1
|
Ren C, Xu Q, Luo Q, Qiao X, Ding T, Wang W, Zeng X, Chen C, Xiao Y, Hong X. Benzothiazole amide analogues as antagonists of TRPC 6 channels: A therapeutic approach for kidney fibrosis. Eur J Med Chem 2025; 291:117628. [PMID: 40267878 DOI: 10.1016/j.ejmech.2025.117628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Transient receptor potential canonical 6 (TRPC6) channels, which function as receptor-operated, non-selective cation channels, are widely expressed in the kidney, lungs, and brain. Within these organs, they play crucial roles in regulating diverse physiological processes and contribute to the pathogenesis of various disorders. The resolution of the cryo-electron microscopy structure of TRPC6 has significantly advanced our understanding of its molecular mechanisms, thereby providing a robust platform for structure-based drug design. Building upon compound 1S as a lead, we developed and synthesized a series of benzothiazole derivatives, ultimately identifying compound X26 as a potent TRPC6 antagonist with an IC50 of 0.97 μM. In vitro administration of X26 significantly suppressed TGF-β1-induced myofibroblast differentiation in HK-2 cells, as evidenced by a reduced expression of α-SMA, collagen I, and fibronectin. Furthermore, in a unilateral ureteral obstruction (UUO)-induced kidney fibrosis mouse model, treatment with X26 resulted in a substantial reduction in serum urea nitrogen, serum creatinine, and urinary protein levels, as well as a decrease in renal collagen deposition. These findings establish X26 as a promising lead for the development of TRPC6 antagonists and therapeutic interventions for kidney fibrosis.
Collapse
Affiliation(s)
- Chunlin Ren
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Qiding Xu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Qiusi Luo
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Xue Qiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Taotao Ding
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Wumei Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaodong Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Cheng Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China; Shenzhen Institute of Wuhan University, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Toogood G, Evans R, Zhang L, Patel R, Meng S, Boda VK, Li W, Xu J. TRPC3 inhibition induces myofibroblast differentiation in diabetic dermal fibroblasts. Front Physiol 2025; 16:1577118. [PMID: 40370935 PMCID: PMC12075372 DOI: 10.3389/fphys.2025.1577118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
Diabetic wounds present a significant healthcare challenge due to impaired healing mechanisms, with dermal fibroblasts playing a crucial role in tissue repair. This study investigates the role of transient receptor potential canonical-3 (TRPC3) in the dysfunction of diabetic fibroblasts and explores the therapeutic potential of TRPC3 inhibition. Findings reveal that TRPC3 expression is significantly elevated in diabetic dermal fibroblasts, which correlates with suppressed transforming growth factor-beta (TGF-β) signaling and impaired differentiation into myofibroblasts. Inhibiting TRPC3 effectively restores fibroblast functionality by upregulating TGF-β1 and its downstream effector, SMAD4. This restoration enhances the expression of key myofibroblast markers, such as α-smooth muscle actin (ACTA2) and type I collagen (COL1a1), which are essential for wound contraction and extracellular matrix remodeling. These results establish TRPC3 as a critical regulator of fibroblast activity and present TRPC3 inhibition as a promising therapeutic strategy for improving wound healing in diabetic patients.
Collapse
Affiliation(s)
- Gemma Toogood
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robin Evans
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Liping Zhang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rima Patel
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Songmei Meng
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vijay K. Boda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Junwang Xu
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
3
|
El Assar M, García-Gómez B, La Fuente JM, Alonso-Isa M, Martínez-Salamanca JI, Fernández A, Sosa P, Romero-Otero J, Rodríguez-Mañas L, Angulo J. Targeting TRPC-5 Channel Inhibition to Improve Penile Vascular Function in Erectile Dysfunction. Int J Mol Sci 2025; 26:1431. [PMID: 40003900 PMCID: PMC11855833 DOI: 10.3390/ijms26041431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Canonical transient receptor potential (TRPC) channels contribute to calcium homeostasis, which is involved in penile vascular contractility and erectile dysfunction (ED) pathophysiology. We evaluated the impact of TRPC5 inhibition on endothelial function in penile vascular tissue from aging rats and ED patients and its effect on the relaxant efficacy of PDE5 inhibitors. TRPC inhibitor-induced endothelial and neurogenic relaxations were evaluated in corpus cavernosum (RCC) from a rat model of aging-related ED and in human penile resistance arteries (HPRAs) and corpus cavernosum (HCC) from ED patients and organ donors (NoED). The TRPC5 inhibitor, AC1903, was more effective than TRPC3 and TRPC4 inhibitors in relaxing aged RCC and HCC and HPRA from ED patients. In addition to enhancing endothelial and neurogenic relaxations in RCC from aged animals, AC1903 improved endothelium-dependent relaxation in both HCC and HPRA from ED patients but not in tissues from NoED. Cavernosal expression of TRPC5 was not different between ED and NoED subjects. AC1903 potentiated relaxations to the PDE5 inhibitor, tadalafil, in HCC/HPRA from ED patients. TRPC5 inhibition improved penile vascular function in aged rats and patients with ED. TRPC5 inhibition could be a potential therapeutic target for ED, particularly when combined with PDE5 inhibitors to enhance treatment outcomes.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital de Getafe, 28905 Getafe, Spain;
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación IdiPaz, 28046 Madrid, Spain
| | - Borja García-Gómez
- Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.G.-G.); (M.A.-I.)
| | - José M. La Fuente
- Serviço de Urologia, Centro Hospitalar e Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal;
| | - Manuel Alonso-Isa
- Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.G.-G.); (M.A.-I.)
| | | | - Argentina Fernández
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología—IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Patricia Sosa
- Fundación para la Investigación Biomédica del Hospital de Getafe, 28905 Getafe, Spain;
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación IdiPaz, 28046 Madrid, Spain
| | - Javier Romero-Otero
- Servicio de Urología, Hospital Universitario HM Sanchinarro, HM Hospitales, 28050 Madrid, Spain;
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación IdiPaz, 28046 Madrid, Spain
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología—IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| |
Collapse
|
4
|
Ting HK, Dou YC, Lin YH, Chen TM, Tsai YL, Tsai WC, Wu ST, Chen Y. Pyr3 inhibits cell viability and PKCα activity to suppress migration in human bladder cancer cells. Eur J Pharmacol 2025; 988:177235. [PMID: 39725132 DOI: 10.1016/j.ejphar.2024.177235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Bladder cancer, more prevalent in men, has high recurrence rates in non-muscle-invasive forms and is highly lethal upon metastasis in muscle-invasive cases. Transient receptor potential canonical channels (TRPCs), specifically TRPC3, play a role in calcium signaling, influencing cancer cell behavior. This study examines the effects of Pyr3, a TRPC3 inhibitor, and TRPC3 knockdown on both muscle-invasive (T24) and non-muscle-invasive (RT4) bladder cancer cells. Pyr3 treatment reduced cell viability, migration, adhesion, and calcium influx in these cells. Additionally, Pyr3 treatment and siTRPC3 downregulated protein kinase C alpha (PKCα), phospho-PKCα, and protein phosphatase 2A (PP2A) levels. While PKC activator phorbol 12-myristate 13-acetate (PMA) could not restore Pyr3-induced viability loss, it reversed the migration inhibition. In a xenograft model, Pyr3 suppressed T24 cell viability, Ki67, phospho-PKCα, PP2A and TRPC3 expression. These findings suggest that Pyr3 inhibits bladder cancer cell migration through PKC signaling and holds potential as a therapeutic agent for bladder cancer.
Collapse
Affiliation(s)
- Hui-Kung Ting
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Yi-Chien Dou
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hsuan Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Min Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan; Division of Urology, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan.
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Ke X, Cai H, Chen Y, Chen G. Exploring the therapeutic potential of TRPC channels in chronic pain: An investigation into their mechanisms, functions, and prospects. Eur J Pharmacol 2025; 987:177206. [PMID: 39672226 DOI: 10.1016/j.ejphar.2024.177206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024]
Abstract
Transient Receptor Potential Canonical (TRPC) channels have received more attention in recent years for their role of in the pathophysiology of chronic pain. These non-selective cation channels, which are predominantly present on cell membranes, play a pivotal role in regulating both physiological and pathological processes. Research advances have shown the critical role of TRPC channels in a variety of chronic pain, including neuropathic, inflammatory, and visceral pain. Activation of TRPC channels increases neuronal excitability, amplifying and prolonging pain signals. Moreover, these channels collaborate with other ion channels and receptors to form complexes that augment the transmission and perception of pain. As research advances, our understanding of TRPC channels' regulation mechanisms and signaling pathways improves. An expanding variety of TRPC modulators has been identified as promising therapeutic agents for chronic pain, opening up novel treatment options. Nevertheless, the diversity and complexity of TRPC channels present challenges in drug development, highlighting the importance of full understanding of their unique properties and activities. This review aims to provide a thorough evaluation of recent breakthrough in TRPC channels research related to chronic pain, with a focus on their mechanisms, functions, and prospective therapeutic application. By integrating existing research findings, we seek to bring new viewpoints and approaches for chronic pain management.
Collapse
Affiliation(s)
- Xinlong Ke
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huajing Cai
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Qian SH, Liu S, Wang M, Wang Q, Hu CP, Huang JH, Zhang Z. Deficiency of endothelial TRPV4 cation channels ameliorates experimental abdominal aortic aneurysm. Eur J Pharmacol 2025; 986:177150. [PMID: 39577553 DOI: 10.1016/j.ejphar.2024.177150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA), albeit usually asymptomatic, is highly lethal if ruptured. The 28-member transient receptor potential (TRP) ion channel superfamily, most of which are present in the aortic cells, is understudied in AAA. We aim to identify single TRP channel that could represent a novel therapeutic target, and dissect dysfunctional ionic signaling that drives AAA. METHODS AAA was developed in mice by perfusing porcine pancreatic elastase into the infrarenal abdominal aorta. AAA was assessed by measurement of external diameter with a digital caliper, or internal diameter with ultrasonography. Aortic pathohistology was evaluated via histological and immunohistochemical staining. The TRP channel family was analyzed in the GSE17901 dataset. TRPC6, TRPC1/4/5 and TRPC3 channels were blocked in aneurysmal mice by BI749327, Pico145 and Pyr3, respectively. Endothelial cell-selective Trpv4 knockout mice were generated and leveraged for AAA analysis. TRPV4 channel was activated indirectly by TPPU or directly opened by GSK1016790A. RESULTS RNA-seq data mining revealed altered expression profiles of Trpc3/Trpc6, Trpv4. Pharmacological block of TRPC6, TRPC1/4/5 or TRPC3 did not influence AAA, whereas selective deletion of endothelial TRPV4 protected against AAA in endothelial cell-selective Trpv4 knockout mice. Indirect activation of TRPV4 by TPPU exacerbated AAA, but TRPV4-mediated nitric oxide signaling contributed minimally to AAA. TRPV4 activation promoted endothelial cell apoptosis in a Ca2+-dependent manner, a relevant mechanism underlying AAA. CONCLUSIONS Our data underscore the pathogenic importance of Ca2+ perturbation in AAA and illuminate that endothelial TRPV4 cation channel could be harnessed for AAA treatment.
Collapse
MESH Headings
- Animals
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
- TRPV Cation Channels/deficiency
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Mice
- Mice, Knockout
- Disease Models, Animal
- Male
- Mice, Inbred C57BL
- Endothelial Cells/metabolism
- Endothelial Cells/drug effects
- Endothelial Cells/pathology
- Humans
- Calcium/metabolism
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/drug effects
- Apoptosis/drug effects
Collapse
Affiliation(s)
- She-Hua Qian
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Shuai Liu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mi Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qing Wang
- Department of the Interventional Radiology & Vascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410013, Hunan, China
| | - Jun-Hao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, 510050, Guangdong, China.
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
7
|
Wang J, Zhang S, Boda VK, Chen H, Park H, Parmar K, Ma D, Miller DD, Meibohm B, Du J, Liao FF, Wu Z, Li W. Discovery of a potent and selective TRPC3 antagonist with neuroprotective effects. Bioorg Med Chem 2025; 117:118021. [PMID: 39612770 DOI: 10.1016/j.bmc.2024.118021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
The TRPC3 protein plays a pivotal role in calcium signaling, influencing cell function. Aberrant TRPC3 expression is implicated in various pathologies, including cardiovascular diseases, tumors, and neurodegeneration. Despite its functional similarities with TRPC6 and TRPC7, TRPC3 exhibits distinct roles in disease contexts. Therefore, it is of paramount importance to develop a potent and selective TRPC3 antagonist with favorable drug-like properties. We employed extensive medicinal chemistry synthesis and structure-activity relationships (SARs) study. Thirty-one novel TRPC3 antagonists were designed and synthesized using the lead compound JW-65 as the scaffold. Compound 60a exhibits a 4-fold improvement in potency and displays exceptional selectivity. With favorable drug-like properties, this compound shows a heightened in vitro neuronal protective effect. Molecular modeling suggests possible modes of action between the TRPC3 protein and its antagonists. In summary, 60a holds significant promise for clinical development in conditions associated with TRPC3 dysregulation.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Vijay K Boda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hyunseo Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Keyur Parmar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Francesca-Fang Liao
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
8
|
Rubaiy HN. Transient Receptor Potential Canonical Channels in Cardiovascular Pathology and Their Modulators. J Cardiovasc Pharmacol 2025; 85:21-34. [PMID: 39405561 DOI: 10.1097/fjc.0000000000001643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/05/2024] [Indexed: 01/18/2025]
Abstract
ABSTRACT Ion channels play a crucial role in various aspects of cardiac function, such as regulating rhythm and contractility. As a result, they serve as key targets for therapeutic interventions in cardiovascular diseases. Cell function is substantially influenced by the concentration of free cytosolic calcium (Ca 2+ ) and the voltage across the plasma membrane. These characteristics are known to be regulated by Ca 2+ -permeable nonselective cationic channels, although our knowledge of these channels is still inadequate. The transient receptor potential (TRP) superfamily comprises of many nonselective cation channels with diverse Ca 2+ permeability. Canonical or classical TRP (TRPC) channels are a subgroup of the TRP superfamily that are expressed ubiquitously in mammalian cells. TRPC channels are multidimensional signaling protein complexes that play essential roles in a variety of physiological and pathological processes in humans, including cancer, neurological disorders, cardiovascular diseases, and others. The objective of this article was to focus on the role that TRPC channels play in the cardiovascular system. The role of TRPC channels will be deeply discussed in cardiovascular pathology. Together, a critical element in developing novel treatments that target TRPC channels is comprehending the molecular mechanisms and regulatory pathways of TRPC channels in related cardiovascular diseases and conditions.
Collapse
Affiliation(s)
- Hussein N Rubaiy
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Boda VK, Yasmen N, Jiang J, Li W. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev 2024; 44:2510-2544. [PMID: 38715347 PMCID: PMC11452291 DOI: 10.1002/med.22048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Transient receptor potential canonical 3 (TRPC3) protein belongs to the TRP family of nonselective cation channels. Its activation occurs by signaling through a G protein-coupled receptor (GPCR) and a phospholipase C-dependent (PLC) pathway. Perturbations in the expression of TRPC3 are associated with a plethora of pathophysiological conditions responsible for disorders of the cardiovascular, immune, and central nervous systems. The recently solved cryo-EM structure of TRPC3 provides detailed inputs about the underlying mechanistic aspects of the channel, which in turn enables more efficient ways of designing small-molecule modulators. Pharmacologically targeting TRPC3 in animal models has demonstrated great efficacy in treating diseases including cancers, neurological disorders, and cardiovascular diseases. Despite extensive scientific evidence supporting some strong correlations between the expression and activity of TRPC3 and various pathophysiological conditions, therapeutic strategies based on its pharmacological modulations have not led to clinical trials. The development of small-molecule TRPC3 modulators with high safety, sufficient brain penetration, and acceptable drug-like profiles remains in progress. Determining the pathological mechanisms for TRPC3 involvement in human diseases and understanding the requirements for a drug-like TRPC3 modulator will be valuable in advancing small-molecule therapeutics to future clinical trials. In this review, we provide an overview of the origin and activation mechanism of TRPC3 channels, diseases associated with irregularities in their expression, and new development in small-molecule modulators as potential therapeutic interventions for treating TRPC3 channelopathies.
Collapse
Affiliation(s)
- Vijay K. Boda
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
10
|
George L, Alex R, Gowane G, Vohra V, Joshi P, Kumar R, Verma A. Weighted single step GWAS reveals genomic regions associated with economic traits in Murrah buffaloes. Anim Biotechnol 2024; 35:2319622. [PMID: 38437001 DOI: 10.1080/10495398.2024.2319622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The objective of the present study was to identify genomic regions influencing economic traits in Murrah buffaloes using weighted single step Genome Wide Association Analysis (WssGWAS). Data on 2000 animals, out of which 120 were genotyped using a double digest Restriction site Associated DNA (ddRAD) sequencing approach. The phenotypic data were collected from NDRI, India, on growth traits, viz., body weight at 6M (month), 12M, 18M and 24M, production traits like 305D (day) milk yield, lactation length (LL) and dry period (DP) and reproduction traits like age at first calving (AFC), calving interval (CI) and first service period (FSP). The biallelic genotypic data consisted of 49353 markers post-quality check. The heritability estimates were moderate to high, low to moderate, low for growth, production, reproduction traits, respectively. Important genomic regions explaining more than 0.5% of the total additive genetic variance explained by 30 adjacent SNPs were selected for further analysis of candidate genes. In this study, 105 genomic regions were associated with growth, 35 genomic regions with production and 42 window regions with reproduction traits. Different candidate genes were identified in these genomic regions, of which important are OSBPL8, NAP1L1 for growth, CNTNAP2 for production and ILDR2, TADA1 and POGK for reproduction traits.
Collapse
Affiliation(s)
- Linda George
- National Dairy Research Institute, Karnal, India
| | - Rani Alex
- National Dairy Research Institute, Karnal, India
| | - Gopal Gowane
- National Dairy Research Institute, Karnal, India
| | - Vikas Vohra
- National Dairy Research Institute, Karnal, India
| | - Pooja Joshi
- National Dairy Research Institute, Karnal, India
| | - Ravi Kumar
- National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
11
|
Rinne A, Pluteanu F. Ca 2+ Signaling in Cardiovascular Fibroblasts. Biomolecules 2024; 14:1365. [PMID: 39595542 PMCID: PMC11592142 DOI: 10.3390/biom14111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Fibrogenesis is a physiological process required for wound healing and tissue repair. It is induced by activation of quiescent fibroblasts, which first proliferate and then change their phenotype into migratory, contractile myofibroblasts. Myofibroblasts secrete extracellular matrix proteins, such as collagen, to form a scar. Once the healing process is terminated, most myofibroblasts undergo apoptosis. However, in some tissues, such as the heart, myofibroblasts remain active and sensitive to neurohumoral factors and inflammatory mediators, which lead eventually to excessive organ fibrosis. Many cellular processes involved in fibroblast activation, including cell proliferation, protein secretion and cell contraction, are highly regulated by intracellular Ca2+ signals. This review summarizes current research on Ca2+ signaling pathways underlying fibroblast activation. We present receptor- and ion channel-mediated Ca2+ signaling pathways, discuss how localized Ca2+ signals of the cell nucleus may be involved in fibroblast activation and present Ca2+-sensitive transcription pathways relevant for fibroblast biology. When investigated, we highlight how the function of Ca2+-handling proteins changes during cardiac and pulmonary fibrosis. Many aspects of Ca2+ signaling remain unexplored in different types of cardiovascular fibroblasts in relation to pathologies, and a better understanding of Ca2+ signaling in fibroblasts will help to design targeted therapies against fibrosis.
Collapse
Affiliation(s)
- Andreas Rinne
- Department of Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania;
| | - Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
12
|
Varlamova EG, Kuldaeva VP, Mitina NN, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Generation and Characterization of Three Novel Mouse Mutant Strains Susceptible to Audiogenic Seizures. Cells 2024; 13:1747. [PMID: 39513854 PMCID: PMC11545774 DOI: 10.3390/cells13211747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of epileptogenesis after brain injury, ischemic stroke, or brain tumors have been extensively studied. As a result, many effective antiseizure drugs have been developed. However, there are still many patients who are resistant to therapy. The molecular and genetic bases regarding such drug-resistant seizures have been poorly elucidated. In many cases, heavy seizures are instigated by brain development malformations and often caused by gene mutations. Such malformations can be demonstrated in mouse models by generating mutant strains. One of the most potent mutagens is ENU (N-ethyl-N-nitrosourea). In the present study, we describe three novel mutant strains generated by ENU-directed mutagenesis. Two of these strains present a very strong epileptic phenotype triggered by audiogenic stimuli (G9-1 and S5-1 strains). The third mouse strain is characterized by behavioral disorders and hyperexcitation of neuronal networks. We identified changes in the expression of those genes encoding neurotransmission proteins in the cerebral cortexes of these mice. It turned out that the G9-1 strain demonstrated the strongest disruptions in the expression of those genes encoding plasma membrane channels, excitatory glutamate receptors, and protein kinases. On the other hand, the number of GABAergic neurons was also affected by the mutation. All three lines are characterized by increased anxiety, excitability, and suppressed motor and orientational-exploratory activities. On the other hand, the strains with an epileptic phenotype-G9-1 and S5-1ave reduced learning ability, and the A9-2 mice line retains high learning ability.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Natalia N. Mitina
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Alexei A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| |
Collapse
|
13
|
Gui L, Tellios V, Xiang YY, Feng Q, Inoue W, Lu WY. Neuronal Nitric Oxide Synthase Regulates Cerebellar Parallel Fiber Slow EPSC in Purkinje Neurons by Modulating STIM1-Gated TRPC3-Containing Channels. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1867-1881. [PMID: 38472628 DOI: 10.1007/s12311-024-01683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Responding to burst stimulation of parallel fibers (PFs), cerebellar Purkinje neurons (PNs) generate a convolved synaptic response displaying a fast excitatory postsynaptic current (EPSCFast) followed by a slow EPSC (EPSCSlow). The latter is companied with a rise of intracellular Ca2+ and critical for motor coordination. The genesis of EPSCSlow in PNs results from activation of metabotropic type 1 glutamate receptor (mGluR1), oligomerization of stromal interaction molecule 1 (STIM1) on the membrane of endoplasmic reticulum (ER) and opening of transient receptor potential canonical 3 (TRPC3) channels on the plasma membrane. Neuronal nitric oxide synthase (nNOS) is abundantly expressed in PFs and granule neurons (GNs), catalyzing the production of nitric oxide (NO) hence regulating PF-PN synaptic function. We recently found that nNOS/NO regulates the morphological development of PNs through mGluR1-regulated Ca2+-dependent mechanism. This study investigated the role of nNOS/NO in regulating EPSCSlow. Electrophysiological analyses showed that EPSCSlow in cerebellar slices of nNOS knockout (nNOS-/-) mice was significantly larger than that in wildtype (WT) mice. Activation of mGluR1 in cultured PNs from nNOS-/- mice evoked larger TRPC3-channel mediated currents and intracellular Ca2+ rise than that in PNs from WT mice. In addition, nNOS inhibitor and NO-donor increased and decreased, respectively, the TRPC3-current and Ca2+ rise in PNs. Moreover, the NO-donor effectively decreased TRPC3 currents in HEK293 cells expressing WT STIM1, but not cells expressing a STIM1 with cysteine mutants. These novel findings indicate that nNOS/NO inhibits TRPC3-containig channel mediated cation influx during EPSCSlow, at least in part, by S-nitrosylation of STIM1.
Collapse
Affiliation(s)
- Le Gui
- Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Vasiliki Tellios
- Graduate Program of Neuroscience, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Yun-Yan Xiang
- Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Qingping Feng
- Department of Physiology and Pharmacology, University of Western, Ontario1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Wataru Inoue
- Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada.
- Graduate Program of Neuroscience, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada.
- Department of Physiology and Pharmacology, University of Western, Ontario1151 Richmond Street North, London, ON, N6A 5B7, Canada.
| | - Wei-Yang Lu
- Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada.
- Graduate Program of Neuroscience, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada.
- Department of Physiology and Pharmacology, University of Western, Ontario1151 Richmond Street North, London, ON, N6A 5B7, Canada.
| |
Collapse
|
14
|
Wang J, Chen L, Wang Z, Zhang S, Ding D, Lin G, Zhang H, Boda VK, Kong D, Ortyl TC, Wang X, Lu L, Zhou FM, Bezprozvanny I, Du J, Wu Z, Li W, Liao FF. TRPC3 suppression ameliorates synaptic dysfunctions and memory deficits in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.611061. [PMID: 39345364 PMCID: PMC11430068 DOI: 10.1101/2024.09.16.611061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Transient receptor potential canonical (TRPC) channels are widely expressed in the brain; however, their precise roles in neurodegeneration, such as Alzheimer's disease (AD) remain elusive. Bioinformatic analysis of the published single-cell RNA-seq data collected from AD patient cohorts indicates that the Trpc3 gene is uniquely upregulated in excitatory neurons. TRPC3 expression is also upregulated in post-mortem AD brains, and in both acute and chronic mouse models of AD. Functional screening of TRPC3 antagonists resulted in a lead inhibitor JW-65, which completely rescued Aβ-induced neurotoxicity, impaired synaptic plasticity (e.g., LTP), and learning memory in acute and chronic experimental AD models. In cultured rat hippocampal neurons, we found that treatment with soluble β-amyloid oligomers (AβOs) induces rapid and sustained upregulation of the TRPC3 expression selectively in excitatory neurons. This aberrantly upregulated TRPC3 contributes to AβOs-induced Ca 2+ overload through the calcium entry and store-release mechanisms. The neuroprotective action of JW-65 is primarily mediated via restoring AβOs-impaired Ca 2+ /calmodulin-mediated signaling pathways, including calmodulin kinases CaMKII/IV and calcineurin (CaN). The synaptic protective mechanism via TRPC3 inhibition was further supported by hippocampal RNA-seq data from the symptomatic 5xFAD mice after chronic treatment with JW-65. Overall, these findings not only validate TRPC3 as a novel therapeutic target for treating synaptic dysfunction of AD but most importantly, disclose a distinct role of upregulated TRPC3 in AD pathogenesis in mediating Ca 2+ dyshomeostasis.
Collapse
|
15
|
Ming Z, Bagheri-Fam S, Frost ER, Ryan JM, Vining B, Harley VR. A role for TRPC3 in mammalian testis development. Front Cell Dev Biol 2024; 12:1337714. [PMID: 38425503 PMCID: PMC10902130 DOI: 10.3389/fcell.2024.1337714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
SOX9 is a key transcription factor for testis determination and development. Mutations in and around the SOX9 gene contribute to Differences/Disorders of Sex Development (DSD). However, a substantial proportion of DSD patients lack a definitive genetic diagnosis. SOX9 target genes are potentially DSD-causative genes, yet only a limited subset of these genes has been investigated during testis development. We hypothesize that SOX9 target genes play an integral role in testis development and could potentially be causative genes in DSD. In this study, we describe a novel testicular target gene of SOX9, Trpc3. Trpc3 exhibits high expression levels in the SOX9-expressing male Sertoli cells compared to female granulosa cells in mouse fetal gonads between embryonic day 11.5 (E11.5) and E13.5. In XY Sox9 knockout gonads, Trpc3 expression is markedly downregulated. Moreover, culture of E11.5 XY mouse gonads with TRPC3 inhibitor Pyr3 resulted in decreased germ cell numbers caused by reduced germ cell proliferation. Trpc3 is also expressed in endothelial cells and Pyr3-treated E11.5 XY mouse gonads showed a loss of the coelomic blood vessel due to increased apoptosis of endothelial cells. In the human testicular cell line NT2/D1, TRPC3 promotes cell proliferation and controls cell morphology, as observed by xCELLigence and HoloMonitor real-time analysis. In summary, our study suggests that SOX9 positively regulates Trpc3 in mouse testes and TRPC3 may mediate SOX9 function during Sertoli, germ and endothelial cell development.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Emily R. Frost
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Janelle M. Ryan
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - Vincent R. Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Tscherrig D, Bhardwaj R, Biner D, Dernič J, Ross-Kaschitza D, Peinelt C, Hediger MA, Lochner M. Development of chemical tools based on GSK-7975A to study store-operated calcium entry in cells. Cell Calcium 2024; 117:102834. [PMID: 38006628 DOI: 10.1016/j.ceca.2023.102834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Many physiological functions, such as cell differentiation, proliferation, muscle contraction, neurotransmission and fertilisation, are regulated by changes of Ca2+ levels. The major Ca2+ store in cells is the endoplasmic reticulum (ER). Certain cellular processes induce ER store depletion, e.g. by activating IP3 receptors, that in turn induces a store refilling process known as store-operated calcium entry (SOCE). This refilling process entails protein-protein interactions between Ca2+ sensing stromal interaction molecules (STIM) in the ER membrane and Orai proteins in the plasma membrane. Fully assembled STIM/Orai complexes then form highly selective Ca2+ channels called Ca2+ release-activated Ca2+ Channels (CRAC) through which Ca2+ ions flow into the cytosol and subsequently are pumped into the ER by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). Abnormal SOCE has been associated with numerous human diseases and cancers, and therefore key players STIM and Orai have attracted significant therapeutic interest. Several potent experimental and clinical candidate compounds have been developed and have helped to study SOCE in various cell types. We have synthesized multiple novel small-molecule probes based on the known SOCE inhibitor GSK-7975A. Here we present GSK-7975A derivatives, which feature photo-caging, photo-crosslinking, biotin and clickable moieties, and also contain deuterium labels. Evaluation of these GSK-7975A probes using a fluorometric imaging plate reader (FLIPR)-Tetra-based Ca2+ imaging assay showed that most synthetic modifications did not have a detrimental impact on the SOCE inhibitory activity. The photo-caged GSK-7975A was also used in patch-clamp electrophysiology experiments. In summary, we have developed a number of active, GSK-7975A-based molecular probes that have interesting properties and therefore are useful experimental tools to study SOCE in various cells and settings.
Collapse
Affiliation(s)
- Dominic Tscherrig
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Rajesh Bhardwaj
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Daniel Biner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jan Dernič
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Daniela Ross-Kaschitza
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Matthias A Hediger
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
17
|
Padbury EH, Bálint Š, Carollo E, Carter DRF, Becker EBE. TRPC3 signalling contributes to the biogenesis of extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e132. [PMID: 38938673 PMCID: PMC11080740 DOI: 10.1002/jex2.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 12/08/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) contribute to a wide range of pathological processes including cancer progression, yet the molecular mechanisms underlying their biogenesis remain incompletely characterized. The development of tetraspanin-based pHluorin reporters has enabled the real-time analysis of EV release at the plasma membrane. Here, we employed CD81-pHluorin to investigate mechanisms of EV release in ovarian cancer (OC) cells and report a novel role for the Ca2+-permeable transient receptor potential (TRP) channel TRPC3 in EV-mediated communication. We found that specific activation of TRPC3 increased Ca2+ signalling in SKOV3 cells and stimulated an immediate increase in EV release. Ca2+-stimulants histamine and ionomycin likewise induced EV release, and imaging analysis revealed distinct stimulation-dependent temporal and spatial release dynamics. Interestingly, inhibition of TRPC3 attenuated histamine-stimulated Ca2+-entry and EV release, indicating that TRPC3 is likely to act downstream of histamine signalling in EV biogenesis. Furthermore, we found that direct activation of TRPC3 as well as the application of EVs derived from TRPC3-activated cells increased SKOV3 proliferation. Our data provides insights into the molecular mechanisms and dynamics underlying EV release in OC cells, proposing a key role for TRPC3 in EV biogenesis.
Collapse
Affiliation(s)
- Elise H. Padbury
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Štefan Bálint
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Emanuela Carollo
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - David R. F. Carter
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Evox Therapeutics LimitedOxfordUK
| | - Esther B. E. Becker
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| |
Collapse
|
18
|
Mitrokhin V, Bilichenko A, Kazanski V, Schobik R, Shileiko S, Revkova V, Kalsin V, Kamkina O, Kamkin A, Mladenov M. Transcriptomic profile of the mechanosensitive ion channelome in human cardiac fibroblasts. Exp Biol Med (Maywood) 2023; 248:2341-2350. [PMID: 38158807 PMCID: PMC10903254 DOI: 10.1177/15353702231218488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
Human cardiac fibroblasts (HCFs) have mRNA transcripts that encode different mechanosensitive ion channels and channel regulatory proteins whose functions are not known yet. The primary goal of this work was to define the mechanosensitive ion channelome of HCFs. The most common type of cationic channel is the transient receptor potential (TRP) family, which is followed by the TWIK-related K+ channel (TREK), transmembrane protein 63 (TMEM63), and PIEZO channel (PIEZO) families. In the sodium-dependent NON-voltage-gated channel (SCNN) subfamily, only SCNN1D was shown to be highly expressed. Particular members of the acid-sensing ion channel (ASIC) (ASIC1 and ASIC3) subfamilies were also significantly expressed. The transcripts per kilobase million (TPMs) for Piezo 2 were almost 100 times less abundant than those for Piezo 1. The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-2 channel, TWIK-related acid-sensitive K+ channel (TASK)-5, TASK-1, and the TWIK-related K1 (TREK-1) channel were the four most prevalent types in the K2P subfamily. The highest expression in the TRPP subfamily was found for PKD2 and PKD1, while in the TRPM subfamily, it was found for TRPM4, TRPM7, and TRPM3. TRPV2, TRPV4, TRPV3, and TRPV6 (all members of the TRPV subfamily) were also substantially expressed. A strong expression of the TRPC1, TRPC4, TRPC6, and TRPC2 channels and all members of the TRPML subfamily (MCOLN1, MCOLN2, and MCOLN3) was also shown. In terms of the transmembrane protein 16 (TMEM16) family, the HCFs demonstrated significant expression of the TMEM16H, TMEM16F, TMEM16J, TMEM16A, and TMEM16G channels. TMC3 is the most expressed channel in HCFs of all known members of the transmembrane channel-like protein (TMC) family. This analysis of the mechanosensitive ionic channel transcriptome in HCFs: (1) agrees with previously documented findings that all currently identified mechanosensitive channels play a significant and well recognized physiological function in elucidating the mechanosensitive characteristics of HCFs; (2) supports earlier preliminary reports that point to the most common expression of the TRP mechanosensitive family in HCFs; and (3) points to other new mechanosensitive channels (TRPC1, TRPC2, TWIK-2, TMEM16A, ASIC1, and ASIC3).
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrei Bilichenko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor Kazanski
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Roman Schobik
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Stanislav Shileiko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Veronika Revkova
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir Kalsin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Olga Kamkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mitko Mladenov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
19
|
Kaul NL, Diebolt CM, Meier C, Tschernig T. Transient receptor potential channel 3 in human liver and gallbladder - An investigation in body donors. Ann Anat 2023; 250:152150. [PMID: 37633502 DOI: 10.1016/j.aanat.2023.152150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/28/2023]
Abstract
Since the discovery of TRP proteins in 1969, during studies of the fruit fly Drosophila melanogaster, interest around them and the subfamily of TRPC channels has remained high. TRPC3 was able to be detected in a number of organs in rodents, such as rats and mice, and also in various human tissues. For the most part, these investigations were carried out using gene expression of TRPC3. Further work has already confirmed the relevance of TRPC3 in the context of neurodegenerative diseases, such as spinocerebellar ataxia, and carcinogenic entities, such as ovarian carcinoma. An association with TRPC3 has also been demonstrated for diseases that affect the liver. In order to confirm the expression of TRPC3 in the human liver, this study uses samples taken from eight (n = 8) fixated human body donors and analyzed with immunohistochemistry. In accordance with the macroscopic anatomy of the organs, six samples (n = 6) of liver tissue and three (n = 3) of gallbladder tissue were obtained. TRPC3 was clearly detected in all liver and gallbladder samples examined. Thus, it is not unlikely that TRPC3 plays a role in the extensive metabolic processes of the liver and could also serve as a target for pharmacological interventions in an imbalance of calcium homeostasis.
Collapse
Affiliation(s)
- Nele Leonie Kaul
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Coline M Diebolt
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany.
| |
Collapse
|
20
|
Umemura M, Nakakaji R, Ishikawa Y. Physiological functions of calcium signaling via Orai1 in cancer. J Physiol Sci 2023; 73:21. [PMID: 37759164 PMCID: PMC10717067 DOI: 10.1186/s12576-023-00878-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Intracellular calcium (Ca2+) signaling regulates many cellular functions, including cell proliferation and migration, in both normal cells and cancer cells. Store-operated Ca2+ entry (SOCE) is a major mechanism by which Ca2+ is imported from the extracellular space to the intracellular space, especially in nonexcitable cells. Store-operated Ca2+ entry (SOCE) is also a receptor-regulated Ca2+ entry pathway that maintains Ca2+ homeostasis by sensing reduced Ca2+ levels in the endoplasmic reticulum (ER). In general, the activation of G protein-coupled receptors (GPCRs) or immunoreceptors, such as T-cell, B-cell and Fc receptors, results in the production of inositol 1,4,5-trisphosphate (IP3). IP3 binds to IP3 receptors located in the ER membrane. The, IP3 receptors in the ER membrane trigger a rapid and transient release of Ca2+ from the ER store. The resulting depletion of ER Ca2+ concentrations is sensed by the EF-hand motif of stromal interaction molecule (STIM), i.e., calcium sensor, which then translocates to the plasma membrane (PM). STIM interacts with Orai Ca2+ channel subunits (also known as CRACM1) on the PM, leading to Ca2+ influx from the extracellular space to increase intracellular Ca2+ concentrations. The physiological functions of Orai and STIM have been studied mainly with respect to their roles in the immune system. Based on numerous previous studies, Orai channels (Orai1, Orai2 and Orai3 channels) control Ca2+ release-activated Ca2+ (CRAC) currents and contribute to SOCE currents in other types of cells, including various cancer cells. There are many reports that Orai1 is involved in cell proliferation, migration, metastasis, apoptosis and epithelial-mesenchymal transition (EMT) in various cancers. We previously found that Orai1 plays important roles in cell apoptosis and migration in melanoma. Recently, we reported novel evidence of Orai1 in human oral squamous cell carcinoma (OSCC) cells and human cardiac fibroblasts (HCFs). In this review, we present multiple physiological functions of Orai1 in various cancer cells and cardiac fibroblasts, including our findings.
Collapse
Affiliation(s)
- Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| | - Rina Nakakaji
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
21
|
Sporkova A, Nahar T, Cao M, Ghosh S, Sens-Albert C, Friede PAP, Nagel A, Al-Hasani J, Hecker M. Characterisation of Lipoma-Preferred Partner as a Novel Mechanotransducer in Vascular Smooth Muscle Cells. Cells 2023; 12:2315. [PMID: 37759537 PMCID: PMC10529303 DOI: 10.3390/cells12182315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In arteries and arterioles, a chronic increase in blood pressure raises wall tension. This continuous biomechanical strain causes a change in gene expression in vascular smooth muscle cells (VSMCs) that may lead to pathological changes. Here we have characterised the functional properties of lipoma-preferred partner (LPP), a Lin11-Isl1-Mec3 (LIM)-domain protein, which is most closely related to the mechanotransducer zyxin but selectively expressed by smooth muscle cells, including VSMCs in adult mice. VSMCs isolated from the aorta of LPP knockout (LPP-KO) mice displayed a higher rate of proliferation than their wildtype (WT) counterparts, and when cultured as three-dimensional spheroids, they revealed a higher expression of the proliferation marker Ki 67 and showed greater invasion into a collagen gel. Accordingly, the gelatinase activity was increased in LPP-KO but not WT spheroids. The LPP-KO spheroids adhering to the collagen gel responded with decreased contraction to potassium chloride. The relaxation response to caffeine and norepinephrine was also smaller in the LPP-KO spheroids than in their WT counterparts. The overexpression of zyxin in LPP-KO VSMCs resulted in a reversal to a more quiescent differentiated phenotype. In native VSMCs, i.e., in isolated perfused segments of the mesenteric artery (MA), the contractile responses of LPP-KO segments to potassium chloride, phenylephrine or endothelin-1 did not vary from those in isolated perfused WT segments. In contrast, the myogenic response of LPP-KO MA segments was significantly attenuated while zyxin-deficient MA segments displayed a normal myogenic response. We propose that LPP, which we found to be expressed solely in the medial layer of different arteries from adult mice, may play an important role in controlling the quiescent contractile phenotype of VSMCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; (A.S.)
| |
Collapse
|
22
|
Cole BA, Becker EBE. Modulation and Regulation of Canonical Transient Receptor Potential 3 (TRPC3) Channels. Cells 2023; 12:2215. [PMID: 37759438 PMCID: PMC10526463 DOI: 10.3390/cells12182215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Canonical transient receptor potential 3 (TRPC3) channel is a non-selective cation permeable channel that plays an essential role in calcium signalling. TRPC3 is highly expressed in the brain and also found in endocrine tissues and smooth muscle cells. The channel is activated directly by binding of diacylglycerol downstream of G-protein coupled receptor activation. In addition, TRPC3 is regulated by endogenous factors including Ca2+ ions, other endogenous lipids, and interacting proteins. The molecular and structural mechanisms underlying activation and regulation of TRPC3 are incompletely understood. Recently, several high-resolution cryogenic electron microscopy structures of TRPC3 and the closely related channel TRPC6 have been resolved in different functional states and in the presence of modulators, coupled with mutagenesis studies and electrophysiological characterisation. Here, we review the recent literature which has advanced our understanding of the complex mechanisms underlying modulation of TRPC3 by both endogenous and exogenous factors. TRPC3 plays an important role in Ca2+ homeostasis and entry into cells throughout the body, and both pathological variants and downstream dysregulation of TRPC3 channels have been associated with a number of diseases. As such, TRPC3 may be a valuable therapeutic target, and understanding its regulatory mechanisms will aid future development of pharmacological modulators of the channel.
Collapse
Affiliation(s)
- Bethan A. Cole
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Esther B. E. Becker
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
23
|
Masson B, Saint-Martin Willer A, Dutheil M, Penalva L, Le Ribeuz H, El Jekmek K, Ruchon Y, Cohen-Kaminsky S, Sabourin J, Humbert M, Mercier O, Montani D, Capuano V, Antigny F. Contribution of transient receptor potential canonical channels in human and experimental pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2023; 325:L246-L261. [PMID: 37366608 DOI: 10.1152/ajplung.00011.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is due to progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated store-operated Ca2+ entry (SOCE) contributes to PAH pathogenesis, mediating human PA smooth muscle cell (hPASMC) abnormalities. The transient receptor potential canonical channels (TRPC family) are Ca2+-permeable channels contributing to SOCE in different cell types, including PASMCs. However, the properties, signaling pathways, and contribution to Ca2+ signaling of each TRPC isoform are unclear in human PAH. We studied in vitro the impact of TRPC knockdown on control and PAH-hPASMCs function. In vivo, we analyzed the consequences of pharmacological TRPC inhibition using the experimental model of pulmonary hypertension (PH) induced by monocrotaline (MCT) exposure. Compared with control-hPASMCs cells, in PAH-hPASMCs, we found a decreased TRPC4 expression, overexpression of TRPC3 and TRPC6, and unchanged TRPC1 expression. Using the siRNA strategy, we found that the knockdown of TRPC1-C3-C4-C6 reduced the SOCE and the proliferation rate of PAH-hPASMCs. Only TRPC1 knockdown decreased the migration capacity of PAH-hPASMCs. After PAH-hPASMCs exposure to the apoptosis inducer staurosporine, TRPC1-C3-C4-C6 knockdown increased the percentage of apoptotic cells, suggesting that these channels promote apoptosis resistance. Only TRPC3 function contributed to exacerbated calcineurin activity. In the MCT-PH rat model, only TRPC3 protein expression was increased in lungs compared with control rats, and in vivo "curative" administration of a TRPC3 inhibitor attenuated PH development in rats. These results suggest that TRPC channels contribute to PAH-hPASMCs dysfunctions, including SOCE, proliferation, migration, and apoptosis resistance, and could be considered as therapeutic targets in PAH.NEW & NOTEWORTHY TRPC3 is increased in human and experimental pulmonary arterial hypertension (PAH). In PAH pulmonary arterial smooth muscle cells, TRPC3 participates in the aberrant store-operated Ca2+ entry contributing to their pathological cell phenotypes (exacerbated proliferation, enhanced migration, apoptosis resistance, and vasoconstriction). Pharmacological in vivo inhibition of TRPC3 reduces the development of experimental PAH. Even if other TRPC acts on PAH development, our results prove that TRPC3 inhibition could be considered as an innovative treatment for PAH.
Collapse
Affiliation(s)
- Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Anais Saint-Martin Willer
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mary Dutheil
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Lucille Penalva
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Kristelle El Jekmek
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Yann Ruchon
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Sylvia Cohen-Kaminsky
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Jessica Sabourin
- INSERM UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis Robinson, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
24
|
Shin S, Gombedza FC, Awuah Boadi E, Yiu AJ, Roy SK, Bandyopadhyay BC. Reduction of TRPC1/TRPC3 mediated Ca 2+-signaling protects oxidative stress-induced COPD. Cell Signal 2023; 107:110681. [PMID: 37062436 PMCID: PMC10542863 DOI: 10.1016/j.cellsig.2023.110681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Oxidative stress is a predisposing factor in Chronic Obstructive Pulmonary Disease (COPD). Specifically, pulmonary epithelial (PE) cells reduce antioxidant capacity during COPD because of the continuous production of reactive oxygen species (ROS). However, the molecular pathogenesis that governs such ROS activity is unclear. Here we show that the dysregulation of intracellular calcium concentration ([Ca2+]i) in PE cells from COPD patients, compared to the healthy PE cells, is associated with the robust functional expressions of Transient Receptor Potential Canonical (TRPC)1 and TRPC3 channels, and Ca2+ entry (SOCE) components, Stromal Interaction Molecule 1 (STIM1) and ORAI1 channels. Additionally, the elevated expression levels of fibrotic, inflammatory, oxidative, and apoptotic markers in cells from COPD patients suggest detrimental pathway activation, thereby reducing the ability of lung remodeling. To further delineate the mechanism, we used human lung epithelial cell line, A549, since the behavior of SOCE and the expression patterns of TRPC1/C3, STIM1, and ORAI1 were much like PE cells. Notably, the knockdown of TRPC1/C3 in A549 cells substantially reduced the SOCE-induced [Ca2+]i rise, and reversed the ROS-mediated oxidative, fibrotic, inflammatory, and apoptotic responses, thus confirming the role of TRPC1/C3 in SOCE driven COPD-like condition. Higher TRPC1/C3, STIM1, and ORAI1 expressions, along with a greater Ca2+ entry, via SOCE in ROS-induced A549 cells, led to the rise in oxidative, fibrotic, inflammatory, and apoptotic gene expression, specifically through the extracellular signal-regulated kinase (ERK) pathway. Abatement of TRPC1 and/or TRPC3 reduced the mobilization of [Ca2+]i and reversed apoptotic gene expression and ERK activation, signifying the involvement of TRPC1/C3. Together these data suggest that TRPC1/C3 and SOCE facilitate the COPD condition through ROS-mediated cell death, thus implicating their likely roles as potential therapeutic targets for COPD. SUMMARY: Alterations in Ca2+ signaling modalities in normal pulmonary epithelial cells exhibit COPD through oxidative stress and cellular injury, compromising repair, which was alleviated through inhibition of store-operated calcium entry. SUBJECT AREA: Calcium, ROS, Cellular signaling, lung disease.
Collapse
Affiliation(s)
- Samuel Shin
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Farai C Gombedza
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Eugenia Awuah Boadi
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Allen J Yiu
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Sanjit K Roy
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Bidhan C Bandyopadhyay
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America.
| |
Collapse
|
25
|
Shim S, Goyal R, Panoutsopoulos AA, Balashova OA, Lee D, Borodinsky LN. Calcium dynamics at the neural cell primary cilium regulate Hedgehog signaling-dependent neurogenesis in the embryonic neural tube. Proc Natl Acad Sci U S A 2023; 120:e2220037120. [PMID: 37252980 PMCID: PMC10266006 DOI: 10.1073/pnas.2220037120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
The balance between neural stem cell proliferation and neuronal differentiation is paramount for the appropriate development of the nervous system. Sonic hedgehog (Shh) is known to sequentially promote cell proliferation and specification of neuronal phenotypes, but the signaling mechanisms responsible for the developmental switch from mitogenic to neurogenic have remained unclear. Here, we show that Shh enhances Ca2+ activity at the neural cell primary cilium of developing Xenopus laevis embryos through Ca2+ influx via transient receptor potential cation channel subfamily C member 3 (TRPC3) and release from intracellular stores in a developmental stage-dependent manner. This ciliary Ca2+ activity in turn antagonizes canonical, proliferative Shh signaling in neural stem cells by down-regulating Sox2 expression and up-regulating expression of neurogenic genes, enabling neuronal differentiation. These discoveries indicate that the Shh-Ca2+-dependent switch in neural cell ciliary signaling triggers the switch in Shh action from canonical-mitogenic to neurogenic. The molecular mechanisms identified in this neurogenic signaling axis are potential targets for the treatment of brain tumors and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sangwoo Shim
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Raman Goyal
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Alexios A. Panoutsopoulos
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Olga A. Balashova
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - David Lee
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Laura N. Borodinsky
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| |
Collapse
|
26
|
Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 2023:10.1007/s12035-023-03352-5. [PMID: 37118324 DOI: 10.1007/s12035-023-03352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, 38000, Grenoble, France.
| |
Collapse
|
27
|
Choi BE, Shin S, Evans S, Singh BB, Bandyopadhyay BC. Ablation of TRPC3 disrupts Ca 2+ signaling in salivary ductal cells and promotes sialolithiasis. Sci Rep 2023; 13:5772. [PMID: 37031239 PMCID: PMC10082769 DOI: 10.1038/s41598-023-32602-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Clinical studies and structural analyses of salivary stones strongly suggest a linkage between higher saliva calcium (Ca2+) and salivary stone formation, sialolithiasis; however, the process and the mechanism leading to Ca2+ overload during sialolithiasis is not well understood. Here, we show that TRPC3 null (-/-) mice presented with a reduction in Ca2+ entry and current in ductal cells with higher saliva [Ca2+] suggesting diminished transepithelial Ca2+ flux across the salivary ductal cells, leaving more Ca2+ in ductal fluid. Significantly, we found that TRPC3 was expressed in mice and human salivary ductal cells, while intraductal stones were detected in both mice (TRPC3-/-) and patient (sialolithiasis) salivary glands. To identify the mechanism, we found that TRPC3 was crucial in preventing the expression of calcification genes (BMP2/6, Runx2) in ductal cells which may be due to higher extracellular Ca2+ in SMG tissues. Similarly, inflammatory (IL6, NLRP3), fibrotic (FN1, TGFβ1) and apoptotic (Bax1/Bcl2) markers were also elevated, suggesting that the loss of TRPC3 induces genetic changes that leads to salivary gland cell death and induction of inflammatory response. Overall, ablation of TRPC3-/- leads to higher saliva [Ca2+], along with elevated detrimental gene expressions, altogether contributing to salivary gland stone formation.
Collapse
Affiliation(s)
- Bok-Eum Choi
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA
| | - Samuel Shin
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, 20064, USA
| | - Sade Evans
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA
| | - Brij B Singh
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA.
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, 20064, USA.
| |
Collapse
|
28
|
Jiang J, Yu Y. Pharmacologically targeting transient receptor potential channels for seizures and epilepsy: Emerging preclinical evidence of druggability. Pharmacol Ther 2023; 244:108384. [PMID: 36933703 PMCID: PMC10124570 DOI: 10.1016/j.pharmthera.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
As one of the most prevalent and disabling brain disorders, epilepsy is characterized by spontaneous seizures that result from aberrant, excessive hyperactivity of a group of highly synchronized brain neurons. Remarkable progress in epilepsy research and treatment over the first two decades of this century led to a dramatical expansion in the third-generation antiseizure drugs (ASDs). However, there are still over 30% of patients suffering from seizures resistant to the current medications, and the broad unbearable adversative effects of ASDs significantly impair the quality of life in about 40% of individuals affected by the disease. Prevention of epilepsy in those who are at high risks is another major unmet medical need, given that up to 40% of epilepsy patients are believed to have acquired causes. Therefore, it is important to identify novel drug targets that can facilitate the discovery and development of new therapies engaging unprecedented mechanisms of action that might overcome these significant limitations. Also over the last two decades, calcium signaling has been increasingly recognized as a key contributory factor in epileptogenesis of many aspects. The intracellular calcium homeostasis involves a variety of calcium-permeable cation channels, the most important of which perhaps are the transient receptor potential (TRP) ion channels. This review focuses on recent exciting advances in understanding of TRP channels in preclinical models of seizure disorders. We also provide emerging insights into the molecular and cellular mechanisms of TRP channels-engaged epileptogenesis that might lead to new antiseizure therapies, epilepsy prevention and modification, and even a cure.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
29
|
Rached G, Saliba Y, Maddah D, Hajal J, Smayra V, Bakhos J, Groschner K, Birnbaumer L, Fares N. TRPC3 Regulates Islet Beta-Cell Insulin Secretion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204846. [PMID: 36642838 PMCID: PMC9951314 DOI: 10.1002/advs.202204846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Insulin release is tightly controlled by glucose-stimulated calcium (GSCa) through hitherto equivocal pathways. This study investigates TRPC3, a non-selective cation channel, as a critical regulator of insulin secretion and glucose control. TRPC3's involvement in glucose-stimulated insulin secretion (GSIS) is studied in human and animal islets. TRPC3-dependent in vivo insulin secretion is investigated using pharmacological tools and Trpc3-/- mice. TRPC3's involvement in islet glucose uptake and GSCa is explored using fluorescent glucose analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose and calcium imaging. TRPC3 modulation by a small-molecule activator, GSK1702934A, is evaluated in type 2 diabetic mice. TRPC3 is functionally expressed in human and mouse islet beta cells. TRPC3-controlled insulin secretion is KATP -independent and primarily mediated by diacylglycerol channel regulation of the cytosolic calcium oscillations following glucose stimulation. Conversely, glucose uptake in islets is independent of TRPC3. TRPC3 pharmacologic inhibition and knockout in mice lead to defective insulin secretion and glucose intolerance. Subsequently, TRPC3 activation through targeted small-molecule enhances insulin secretion and alleviates diabetes hallmarks in animals. This study imputes a function for TRPC3 at the onset of GSIS. These insights strengthen one's knowledge of insulin secretion physiology and set forth the TRPC3 channel as an appealing candidate for drug development in the treatment of diabetes.
Collapse
Affiliation(s)
- Gaëlle Rached
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Youakim Saliba
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Dina Maddah
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Joelle Hajal
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Viviane Smayra
- Faculty of MedicineSaint Joseph UniversitySaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Jules‐Joel Bakhos
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Klaus Groschner
- Gottfried‐Schatz‐Research‐Centre‐BiophysicsMedical University of GrazGraz8010Austria
| | - Lutz Birnbaumer
- School of Medical SciencesInstitute of Biomedical Research (BIOMED)Catholic University of ArgentinaBuenos AiresC1107AAZArgentina
- Signal Transduction LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkDurhamNCC1107AAZUSA
| | - Nassim Fares
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| |
Collapse
|
30
|
Hahn S, Um KB, Kim SW, Kim HJ, Park MK. Proximal dendritic localization of NALCN channels underlies tonic and burst firing in nigral dopaminergic neurons. J Physiol 2023; 601:171-193. [PMID: 36398712 DOI: 10.1113/jp283716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
In multipolar nigral dopamine (DA) neurons, the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. However, the causal link between them is unknown. Here we report that the proximal dendritic localization of NALCN underlies pacemaking and burst firing in DA neurons. Our morphological analysis of nigral DA neurons reveals that TRPC3 is ubiquitously expressed in the whole somatodendritic compartment, but NALCN is localized within the PDCs. Blocking either TRPC3 or NALCN channels abolished pacemaking. However, only blocking NALCN, not TRPC3, degraded burst discharges. Furthermore, local glutamate uncaging readily induced burst discharges within the PDCs, compared with other parts of the neuron, and NALCN channel inhibition dissipated burst generation, indicating the importance of NALCN to the high excitability of PDCs. Therefore, we conclude that PDCs serve as a common base for tonic and burst firing in nigral DA neurons. KEY POINTS: Midbrain dopamine (DA) neurons are slow pacemakers that can generate tonic and burst firings, and the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. We find that slow tonic firing depends on the basal activity of both the NALCN and TRPC3 channels, but that burst firing does not require TRPC3 channels but relies only on NALCN channels. We find that TRPC3 is ubiquitously expressed in the entire somatodendritic compartment, but that NALCN exists only within the PDCs in nigral DA neurons. We show that NALCN channel localization confers high excitability on PDCs and is essential for burst generation in nigral DA neurons. These results suggest that PDCs serve as a common base for tonic and burst firing in nigral DA neurons.
Collapse
Affiliation(s)
- Suyun Hahn
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ki Bum Um
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - So Woon Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - Myoung Kyu Park
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, Korea
| |
Collapse
|
31
|
Hu D, Li H, Yu H, Zhao M, Ye L, Liu B, Ge N, Dong N, Wu L. Clenbuterol Prevents Mechanical Unloading-Induced Myocardial Atrophy via Upregulation of Transient Receptor Potential Channel-3. Int Heart J 2023; 64:901-909. [PMID: 37778993 DOI: 10.1536/ihj.21-129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Left ventricular assist device in combination with clenbuterol has been demonstrated to significantly improve heart function in patients with advanced heart failure. However, the roles of clenbuterol in mechanical unloading and its underlying mechanism are poorly understood. A rat abdominal heart transplantation model has been developed to mimic mechanical unloading of the heart. The recipient rats were randomly segregated into experimental groups for the daily administration of either saline (the "Trans" group; n = 13) or clenbuterol (2 mg/kg, the "Trans + CB" group; n = 12). Another group of 10 rats served as a treatment mimic control/sham animals (the "Sham" group). All interventions were performed via intraperitoneal injections once daily for 4 weeks. The Trans group animals exhibited myocardial atrophy and dysfunction with decreased expression levels of transient receptor potential channel 3 (TRPC3) and phospholipase C-β1 (PLC-β1) at 4 weeks post-transplantation. Administration of clenbuterol improved cardiac function, prevented myocardial atrophy, and restored expression of TRPC3 and PLC-β1 in the unloaded hearts of the "Trans + CB" animals at 4 weeks post-transplantation. Silencing of the TRPC3 gene by siRNA inhibited the pro-hypertrophic effect of clenbuterol in the rat primary cardiomyocytes in vitro. Furthermore, U73122, an inhibitor of the PLC-β1/diacylglycerol (DAG) pathway, significantly attenuated clenbuterol-induced upregulation of TRPC3 in cardiomyocytes. These findings suggest that the anti-atrophic effect of clenbuterol may be dependent on the upregulation of TRPC3 through the activation of the PLC-β1/DAG pathway during mechanical unloading. The results of our study reveal a potential target for the prevention and treatment of mechanical unloading-induced myocardial atrophy.
Collapse
Affiliation(s)
- Dan Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Huadong Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Hong Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Meng Zhao
- School of Life Sciences, Westlake University
| | - Lei Ye
- National Heart Centre Singapore
| | - Baoqing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | | | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Long Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
32
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
33
|
Numaga-Tomita T, Shimauchi T, Kato Y, Nishiyama K, Nishimura A, Sakata K, Inada H, Kita S, Iwamoto T, Nabekura J, Birnbaumer L, Mori Y, Nishida M. Inhibition of transient receptor potential cation channel 6 promotes capillary arterialization during post-ischaemic blood flow recovery. Br J Pharmacol 2023; 180:94-110. [PMID: 36068079 PMCID: PMC10092707 DOI: 10.1111/bph.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Capillary arterialization, characterized by the coverage of pre-existing or nascent capillary vessels with vascular smooth muscle cells (VSMCs), is critical for the development of collateral arterioles to improve post-ischaemic blood flow. We previously demonstrated that the inhibition of transient receptor potential 6 subfamily C, member 6 (TRPC6) channels facilitate contractile differentiation of VSMCs under ischaemic stress. We here investigated whether TRPC6 inhibition promotes post-ischaemic blood flow recovery through capillary arterialization in vivo. EXPERIMENTAL APPROACH Mice were subjected to hindlimb ischaemia by ligating left femoral artery. The recovery rate of peripheral blood flow was calculated by the ratio of ischaemic left leg to non-ischaemic right one. The number and diameter of blood vessels were analysed by immunohistochemistry. Expression and phosphorylation levels of TRPC6 proteins were determined by western blotting and immunohistochemistry. KEY RESULTS Although the post-ischaemic blood flow recovery is reportedly dependent on endothelium-dependent relaxing factors, systemic TRPC6 deletion significantly promoted blood flow recovery under the condition that nitric oxide or prostacyclin production were inhibited, accompanying capillary arterialization. Cilostazol, a clinically approved drug for peripheral arterial disease, facilitates blood flow recovery by inactivating TRPC6 via phosphorylation at Thr69 in VSMCs. Furthermore, inhibition of TRPC6 channel activity by pyrazole-2 (Pyr2; BTP2; YM-58483) promoted post-ischaemic blood flow recovery in Apolipoprotein E-knockout mice. CONCLUSION AND IMPLICATIONS Suppression of TRPC6 channel activity in VSMCs could be a new strategy for the improvement of post-ischaemic peripheral blood circulation.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan.,Shinshu University School of Medicine, Nagano, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan
| | - Kosuke Sakata
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inada
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan
| | - Satomi Kita
- Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | | | - Junichi Nabekura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan
| | - Lutz Birnbaumer
- NIEHS, NIH, Research Triangle Park, North Carolina, USA.,Institute for Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
34
|
Vestuto V, Di Sarno V, Musella S, Di Dona G, Moltedo O, Gomez-Monterrey IM, Bertamino A, Ostacolo C, Campiglia P, Ciaglia T. New Frontiers on ER Stress Modulation: Are TRP Channels the Leading Actors? Int J Mol Sci 2022; 24:185. [PMID: 36613628 PMCID: PMC9820239 DOI: 10.3390/ijms24010185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic structure, playing multiple roles including calcium storage, protein synthesis and lipid metabolism. During cellular stress, variations in ER homeostasis and its functioning occur. This condition is referred as ER stress and generates a cascade of signaling events termed unfolded protein response (UPR), activated as adaptative response to mitigate the ER stress condition. In this regard, calcium levels play a pivotal role in ER homeostasis and therefore in cell fate regulation since calcium signaling is implicated in a plethora of physiological processes, but also in disease conditions such as neurodegeneration, cancer and metabolic disorders. A large body of emerging evidence highlighted the functional role of TRP channels and their ability to promote cell survival or death depending on endoplasmic reticulum stress resolution, making them an attractive target. Thus, in this review we focused on the TRP channels' correlation to UPR-mediated ER stress in disease pathogenesis, providing an overview of their implication in the activation of this cellular response.
Collapse
Affiliation(s)
- Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| | - Giorgio Di Dona
- Pineta Grande Hospital, Via Domiziana, km 30/00, 81030 Castel Volturno, CE, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| | | | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
- European Biomedical Research Institute of Salerno, Via S. De Renzi 50, 84125 Salerno, SA, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| |
Collapse
|
35
|
Oda S, Nishiyama K, Furumoto Y, Yamaguchi Y, Nishimura A, Tang X, Kato Y, Numaga-Tomita T, Kaneko T, Mangmool S, Kuroda T, Okubo R, Sanbo M, Hirabayashi M, Sato Y, Nakagawa Y, Kuwahara K, Nagata R, Iribe G, Mori Y, Nishida M. Myocardial TRPC6-mediated Zn 2+ influx induces beneficial positive inotropy through β-adrenoceptors. Nat Commun 2022; 13:6374. [PMID: 36289215 PMCID: PMC9606288 DOI: 10.1038/s41467-022-34194-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Baroreflex control of cardiac contraction (positive inotropy) through sympathetic nerve activation is important for cardiocirculatory homeostasis. Transient receptor potential canonical subfamily (TRPC) channels are responsible for α1-adrenoceptor (α1AR)-stimulated cation entry and their upregulation is associated with pathological cardiac remodeling. Whether TRPC channels participate in physiological pump functions remains unclear. We demonstrate that TRPC6-specific Zn2+ influx potentiates β-adrenoceptor (βAR)-stimulated positive inotropy in rodent cardiomyocytes. Deletion of trpc6 impairs sympathetic nerve-activated positive inotropy but not chronotropy in mice. TRPC6-mediated Zn2+ influx boosts α1AR-stimulated βAR/Gs-dependent signaling in rat cardiomyocytes by inhibiting β-arrestin-mediated βAR internalization. Replacing two TRPC6-specific amino acids in the pore region with TRPC3 residues diminishes the α1AR-stimulated Zn2+ influx and positive inotropic response. Pharmacological enhancement of TRPC6-mediated Zn2+ influx prevents chronic heart failure progression in mice. Our data demonstrate that TRPC6-mediated Zn2+ influx with α1AR stimulation enhances baroreflex-induced positive inotropy, which may be a new therapeutic strategy for chronic heart failure.
Collapse
Affiliation(s)
- Sayaka Oda
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Kazuhiro Nishiyama
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yuka Furumoto
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yohei Yamaguchi
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Akiyuki Nishimura
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Xiaokang Tang
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Yuri Kato
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Takuro Numaga-Tomita
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.263518.b0000 0001 1507 4692Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | - Toshiyuki Kaneko
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Supachoke Mangmool
- grid.10223.320000 0004 1937 0490Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Takuya Kuroda
- grid.410797.c0000 0001 2227 8773National Institute of Health Sciences, Kanagawa, 210-9501 Japan
| | - Reishin Okubo
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Makoto Sanbo
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Masumi Hirabayashi
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Yoji Sato
- grid.410797.c0000 0001 2227 8773National Institute of Health Sciences, Kanagawa, 210-9501 Japan
| | - Yasuaki Nakagawa
- grid.258799.80000 0004 0372 2033Kyoto University Graduate School of Medicine, Kyoto, 606-8507 Japan
| | - Koichiro Kuwahara
- grid.263518.b0000 0001 1507 4692Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | - Ryu Nagata
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
| | - Gentaro Iribe
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Yasuo Mori
- grid.258799.80000 0004 0372 2033Graduate School of Engineering, Kyoto University, Kyoto, 615-8510 Japan
| | - Motohiro Nishida
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan ,grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| |
Collapse
|
36
|
Sabourin J, Beauvais A, Luo R, Montani D, Benitah JP, Masson B, Antigny F. The SOCE Machinery: An Unbalanced Knowledge between Left and Right Ventricular Pathophysiology. Cells 2022; 11:cells11203282. [PMID: 36291148 PMCID: PMC9600889 DOI: 10.3390/cells11203282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Right ventricular failure (RVF) is the most important prognostic factor for morbidity and mortality in pulmonary arterial hypertension (PAH) or pulmonary hypertension (PH) caused by left heart diseases. However, right ventricle (RV) remodeling is understudied and not targeted by specific therapies. This can be partly explained by the lack of basic knowledge of RV remodeling. Since the physiology and hemodynamic function of the RV differ from those of the left ventricle (LV), the mechanisms of LV dysfunction cannot be generalized to that of the RV, albeit a knowledge of these being helpful to understanding RV remodeling and dysfunction. Store-operated Ca2+ entry (SOCE) has recently emerged to participate in the LV cardiomyocyte Ca2+ homeostasis and as a critical player in Ca2+ mishandling in a pathological context. In this paper, we highlight the current knowledge on the SOCE contribution to the LV and RV dysfunctions, as SOCE molecules are present in both compartments. he relative lack of studies on RV dysfunction indicates the necessity of further investigations, a significant challenge over the coming years.
Collapse
Affiliation(s)
- Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| | - Antoine Beauvais
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Rui Luo
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jean-Pierre Benitah
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| |
Collapse
|
37
|
Yu Y, Li W, Jiang J. TRPC channels as emerging targets for seizure disorders. Trends Pharmacol Sci 2022; 43:787-798. [PMID: 35840362 PMCID: PMC9378536 DOI: 10.1016/j.tips.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is characterized by seizures of diverse types that affect about 1-2% of the population worldwide. Current antiseizure medications are unsatisfactory, as they merely provide symptomatic relief, are ineffective in about one-third of patients, and cause unbearable adverse effects. Transient receptor potential canonical (TRPC) channels are a group of nonselective cation channels involved in many physiological functions. In this review, we provide an overview of recent preclinical studies using both genetic and pharmacological strategies that reveal these receptor-operated calcium-permeable channels may also play fundamental roles in many aspects of epileptic seizures. We also propose that TRPC channels represent appealing targets for epilepsy treatment, with a goal of helping to advance the discovery and development of new antiseizure and/or antiepileptogenic therapies.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
38
|
Mak YY, Loong BJ, Millns P, Bauer CC, Bon RS, Mbaki Y, Lee FK, Lim KH, Kong C, Then SM, Ting KN. Schwarzinicine A inhibits transient receptor potential canonical channels and exhibits overt vasorelaxation effects. Phytother Res 2022; 36:2952-2963. [PMID: 35537691 PMCID: PMC9544403 DOI: 10.1002/ptr.7489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022]
Abstract
This study investigated the vasorelaxant effects of schwarzinicine A, an alkaloid recently reported from Ficus schwarzii Koord. Regulation of calcium homeostasis in vascular smooth muscle cells (VSMC) is viewed as one of the main mechanisms for controlling blood pressure. L‐type voltage‐gated calcium channel (VGCC) blockers are commonly used for controlling hypertension. Recently, the transient receptor potential canonical (TRPC) channels were found in blood vessels of different animal species with evidence of their roles in the regulation of vascular contractility. In this study, we studied the mechanism of actions of schwarzinicine A focusing on its regulation of L‐type VGCC and TRPC channels. Schwarzinicine A exhibited the highest vasorelaxant effect (123.1%) compared to other calcium channel blockers. It also overtly attenuated calcium‐induced contractions of the rat isolated aortae in a calcium‐free environment showing its mechanism to inhibit calcium influx. Fluorometric intracellular calcium recordings confirmed its inhibition of hTRPC3‐, hTRPC4‐, hTRPC5‐ and hTRPC6‐mediated calcium influx into HEK cells with IC50 values of 3, 17, 19 and 7 μM, respectively. The evidence gathered in this study suggests that schwarzinicine A blocks multiple TRPC channels and L‐type VGCC to exert a significant vascular relaxation response.
Collapse
Affiliation(s)
- Yin-Ying Mak
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Bi-Juin Loong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Paul Millns
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Claudia C Bauer
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Robin S Bon
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Yvonne Mbaki
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Fong-Kai Lee
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Cin Kong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Sue-Mian Then
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Kang-Nee Ting
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
39
|
Shin S, Ibeh CL, Awuah Boadi E, Choi BE, Roy SK, Bandyopadhyay BC. Hypercalciuria switches Ca 2+ signaling in proximal tubular cells, induces oxidative damage to promote calcium nephrolithiasis. Genes Dis 2022; 9:531-548. [PMID: 35224165 PMCID: PMC8843860 DOI: 10.1016/j.gendis.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
Proximal tubule (PT) transports most of the renal Ca2+, which was usually described as paracellular (passive). We found a regulated Ca2+ entry pathway in PT cells via the apical transient receptor potential canonical 3 (TRPC3) channel, which initiates transcellular Ca2+ transport. Although TRPC3 knockout (-/-) mice were mildly hypercalciuric and displayed luminal calcium phosphate (CaP) crystals at Loop of Henle (LOH), no CaP + calcium oxalate (CaOx) mixed urine crystals were spotted, which are mostly found in calcium nephrolithiasis (CaNL). Thus, we used oral calcium gluconate (CaG; 2%) to raise the PT luminal [Ca2+]o further in TRPC3 -/- mice for developing such mixed stones to understand the mechanistic role of PT-Ca2+ signaling in CaNL. Expectedly, CaG-treated mice urine samples presented with numerous mixed crystals with remains of PT cells, which were pronounced in TRPC3 -/- mice, indicating PT cell damage. Notably, PT cells from CaG-treated groups switched their mode of Ca2+ entry from receptor-operated to store-operated pathway with a sustained rise in intracellular [Ca2+] ([Ca2+]i), indicating the stagnation in PT Ca2+ transport. Moreover, those PT cells from CaG-treated groups demonstrated an upregulation of calcification, inflammation, fibrotic, oxidative stress, and apoptotic genes; effects of which were more robust in TRPC3 ablated condition. Furthermore, kidneys from CaG-treated groups exhibited fibrosis, tubular injury and calcifications with significant reactive oxygen species generation in the urine, thus, indicating in vivo CaNL. Taken together, excess PT luminal Ca2+ due to escalation of hypercalciuria in TRPC3 ablated mice induced surplus CaP crystal formation and caused stagnation of PT [Ca2+]i, invoking PT cell injury, hence mixed stone formation.
Collapse
Affiliation(s)
| | | | - Eugenia Awuah Boadi
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bok-Eum Choi
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Sanjit K. Roy
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| |
Collapse
|
40
|
Nagib MM, Zhang S, Yasmen N, Li L, Hou R, Yu Y, Boda VK, Wu Z, Li W, Jiang J. Inhibition of TRPC3 channels by a novel pyrazole compound confers antiseizure effects. Epilepsia 2022; 63:1003-1015. [PMID: 35179226 PMCID: PMC9007831 DOI: 10.1111/epi.17190] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/02/2023]
Abstract
OBJECTIVE As a key member of the transient receptor potential (TRP) superfamily, TRP canonical 3 (TRPC3) regulates calcium homeostasis and contributes to neuronal excitability. Ablation of TRPC3 lessens pilocarpine-induced seizures in mice, suggesting that TRPC3 inhibition might represent a novel antiseizure strategy. Among current TRPC3 inhibitors, pyrazole 3 (Pyr3) is most selective and potent. However, Pyr3 only provides limited benefits in pilocarpine-treated mice, likely due to its low metabolic stability and potential toxicity. We recently reported a modified pyrazole compound 20 (or JW-65) that has improved stability and safety. The objective of this study was to explore the effects of TRPC3 inhibition by our current lead compound JW-65 on seizure susceptibility. METHODS We first examined the pharmacokinetic properties including plasma half-life and brain to plasma ratio of JW-65 after systemic administration in mice. We then investigated the effects of TRPC3 inhibition by JW-65 on behavioral and electrographic seizures in mice treated with pilocarpine. To ensure our findings are not model specific, we assessed the susceptibility of JW-65-treated mice to pentylenetetrazole (PTZ)-induced seizures with phenytoin as a comparator. RESULTS JW-65 showed adequate half-life and brain penetration in mice, justifying its use for central nervous system conditions. Systemic treatment with JW-65 before pilocarpine injection in mice markedly impaired the initiation of behavioral seizures. This antiseizure action was recapitulated when JW-65 was administered after pilocarpine-induced behavioral seizures were well established and was confirmed by time-locked electroencephalographic monitoring and synchronized video. Moreover, JW-65-treated mice showed substantially decreased susceptibility to PTZ-induced seizures in a dose-dependent manner. SIGNIFICANCE These results suggest that pharmacological inhibition of the TRPC3 channels by our novel compound JW-65 might represent a new antiseizure strategy engaging a previously undrugged mechanism of action. Hence, this proof-of-concept study establishes TRPC3 as a novel feasible therapeutic target for the treatment of some forms of epilepsy.
Collapse
Affiliation(s)
- Marwa M Nagib
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lexiao Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ruida Hou
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vijay K Boda
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wei Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
41
|
Morciano G, Rimessi A, Patergnani S, Vitto VAM, Danese A, Kahsay A, Palumbo L, Bonora M, Wieckowski MR, Giorgi C, Pinton P. Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177:106119. [PMID: 35131483 DOI: 10.1016/j.phrs.2022.106119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022]
Abstract
Intracellular calcium signaling is a universal language source shared by the most part of biological entities inside cells that, all together, give rise to physiological and functional anatomical units, the organ. Although preferentially recognized as signaling between cell life and death processes, in the heart it assumes additional relevance considered the importance of calcium cycling coupled to ATP consumption in excitation-contraction coupling. The concerted action of a plethora of exchangers, channels and pumps inward and outward calcium fluxes where needed, to convert energy and electric impulses in muscle contraction. All this without realizing it, thousands of times, every day. An improper function of those proteins (i.e., variation in expression, mutations onset, dysregulated channeling, differential protein-protein interactions) being part of this signaling network triggers a short circuit with severe acute and chronic pathological consequences reported as arrhythmias, cardiac remodeling, heart failure, reperfusion injury and cardiomyopathies. By acting with chemical, peptide-based and pharmacological modulators of these players, a correction of calcium homeostasis can be achieved accompanied by an amelioration of clinical symptoms. This review will focus on all those defects in calcium homeostasis which occur in the most common cardiac diseases, including myocardial infarction, arrhythmia, hypertrophy, heart failure and cardiomyopathies. This part will be introduced by the state of the art on the proteins involved in calcium homeostasis in cardiomyocytes and followed by the therapeutic treatments that to date, are able to target them and to revert the pathological phenotype.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica A M Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Asrat Kahsay
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Bonora
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism. Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| |
Collapse
|
42
|
Bon RS, Wright DJ, Beech DJ, Sukumar P. Pharmacology of TRPC Channels and Its Potential in Cardiovascular and Metabolic Medicine. Annu Rev Pharmacol Toxicol 2022; 62:427-446. [PMID: 34499525 DOI: 10.1146/annurev-pharmtox-030121-122314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient receptor potential canonical (TRPC) proteins assemble to form homo- or heterotetrameric, nonselective cation channels permeable to K+, Na+, and Ca2+. TRPC channels are thought to act as complex integrators of physical and chemical environmental stimuli. Although the understanding of essential physiological roles of TRPC channels is incomplete, their implication in various pathological mechanisms and conditions of the nervous system, kidneys, and cardiovascular system in combination with the lack of major adverse effects of TRPC knockout or TRPC channel inhibition is driving the search of TRPC channel modulators as potential therapeutics. Here, we review the most promising small-molecule TRPC channel modulators, the understanding of their mode of action, and their potential in the study and treatment of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Wright
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - Piruthivi Sukumar
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
43
|
Masson B, Montani D, Humbert M, Capuano V, Antigny F. Role of Store-Operated Ca 2+ Entry in the Pulmonary Vascular Remodeling Occurring in Pulmonary Arterial Hypertension. Biomolecules 2021; 11:1781. [PMID: 34944425 PMCID: PMC8698435 DOI: 10.3390/biom11121781] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and multifactorial disease. PAH pathogenesis mostly involves pulmonary arterial endothelial and pulmonary arterial smooth muscle cell (PASMC) dysfunction, leading to alterations in pulmonary arterial tone and distal pulmonary vessel obstruction and remodeling. Unfortunately, current PAH therapies are not curative, and therapeutic approaches mostly target endothelial dysfunction, while PASMC dysfunction is under investigation. In PAH, modifications in intracellular Ca2+ homoeostasis could partly explain PASMC dysfunction. One of the most crucial actors regulating Ca2+ homeostasis is store-operated Ca2+ channels, which mediate store-operated Ca2+ entry (SOCE). This review focuses on the main actors of SOCE in human and experimental PASMC, their contribution to PAH pathogenesis, and their therapeutic potential in PAH.
Collapse
Affiliation(s)
- Bastien Masson
- Faculté de Médecine, School of Medicine, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; (B.M.); (D.M.); (M.H.); (V.C.)
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - David Montani
- Faculté de Médecine, School of Medicine, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; (B.M.); (D.M.); (M.H.); (V.C.)
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, 94276 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculté de Médecine, School of Medicine, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; (B.M.); (D.M.); (M.H.); (V.C.)
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, 94276 Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, School of Medicine, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; (B.M.); (D.M.); (M.H.); (V.C.)
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Research and Innovation Unit, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Fabrice Antigny
- Faculté de Médecine, School of Medicine, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; (B.M.); (D.M.); (M.H.); (V.C.)
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Groupe Hospitalier Paris Saint-Joseph, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| |
Collapse
|
44
|
Ferreira JJ, Amazu C, Puga-Molina LC, Ma X, England SK, Santi CM. SLO2.1/NALCN a sodium signaling complex that regulates uterine activity. iScience 2021; 24:103210. [PMID: 34746693 PMCID: PMC8551532 DOI: 10.1016/j.isci.2021.103210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/29/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Depolarization of the myometrial smooth muscle cell (MSMC) resting membrane potential is necessary for the uterus to transition from a quiescent state to a contractile state. The molecular mechanisms involved in this transition are not completely understood. Here, we report that a coupled system between the Na+-activated K+ channel (SLO2.1) and the non-selective Na+ leak channel (NALCN) determines the MSMC membrane potential. Our data indicate that Na+ entering through NALCN acts as an intracellular signaling molecule that activates SLO2.1. Potassium efflux through SLO2.1 hyperpolarizes the membrane. A decrease in SLO2.1/NALCN activity induces membrane depolarization, triggering Ca2+ entry through voltage-dependent Ca2+ channels and promoting contraction. Consistent with functional coupling, our data show that NALCN and SLO2.1 are in close proximity in human MSMCs. We propose that these arrangements of SLO2.1 and NALCN permit these channels to functionally regulate MSMC membrane potential and cell excitability and modulate uterine contractility.
Collapse
Affiliation(s)
- Juan J. Ferreira
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Chinwendu Amazu
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Lis C. Puga-Molina
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Sarah K. England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Celia M. Santi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
45
|
Abstract
Beta cells of the pancreatic islet express many different types of ion channels. These channels reside in the β-cell plasma membrane as well as subcellular organelles and their coordinated activity and sensitivity to metabolism regulate glucose-dependent insulin secretion. Here, we review the molecular nature, expression patterns, and functional roles of many β-cell channels, with an eye toward explaining the ionic basis of glucose-induced insulin secretion. Our primary focus is on KATP and voltage-gated Ca2+ channels as these primarily regulate insulin secretion; other channels in our view primarily help to sculpt the electrical patterns generated by activated β-cells or indirectly regulate metabolism. Lastly, we discuss why understanding the physiological roles played by ion channels is important for understanding the secretory defects that occur in type 2 diabetes. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
- Benjamin Thompson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
46
|
Yang PL, Li XH, Wang J, Ma XF, Zhou BY, Jiao YF, Wang WH, Cao P, Zhu MX, Li PW, Xiao ZH, Li CZ, Guo CR, Lei YT, Yu Y. GSK1702934A and M085 directly activate TRPC6 via a mechanism of stimulating the extracellular cavity formed by the pore helix and transmembrane helix S6. J Biol Chem 2021; 297:101125. [PMID: 34461094 PMCID: PMC8458982 DOI: 10.1016/j.jbc.2021.101125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 01/20/2023] Open
Abstract
Transient receptor potential canonical (TRPC) channels, as important membrane proteins regulating intracellular calcium (Ca2+i) signaling, are involved in a variety of physiological and pathological processes. Activation and regulation of TRPC are more dependent on membrane or intracellular signals. However, how extracellular signals regulate TRPC6 function remains to be further investigated. Here, we suggest that two distinct small molecules, M085 and GSK1702934A, directly activate TRPC6, both through a mechanism of stimulation of extracellular sites formed by the pore helix (PH) and transmembrane (TM) helix S6. In silico docking scanning of TRPC6 identified three extracellular sites that can bind small molecules, of which only mutations on residues of PH and S6 helix significantly reduced the apparent affinity of M085 and GSK1702934A and attenuated the maximal response of TRPC6 to these two chemicals by altering channel gating of TRPC6. Combing metadynamics, molecular dynamics simulations, and mutagenesis, we revealed that W679, E671, E672, and K675 in the PH and N701 and Y704 in the S6 helix constitute an orthosteric site for the recognition of these two agonists. The importance of this site was further confirmed by covalent modification of amino acid residing at the interface of the PH and S6 helix. Given that three structurally distinct agonists M085, GSK1702934A, and AM-0883, act at this site, as well as the occupancy of lipid molecules at this position found in other TRP subfamilies, it is suggested that the cavity formed by the PH and S6 has an important role in the regulation of TRP channel function by extracellular signals.
Collapse
Affiliation(s)
- Pei-Lin Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xing-Hua Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jin Wang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xue-Fei Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Bo-Ying Zhou
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Feng Jiao
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wen-Hui Wang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pei-Wang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Zhi-Hong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Chang-Run Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yun-Tao Lei
- School of Science, China Pharmaceutical University, Nanjing, China.
| | - Ye Yu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
47
|
Um KB, Hahn S, Kim SW, Lee YJ, Birnbaumer L, Kim HJ, Park MK. TRPC3 and NALCN channels drive pacemaking in substantia nigra dopaminergic neurons. eLife 2021; 10:70920. [PMID: 34409942 PMCID: PMC8456572 DOI: 10.7554/elife.70920] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/18/2021] [Indexed: 01/16/2023] Open
Abstract
Midbrain dopamine (DA) neurons are slow pacemakers that maintain extracellular DA levels. During the interspike intervals, subthreshold slow depolarization underlies autonomous pacemaking and determines its rate. However, the ion channels that determine slow depolarization are unknown. Here we show that TRPC3 and NALCN channels together form sustained inward currents responsible for the slow depolarization of nigral DA neurons. Specific TRPC3 channel blockade completely blocked DA neuron pacemaking, but the pacemaking activity in TRPC3 knock-out (KO) mice was perfectly normal, suggesting the presence of compensating ion channels. Blocking NALCN channels abolished pacemaking in both TRPC3 KO and wild-type mice. The NALCN current and mRNA and protein expression are increased in TRPC3 KO mice, indicating that NALCN compensates for TRPC3 currents. In normal conditions, TRPC3 and NALCN contribute equally to slow depolarization. Therefore, we conclude that TRPC3 and NALCN are two major leak channels that drive robust pacemaking in nigral DA neurons.
Collapse
Affiliation(s)
- Ki Bum Um
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Suyun Hahn
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - So Woon Kim
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yoon Je Lee
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Lutz Birnbaumer
- Neurobiology Laboratory. National Institute of Environmental Health Sciences, North Carolina 27709, USA; and Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Hyun Jin Kim
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Myoung Kyu Park
- Department of physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
48
|
Lin DC, Zheng SY, Zhang ZG, Luo JH, Zhu ZL, Li L, Chen LS, Lin X, Sham JSK, Lin MJ, Zhou RX. TRPC3 promotes tumorigenesis of gastric cancer via the CNB2/GSK3β/NFATc2 signaling pathway. Cancer Lett 2021; 519:211-225. [PMID: 34311033 DOI: 10.1016/j.canlet.2021.07.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/27/2023]
Abstract
The transient receptor potential canonical (TRPC) channels have been implicated in various types of malignancies including gastric cancer (GC). However, the detailed mechanisms of TRPC channels underlying cell proliferation and apoptosis of GC cells remain largely unknown. Here, we report that TRPC3 was highly expressed in clinical GC specimens and correlated with GC malignant progression and poor prognosis. Forced expression of TRPC3 in GC cells enhanced both receptor-operated Ca2+ entry (ROCE) and store-operated Ca2+ entry (SOCE) and promoted the nuclear factor of activated T cell 2 (NFATc2) nuclear translocation by AKT/GSK-3β and CNB2 signaling. Pharmacological inhibition of TRPC3 or CRISPR/Cas9-mediated TRPC3 knockout effectively inhibited the growth of GC cells both in vitro and in vivo. These effects were reversible by the rescue of TRPC3 expression. Furthermore, we confirmed the role of TRPC3 and the ROCE-AKT/GSK3β-CNB2/NFATc2 signaling cascade in regulating cell cycle checkpoint, apoptosis cascade, and intracellular ROS production in GC. Overall, our findings suggest an oncogenic role of TRPC3 in GC and may highlight a potential target of TRPC3 for therapeutic intervention of GC and its malignant progression.
Collapse
Affiliation(s)
- Da-Cen Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China
| | - Si-Yi Zheng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China
| | - Zhi-Guang Zhang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Jian-Hua Luo
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhuang-Li Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China
| | - Li Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Lu-Shan Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xinjian Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Mo-Jun Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Fujian Medical University, Fuzhou, China.
| | - Rui-Xiang Zhou
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| |
Collapse
|
49
|
Val‐Blasco A, Gil‐Fernández M, Rueda A, Pereira L, Delgado C, Smani T, Ruiz Hurtado G, Fernández‐Velasco M. Ca 2+ mishandling in heart failure: Potential targets. Acta Physiol (Oxf) 2021; 232:e13691. [PMID: 34022101 DOI: 10.1111/apha.13691] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Ca2+ mishandling is a common feature in several cardiovascular diseases such as heart failure (HF). In many cases, impairment of key players in intracellular Ca2+ homeostasis has been identified as the underlying mechanism of cardiac dysfunction and cardiac arrhythmias associated with HF. In this review, we summarize primary novel findings related to Ca2+ mishandling in HF progression. HF research has increasingly focused on the identification of new targets and the contribution of their role in Ca2+ handling to the progression of the disease. Recent research studies have identified potential targets in three major emerging areas implicated in regulation of Ca2+ handling: the innate immune system, bone metabolism factors and post-translational modification of key proteins involved in regulation of Ca2+ handling. Here, we describe their possible contributions to the progression of HF.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Department of Biochemistry Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV‐IPN) México City Mexico
| | - Laetitia Pereira
- INSERM UMR‐S 1180 Laboratory of Ca Signaling and Cardiovascular Physiopathology University Paris‐Saclay Châtenay‐Malabry France
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols Madrid Spain
- Department of Metabolism and Cell Signalling Biomedical Research Institute "Alberto Sols" CSIC‐UAM Madrid Spain
| | - Tarik Smani
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
- Department of Medical Physiology and Biophysics University of Seville Seville Spain
- Group of Cardiovascular Pathophysiology Institute of Biomedicine of Seville University Hospital of Virgen del Rocío, University of Seville, CSIC Seville Spain
| | - Gema Ruiz Hurtado
- Cardiorenal Translational Laboratory Institute of Research i+12 University Hospital 12 de Octubre Madrid Spain
- CIBER‐CV University Hospita1 12 de Octubre Madrid Spain
| | - Maria Fernández‐Velasco
- La Paz University Hospital Health Research Institute IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
| |
Collapse
|
50
|
Fujii T, Sugimoto K, Noda T, Shimizu T, Matsuya Y, Sakai H. Inhibition of gastric H +,K +-ATPase by new dihydropyrazole derivative KYY-008. Biochem Biophys Res Commun 2021; 567:177-182. [PMID: 34166915 DOI: 10.1016/j.bbrc.2021.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The gastric proton pump (H+,K+-ATPase) responsible for the H+ secretion of gastric acid is an essential therapeutic target for acid-related diseases. H+,K+-ATPase belongs to a P2-type ATPase family. Here, we examined the effects of a newly synthesized dihydropyrazole derivative KYY-008 on the H+,K+-ATPase. KYY-008 concentration-dependently inhibited the enzyme activity of the ATPase in the membrane fractions prepared from isolated hog gastric mucosa and from human kidney HEK293 cells in which gastric H+,K+-ATPase is exogenously expressed. The IC50 values in these samples were 3.4 μM and 3.7 μM, respectively. In addition, KYY-008 significantly inhibited the H+,K+-ATPase-derived H+ uptake into the tightly sealed vesicles prepared from the hog gastric mucosa. In contrast, KYY-008 has no effect on the activities of other P2-type ATPases such as Na+,K+-ATPase and Ca2+-ATPase. KYY-008 did not change the ionic currents of voltage-dependent Ca2+ channels, that were potential targets for some dihydropyrazole derivatives. Together, we discovered a new dihydropyrazole derivative which acts as a selective inhibitor of gastric H+,K+-ATPase.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Kenji Sugimoto
- Department of Synthetic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takafumi Noda
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yuji Matsuya
- Department of Synthetic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| |
Collapse
|