J Lipid Res 2010; 52:87-97. [PMID: 20921334 DOI: 10.1194/jlr.m006775] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
3β-Hydroxy-5-oxo-5,6-secocholestan-6-al (secosterol-A) and its aldolization product 3β-hydroxy-5β-hydroxy-B-norcholestane-6β-carboxaldehyde (secosterol-B) were recently detected in human atherosclerotic tissues and brain specimens, and they may play pivotal roles in the pathogenesis of atherosclerosis and neurodegenerative diseases. However, as their origin remains unidentified, we examined the formation mechanism, the stability, and the fate of secosterols in vitro and in vivo. About 40% of secosterol-A remained unchanged after 3 h incubation in the FBS-free medium, whereas 20% and 40% were converted to its aldehyde-oxidation product, 3β-hydroxy-5-oxo-secocholestan-6-oic acid, and secosterol-B, respectively. In the presence of FBS, almost all secosterol-A was converted immediately to these compounds. Secosterol-B in the medium, with and without FBS, was relatively stable, but ∼30% was converted to its aldehyde-oxidation product, 3β-hydroxy-5β-hydroxy-B-norcholestane-6-oic acid (secoB-COOH). When neutrophil-like differentiated human leukemia HL-60 (nHL-60) cells activated with PMA were cultured in the FBS-free medium containing cholesterol, significantly increased levels of secosterol-A and its aldehyde-oxidation product, but not secosterol-B, were formed. This secosterol-A formation was decreased in the culture of PMA-activated nHL-60 cells containing several reactive oxygen species (ROS) inhibitors and scavengers or in the culture of PMA-activated neutrophils isolated from myeloperoxidase (MPO)-deficient mice. Our results demonstrate that secoterol-A is formed by an ozone-like oxidant generated with PMA-activated neutrophils through the MPO-dependent mechanism.
Collapse
Affiliation(s)
- Susumu Tomono
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Balla J, Tyihák E. Direct Measurement of Emission of Endogenous Ozone from Plants by GC–MS-SIM. Chromatographia 2010. [DOI: 10.1365/s10337-010-1594-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Haranaka M, Hara A, Ando W, Akasaka T. Oxygen atom transfer from carbonyl oxide to alkane catalyzed by metalloporphyrin. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.03.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Garner AL, St Croix CM, Pitt BR, Leikauf GD, Ando S, Koide K. Specific fluorogenic probes for ozone in biological and atmospheric samples. Nat Chem 2009; 1:316-21. [PMID: 20634904 PMCID: PMC2904247 DOI: 10.1038/nchem.240] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 04/27/2009] [Indexed: 11/08/2022]
Abstract
Ozone exposure is a growing global health problem, especially in urban areas. While ozone in the stratosphere protects the earth from harmful ultraviolet light, tropospheric or ground-level ozone is toxic and can damage the respiratory tract. It has recently been shown that ozone may be produced endogenously in inflammation and antibacterial responses of the immune system; however, these results have sparked controversy owing to the use of a non-specific colorimetric probe. Here we report the synthesis of fluorescent molecular probes able to unambiguously detect ozone in both biological and atmospheric samples. Unlike other ozone-detection methods, in which interference from different reactive oxygen species is often a problem, these probes are ozone specific. Such probes will prove useful for the study of ozone in environmental science and biology, and so possibly provide some insight into the role of ozone in cells.
Collapse
Affiliation(s)
- Amanda L. Garner
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Claudette M. St Croix
- Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania 15219, USA
| | - Bruce R. Pitt
- Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania 15219, USA
| | - George D. Leikauf
- Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania 15219, USA
| | - Shin Ando
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
38
|
Cole MP, Freeman BA. Promotion of cardiovascular disease by exposure to the air pollutant ozone. Am J Physiol Lung Cell Mol Physiol 2009; 297:L205-8. [PMID: 19525390 DOI: 10.1152/ajplung.00187.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|