1
|
Urciuoli A, Martínez I, Quam R, Arsuaga JL, Keeling BA, Diez-Valero J, Conde-Valverde M. Semicircular canals shed light on bottleneck events in the evolution of the Neanderthal clade. Nat Commun 2025; 16:972. [PMID: 39979299 PMCID: PMC11842635 DOI: 10.1038/s41467-025-56155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Revealing the evolutionary processes which resulted in the derived morphologies that characterize the Neanderthal clade has been an important task for paleoanthropologists. One critical method to quantify evolutionary changes in the morphology of hominin populations is through evaluating morphological phenotypic diversity (i.e., disparity) in phylogenetically informative bones as a close proxy to neutral evolutionary processes. The goal of this study is to quantify the degree of disparity in the Neanderthal clade. We hypothesize that a reduction in bony labyrinth disparity is indicative of the underlying genetic variation resulting from bottleneck events. We apply a deformation-based geometric morphometric approach to investigate semicircular canal and vestibule shape of a chronologically broad sample of individuals belonging to the Neanderthal lineage. Our results identify a significant reduction in disparity after the start of Marine Isotope Stage 5 supporting our hypothesis of a late bottleneck, possibly leading to the derived morphology of Late Pleistocene Neanderthals.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/ns/n, Campus de la UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain.
| | - Ignacio Martínez
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain
| | - Rolf Quam
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, 13902-6000, USA
- Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Madrid, Spain
- Division of Anthropology, American Museum of Natural History, New York, NY, USA
| | - Juan Luis Arsuaga
- Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Brian A Keeling
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, 13902-6000, USA
| | - Julia Diez-Valero
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain
| | - Mercedes Conde-Valverde
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain.
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
2
|
Padilla-Iglesias C, Derkx I. Hunter-gatherer genetics research: Importance and avenues. EVOLUTIONARY HUMAN SCIENCES 2024; 6:e15. [PMID: 38516374 PMCID: PMC10955370 DOI: 10.1017/ehs.2024.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Major developments in the field of genetics in the past few decades have revolutionised notions of what it means to be human. Although currently only a few populations around the world practise a hunting and gathering lifestyle, this mode of subsistence has characterised members of our species since its very origins and allowed us to migrate across the planet. Therefore, the geographical distribution of hunter-gatherer populations, dependence on local ecosystems and connections to past populations and neighbouring groups have provided unique insights into our evolutionary origins. However, given the vulnerable status of hunter-gatherers worldwide, the development of the field of anthropological genetics requires that we reevaluate how we conduct research with these communities. Here, we review how the inclusion of hunter-gatherer populations in genetics studies has advanced our understanding of human origins, ancient population migrations and interactions as well as phenotypic adaptations and adaptability to different environments, and the important scientific and medical applications of these advancements. At the same time, we highlight the necessity to address yet unresolved questions and identify areas in which the field may benefit from improvements.
Collapse
Affiliation(s)
| | - Inez Derkx
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Cotter DJ, Webster TH, Wilson MA. Genomic and demographic processes differentially influence genetic variation across the human X chromosome. PLoS One 2023; 18:e0287609. [PMID: 37910456 PMCID: PMC10619814 DOI: 10.1371/journal.pone.0287609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/08/2023] [Indexed: 11/03/2023] Open
Abstract
Many forces influence genetic variation across the genome including mutation, recombination, selection, and demography. Increased mutation and recombination both lead to increases in genetic diversity in a region-specific manner, while complex demographic patterns shape patterns of diversity on a more global scale. While these processes act across the entire genome, the X chromosome is particularly interesting because it contains several distinct regions that are subject to different combinations and strengths of these forces: the pseudoautosomal regions (PARs) and the X-transposed region (XTR). The X chromosome thus can serve as a unique model for studying how genetic and demographic forces act in different contexts to shape patterns of observed variation. We therefore sought to explore diversity, divergence, and linkage disequilibrium in each region of the X chromosome using genomic data from 26 human populations. Across populations, we find that both diversity and substitution rate are consistently elevated in PAR1 and the XTR compared to the rest of the X chromosome. In contrast, linkage disequilibrium is lowest in PAR1, consistent with the high recombination rate in this region, and highest in the region of the X chromosome that does not recombine in males. However, linkage disequilibrium in the XTR is intermediate between PAR1 and the autosomes, and much lower than the non-recombining X. Finally, in addition to these global patterns, we also observed variation in ratios of X versus autosomal diversity consistent with population-specific evolutionary history as well. While our results were generally consistent with previous work, two unexpected observations emerged. First, our results suggest that the XTR does not behave like the rest of the recombining X and may need to be evaluated separately in future studies. Second, the different regions of the X chromosome appear to exhibit unique patterns of linked selection across different human populations. Together, our results highlight profound regional differences across the X chromosome, simultaneously making it an ideal system for exploring the action of evolutionary forces as well as necessitating its careful consideration and treatment in genomic analyses.
Collapse
Affiliation(s)
- Daniel J. Cotter
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Timothy H. Webster
- Department of Anthropology, University of Utah, Salt Lake City, UT, United States of America
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
4
|
Gicqueau A, Schuh A, Henrion J, Viola B, Partiot C, Guillon M, Golovanova L, Doronichev V, Gunz P, Hublin JJ, Maureille B. Anatomically modern human in the Châtelperronian hominin collection from the Grotte du Renne (Arcy-sur-Cure, Northeast France). Sci Rep 2023; 13:12682. [PMID: 37542146 PMCID: PMC10403518 DOI: 10.1038/s41598-023-39767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Around 42,000 years ago, anatomically modern humans appeared in Western Europe to the detriment of indigenous Neanderthal groups. It is during this period that new techno-cultural complexes appear, such as the Châtelperronian that extends from northern Spain to the Paris Basin. The Grotte du Renne (Arcy-sur-Cure) is a key site for discussing the biological identity of its makers. This deposit has yielded several Neanderthal human remains in its Châtelperronian levels. However, the last inventory of the paleoanthropological collection attributed to this techno-complex allowed the identification of an ilium belonging to a neonate (AR-63) whose morphology required a thorough analysis to assess its taxonomic attribution. Using geometric morphometrics, we quantified its morphology and compared it to that of 2 Neanderthals and 32 recent individuals deceased during the perinatal period to explore their morphological variation. Our results indicate a morphological distinction between the ilia of Neanderthals and anatomically modern neonates. Although AR-63 is slightly outside recent variability, it clearly differs from the Neanderthals. We propose that this is due to its belonging to an early modern human lineage whose morphology differs slightly from present-day humans. We also explore different hypotheses about the presence of this anatomically modern neonate ilium among Neanderthal remains.
Collapse
Affiliation(s)
- Arthur Gicqueau
- Univ. de Toulouse Jean Jaurès, CNRS, Ministère de La Culture, TRACES, UMR5608 CNRS, F-31058, Toulouse, France.
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR5199, F-33600, Pessac, France.
- Department of Human Evolution, Max Planck Institute for Evolutionnary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
| | - Alexandra Schuh
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR5199, F-33600, Pessac, France
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Juliette Henrion
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR5199, F-33600, Pessac, France
| | - Bence Viola
- Department of Anthropology, University of Toronto, Toronto, Canada
| | - Caroline Partiot
- Austrian Archaeological Institute (OeAI) at the Austrian Academy of Sciences (OeAW), Franz Klein-Gasse 1, 1190, Wien/Vienna, Austria
- Museum national d'histoire naturelle, Eco-Anthropologie, UMR7206, F-Paris, France
| | - Mark Guillon
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR5199, F-33600, Pessac, France
- Inrap, Boulevard de Verdun, F-76120, Le Grand Quevilly, France
| | | | | | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionnary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
- Chaire Internationale de Paléoanthropologie, Collège de France, F-75231, Paris, France
| | - Bruno Maureille
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR5199, F-33600, Pessac, France.
| |
Collapse
|
5
|
Scerri EML. One species, many roots? Nat Ecol Evol 2023; 7:975-976. [PMID: 37198291 DOI: 10.1038/s41559-023-02080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Eleanor M L Scerri
- Pan-African Evolution Research Group, Max Planck Institute of Geoanthropology, Jena, Germany.
- Department of Prehistory, University of Cologne, Cologne, Germany.
- Department of Classics and Archaeology, University of Malta, Msida, Malta.
| |
Collapse
|
6
|
Zhang Y, Li Z. Three-dimensional geometric morphometric study of the Xuchang 2 cranium. J Hum Evol 2023; 178:103347. [PMID: 36966596 DOI: 10.1016/j.jhevol.2023.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
Results of traditional metric and nonmetric assessments suggest that the Xuchang hominin shares features with Neanderthals. To comprehensively compare the nuchal morphology of XC 2 to those of the genus Homo, we conduct a three-dimensional geometric morphometric study with 35 cranial landmarks and surface semilandmarks of XC 2, Homo erectus, Middle Pleistocene humans, Neanderthals, and early and recent modern humans. Results reveal that the centroid size of XC 2 is larger than that of early and recent modern humans and can only be compared to that of Middle Pleistocene humans and H. erectus. Early and recent modern humans share a nuchal morphology distinct from archaic hominins (Ngandong H. erectus, Middle Pleistocene humans, and Neanderthals), except for SM 3, Sangiran 17, and Asian and African H. erectus. Although Ngandong specimens differ from the other H. erectus, it is unclear whether this represents a temporal or spatial trend in the process of evolution of this species. The nuchal morphological resemblance between Middle Pleistocene humans and Neanderthals may be attributed to similar cranial architecture and cerebellar shape. The great nuchal morphological variation shared by recent modern humans may indicate a particular developmental pattern. In conclusion, the nuchal morphology of different human groups is highly variable and may be caused by different factors including brain globularization and developmental plasticity. XC 2 shares similar nuchal morphology with Middle Pleistocene humans and Neanderthals, but these results are insufficient to fully resolve the taxonomic status of XC 2.
Collapse
Affiliation(s)
- Yameng Zhang
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, 266237, China; Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China.
| | - Zhanyang Li
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, 266237, China; Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China; Henan Provincial Institute of Cultural Relics and Archaeology, Zhengzhou, 450000, China.
| |
Collapse
|
7
|
Scerri EML, Will M. The revolution that still isn't: The origins of behavioral complexity in Homo sapiens. J Hum Evol 2023; 179:103358. [PMID: 37058868 DOI: 10.1016/j.jhevol.2023.103358] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The behavioral origins of Homo sapiens can be traced back to the first material culture produced by our species in Africa, the Middle Stone Age (MSA). Beyond this broad consensus, the origins, patterns, and causes of behavioral complexity in modern humans remain debated. Here, we consider whether recent findings continue to support popular scenarios of: (1) a modern human 'package,' (2) a gradual and 'pan-African' emergence of behavioral complexity, and (3) a direct connection to changes in the human brain. Our geographically structured review shows that decades of scientific research have continuously failed to find a discrete threshold for a complete 'modernity package' and that the concept is theoretically obsolete. Instead of a continent-wide, gradual accumulation of complex material culture, the record exhibits a predominantly asynchronous presence and duration of many innovations across different regions of Africa. The emerging pattern of behavioral complexity from the MSA conforms to an intricate mosaic characterized by spatially discrete, temporally variable, and historically contingent trajectories. This archaeological record bears no direct relation to a simplistic shift in the human brain but rather reflects similar cognitive capacities that are variably manifested. The interaction of multiple causal factors constitutes the most parsimonious explanation driving the variable expression of complex behaviors, with demographic processes such as population structure, size, and connectivity playing a key role. While much emphasis has been given to innovation and variability in the MSA record, long periods of stasis and a lack of cumulative developments argue further against a strictly gradualistic nature in the record. Instead, we are confronted with humanity's deep, variegated roots in Africa, and a dynamic metapopulation that took many millennia to reach the critical mass capable of producing the ratchet effect commonly used to define contemporary human culture. Finally, we note a weakening link between 'modern' human biology and behavior from around 300 ka ago.
Collapse
Affiliation(s)
- Eleanor M L Scerri
- Pan-African Evolution Research Group, Max Planck Institute for Geoanthropology, Kahlaische Str. 10, 07749, Jena, Germany; Department of Classics and Archaeology, University of Malta, Msida, MSD 2080, Malta; Department of Prehistory, University of Cologne, 50931, Cologne, Germany.
| | - Manuel Will
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Schloss Hohentübingen, Burgsteige 11, 72070, Tübingen, Germany
| |
Collapse
|
8
|
Harvati K, Reyes-Centeno H. Evolution of Homo in the Middle and Late Pleistocene. J Hum Evol 2022; 173:103279. [PMID: 36375244 PMCID: PMC9703123 DOI: 10.1016/j.jhevol.2022.103279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
The Middle and Late Pleistocene is arguably the most interesting period in human evolution. This broad period witnessed the evolution of our own lineage, as well as that of our sister taxon, the Neanderthals, and related Denisovans. It is exceptionally rich in both fossil and archaeological remains, and uniquely benefits from insights gained through molecular approaches, such as paleogenetics and paleoproteomics, that are currently not widely applicable in earlier contexts. This wealth of information paints a highly complex picture, often described as 'the Muddle in the Middle,' defying the common adage that 'more evidence is needed' to resolve it. Here we review competing phylogenetic scenarios and the historical and theoretical developments that shaped our approaches to the fossil record, as well as some of the many remaining open questions associated with this period. We propose that advancing our understanding of this critical time requires more than the addition of data and will necessitate a major shift in our conceptual and theoretical framework.
Collapse
Affiliation(s)
- Katerina Harvati
- Paleoanthropology, Institute for Archaeological Sciences and Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Rümelinstrasse 19-23, Tübingen 72070, Germany; DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past', Rümelinstrasse 19-23, Tübingen 72070, Germany.
| | - Hugo Reyes-Centeno
- Department of Anthropology, University of Kentucky, 211 Lafferty Hall, Lexington, KY 40506, USA; William S. Webb Museum of Anthropology, University of Kentucky, 1020 Export St, Lexington, KY 40504, USA
| |
Collapse
|
9
|
Harvati K, Ackermann RR. Merging morphological and genetic evidence to assess hybridization in Western Eurasian late Pleistocene hominins. Nat Ecol Evol 2022; 6:1573-1585. [PMID: 36064759 DOI: 10.1038/s41559-022-01875-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/08/2022] [Indexed: 11/09/2022]
Abstract
Previous scientific consensus saw human evolution as defined by adaptive differences (behavioural and/or biological) and the emergence of Homo sapiens as the ultimate replacement of non-modern groups by a modern, adaptively more competitive group. However, recent research has shown that the process underlying our origins was considerably more complex. While archaeological and fossil evidence suggests that behavioural complexity may not be confined to the modern human lineage, recent palaeogenomic work shows that gene flow between distinct lineages (for example, Neanderthals, Denisovans, early H. sapiens) occurred repeatedly in the late Pleistocene, probably contributing elements to our genetic make-up that might have been crucial to our success as a diverse, adaptable species. Following these advances, the prevailing human origins model has shifted from one of near-complete replacement to a more nuanced view of partial replacement with considerable reticulation. Here we provide a brief introduction to the current genetic evidence for hybridization among hominins, its prevalence in, and effects on, comparative mammal groups, and especially how it manifests in the skull. We then explore the degree to which cranial variation seen in the fossil record of late Pleistocene hominins from Western Eurasia corresponds with our current genetic and comparative data. We are especially interested in understanding the degree to which skeletal data can reflect admixture. Our findings indicate some correspondence between these different lines of evidence, flag individual fossils as possibly admixed, and suggest that different cranial regions may preserve hybridization signals differentially. We urge further studies of the phenotype to expand our ability to detect the ways in which migration, interaction and genetic exchange have shaped the human past, beyond what is currently visible with the lens of ancient DNA.
Collapse
Affiliation(s)
- K Harvati
- Paleoanthropology section, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany.
- DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - R R Ackermann
- Human Evolution Research Institute, University of Cape Town, Cape Town, South Africa.
- Department of Archaeology, University of Cape Town, Cape Town, South Africa.
- DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Foerster V, Asrat A, Bronk Ramsey C, Brown ET, Chapot MS, Deino A, Duesing W, Grove M, Hahn A, Junginger A, Kaboth-Bahr S, Lane CS, Opitz S, Noren A, Roberts HM, Stockhecke M, Tiedemann R, Vidal CM, Vogelsang R, Cohen AS, Lamb HF, Schaebitz F, Trauth MH. Pleistocene climate variability in eastern Africa influenced hominin evolution. NATURE GEOSCIENCE 2022; 15:805-811. [PMID: 36254302 PMCID: PMC9560894 DOI: 10.1038/s41561-022-01032-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/18/2022] [Indexed: 05/26/2023]
Abstract
Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from ~620,000 to 275,000 years bp (episodes 1-6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7-9 (~275,000-60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10-12 (~60,000-10,000 years bp) could have facilitated the global dispersal of H. sapiens.
Collapse
Affiliation(s)
- Verena Foerster
- Institute of Geography Education, University of Cologne, Cologne, Germany
| | - Asfawossen Asrat
- Department of Mining and Geological Engineering, Botswana International University of Science and Technology, Palapye, Botswana
- School of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Erik T. Brown
- Large Lakes Observatory and Department of Earth & Environmental Sciences, University of Minnesota Duluth, Duluth, MN USA
| | - Melissa S. Chapot
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alan Deino
- Berkeley Geochronology Center, Berkeley, CA USA
| | - Walter Duesing
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Matthew Grove
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Annette Hahn
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Annett Junginger
- Department of Geoscience, Eberhard Karls Universität Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | | | | | - Stephan Opitz
- Institute for Geography, University of Cologne, Cologne, Germany
| | - Anders Noren
- LacCore/CSDCO, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN USA
| | - Helen M. Roberts
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - Mona Stockhecke
- Large Lakes Observatory and Department of Earth & Environmental Sciences, University of Minnesota Duluth, Duluth, MN USA
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, Potsdam, Germany
| | - Céline M. Vidal
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Ralf Vogelsang
- Institute of Prehistoric Archaeology, University of Cologne, Cologne, Germany
| | - Andrew S. Cohen
- Department of Geosciences, University of Arizona, Tucson, AZ USA
| | - Henry F. Lamb
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
- Department of Botany, School of Natural Sciences, Trinity College, University of Dublin, Dublin, Ireland
| | - Frank Schaebitz
- Institute of Geography Education, University of Cologne, Cologne, Germany
| | - Martin H. Trauth
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
11
|
Phylogeography of Sub-Saharan Mitochondrial Lineages Outside Africa Highlights the Roles of the Holocene Climate Changes and the Atlantic Slave Trade. Int J Mol Sci 2022; 23:ijms23169219. [PMID: 36012483 PMCID: PMC9408831 DOI: 10.3390/ijms23169219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the importance of ancient DNA for understanding human prehistoric dispersals, poor survival means that data remain sparse for many areas in the tropics, including in Africa. In such instances, analysis of contemporary genomes remains invaluable. One promising approach is founder analysis, which identifies and dates migration events in non-recombining systems. However, it has yet to be fully exploited as its application remains controversial. Here, we test the approach by evaluating the age of sub-Saharan mitogenome lineages sampled outside Africa. The analysis confirms that such lineages in the Americas date to recent centuries—the time of the Atlantic slave trade—thereby validating the approach. By contrast, in North Africa, Southwestern Asia and Europe, roughly half of the dispersal signal dates to the early Holocene, during the “greening” of the Sahara. We elaborate these results by showing that the main source regions for the two main dispersal episodes are distinct. For the recent dispersal, the major source was West Africa, but with two exceptions: South America, where the fraction from Southern Africa was greater, and Southwest Asia, where Eastern Africa was the primary source. These observations show the potential of founder analysis as both a supplement and complement to ancient DNA studies.
Collapse
|
12
|
Matsumura H, Tanijiri T, Kouchi M, Hanihara T, Friess M, Moiseyev V, Stringer C, Miyahara K. Global patterns of the cranial form of modern human populations described by analysis of a 3D surface homologous model. Sci Rep 2022; 12:13826. [PMID: 35970916 PMCID: PMC9378707 DOI: 10.1038/s41598-022-15883-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
This study assessed the regional diversity of the human cranial form by using geometric homologous models based on scanned data from 148 ethnic groups worldwide. This method adopted a template-fitting technique for a nonrigid transformation via the iterative closest point algorithm to generate the homologous meshes. Through the application of principal component analysis to 342 sampled homologous models, the largest variation was detected in overall size, and small South Asian crania were clearly verified. The next greatest diversity was found in the length/breadth proportion of the neurocranium, which showed the contrast between the elongated crania of Africans and the globular crania of Northeast Asians. Notably, this component was slightly correlated with the facial profile. Well-known facial features, such as the forward projection of the cheek among Northeast Asians and compaction of the European maxilla, were reconfirmed. These facial variations were highly correlated with the calvarial outline, particularly the degree of frontal and occipital inclines. An allometric pattern was detected in facial proportions in relation to overall cranial size; in larger crania, the facial profiles tend to be longer and narrower, as demonstrated among many American natives and Northeast Asians. Although our study did not include data on environmental variables that are likely to affect cranial morphology, such as climate or dietary conditions, the large datasets of homologous cranial models will be usefully available for seeking various attributions to phenotypic skeletal characteristics.
Collapse
Affiliation(s)
- Hirofumi Matsumura
- School of Health Sciences, Sapporo Medical University, Sapporo, 060-8556, Japan.
| | | | - Makiko Kouchi
- National Institute of Advanced Industrial Science and Technology, Tokyo, 135-0064, Japan
| | | | - Martin Friess
- Département Homme et Environnement, Musée de l'Homme, 75116, Paris, France
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St Petersburg, 199034, Russia
| | - Chris Stringer
- Department of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Kengo Miyahara
- Kyoto City Archeological Research Institute, Kyoto, 602-8435, Japan
| |
Collapse
|
13
|
Gosling WD, Scerri EML, Kaboth-Bahr S. The climate and vegetation backdrop to hominin evolution in Africa. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200483. [PMID: 35249389 PMCID: PMC8899624 DOI: 10.1098/rstb.2020.0483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The most profound shift in the African hydroclimate of the last 1 million years occurred around 300 thousand years (ka) ago. This change in African hydroclimate is manifest as an east-west change in moisture balance that cannot be fully explained through linkages to high latitude climate systems. The east-west shift is, instead, probably driven by a shift in the tropical Walker Circulation related to sea surface temperature change driven by orbital forcing. Comparing records of past vegetation change, and hominin evolution and development, with this breakpoint in the climate system is challenging owing to the paucity of study sites available and uncertainties regarding the dating of records. Notwithstanding these uncertainties we find that, broadly speaking, both vegetation and hominins change around 300 ka. The vegetative backdrop suggests that relative abundance of vegetative resources shifted from western to eastern Africa, although resources would have persisted across the continent. The climatic and vegetation changes probably provided challenges for hominins and are broadly coincident with the appearance of Homo sapiens (ca 315 ka) and the emergence of Middle Stone Age technology. The concomitant changes in climate, vegetation and hominin evolution suggest that these factors are closely intertwined. This article is part of the theme issue 'Tropical forests in the deep human past'.
Collapse
Affiliation(s)
- William D Gosling
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleanor M L Scerri
- Max Planck Institute for the Science of Human History, Jena, Germany.,Department of Classics and Archaeology, University of Malta, Msida, Malta.,Department of Prehistoric Archaeology, University of Cologne, 50931 Cologne, Germany
| | | |
Collapse
|
14
|
Burger B, Nenning KH, Schwartz E, Margulies DS, Goulas A, Liu H, Neubauer S, Dauwels J, Prayer D, Langs G. Disentangling cortical functional connectivity strength and topography reveals divergent roles of genes and environment. Neuroimage 2021; 247:118770. [PMID: 34861392 DOI: 10.1016/j.neuroimage.2021.118770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022] Open
Abstract
The human brain varies across individuals in its morphology, function, and cognitive capacities. Variability is particularly high in phylogenetically modern regions associated with higher order cognitive abilities, but its relationship to the layout and strength of functional networks is poorly understood. In this study we disentangled the variability of two key aspects of functional connectivity: strength and topography. We then compared the genetic and environmental influences on these two features. Genetic contribution is heterogeneously distributed across the cortex and differs for strength and topography. In heteromodal areas genes predominantly affect the topography of networks, while their connectivity strength is shaped primarily by random environmental influence such as learning. We identified peak areas of genetic control of topography overlapping with parts of the processing stream from primary areas to network hubs in the default mode network, suggesting the coordination of spatial configurations across those processing pathways. These findings provide a detailed map of the diverse contribution of heritability and individual experience to the strength and topography of functional brain architecture.
Collapse
Affiliation(s)
- Bianca Burger
- Department of Biomedical Imaging and Image-Guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna 1090, Austria
| | - Karl-Heinz Nenning
- Department of Biomedical Imaging and Image-Guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna 1090, Austria; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, United States
| | - Ernst Schwartz
- Department of Biomedical Imaging and Image-Guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna 1090, Austria
| | - Daniel S Margulies
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, 75006 Paris, France; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Alexandros Goulas
- Institute for Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinstr. 52, 20246 Hamburg, Germany
| | - Hesheng Liu
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29466, USAs
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Justin Dauwels
- TU Delft Fac. EEMCS Mekelweg 4 2628 CD Delft; Nayang Technological University, 639798, Singapore
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuroradiology and Musculo-skeletal Radiology, Medical University of Vienna, Vienna 1090, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-Guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna 1090, Austria; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
15
|
White S, Pope M, Hillson S, Soligo C. Geometric morphometric variability in the supraorbital and orbital region of Middle Pleistocene hominins: Implications for the taxonomy and evolution of later Homo. J Hum Evol 2021; 162:103095. [PMID: 34847365 DOI: 10.1016/j.jhevol.2021.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022]
Abstract
This study assessed variation in the supraorbital and orbital region of the Middle Pleistocene hominins (MPHs), sometimes called Homo heidelbergensis s.l., to test whether it matched the expectations of intraspecific variation. The morphological distinctiveness and relative variation of this region, which is relatively well represented in the hominin fossil record, was analyzed quantitatively in a comparative taxonomic framework. Coordinates of 230 3D landmarks (20) and sliding semilandmarks (210) were collected from 704 specimens from species of Homo, Australopithecus, Paranthropus, Gorilla, Pan, Papio, and Macaca. Results showed that the MPHs had expected levels of morphological distinctiveness and intragroup and intergroup variation in supraorbital and orbital morphology, relative to commonly recognized non-hominin catarrhine species. However, the Procrustes distances between this group and H. sapiens were significantly higher than expected for two closely related catarrhine species. Furthermore, this study showed that variation within the MPH could be similarly well contained within existing hypodigms of H. sapiens, H. neanderthalensis, and H. erectus s.l. Although quantitative assessment of supraorbital and orbital morphology did not allow differentiation between taxonomic hypotheses in later Homo, it could be used to test individual taxonomic affiliation and identify potentially anomalous individuals. This study confirmed a complicated pattern of supraorbital and orbital morphology in the MPH fossil record and raises further questions over our understanding of the speciation of H. sapiens and H. neanderthalensis and taxonomic diversity in later Homo.
Collapse
Affiliation(s)
- Suzanna White
- Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK.
| | - Matt Pope
- Institute of Archaeology, University College London, 31-34 Gordon Square, London, WC1H 0PY, UK
| | - Simon Hillson
- Institute of Archaeology, University College London, 31-34 Gordon Square, London, WC1H 0PY, UK
| | - Christophe Soligo
- Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| |
Collapse
|
16
|
Liu Y, Mao X, Krause J, Fu Q. Insights into human history from the first decade of ancient human genomics. Science 2021; 373:1479-1484. [PMID: 34554811 DOI: 10.1126/science.abi8202] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Gopalan S, Atkinson EG, Buck LT, Weaver TD, Henn BM. Inferring archaic introgression from hominin genetic data. Evol Anthropol 2021; 30:199-220. [PMID: 33951239 PMCID: PMC8360192 DOI: 10.1002/evan.21895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/03/2020] [Accepted: 03/29/2021] [Indexed: 01/05/2023]
Abstract
Questions surrounding the timing, extent, and evolutionary consequences of archaic admixture into human populations have a long history in evolutionary anthropology. More recently, advances in human genetics, particularly in the field of ancient DNA, have shed new light on the question of whether or not Homo sapiens interbred with other hominin groups. By the late 1990s, published genetic work had largely concluded that archaic groups made no lasting genetic contribution to modern humans; less than a decade later, this conclusion was reversed following the successful DNA sequencing of an ancient Neanderthal. This reversal of consensus is noteworthy, but the reasoning behind it is not widely understood across all academic communities. There remains a communication gap between population geneticists and paleoanthropologists. In this review, we endeavor to bridge this gap by outlining how technological advancements, new statistical methods, and notable controversies ultimately led to the current consensus.
Collapse
Affiliation(s)
- Shyamalika Gopalan
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Elizabeth G Atkinson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Stanley Center for Psychiatric Research, Broad Institute, Boston, Massachusetts, USA
| | - Laura T Buck
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Timothy D Weaver
- Department of Anthropology, University of California, Davis, California, USA
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Anthropology, University of California, Davis, California, USA.,UC Davis Genome Center, University of California, Davis, California, USA
| |
Collapse
|
18
|
Hollfelder N, Breton G, Sjödin P, Jakobsson M. The deep population history in Africa. Hum Mol Genet 2021; 30:R2-R10. [PMID: 33438014 PMCID: PMC8117439 DOI: 10.1093/hmg/ddab005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
Africa is the continent with the greatest genetic diversity among humans and the level of diversity is further enhanced by incorporating non-majority groups, which are often understudied. Many of today's minority populations historically practiced foraging lifestyles, which were the only subsistence strategies prior to the rise of agriculture and pastoralism, but only a few groups practicing these strategies remain today. Genomic investigations of Holocene human remains excavated across the African continent show that the genetic landscape was vastly different compared to today's genetic landscape and that many groups that today are population isolate inhabited larger regions in the past. It is becoming clear that there are periods of isolation among groups and geographic areas, but also genetic contact over large distances throughout human history in Africa. Genomic information from minority populations and from prehistoric remains provide an invaluable source of information on the human past, in particular deep human population history, as Holocene large-scale population movements obscure past patterns of population structure. Here we revisit questions on the nature and time of the radiation of early humans in Africa, the extent of gene-flow among human populations as well as introgression from archaic and extinct lineages on the continent.
Collapse
Affiliation(s)
- Nina Hollfelder
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Gwenna Breton
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Per Sjödin
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Physical, Cnr Kingsway & University Roads, Auckland Park, Johannesburg 2092, South Africa
- SciLifeLab, Stockholm and Uppsala, Entrance C11, BMC, Husargatan 3, 752 37 Uppsala, Sweden
| |
Collapse
|
19
|
Cameron ME, Pfeiffer S, Stock J. Small body size phenotypes among Middle and Later Stone Age Southern Africans. J Hum Evol 2021; 152:102943. [PMID: 33571806 DOI: 10.1016/j.jhevol.2020.102943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022]
Abstract
Modern humans originated between 300 and 200 ka in structured populations throughout Africa, characterized by regional interaction and diversity. Acknowledgment of this complex Pleistocene population structure raises new questions about the emergence of phenotypic diversity. Holocene Southern African Later Stone Age (LSA) skeletons and descendant Khoe-San peoples have small adult body sizes that may reflect long-term adaptation to the Cape environment. Pleistocene Southern African adult body sizes are not well characterized, but some postcranial elements are available. The most numerous Pleistocene postcranial skeletal remains come from Klasies River Mouth on the Southern Cape coast of South Africa. We compare the morphology of these skeletal elements with globally sampled Holocene groups encompassing diverse adult body sizes and shapes (n = 287) to investigate whether there is evidence for phenotypic patterning. The adult Klasies River Mouth bones include most of a lumbar vertebra, and portions of a left clavicle, left proximal radius, right proximal ulna, and left first metatarsal. Linear dimensions, shape characteristics, and cross-sectional geometric properties of the Klasies River Mouth elements were compared using univariate and multivariate methods. Between-group principal component analyses group Klasies River Mouth elements, except the proximal ulna, with LSA Southern Africans. The similarity is driven by size. Klasies River Mouth metatarsal cross-sectional geometric properties indicate similar torsional and compressive strength to those from LSA Southern Africans. Phenotypic expressions of small-bodied adult morphology in Marine Isotope Stages 5 and 1 suggest this phenotype may represent local convergent adaptation to life in the Cape.
Collapse
Affiliation(s)
- Michelle E Cameron
- Department of Anthropology, University of Toronto, 19 Russell Street, Toronto, ON, M5S 2S2, Canada.
| | - Susan Pfeiffer
- Department of Anthropology, University of Toronto, 19 Russell Street, Toronto, ON, M5S 2S2, Canada; Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa; Department of Anthropology and Center for Advanced Study of Human Paleobiology, The George Washington University, Science and Engineering Hall, 800 22nd St NW, Suite 6000, Washington, DC 20052, USA
| | - Jay Stock
- Department of Archaeology, University of Cambridge, Cambridge, Cambridgeshire, CB2 3QG, UK; Department of Anthropology, University of Western Ontario, London, ON, N6A 5C2, UK; Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, Jena, 07745, Germany
| |
Collapse
|
20
|
Abstract
Teeth have been studied for decades and continue to reveal information relevant to human evolution. Studies have shown that many traits of the outer enamel surface evolve neutrally and can be used to infer human population structure. However, many of these traits are unavailable in archaeological and fossil individuals due to processes of wear and taphonomy. Enamel-dentine junction (EDJ) morphology, the shape of the junction between the enamel and the dentine within a tooth, captures important information about tooth development and vertebrate evolution and is informative because it is subject to less wear and thus preserves more anatomy in worn or damaged specimens, particularly in mammals with relatively thick enamel like hominids. This study looks at the molar EDJ across a large sample of human populations. We assessed EDJ morphological variation in a sample of late Holocene modern humans (n = 161) from archaeological populations using μ-CT biomedical imaging and geometric morphometric analyses. Global variation in human EDJ morphology was compared to the statistical expectations of neutral evolution and "Out of Africa" dispersal modeling of trait evolution. Significant correlations between phenetic variation and neutral genetic variation indicate that EDJ morphology has evolved neutrally in humans. While EDJ morphology reflects population history, its global distribution does not follow expectations of the Out of Africa dispersal model. This study increases our knowledge of human dental variation and contributes to our understanding of dental development more broadly, with important applications to the investigation of population history and human genetic structure.
Collapse
|
21
|
Bosman AM, Reyes-Centeno H, Harvati K. A virtual assessment of the suprainiac depressions on the Eyasi I (Tanzania) and Aduma ADU-VP-1/3 (Ethiopia) Pleistocene hominin crania. J Hum Evol 2020; 145:102815. [PMID: 32580077 DOI: 10.1016/j.jhevol.2020.102815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/24/2022]
Abstract
Despite a steady increase in our understanding of the phenotypic variation of Pleistocene Homo, debate continues over phylogenetically informative features. One such trait is the suprainiac fossa, a depression on the occipital bone above inion that is commonly considered an autapomorphy of the Neanderthal lineage. Challenging this convention, depressions in the suprainiac region have also been described for two Pleistocene hominin crania from sub-Saharan Africa: Eyasi I (Tanzania) and ADU-VP-1/3 (Ethiopia). Here, we use a combined quantitative and qualitative approach, using μCT imaging, to investigate the occipital depressions on these specimens. The results show that neither the external nor the internal morphologies of these depressions bear any resemblance to the Neanderthal condition. A principal component analysis based on multiple thickness measurements along the occipital squama demonstrates that the relative thickness values for the internal structures in Eyasi I and ADU-VP-1/3 are within the range of Homo sapiens. Thus, our results support the autapomorphic status of the Neanderthal suprainiac fossa and highlight the need to use nuanced approaches and multiple lines of evidence.
Collapse
Affiliation(s)
- Abel Marinus Bosman
- DFG Center for Advanced Studies: 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural, and Biological Trajectories of the Human Past', Eberhard Karls University of Tübingen, Rümelinstraße 23, D-72070, Tübingen, Baden-Württemberg, Germany.
| | - Hugo Reyes-Centeno
- DFG Center for Advanced Studies: 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural, and Biological Trajectories of the Human Past', Eberhard Karls University of Tübingen, Rümelinstraße 23, D-72070, Tübingen, Baden-Württemberg, Germany; Department of Anthropology, University of Kentucky, Lexington, 40506, USA; William S. Webb Museum of Anthropology, University of Kentucky, Lexington, 40504, USA
| | - Katerina Harvati
- DFG Center for Advanced Studies: 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural, and Biological Trajectories of the Human Past', Eberhard Karls University of Tübingen, Rümelinstraße 23, D-72070, Tübingen, Baden-Württemberg, Germany; Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Rümelinstraße 23, D-72070, Tübingen, Baden-Württemberg, Germany
| |
Collapse
|
22
|
d'Errico F, Pitarch Martí A, Shipton C, Le Vraux E, Ndiema E, Goldstein S, Petraglia MD, Boivin N. Trajectories of cultural innovation from the Middle to Later Stone Age in Eastern Africa: Personal ornaments, bone artifacts, and ocher from Panga ya Saidi, Kenya. J Hum Evol 2020; 141:102737. [PMID: 32163764 DOI: 10.1016/j.jhevol.2019.102737] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023]
Abstract
African Middle Stone Age (MSA) populations used pigments, manufactured and wore personal ornaments, made abstract engravings, and produced fully shaped bone tools. However, ongoing research across Africa reveals variability in the emergence of cultural innovations in the MSA and their subsequent development through the Later Stone Age (LSA). When present, it appears that cultural innovations manifest regional variability, suggestive of distinct cultural traditions. In eastern Africa, several Late Pleistocene sites have produced evidence for novel activities, but the chronologies of key behavioral innovations remain unclear. The 3 m deep, well-dated, Panga ya Saidi sequence in eastern Kenya, encompassing 19 layers covering a time span of 78 kyr beginning in late Marine Isotope Stage 5, is the only known African site recording the interplay between cultural and ecological diversity in a coastal forested environment. Excavations have yielded worked and incised bones, ostrich eggshell beads (OES), beads made from seashells, worked and engraved ocher pieces, fragments of coral, and a belemnite fossil. Here, we provide, for the first time, a detailed analysis of this material. This includes a taphonomic, archeozoological, technological, and functional study of bone artifacts; a technological and morphometric analysis of personal ornaments; and a technological and geochemical analysis of ocher pieces. The interpretation of the results stemming from the analysis of OES beads is guided by an ethnoarcheological perspective and field observations. We demonstrate that key cultural innovations on the eastern African coast are evident by 67 ka and exhibit remarkable diversity through the LSA and Iron Age. We suggest the cultural trajectories evident at Panga ya Saidi were shaped by both regional traditions and cultural/demic diffusion.
Collapse
Affiliation(s)
- Francesco d'Errico
- UMR 5199 CNRS De La Préhistoire à L'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Allée Geoffroy Saint Hilaire, CS 50023 F - 33615 Pessac CEDEX, Talence, France; Centre for Early Sapiens Behaviour, Øysteinsgate 3, Postboks 7805, 5020 University of Bergen, Norway.
| | - Africa Pitarch Martí
- UMR 5199 CNRS De La Préhistoire à L'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Allée Geoffroy Saint Hilaire, CS 50023 F - 33615 Pessac CEDEX, Talence, France; Seminari d'Estudis i Recerques Prehistòriques (SERP), Facultat de Geografia i Història, Departament d'Història i Arqueologia, Universitat de Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - Ceri Shipton
- Centre of Excellence for Australian Biodiversity and Heritage, College of Asia and the Pacific, The Australian National University, ACT 0200, Australia
| | - Emma Le Vraux
- UMR 5199 CNRS De La Préhistoire à L'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Allée Geoffroy Saint Hilaire, CS 50023 F - 33615 Pessac CEDEX, Talence, France
| | - Emmanuel Ndiema
- National Museums of Kenya, Department of Earth Sciences, Box 40658 - 00100, Nairobi, Kenya
| | - Steven Goldstein
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena, Germany
| | - Michael D Petraglia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena, Germany; Human Origins Program, Smithsonian Institution, Washington, D.C., 20560, USA; School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena, Germany; School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr. N.W., Calgary, AB, T2N 1N4, Canada; Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW Washington, D.C. 20560, USA
| |
Collapse
|
23
|
Gunz P, Kozakowski S, Neubauer S, Le Cabec A, Kullmer O, Benazzi S, Hublin JJ, Begun DR. Skull reconstruction of the late Miocene ape Rudapithecus hungaricus from Rudabánya, Hungary. J Hum Evol 2020; 138:102687. [DOI: 10.1016/j.jhevol.2019.102687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
|
24
|
The Evolutionary Radiation of Hominids: a Phylogenetic Comparative Study. Sci Rep 2019; 9:15267. [PMID: 31649259 PMCID: PMC6813319 DOI: 10.1038/s41598-019-51685-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/07/2019] [Indexed: 11/09/2022] Open
Abstract
Over the last 150 years the diversity and phylogenetic relationships of the hominoids have been one of the main focuses in biological and anthropological research. Despite this, the study of factors involved in their evolutionary radiation and the origin of the hominin clade, a key subject for the further understanding of human evolution, remained mostly unexplored. Here we quantitatively approach these events using phylogenetic comparative methods and craniofacial morphometric data from extant and fossil hominoid species. Specifically, we explore alternative evolutionary models that allow us to gain new insights into this clade diversification process. Our results show a complex and variable scenario involving different evolutionary regimes through the hominid evolutionary radiation –modeled by Ornstein-Uhlenbeck multi-selective regime and Brownian motion multi-rate scenarios–. These different evolutionary regimes might relate to distinct ecological and cultural factors previously suggested to explain hominid evolution at different evolutionary scales along the last 10 million years.
Collapse
|
25
|
Natahi S, Coquerelle M, Pereira G, Bayle P. Neurocranial shape variation among Tarascan populations: Evidence for varying degrees in artificially modified crania in pre-Hispanic West Mexico (1200-1400 AD). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:418-432. [PMID: 31381133 DOI: 10.1002/ajpa.23917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Along the Mesoamerican western margin, the Zacapu basin has yielded a large number of human remains demonstrating usage of artificial cranial modification (ACM). However, at the onset of the Middle Postclassic (1200-1400 AD) only few individuals still exhibit clear signs of ACM. Some authors have suggested that, rather than disappearing entirely, ACM may have become less visible anatomically, making it difficult to identify based on simple visual analyses. Here, we used 3D geometric morphometric methods to investigate the extent to which ACM persisted during the Postclassic in this region. MATERIALS AND METHODS We measured the 3D vault's shape changes in a sample of surface-scanned human crania: 55 individuals from the Postclassic Zacapu basin and a control group of 31 individuals from a Huichol Mexican Indian sample and a French medieval series from La Granède. We used a principal component analysis to explore the shape variation within the sample and employed the neighbor joining method to identify morphological groups. Finally, we quantified each individual's asymmetry. RESULTS We identified three groups displaying shape features diverging from those of the control group. The first group is characterized by marked fronto-obelionic ACM, whereas the other two show mild forms of ACM. The individuals in all three groups display moderate to high degrees of asymmetry compared to the control group. DISCUSSION The marked fronto-obelionic modification is clear evidence of a specific ACM technique. The two types of mild ACM most likely result from different techniques but their moderate degree of modification brings into question the intentions behind their production.
Collapse
Affiliation(s)
- Sélim Natahi
- Université de Bordeaux, CNRS, MCC, UMR 5199 PACEA, Pessac, France
| | - Michael Coquerelle
- Department of Medicine and Surgery (Stomatology Area), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Grégory Pereira
- UMR 8096, Archéologie des Amériques, CNRS, Maison René-Ginouvès, Nanterre, France
| | - Priscilla Bayle
- Université de Bordeaux, CNRS, MCC, UMR 5199 PACEA, Pessac, France
| |
Collapse
|
26
|
Buck LT, De Groote I, Hamada Y, Hassett BR, Ito T, Stock JT. Evidence of different climatic adaptation strategies in humans and non-human primates. Sci Rep 2019; 9:11025. [PMID: 31363121 PMCID: PMC6667491 DOI: 10.1038/s41598-019-47202-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
To understand human evolution it is critical to clarify which adaptations enabled our colonisation of novel ecological niches. For any species climate is a fundamental source of environmental stress during range expansion. Mammalian climatic adaptations include changes in size and shape reflected in skeletal dimensions and humans fit general primate ecogeographic patterns. It remains unclear however, whether there are also comparable amounts of adaptation in humans, which has implications for understanding the relative importance of biological/behavioural mechanisms in human evolution. We compare cranial variation between prehistoric human populations from throughout Japan and ecologically comparable groups of macaques. We compare amounts of intraspecific variation and covariation between cranial shape and ecological variables. Given equal rates and sufficient time for adaptation for both groups, human conservation of non-human primate adaptation should result in comparable variation and patterns of covariation in both species. In fact, we find similar amounts of intraspecific variation in both species, but no covariation between shape and climate in humans, contrasting with strong covariation in macaques. The lack of covariation in humans may suggest a disconnect in climatic adaptation strategies from other primates. We suggest this is due to the importance of human behavioural adaptations, which act as a buffer from climatic stress and were likely key to our evolutionary success.
Collapse
Affiliation(s)
- L T Buck
- PAVE research group, Department of Archaeology, University of Cambridge, Pembroke Street, Cambridge, CB2 3QG, UK. .,Human Origins Research Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK. .,Department of Anthropology, University of California Davis, 1 Shields Avenue, Davis, 95616, CA, USA.
| | - I De Groote
- School of Natural Science and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Y Hamada
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - B R Hassett
- Human Origins Research Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.,Institute of Archaeology, University College London, 31-4 Gordon Square, London, WC1H 0PY, UK
| | - T Ito
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - J T Stock
- PAVE research group, Department of Archaeology, University of Cambridge, Pembroke Street, Cambridge, CB2 3QG, UK.,Department of Anthropology, Western University, London, Ontario, N6A 3K7, Canada.,Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745, Jena, Germany
| |
Collapse
|
27
|
Chala D, Roos C, Svenning JC, Zinner D. Species-specific effects of climate change on the distribution of suitable baboon habitats - Ecological niche modeling of current and Last Glacial Maximum conditions. J Hum Evol 2019; 132:215-226. [PMID: 31203848 DOI: 10.1016/j.jhevol.2019.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Baboons (genus Papio) have been proposed as a possible analogous phylogeographic model for intra-African dispersal of hominins during the Pleistocene. Previous studies of the genus reveal complex evolutionary dynamics including introgressive hybridization and, as for hominins, it has been hypothesized that past climate change has been a major driver in their evolutionary history. However, how historical climate changes affected the distribution and extent of baboon habitats is not clear. We therefore employed three ecological niche modeling algorithms (maximum entropy model: MaxEnt; general additive model: GAM; gradient boosting model: GBM) to map suitable habitat of baboons at both genus and species levels under two extreme late-Quaternary climates: current (warm period) and Last Glacial Maximum (LGM, cold period). The three model algorithms predicted habitat suitabilities for the baboon species with high accuracy, as indicated by AUC values of 0.83-0.85 at genus level and ≥0.90 for species. The results suggest that climate change from LGM to current affected the distribution and extent of suitable habitats for the genus Papio only slightly (>80% of the habitat remained suitable). However, and in contrast to our expectation for ecological generalists, individual species have been differentially affected. While P. ursinus and P. anubis lost some of their suitable habitats (net loss 25.5% and 13.3% respectively), P. kindae and P. papio gained large portions (net gain >62%), and P. cynocephalus and P. hamadryas smaller portions (net gain >20%). Overlap among the specific realized climate niches remained small, suggesting only slight overlap of suitable habitat among species. Results of our study further suggest that shifts of suitable habitats could have led to isolation and reconnection of populations which most likely affected gene flow among them. The impact of historic climate changes on baboon habitats might have been similar for other savanna living species, such as hominins.
Collapse
Affiliation(s)
- Desalegn Chala
- Natural History Museum, University of Oslo, PO Box 1172, Blindern, 0318 Oslo, Norway; Norwegian Institute for Nature Research, Gaustadalléen 21, 0349 Oslo, Norway
| | - Christian Roos
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark; Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| |
Collapse
|
28
|
Aristide L, Strauss A, Halenar-Price LB, Gilissen E, Cruz FW, Cartelle C, Rosenberger AL, Lopes RT, Dos Reis SF, Perez SI. Cranial and endocranial diversity in extant and fossil atelids (Platyrrhini: Atelidae): A geometric morphometric study. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:322-331. [PMID: 30972753 DOI: 10.1002/ajpa.23837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/14/2019] [Accepted: 03/31/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Platyrrhines constitute a diverse clade, with the modern Atelidae exhibiting the most variation in cranial and endocast morphology. The processes responsible for this diversification are not well understood. Here, we present a geometric morphometric study describing variation in cranial and endocranial shape of 14 species of Alouatta, Ateles, Brachyteles, and Lagothrix and two extinct taxa, Cartelles and Caipora. METHODS We examined cranial and endocranial shape variation among species using images reconstructed from CT scans and geometric morphometric techniques based on three-dimensional landmarks and semilandmarks. Principal components analyses were used to explore variation, including the Procrustes shape coordinates, summing the logarithm of the Centroid Size, the common allometric component, and residual shape components. RESULTS Differences in endocranial shape are related to a relative increase or decrease in the volume of the neocortex region with respect to brainstem and cerebellum regions. The relative position of the brainstem varies from a posterior position in Alouatta to a more ventral position in Ateles. The shape of both the cranium and endocast of Caipora is within the observed variation of Brachyteles. Cartelles occupies the most differentiated position relative to the extant taxa, especially in regards to its endocranial shape. CONCLUSIONS The pattern of variation in the extant species in endocranial shape is similar to the variation observed in previous cranial studies, with Alouatta as an outlier. The similarities between Caipora and Brachyteles were unexpected and intriguing given the frugivorous adaptations inferred from the fossil's dentition. Our study shows the importance of considering both extant and fossil species when studying diversification of complex traits.
Collapse
Affiliation(s)
- Leandro Aristide
- División Antropología (FCNyM-UNLP), CONICET, La Plata, Argentina.,Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - André Strauss
- Museu de Arqueologia e Etnologia, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Palaeoanthropology Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Lauren B Halenar-Price
- Department of Biology, Farmingdale State College (SUNY), New York, New York.,NYCEP Morphometrics Group, New York, NY
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | - Francisco W Cruz
- Instituto de Geociências, Universidade de São Paulo, São Paulo, Brazil
| | - Castor Cartelle
- Museu de Ciências Naturais, Pontificia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
| | - Alfred L Rosenberger
- NYCEP Morphometrics Group, New York, NY.,Department of Anthropology, City of New York Graduate Center, New York, New York
| | - Ricardo T Lopes
- Laboratório de Instrumentação Nuclear, Centro de Tecnologia (UFRJ), Río de Janeiro, Brazil
| | | | - S Ivan Perez
- División Antropología (FCNyM-UNLP), CONICET, La Plata, Argentina.,Instituto de Física 'Gleb Wataghin' (UNICAMP), Campinas, Brazil
| |
Collapse
|
29
|
A dispersal of Homo sapiens from southern to eastern Africa immediately preceded the out-of-Africa migration. Sci Rep 2019; 9:4728. [PMID: 30894612 PMCID: PMC6426877 DOI: 10.1038/s41598-019-41176-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 01/08/2023] Open
Abstract
Africa was the birth-place of Homo sapiens and has the earliest evidence for symbolic behaviour and complex technologies. The best-attested early flowering of these distinctive features was in a glacial refuge zone on the southern coast 100–70 ka, with fewer indications in eastern Africa until after 70 ka. Yet it was eastern Africa, not the south, that witnessed the first major demographic expansion, ~70–60 ka, which led to the peopling of the rest of the world. One possible explanation is that important cultural traits were transmitted from south to east at this time. Here we identify a mitochondrial signal of such a dispersal soon after ~70 ka – the only time in the last 200,000 years that humid climate conditions encompassed southern and tropical Africa. This dispersal immediately preceded the out-of-Africa expansions, potentially providing the trigger for these expansions by transmitting significant cultural elements from the southern African refuge.
Collapse
|
30
|
Henn BM, Steele TE, Weaver TD. Clarifying distinct models of modern human origins in Africa. Curr Opin Genet Dev 2018; 53:148-156. [PMID: 30423527 DOI: 10.1016/j.gde.2018.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022]
Abstract
Accumulating genomic, fossil and archaeological data from Africa have led to a renewed interest in models of modern human origins. However, such discussions are often discipline-specific, with limited integration of evidence across the different fields. Further, geneticists typically require explicit specification of parameters to test competing demographic models, but these have been poorly outlined for some scenarios. Here, we describe four possible models for the origins of Homo sapiens in Africa based on published literature from paleoanthropology and human genetics. We briefly outline expectations for data patterns under each model, with a special focus on genetic data. Additionally, we present schematics for each model, doing our best to qualitatively describe demographic histories for which genetic parameters can be specifically attached. Finally, it is our hope that this perspective provides context for discussions of human origins in other manuscripts presented in this special issue.
Collapse
Affiliation(s)
- Brenna M Henn
- Department of Anthropology, University of California, Davis, CA, 95616, United States; UC Davis Genome Center, University of California, Davis, CA, 95616, United States.
| | - Teresa E Steele
- Department of Anthropology, University of California, Davis, CA, 95616, United States
| | - Timothy D Weaver
- Department of Anthropology, University of California, Davis, CA, 95616, United States
| |
Collapse
|
31
|
Stelzer S, Neubauer S, Hublin JJ, Spoor F, Gunz P. Morphological trends in arcade shape and size in Middle Pleistocene Homo. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168:70-91. [PMID: 30351445 DOI: 10.1002/ajpa.23721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/26/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Middle Pleistocene fossil hominins, often summarized as Homo heidelbergensis sensu lato, are difficult to interpret due to a fragmentary fossil record and ambiguous combinations of primitive and derived characters. Here, we focus on one aspect of facial shape and analyze shape variation of the dental arcades of these fossils together with other Homo individuals. MATERIALS AND METHODS Three-dimensional landmark data were collected on computed tomographic scans and surface scans of Middle Pleistocene fossil hominins (n = 8), Homo erectus s.l. (n = 4), Homo antecessor (n = 1), Homo neanderthalensis (n = 13), recent (n = 52) and fossil (n = 19) Homo sapiens. To increase sample size, we used multiple multivariate regression to reconstruct complementary arches for isolated mandibles, and explored size and shape differences among maxillary arcades. RESULTS The shape of the dental arcade in H. erectus s.l. and H. antecessor differs markedly from both Neanderthals and H. sapiens. The latter two show subtle but consistent differences in arcade length and width. Shape variation among Middle Pleistocene fossil hominins does not exceed the amount of variation of other species, but includes individuals with more primitive and more derived morphology, all more similar to Neanderthals and H. sapiens than to H. erectus s.l. DISCUSSION Although our results cannot reject the hypothesis that the Middle Pleistocene fossil hominins belong to a single species, their shape variation comprises a more primitive morph that represents a likely candidate for the shape of the last common ancestor of Neanderthals and H. sapiens, and a more derived morph resembling Neanderthals. The arcade shape difference between Neanderthals and H. sapiens might be related to different ways to withstand mechanical stress.
Collapse
Affiliation(s)
- Stefanie Stelzer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fred Spoor
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Earth Sciences, The Natural History Museum, London, United Kingdom.,Department of Anthropology, University College London (UCL), London, United Kingdom
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
32
|
Did Our Species Evolve in Subdivided Populations across Africa, and Why Does It Matter? Trends Ecol Evol 2018; 33:582-594. [PMID: 30007846 PMCID: PMC6092560 DOI: 10.1016/j.tree.2018.05.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/27/2023]
Abstract
We challenge the view that our species, Homo sapiens, evolved within a single population and/or region of Africa. The chronology and physical diversity of Pleistocene human fossils suggest that morphologically varied populations pertaining to the H. sapiens clade lived throughout Africa. Similarly, the African archaeological record demonstrates the polycentric origin and persistence of regionally distinct Pleistocene material culture in a variety of paleoecological settings. Genetic studies also indicate that present-day population structure within Africa extends to deep times, paralleling a paleoenvironmental record of shifting and fractured habitable zones. We argue that these fields support an emerging view of a highly structured African prehistory that should be considered in human evolutionary inferences, prompting new interpretations, questions, and interdisciplinary research directions. The view that Homo sapiens evolved from a single region/population within Africa has been given primacy in studies of human evolution. However, developments across multiple fields show that relevant data are no longer consistent with this view. We argue instead that Homo sapiens evolved within a set of interlinked groups living across Africa, whose connectivity changed through time. Genetic models therefore need to incorporate a more complex view of ancient migration and divergence in Africa. We summarize this new framework emphasizing population structure, outline how this changes our understanding of human evolution, and identify new research directions.
Collapse
|
33
|
Lamb HF, Bates CR, Bryant CL, Davies SJ, Huws DG, Marshall MH, Roberts HM, Toland H. 150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa. Sci Rep 2018; 8:1077. [PMID: 29348464 PMCID: PMC5773494 DOI: 10.1038/s41598-018-19601-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/02/2018] [Indexed: 01/10/2023] Open
Abstract
Climatic change is widely acknowledged to have played a role in the dispersal of modern humans out of Africa, but the timing is contentious. Genetic evidence links dispersal to climatic change ~60,000 years ago, despite increasing evidence for earlier modern human presence in Asia. We report a deep seismic and near-continuous core record of the last 150,000 years from Lake Tana, Ethiopia, close to early modern human fossil sites and to postulated dispersal routes. The record shows varied climate towards the end of the penultimate glacial, followed by an abrupt change to relatively stable moist climate during the last interglacial. These conditions could have favoured selection for behavioural versatility, population growth and range expansion, supporting models of early, multiple dispersals of modern humans from Africa.
Collapse
Affiliation(s)
- Henry F Lamb
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK.
| | - C Richard Bates
- Department of Earth and Environmental Sciences, Irvine Building, University of St Andrews, St Andrews, Fife, KY16 9AL, UK
| | - Charlotte L Bryant
- NERC Radiocarbon Facility, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride, G75 0QF, UK
| | - Sarah J Davies
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
| | - Dei G Huws
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Michael H Marshall
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK.,West Park School, West Road, Spondon, Derby, DE21 7BT, UK
| | - Helen M Roberts
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
| | - Harry Toland
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
| |
Collapse
|
34
|
Martinón-Torres M, Wu X, Bermúdez de Castro JM, Xing S, Liu W. Homo sapiens in the Eastern Asian Late Pleistocene. CURRENT ANTHROPOLOGY 2017. [DOI: 10.1086/694449] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Cui Y, Leclercq S. Environment-Related Variation in the Human Mid-Face. Anat Rec (Hoboken) 2017; 300:238-250. [PMID: 28000399 DOI: 10.1002/ar.23467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/23/2016] [Accepted: 05/26/2016] [Indexed: 01/03/2023]
Abstract
Previous studies that have examined mid-facial morphology in geographically dispersed and genetically diverse groups of humans have shown a strong adaptation of the nasal part to extreme cold environments, which was not observed in non-Arctic regions. However, it remains unclear whether different parts of the mid-face area show independent adaptation to nonpolar climates, and if so, how this adaptation impacted the morphology. To address this question, we investigated potential associations between climatic variables and the mid-facial shape in 14 populations, focusing on four aspects of the morphology: total shape, zygomatic, nasal and alveolar. The results show that when the genetic distance between populations is not considered, all aspects of the morphology are strongly correlated with all climatic variables. When the genetic distance is considered, significant correlations remain only for the zygomatic, and nasal parts with temperature, and for the nasal part and alveolar with sunshine exposure. A strong but probably artificial correlation of the alveolar with atmospheric pressure is also observed. Additionally, partial least square analyses indicate that tropical and subtropical environments are associated with smaller zygomatic and more triangular nose aperture compared to more temperate environments. These findings suggest that temperate and tropical climates have induced adaptation of zygomatic and nasal parts of the mid-face in humans, and that this adaptation was probably driven by temperature and sunlight exposure conditions. Anat Rec, 300:238-250, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yaming Cui
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Sébastien Leclercq
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100011, China
| |
Collapse
|
36
|
New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 2017; 546:289-292. [PMID: 28593953 DOI: 10.1038/nature22336] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 04/06/2017] [Indexed: 01/08/2023]
Abstract
Fossil evidence points to an African origin of Homo sapiens from a group called either H. heidelbergensis or H. rhodesiensis. However, the exact place and time of emergence of H. sapiens remain obscure because the fossil record is scarce and the chronological age of many key specimens remains uncertain. In particular, it is unclear whether the present day 'modern' morphology rapidly emerged approximately 200 thousand years ago (ka) among earlier representatives of H. sapiens or evolved gradually over the last 400 thousand years. Here we report newly discovered human fossils from Jebel Irhoud, Morocco, and interpret the affinities of the hominins from this site with other archaic and recent human groups. We identified a mosaic of features including facial, mandibular and dental morphology that aligns the Jebel Irhoud material with early or recent anatomically modern humans and more primitive neurocranial and endocranial morphology. In combination with an age of 315 ± 34 thousand years (as determined by thermoluminescence dating), this evidence makes Jebel Irhoud the oldest and richest African Middle Stone Age hominin site that documents early stages of the H. sapiens clade in which key features of modern morphology were established. Furthermore, it shows that the evolutionary processes behind the emergence of H. sapiens involved the whole African continent.
Collapse
|
37
|
Vyas DN, Al‐Meeri A, Mulligan CJ. Testing support for the northern and southern dispersal routes out of Africa: an analysis of Levantine and southern Arabian populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:736-749. [DOI: 10.1002/ajpa.23312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Deven N. Vyas
- Department of AnthropologyUniversity of Florida, 1112 Turlington Hall, PO Box 117305Gainesville Florida 32611‐7305
- Genetics InstituteUniversity of Florida, Cancer & Genetics Research Complex, PO Box 103610Gainesville Florida 32610‐3610
| | - Ali Al‐Meeri
- Department of Clinical Biochemistry, Faculty of Medicine and Health SciencesUniversity of Sana'aSana'a Yemen
| | - Connie J. Mulligan
- Department of AnthropologyUniversity of Florida, 1112 Turlington Hall, PO Box 117305Gainesville Florida 32611‐7305
- Genetics InstituteUniversity of Florida, Cancer & Genetics Research Complex, PO Box 103610Gainesville Florida 32610‐3610
| |
Collapse
|
38
|
Stansfield Bulygina E, Rasskasova A, Berezina N, Soficaru AD. Resolving relationships between several Neolithic and Mesolithic populations in Northern Eurasia using geometric morphometrics. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017. [PMID: 28639281 DOI: 10.1002/ajpa.23264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Remains from several Eastern European and Siberian Mesolithic and Neolithic sites are analysed to clarify their biological relationships. We assume that groups' geographical distances correlate with genetic and, therefore, morphological distances between them. MATERIALS AND METHODS Material includes complete male crania from several Mesolithic and Neolithic burial sites across Northern Eurasia and from several modern populations. Geometric morphometrics and multivariate statistical techniques are applied to explore morphological trends, group distances, and correlations with their geographical position, climate, and the time of origin. RESULTS Despite an overlap in the morphology among the modern and archeological groups, some of them show significant morphological distances. Geographical parameters account for only a small proportion of cranial variation in the sample, with larger variance explained by geography and age together. Expectations of isolation by distance are met in some but not in all cases. Climate accounts for a large proportion of autocorrelation with geography. Nearest-neighbor joining trees demonstrate group relationships predicted by the regression on geography and on climate. DISCUSSION The obtained results are discussed in application to relationships between particular groups. Unlike the Ukrainian Mesolithic, the Yuzhny Oleni Ostrov Mesolithic displays a high morphological affinity with several groups from Northern Eurasia of both European and Asian origin. A possibility of a common substrate for the Yuzhny Oleni Ostrov Mesolithic and Siberian Neolithic groups is reviewed. The Siberian Neolithic is shown to have morphological connection with both modern Siberian groups and the Native North Americans.
Collapse
Affiliation(s)
| | - Anna Rasskasova
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, 125009, Russia
| | - Natalia Berezina
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, 125009, Russia
| | - Andrei D Soficaru
- Francis J. Rainer Institute of Anthropology, Romanian Academy, Bucharest, 050474, Romania
| |
Collapse
|
39
|
Scerri EML. The North African Middle Stone Age and its place in recent human evolution. Evol Anthropol 2017. [DOI: 10.1002/evan.21527] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Eleanor M. L. Scerri
- Research Laboratory for Archaeology and the History of Art, School of Archaeology; University of Oxford; Oxford U.K
- Department of Archaeology; Max Planck Institute for the Science of Human History; Jena Germany
| |
Collapse
|
40
|
Bailey SE, Weaver TD, Hublin JJ. The Dentition of the Earliest Modern Humans: How ‘Modern’ Are They? VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2017. [DOI: 10.1007/978-3-319-46646-0_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Timmermann A, Friedrich T. Late Pleistocene climate drivers of early human migration. Nature 2016; 538:92-95. [PMID: 27654920 DOI: 10.1038/nature19365] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022]
Abstract
On the basis of fossil and archaeological data it has been hypothesized that the exodus of Homo sapiens out of Africa and into Eurasia between ~50-120 thousand years ago occurred in several orbitally paced migration episodes. Crossing vegetated pluvial corridors from northeastern Africa into the Arabian Peninsula and the Levant and expanding further into Eurasia, Australia and the Americas, early H. sapiens experienced massive time-varying climate and sea level conditions on a variety of timescales. Hitherto it has remained difficult to quantify the effect of glacial- and millennial-scale climate variability on early human dispersal and evolution. Here we present results from a numerical human dispersal model, which is forced by spatiotemporal estimates of climate and sea level changes over the past 125 thousand years. The model simulates the overall dispersal of H. sapiens in close agreement with archaeological and fossil data and features prominent glacial migration waves across the Arabian Peninsula and the Levant region around 106-94, 89-73, 59-47 and 45-29 thousand years ago. The findings document that orbital-scale global climate swings played a key role in shaping Late Pleistocene global population distributions, whereas millennial-scale abrupt climate changes, associated with Dansgaard-Oeschger events, had a more limited regional effect.
Collapse
Affiliation(s)
- Axel Timmermann
- International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.,Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Tobias Friedrich
- International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| |
Collapse
|
42
|
Climatic variability, plasticity, and dispersal: A case study from Lake Tana, Ethiopia. J Hum Evol 2016; 87:32-47. [PMID: 26472274 DOI: 10.1016/j.jhevol.2015.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/06/2015] [Accepted: 07/12/2015] [Indexed: 12/23/2022]
Abstract
The numerous dispersal events that have occurred during the prehistory of hominin lineages are the subject of longstanding and increasingly active debate in evolutionary anthropology. As well as research into the dating and geographic extent of such dispersals, there is an increasing focus on the factors that may have been responsible for dispersal. The growing body of detailed regional palaeoclimatic data is invaluable in demonstrating the often close relationship between changes in prehistoric environments and the movements of hominin populations. The scenarios constructed from such data are often overly simplistic, however, concentrating on the dynamics of cyclical contraction and expansion during severe and ameliorated conditions respectively. This contribution proposes a two-stage hypothesis of hominin dispersal in which populations (1) accumulate high levels of climatic tolerance during highly variable climatic phases, and (2) express such heightened tolerance via dispersal in subsequent low-variability phases. Likely dispersal phases are thus proposed to occur during stable climatic phases that immediately follow phases of high climatic variability. Employing high resolution palaeoclimatic data from Lake Tana, Ethiopia, the hypothesis is examined in relation to the early dispersal of Homo sapiens out of East Africa and into the Levant. A dispersal phase is identified in the Lake Tana record between c. 112,550 and c. 96,975 years ago, a date bracket that accords well with the dating evidence for H. sapiens occupation at the sites of Qafzeh and Skhul. Results are discussed in relation to the complex pattern of H. sapiens dispersal out of East Africa, with particular attention paid to the implications of recent genetic chronologies for the origin of non-African modern humans.
Collapse
|
43
|
Tryon CA, Faith JT. A demographic perspective on the Middle to Later Stone Age transition from Nasera rockshelter, Tanzania. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150238. [PMID: 27298469 PMCID: PMC4920295 DOI: 10.1098/rstb.2015.0238] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 11/12/2022] Open
Abstract
Increased population density is among the proposed drivers of the behavioural changes culminating in the Middle to Later Stone Age (MSA-LSA) transition and human dispersals from East Africa, but reliable archaeological measures of demographic change are lacking. We use Late Pleistocene-Holocene lithic and faunal data from Nasera rockshelter (Tanzania) to show progressive declines in residential mobility-a variable linked to population density-and technological shifts, the latter associated with environmental changes. These data suggest that the MSA-LSA transition is part of a long-term pattern of changes in residential mobility and technology that reflect human responses to increased population density, with dispersals potentially marking a complementary response to larger populations.This article is part of the themed issue 'Major transitions in human evolution'.
Collapse
Affiliation(s)
- Christian A Tryon
- Department of Anthropology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - J Tyler Faith
- School of Social Science, University of Queensland, Michie Building (Level 3), Brisbane, Queensland 4072, Australia
| |
Collapse
|
44
|
Bandeira LN, Alexandrino J, Haddad CFB, Thomé MTC. Geographical variation in head shape of a Neotropical group of toads: the role of physical environment and relatedness. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lucas N. Bandeira
- Departamento de Zoologia; Instituto de Biociências; Universidade Estadual Paulista ‘Julio de Mesquita Filho’; Rio Claro São Paulo 13506-900 Brazil
| | - João Alexandrino
- Departamento de Ciências Biológicas; Universidade Federal de São Paulo; Diadema São Paulo 09972-270 Brazil
| | - Célio F. B. Haddad
- Departamento de Zoologia; Instituto de Biociências; Universidade Estadual Paulista ‘Julio de Mesquita Filho’; Rio Claro São Paulo 13506-900 Brazil
| | - Maria Tereza C. Thomé
- Departamento de Zoologia; Instituto de Biociências; Universidade Estadual Paulista ‘Julio de Mesquita Filho’; Rio Claro São Paulo 13506-900 Brazil
| |
Collapse
|
45
|
Crevecoeur I, Brooks A, Ribot I, Cornelissen E, Semal P. Late Stone Age human remains from Ishango (Democratic Republic of Congo): New insights on Late Pleistocene modern human diversity in Africa. J Hum Evol 2016; 96:35-57. [PMID: 27343771 DOI: 10.1016/j.jhevol.2016.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/08/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
Although questions of modern human origins and dispersal are subject to intense research within and outside Africa, the processes of modern human diversification during the Late Pleistocene are most often discussed within the context of recent human genetic data. This situation is due largely to the dearth of human fossil remains dating to the final Pleistocene in Africa and their almost total absence from West and Central Africa, thus limiting our perception of modern human diversification within Africa before the Holocene. Here, we present a morphometric comparative analysis of the earliest Late Pleistocene modern human remains from the Central African site of Ishango in the Democratic Republic of Congo. The early Late Stone Age layer (eLSA) of this site, dated to the Last Glacial Maximum (25-20 Ky), contains more than one hundred fragmentary human remains. The exceptional associated archaeological context suggests these remains derived from a community of hunter-fisher-gatherers exhibiting complex social and cognitive behaviors including substantial reliance on aquatic resources, development of fishing technology, possible mathematical notations and repetitive use of space, likely on a seasonal basis. Comparisons with large samples of Late Pleistocene and early Holocene modern human fossils from Africa and Eurasia show that the Ishango human remains exhibit distinctive characteristics and a higher phenotypic diversity in contrast to recent African populations. In many aspects, as is true for the inner ear conformation, these eLSA human remains have more affinities with Middle to early Late Pleistocene fossils worldwide than with extant local African populations. In addition, cross-sectional geometric properties of the long bones are consistent with archaeological evidence suggesting reduced terrestrial mobility resulting from greater investment in and use of aquatic resources. Our results on the Ishango human remains provide insights into past African modern human diversity and adaptation that are consistent with genetic theories about the deep sub-structure of Late Pleistocene African populations and their complex evolutionary history of isolation and diversification.
Collapse
Affiliation(s)
- I Crevecoeur
- UMR 5199 PACEA, CNRS, Université de Bordeaux, Pessac, France.
| | - A Brooks
- Department of Anthropology, George Washington University, Washington DC, USA
| | - I Ribot
- Département d'Anthropologie, Université de Montréal, Montréal, Canada
| | - E Cornelissen
- Culturele Antropologie/Prehistorie en Archeologie, Koninklijk Museum voor Midden-Afrika (KMMA), Tervuren, Belgium
| | - P Semal
- Scientific Service of Heritage, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
| |
Collapse
|
46
|
López S, van Dorp L, Hellenthal G. Human Dispersal Out of Africa: A Lasting Debate. Evol Bioinform Online 2016; 11:57-68. [PMID: 27127403 PMCID: PMC4844272 DOI: 10.4137/ebo.s33489] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 01/01/2023] Open
Abstract
Unraveling the first migrations of anatomically modern humans out of Africa has invoked great interest among researchers from a wide range of disciplines. Available fossil, archeological, and climatic data offer many hypotheses, and as such genetics, with the advent of genome-wide genotyping and sequencing techniques and an increase in the availability of ancient samples, offers another important tool for testing theories relating to our own history. In this review, we report the ongoing debates regarding how and when our ancestors left Africa, how many waves of dispersal there were and what geographical routes were taken. We explore the validity of each, using current genetic literature coupled with some of the key archeological findings.
Collapse
Affiliation(s)
- Saioa López
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Lucy van Dorp
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
47
|
Baab KL. The role of neurocranial shape in defining the boundaries of an expanded Homo erectus hypodigm. J Hum Evol 2016; 92:1-21. [DOI: 10.1016/j.jhevol.2015.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/08/2023]
|
48
|
The pattern of emergence of a Middle Stone Age tradition at Gademotta and Kulkuletti (Ethiopia) through convergent tool and point technologies. J Hum Evol 2016; 91:93-121. [DOI: 10.1016/j.jhevol.2015.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022]
|
49
|
Hublin JJ, Neubauer S, Gunz P. Brain ontogeny and life history in Pleistocene hominins. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140062. [PMID: 25602066 DOI: 10.1098/rstb.2014.0062] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A high level of encephalization is critical to the human adaptive niche and emerged among hominins over the course of the past 2 Myr. Evolving larger brains required important adaptive adjustments, in particular regarding energy allocation and life history. These adaptations included a relatively small brain at birth and a protracted growth of highly dependent offspring within a complex social environment. In turn, the extended period of growth and delayed maturation of the brain structures of humans contribute to their cognitive complexity. The current palaeoanthropological evidence shows that, regarding life history and brain ontogeny, the Pleistocene hominin taxa display different patterns and that one cannot simply contrast an 'ape-model' to a 'human-model'. Large-brained hominins such as Upper Pleistocene Neandertals have evolved along their own evolutionary pathway and can be distinguished from modern humans in terms of growth pattern and brain development. The life-history pattern and brain ontogeny of extant humans emerged only recently in the course of human evolution.
Collapse
Affiliation(s)
- Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| |
Collapse
|
50
|
Grine FE. The Late Quaternary Hominins of Africa: The Skeletal Evidence from MIS 6-2. AFRICA FROM MIS 6-2 2016. [DOI: 10.1007/978-94-017-7520-5_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|