1
|
Li T, Liu J, Li Z, Wang S, Zhang S, Zhou X, Ren Y. Efficacy of transcutaneous electrical acupoint stimulation for immunological non-responder in HIV/AIDS combined with amphetamine abuse: study protocol for a randomized controlled trial. BMC Complement Med Ther 2024; 24:424. [PMID: 39719577 DOI: 10.1186/s12906-024-04724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Amphetamine-type stimulant (ATS) abuse is strongly associated with an elevated risk of HIV infection and transmission. Antiretroviral therapy (ART) serves as the primary approach for managing HIV infection and AIDS progression. However, ATS abuse diminishes the efficacy of ART in HIV/AIDS patients, amplifying the vulnerability to immunological non-response (INR) and ultimately increasing the incidence rate and mortality of opportunistic infections. Currently, no effective interventions targeting INR exist. Acupuncture has demonstrated promise in bidirectionally modulating the body's immune response and may be beneficial for INR in HIV/AIDS combined with ATS abuse. Nevertheless, further research and comprehensive evaluation are imperative to substantiate these findings. METHODS This study is a two-center, randomized, non-acupoint controlled, single-blind clinical trial. It will be conducted in two large drug rehabilitation centers in western China, involving 114 INR patients receiving ART. The participants will be randomly assigned to either the Transcutaneous Electrical Acupoint Stimulation (TEAS) + ART group or the sham-TEAS + ART group, in a 1:1 ratio. Both groups will receive a 48-week treatment. The primary outcome measure assessed after treatment is the CD4 + T cell count. Secondary outcome measures include the immune reconstitution efficiency of HIV patients, CD4/CD8 ratio, CD4 + CD45RA + and CD4 + CD45RO + counts, CD4 + CD28 + counts, CD4 + CD38 + and CD8 + CD38 + counts, CD4 + ki67 + and CD8 + ki67 + counts, JC mitochondrial membrane potential testing, the incidence of opportunistic infections, and the HIV/AIDS PRO scale. Adverse events occurring during the study observation period will be documented. DISCUSSION This study will investigate the effect of TEAS on immune reconstitution in patients with amphetamine abuse and HIV infection. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR 2300076363. Registered on October 7, 2023, https://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Tao Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Liu
- Drug Rehabilitation Administration of Sichuan Province, Medical Rehabilitation Department, Chengdu, China
| | - Zuoliang Li
- Coercive Rehabilitation Center for Addicts Affiliated to the Public Security Bureau of Ziyang, Ziyang, China
| | - Shoujun Wang
- Coercive Rehabilitation Center for Addicts Affiliated to the Public Security Bureau of Ziyang, Ziyang, China
| | - Su Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Henrich TJ, Bosch RJ, Godfrey C, Mar H, Nair A, Keefer M, Fichtenbaum C, Moisi D, Clagett B, Buck AM, Deitchman AN, Aweeka F, Li JZ, Kuritzkes DR, Lederman MM, Hsue PY, Deeks SG. Sirolimus reduces T cell cycling, immune checkpoint marker expression, and HIV-1 DNA in people with HIV. Cell Rep Med 2024; 5:101745. [PMID: 39321793 PMCID: PMC11513808 DOI: 10.1016/j.xcrm.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/10/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Key HIV cure strategies involve reversing immune dysfunction and limiting the proliferation of infected T cells. We evaluate the safety of sirolimus, a mammalian target of rapamycin (mTOR) inhibitor, in people with HIV (PWH) and study the impact of sirolimus on HIV-1 reservoir size and HIV-1-specific immunity in a single-arm study of 20 weeks of treatment in PWH on antiretroviral therapy (ART). Sirolimus treatment does not impact HIV-1-specific CD8 T cell responses but leads to a significant decrease in CD4+ T cell-associated HIV-1 DNA levels at 20 weeks of therapy in the primary efficacy population (n = 16; 31% decline, p = 0.008). This decline persists for at least 12 weeks following cessation of the study drug. Sirolimus treatment also leads to a significant reduction in CD4+ T cell cycling and PD-1 expression on CD8+ lymphocytes. These data suggest that homeostatic proliferation of infected cells, an important mechanism for HIV persistence, is an intriguing therapeutic target.
Collapse
Affiliation(s)
- Timothy J Henrich
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA.
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Catherine Godfrey
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Hanna Mar
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Apsara Nair
- Frontier Science and Technology Research Foundation, Amherst, NY 14226, USA
| | - Michael Keefer
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Carl Fichtenbaum
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Daniela Moisi
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian Clagett
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Amanda M Buck
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA; San Francisco State University, San Francisco, CA 94132, USA
| | - Amelia N Deitchman
- Department of Clinical Pharmacology, University of California San Francisco, San Francisco, CA 94110, USA
| | - Francesca Aweeka
- Department of Clinical Pharmacology, University of California San Francisco, San Francisco, CA 94110, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael M Lederman
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Priscilla Y Hsue
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
3
|
Molecular and therapeutic insights of rapamycin: a multi-faceted drug from Streptomyces hygroscopicus. Mol Biol Rep 2023; 50:3815-3833. [PMID: 36696023 PMCID: PMC9875782 DOI: 10.1007/s11033-023-08283-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
The advancement in pharmaceutical research has led to the discovery and development of new combinatorial life-saving drugs. Rapamycin is a macrolide compound produced from Streptomyces hygroscopicus. Rapamycin and its derivatives are one of the promising sources of drug with broad spectrum applications in the medical field. In recent times, rapamycin has gained significant attention as of its activity against cytokine storm in COVID-19 patients. Rapamycin and its derivatives have more potency when compared to other prevailing drugs. Initially, it has been used exclusively as an anti-fungal drug. Currently rapamycin has been widely used as an immunosuppressant. Rapamycin is a multifaceted drug; it has anti-cancer, anti-viral and anti-aging potentials. Rapamycin has its specific action on mTOR signaling pathway. mTOR has been identified as a key regulator of different pathways. There will be an increased demand for rapamycin, because it has lesser adverse effects when compared to steroids. Currently researchers are focused on the production of effective rapamycin derivatives to combat the growing demand of this wonder drug. The main focus of the current review is to explore the origin, development, molecular mechanistic action, and the current therapeutic aspects of rapamycin. Also, this review article revealed the potential of rapamycin and the progress of rapamycin research. This helps in understanding the exact potency of the drug and could facilitate further studies that could fill in the existing knowledge gaps. The study also gathers significant data pertaining to the gene clusters and biosynthetic pathways involved in the synthesis and production of this multi-faceted drug. In addition, an insight into the mechanism of action of the drug and important derivatives of rapamycin has been expounded. The fillings of the current review, aids in understanding the underlying molecular mechanism, strain improvement, optimization and production of rapamycin derivatives.
Collapse
|
4
|
Lund NC, Kayode Y, McReynolds MR, Clemmer DC, Hudson H, Clerc I, Hong HK, Brenchley JM, Bass J, D'Aquila RT, Taylor HE. mTOR regulation of metabolism limits LPS-induced monocyte inflammatory and procoagulant responses. Commun Biol 2022; 5:878. [PMID: 36028574 PMCID: PMC9412771 DOI: 10.1038/s42003-022-03804-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Translocated lipopolysaccharide (LPS) activates monocytes via TLR4 and is hypothesized to increase cardiovascular disease risk in persons living with HIV. We tested whether mTOR activity supports LPS-stimulated monocyte production of pro-inflammatory cytokines and tissue factor (TF), as it propels the inflammatory response in several immune cell types besides monocytes. However, multi-omics analyses here demonstrate that mTOR activates a metabolic pathway that limits abundance of these gene products in monocytes. Treatment of primary human monocytes with catalytic mTOR inhibitors (mTORi) increased LPS-induced polyfunctional responses, including production of IL-1β, IL-6, and the pro-coagulant, TF. NF-κB-driven transcriptional activity is enhanced with LPS stimulation after mTORi treatment to increase expression of F3 (TF). Moreover, intracellular NAD+ availability is restricted due to decreased salvage pathway synthesis. These results document mTOR-mediated restraint of the LPS-induced transcriptional response in monocytes and a metabolic mechanism informing strategies to reverse enhanced risk of coagulopathy in pro-inflammatory states.
Collapse
Affiliation(s)
- Nina C Lund
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yetunde Kayode
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Deanna C Clemmer
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hannah Hudson
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Isabelle Clerc
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hee-Kyung Hong
- Division of Endocrinology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Disease, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Joseph Bass
- Division of Endocrinology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Richard T D'Aquila
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Harry E Taylor
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
5
|
Mori L, Valente ST. Cure and Long-Term Remission Strategies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2407:391-428. [PMID: 34985678 DOI: 10.1007/978-1-0716-1871-4_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The majority of virally suppressed individuals will experience rapid viral rebound upon antiretroviral therapy (ART) interruption, providing a strong rationale for the development of cure strategies. Moreover, despite ART virological control, HIV infection is still associated with chronic immune activation, inflammation, comorbidities, and accelerated aging. These effects are believed to be due, in part, to low-grade persistent transcription and trickling production of viral proteins from the pool of latent proviruses constituting the viral reservoir. In recent years there has been an increasing interest in developing what has been termed a functional cure for HIV. This approach entails the long-term, durable control of viral expression in the absence of therapy, preventing disease progression and transmission, despite the presence of detectable integrated proviruses. One such strategy, the block-and-lock approach for a functional cure, proposes the epigenetic silencing of proviral expression, locking the virus in a profound latent state, from which reactivation is very unlikely. The proof-of-concept for this approach was demonstrated with the use of a specific small molecule targeting HIV transcription. Here we review the principles behind the block-and-lock approach and some of the additional strategies proposed to silence HIV expression.
Collapse
Affiliation(s)
- Luisa Mori
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
6
|
Weichseldorfer M, Tagaya Y, Reitz M, DeVico AL, Latinovic OS. Identifying CCR5 coreceptor populations permissive for HIV-1 entry and productive infection: implications for in vivo studies. J Transl Med 2022; 20:39. [PMID: 35073923 PMCID: PMC8785515 DOI: 10.1186/s12967-022-03243-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background The chemokine receptor CCR5 is the major coreceptor for HIV-1 cell entry. We previously observed that not all CCR5 mAbs reduce HIV-1 infection, suggesting that only some CCR5 populations are permissive for HIV-1 entry. This study aims to better understand the relevant conformational states of the cellular coreceptor, CCR5, involved in HIV entry. We hypothesized that CCR5 assumes multiple configurations during normal cycling on the plasma membrane, but only particular forms facilitate HIV-1 infection. Methods To this end, we quantified different CCR5 populations using six CCR5 monoclonal antibodies (mAbs) with different epitope specificities and visualized them with super-resolution microscopy. We quantified each surface CCR5 population before and after HIV-1 infection. Results Based on CCR5 conformational changes, down-modulation, and trafficking rates (internalization and recycling kinetics), we were able to distinguish among heterogeneous CCR5 populations and thus which populations might best be targeted to inhibit HIV-1 entry. We assume that a decreased surface presence of a particular CCR5 subpopulation following infection means that it has been internalized due to HIV-1 entry, and that it therefore represents a highly relevant target for future antiviral therapy strategies. Strikingly, this was most true for antibody CTC8, which targets the N-terminal region of CCR5 and blocks viral entry more efficiently than it blocks chemokine binding. Conclusions Defining the virus-host interactions responsible for HIV-1 transmission, including specific coreceptor populations capable of establishing de novo infections, is essential for the development of an HIV-1 vaccine. This study hopefully will facilitate further development of inhibitors to block CCR5 usage by HIV-1, as well as inform future HIV-1 vaccine design. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03243-8.
Collapse
Affiliation(s)
- Matthew Weichseldorfer
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA
| | - Yutaka Tagaya
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Marvin Reitz
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Anthony L DeVico
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Olga S Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Mohamed H, Gurrola T, Berman R, Collins M, Sariyer IK, Nonnemacher MR, Wigdahl B. Targeting CCR5 as a Component of an HIV-1 Therapeutic Strategy. Front Immunol 2022; 12:816515. [PMID: 35126374 PMCID: PMC8811197 DOI: 10.3389/fimmu.2021.816515] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Globally, human immunodeficiency virus type 1 (HIV-1) infection is a major health burden for which successful therapeutic options are still being investigated. Challenges facing current drugs that are part of the established life-long antiretroviral therapy (ART) include toxicity, development of drug resistant HIV-1 strains, the cost of treatment, and the inability to eradicate the provirus from infected cells. For these reasons, novel anti-HIV-1 therapeutics that can prevent or eliminate disease progression including the onset of the acquired immunodeficiency syndrome (AIDS) are needed. While development of HIV-1 vaccination has also been challenging, recent advancements demonstrate that infection of HIV-1-susceptible cells can be prevented in individuals living with HIV-1, by targeting C-C chemokine receptor type 5 (CCR5). CCR5 serves many functions in the human immune response and is a co-receptor utilized by HIV-1 for entry into immune cells. Therapeutics targeting CCR5 generally involve gene editing techniques including CRISPR, CCR5 blockade using antibodies or antagonists, or combinations of both. Here we review the efficacy of these approaches and discuss the potential of their use in the clinic as novel ART-independent therapies for HIV-1 infection.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Theodore Gurrola
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Berman
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Mackenzie Collins
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Weichseldorfer M, Reitz M, Latinovic OS. Past HIV-1 Medications and the Current Status of Combined Antiretroviral Therapy Options for HIV-1 Patients. Pharmaceutics 2021; 13:pharmaceutics13111798. [PMID: 34834213 PMCID: PMC8621549 DOI: 10.3390/pharmaceutics13111798] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Combined antiretroviral therapy (cART) is treatment with a combination of several antiretroviral drugs that block multiple stages in the virus replication cycle. An estimated 60% of the 38 million HIV-1 patients globally receive some form of cART. The benefits of cART for controlling HIV-1 replication, transmission, and infection rates have led to its universal recommendation. Implementation has caused a substantial reduction in morbidity and mortality of persons living with HIV-1/AIDS (PLWHA). More specifically, standard cART has provided controlled, undetectable levels of viremia, high treatment efficacy, reduction in pill burden, and an improved lifestyle in HIV-1 patients overall. However, HIV-1 patients living with AIDS (HPLA) generally show high viral loads upon cART interruption. Latently infected resting CD4+ T cells remain a major barrier to curing infected patients on long-term cART. There is a critical need for more effective compounds and therapies that not only potently reactivate latently infected cells, but also lead to the death of these reactivated cells. Efforts are ongoing to better control ongoing viral propagation, including the identification of appropriate animal models that best mimic HIV-1 pathogenesis, before proceeding with clinical trials. Limited toxicity profiles, improved drug penetration to certain tissues, and extended-release formulations are needed to cover gaps in existing HIV-1 treatment options. This review will cover past, current, and new cART strategies recently approved or in ongoing development.
Collapse
Affiliation(s)
- Matthew Weichseldorfer
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Marvin Reitz
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Olga S. Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
9
|
Henrich TJ, Schreiner C, Cameron C, Hogan LE, Richardson B, Rutishauser RL, Deitchman AN, Chu S, Rogers R, Thanh C, Gibson EA, Zarinsefat A, Bakkour S, Aweeka F, Busch MP, Liegler T, Baker C, Milush J, Deeks SG, Stock PG. Everolimus, an mTORC1/2 inhibitor, in ART-suppressed individuals who received solid organ transplantation: A prospective study. Am J Transplant 2021; 21:1765-1779. [PMID: 32780519 PMCID: PMC9177122 DOI: 10.1111/ajt.16244] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/30/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
Pharmacologic inhibition of the mammalian target of rapamycin (mTOR) in the setting of renal transplantation has previously been associated with lower human immunodeficiency virus 1 (HIV-1) DNA burden, and in vitro studies suggest that mTOR inhibition may lead to HIV transcriptional silencing. Because prospective clinical trials are lacking, we conducted an open-label, single-arm study to determine the impact of the broad mTOR inhibitor, everolimus, on residual HIV burden, transcriptional gene expression profiles, and immune responses in HIV-infected adult solid organ transplant (SOT) recipients on antiretroviral therapy. Whereas everolimus therapy did not have an overall effect on cell-associated HIV-1 DNA and RNA levels in the entire cohort, participants who maintained everolimus time-averaged trough levels >5 ng/mL during the first 2 months of therapy had significantly lower RNA levels up to 6 months after the cessation of study drug. Time-averaged everolimus trough levels significantly correlated with greater inhibition of mTOR gene pathway transcriptional activity. Everolimus treatment also led to decreased PD-1 expression on certain T cell subsets. These data support the rationale for further study of the effects of mTOR inhibition on HIV transcriptional silencing in non-SOT populations, either alone or in combination with other strategies. Trial Registration: ClinicalTrials.gov NCT02429869.
Collapse
Affiliation(s)
- Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Corinna Schreiner
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA,Institute of Biochemistry and Molecular Biology, Ulm University, Germany
| | - Cheryl Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Louise E. Hogan
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Brian Richardson
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Rachel L. Rutishauser
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA
| | - Simon Chu
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Rodney Rogers
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Thanh
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Erica A. Gibson
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Arya Zarinsefat
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Francesca Aweeka
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA
| | | | - Teri Liegler
- Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA
| | - Christopher Baker
- Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA
| | - Jeffrey Milush
- Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA
| | - Peter G. Stock
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother 2021; 135:111200. [PMID: 33421734 PMCID: PMC7834135 DOI: 10.1016/j.biopha.2020.111200] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of the corona virus disease (COVID-19) has had major global impact. The relationship between severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection and psychiatric diseases is of great concern, with an evident link between corona virus infections and various central and peripheral nervous system manifestations. Unmitigated neuro-inflammation has been noted to underlie not only the severe respiratory complications of the disease but is also present in a range of neuro-psychiatric illnesses. Several neurological and psychiatric disorders are characterized by immune-inflammatory states, while treatments for these disorders have distinct anti-inflammatory properties and effects. With inflammation being a common contributing factor in SARS-CoV-2, as well as psychiatric disorders, treatment of either condition may affect disease progression of the other or alter response to pharmacological treatment. In this review, we elucidate how viral infections could affect pre-existing psychiatric conditions and how pharmacological treatments of these conditions may affect overall progress and outcome in the treatment of SARS-CoV-2. We address whether any treatment-induced benefits and potential adverse effects may ultimately affect the overall treatment approach, considering the underlying dysregulated neuro-inflammatory processes and potential drug interactions. Finally, we suggest adjunctive treatment options for SARS-CoV-2-associated neuro-psychiatric symptoms.
Collapse
Affiliation(s)
- Esmé Jansen van Vuren
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Christiaan B Brink
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Marisa Möller
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Francois P Viljoen
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; South African MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
11
|
Benedetti F, Sorrenti V, Buriani A, Fortinguerra S, Scapagnini G, Zella D. Resveratrol, Rapamycin and Metformin as Modulators of Antiviral Pathways. Viruses 2020; 12:v12121458. [PMID: 33348714 PMCID: PMC7766714 DOI: 10.3390/v12121458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Balanced nutrition and appropriate dietary interventions are fundamental in the prevention and management of viral infections. Additionally, accurate modulation of the inflammatory response is necessary to achieve an adequate antiviral immune response. Many studies, both in vitro with mammalian cells and in vivo with small animal models, have highlighted the antiviral properties of resveratrol, rapamycin and metformin. The current review outlines the mechanisms of action of these three important compounds on the cellular pathways involved with viral replication and the mechanisms of virus-related diseases, as well as the current status of their clinical use.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
- Bendessere™ Study Center, Via Prima Strada 23/3, 35129 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | | | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: (G.S.); (D.Z.)
| | - Davide Zella
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: (G.S.); (D.Z.)
| |
Collapse
|
12
|
Weichseldorfer M, Affram Y, Heredia A, Tagaya Y, Benedetti F, Zella D, Reitz M, Romerio F, Latinovic OS. Anti-HIV Activity of Standard Combined Antiretroviral Therapy in Primary Cells Is Intensified by CCR5-Targeting Drugs. AIDS Res Hum Retroviruses 2020; 36:835-841. [PMID: 32623916 DOI: 10.1089/aid.2020.0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of combined antiretroviral therapy (cART) against HIV-1 is evidenced by reduction of plasma viremia, disease progression, viral transmission, and mortality. However, major challenges still remain in HIV-1 management, especially the emergence of resistant strains and the persistence of viral reservoirs, apparent after cART treatment interruption. Efforts are ongoing to explore the most effective means to intensify cART and successfully control residual viral replication. We anticipate that the reduction by cART of HIV-1 reservoirs could be further enhanced by combining cART with entry inhibitors and drugs that silence CCR5 expression. CCR5-targeting drugs are attractive option because of their low side effects when combined with other antiretroviral drugs. The concept that their inclusion would be effective has been supported by the reduction in two long terminal repeat unintegrated circular DNA, a marker for new infections, when CCR5-targeting drugs are added to standard antiretroviral treatment. This study is, in part, an extension of our previous study demonstrating greater preservation of human CD4+ T-cells and CD4+/CD8+ cell ratios in HIV-infected CD34+ NSG mice when CCR5-targeting drugs were included with standard cART. In this study, we treated HIV-1-infected cell cultures with cART or cART plus CCR5-targeting drugs (maraviroc and rapamycin). We found that treatment intensification with CCR5-targeting drugs led to a significant reduction of HIV-1 replication in peripheral blood ononuclear cells (PBMCs), as judged by measured viral DNA copies and p24 levels. Our data provide proof of principle for the benefit of adding CCR5-targeting drugs to traditional, standard cART to further lower viremia and subsequently reduce viral reservoirs in clinical settings, while potentially lowering side effects by reducing cART concentrations.
Collapse
Affiliation(s)
- Matthew Weichseldorfer
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Yvonne Affram
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Alonso Heredia
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Yutaka Tagaya
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Francesca Benedetti
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Davide Zella
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Marvin Reitz
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Fabio Romerio
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Olga S. Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Abstract
: With current antiretroviral therapy, the lifespan of newly diagnosed persons with HIV (PWH) approaches that of uninfected persons. However, metabolic abnormalities related to both the disease and the virus itself, along with comorbidities of aging, have resulted in end-organ disease and organ failure as a major cause of morbidity and mortality. Solid organ transplantation is a life-saving therapy for PWH who have organ failure, and the approval of the HIV Organ Policy Equity Act has opened and expanded opportunities for PWH to donate and receive organs. The current environment of organ transplantation for PWH will be reviewed and future directions of research and treatment will be discussed.
Collapse
Affiliation(s)
| | - Valentina Stosor
- Divisions of Infectious Diseases and Organ Transplantation and Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Morales MK, Lambing T, Husson J. Review: Evaluation and Management of the HIV/HCV Co-Infected Kidney or Liver Transplant Candidate. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Pérez-Martínez L, Romero L, Muñoz-Galván S, Verdugo-Sivianes EM, Rubio-Mediavilla S, Oteo JA, Carnero A, Blanco JR. Implications of maraviroc and/or rapamycin in a mouse model of fragility. Aging (Albany NY) 2020; 12:8565-8582. [PMID: 32353830 PMCID: PMC7244075 DOI: 10.18632/aging.103167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/31/2020] [Indexed: 11/26/2022]
Abstract
Background: As age increases, the risk of developing fragility also increases. Improving the knowledge of frailty could contribute to maintaining the functional ability of elderly people. Interleukin (IL)-10 homozygous knockout mice (IL-10tm/tm [IL10KO]) constitute an excellent tool for the study of frailty. Because patients with frailty demonstrate an overexpression of CCR5, rapamycin (RAPA) and/or maraviroc (MVC), two molecules able to decrease CCR5 expression, were evaluated. Results: Muscle myostatin was reduced in all the therapeutic groups but the MVC group (p <0.001 for RAPA and MVC-RAPA) and in serum samples (p <0.01 for all the groups). Serum CK levels were also significantly lower in MVC and RAPA groups (p <0.01 in both cases). Lower AST levels were observed in all the therapeutic groups (p <0.05 for all of them). The apoptotic effector caspase-3 was significantly lower in MVC and RAPA groups (p<0.05 in both cases). Combined treatment with MVC-RAPA showed a synergistic increase in p-AKT, p-mTOR and SIRT1 levels. Conclusions: MVC and RAPA show a protective role in some factors involved in frailty. More studies are needed to prove their clinical applications. Material and methods: Eighty male homozygous IL10KOs were randomly assigned to one of 4 groups (n= 20): i) IL10KO group (IL10KO); ii) IL10KO receiving MVC in drinking water (MVC group), iii) IL10KO receiving RAPA in drinking water (RAPA group), and finally, iv) MVC-RAPA group that received MVC and RAPA in drinking water. Blood and muscle samples were analysed. Survival analysis, frailty index calculation, and functional assessment were also performed.
Collapse
Affiliation(s)
| | - Lourdes Romero
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, España
| | - Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, España.,CIBERONC, Instituto de Salud Carlos III, Madrid, España
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, España.,CIBERONC, Instituto de Salud Carlos III, Madrid, España
| | | | - José A Oteo
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, España.,Servicio de Enfermedades Infecciosas, Hospital San Pedro, Logroño, España
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, España.,CIBERONC, Instituto de Salud Carlos III, Madrid, España
| | - José-Ramón Blanco
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, España.,Servicio de Enfermedades Infecciosas, Hospital San Pedro, Logroño, España
| |
Collapse
|
16
|
Modulation of mTORC1 Signaling Pathway by HIV-1. Cells 2020; 9:cells9051090. [PMID: 32354054 PMCID: PMC7291251 DOI: 10.3390/cells9051090] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cellular proliferation and survival which controls cellular response to different stresses, including viral infection. HIV-1 interferes with the mTORC1 pathway at every stage of infection. At the same time, the host cells rely on the mTORC1 pathway and autophagy to fight against virus replication and transmission. In this review, we will provide the most up-to-date picture of the role of the mTORC1 pathway in the HIV-1 life cycle, latency and HIV-related diseases. We will also provide an overview of recent trends in the targeting of the mTORC1 pathway as a promising strategy for HIV-1 eradication.
Collapse
|
17
|
Schwarzer R, Gramatica A, Greene WC. Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses 2020; 12:v12020188. [PMID: 32046251 PMCID: PMC7077203 DOI: 10.3390/v12020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) indefinitely persists, despite effective antiretroviral therapy (ART), within a small pool of latently infected cells. These cells often display markers of immunologic memory and harbor both replication-competent and -incompetent proviruses at approximately a 1:100 ratio. Although complete HIV eradication is a highly desirable goal, this likely represents a bridge too far for our current and foreseeable technologies. A more tractable goal involves engineering a sustained viral remission in the absence of ART––a “functional cure.” In this setting, HIV remains detectable during remission, but the size of the reservoir is small and the residual virus is effectively controlled by an engineered immune response or other intervention. Biological precedence for such an approach is found in the post-treatment controllers (PTCs), a rare group of HIV-infected individuals who, following ART withdrawal, do not experience viral rebound. PTCs are characterized by a small reservoir, greatly reduced inflammation, and the presence of a poorly understood immune response that limits viral rebound. Our goal is to devise a safe and effective means for replicating durable post-treatment control on a global scale. This requires devising methods to reduce the size of the reservoir and to control replication of this residual virus. In the following sections, we will review many of the approaches and tools that likely will be important for implementing such a “reduce and control” strategy and for achieving a PTC-like sustained HIV remission in the absence of ART.
Collapse
|
18
|
New targets for HIV drug discovery. Drug Discov Today 2019; 24:1139-1147. [PMID: 30885676 DOI: 10.1016/j.drudis.2019.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Recent estimates suggest close to one million people per year die globally owing to HIV-related illnesses. Therefore, there is still a need to identify new targets to develop future treatments. Many of the more recently identified targets are host-related and these might be more difficult for the virus to develop drug resistance to. In addition, there are virus-related targets (capsid and RNAse H) that have yet to be exploited clinically. Several of the newer targets also address virulence factors, virus latency or target persistence. The targets highlighted in this review could represent the next generation of viable candidates for drug discovery projects as well as continue the search for a cure for this disease.
Collapse
|
19
|
Latinovic OS, Reitz M, Heredia A. CCR5 Inhibitors and HIV-1 Infection. JOURNAL OF AIDS AND HIV TREATMENT 2019; 1:1-5. [PMID: 31414081 PMCID: PMC6693856 DOI: 10.33696/aids.1.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Olga S. Latinovic
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marvin Reitz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- School of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Jotwani V, Atta MG, Estrella MM. Kidney Disease in HIV: Moving beyond HIV-Associated Nephropathy. J Am Soc Nephrol 2017; 28:3142-3154. [PMID: 28784698 PMCID: PMC5661296 DOI: 10.1681/asn.2017040468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In developed countries, remarkable advances in antiretroviral therapy have transformed HIV infection into a chronic condition. As a result, HIV-associated nephropathy, the classic HIV-driven kidney lesion among individuals of African descent, has largely disappeared in these regions. However, HIV-positive blacks continue to have much higher rates of ESRD than HIV-positive whites, which could be attributed to the APOL1 renal risk variants. Additionally, HIV-positive individuals face adverse consequences beyond HIV itself, including traditional risk factors for CKD and nephrotoxic effects of antiretroviral therapy. Concerns for nephrotoxicity also extend to HIV-negative individuals using tenofovir disoproxil fumarate-based pre-exposure prophylaxis for the prevention of HIV infection. Therefore, CKD remains an important comorbid condition in the HIV-positive population and an emerging concern among HIV-negative persons receiving pre-exposure prophylaxis. With the improved longevity of HIV-positive individuals, a kidney transplant has become a viable option for many who have progressed to ESRD. Herein, we review the growing knowledge regarding the APOL1 renal risk variants in the context of HIV infection, antiretroviral therapy-related nephrotoxicity, and developments in kidney transplantation among HIV-positive individuals.
Collapse
Affiliation(s)
- Vasantha Jotwani
- Kidney Health Research Collaborative, Department of Medicine, University of California, San Francisco, California
- Department of Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, California; and
| | - Mohamed G Atta
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michelle M Estrella
- Kidney Health Research Collaborative, Department of Medicine, University of California, San Francisco, California;
- Department of Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, California; and
| |
Collapse
|
21
|
Ojha CR, Lapierre J, Rodriguez M, Dever SM, Zadeh MA, DeMarino C, Pleet ML, Kashanchi F, El-Hage N. Interplay between Autophagy, Exosomes and HIV-1 Associated Neurological Disorders: New Insights for Diagnosis and Therapeutic Applications. Viruses 2017; 9:v9070176. [PMID: 28684681 PMCID: PMC5537668 DOI: 10.3390/v9070176] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
The autophagy–lysosomal pathway mediates a degradative process critical in the maintenance of cellular homeostasis as well as the preservation of proper organelle function by selective removal of damaged proteins and organelles. In some situations, cells remove unwanted or damaged proteins and RNAs through the release to the extracellular environment of exosomes. Since exosomes can be transferred from one cell to another, secretion of unwanted material to the extracellular environment in exosomes may have an impact, which can be beneficial or detrimental, in neighboring cells. Exosome secretion is under the influence of the autophagic system, and stimulation of autophagy can inhibit exosomal release and vice versa. Neurons are particularly vulnerable to degeneration, especially as the brain ages, and studies indicate that imbalances in genes regulating autophagy are a common feature of many neurodegenerative diseases. Cognitive and motor disease associated with severe dementia and neuronal damage is well-documented in the brains of HIV-infected individuals. Neurodegeneration seen in the brain in HIV-1 infection is associated with dysregulation of neuronal autophagy. In this paradigm, we herein provide an overview on the role of autophagy in HIV-associated neurodegenerative disease, focusing particularly on the effect of autophagy modulation on exosomal release of HIV particles and how this interplay impacts HIV infection in the brain. Specific autophagy–regulating agents are being considered for therapeutic treatment and prevention of a broad range of human diseases. Various therapeutic strategies for modulating specific stages of autophagy and the current state of drug development for this purpose are also evaluated.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Jessica Lapierre
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Seth M Dever
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mohammad Asad Zadeh
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
22
|
Latinovic OS, Medina-Moreno S, Schneider K, Gohain N, Zapata J, Pazgier M, Reitz M, Bryant J, Redfield RR. Full Length Single Chain Fc Protein (FLSC IgG1) as a Potent Antiviral Therapy Candidate: Implications for In Vivo Studies. AIDS Res Hum Retroviruses 2016; 32:178-86. [PMID: 26059995 DOI: 10.1089/aid.2015.0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that FLSC, a chimeric protein containing HIV-1BAL gp120 and the D1 and D2 domains of human CD4, blocks the binding and entry of HIV-1 into target cells by occluding CCR5, the major HIV-1 coreceptor. In an effort to improve the antiviral potential of FLSC, we fused it with the hinge-CH2-CH3 region of human IgG1. The IgG moiety should increase both the affinity and stability in vivo of FLSC, due to the resultant bivalency and an extended serum half-life, thereby increasing its antiviral potency. We previously showed that (FLSC) IgG1 indeed had greater antiviral activity against T cell infections. Here we extend these results to macrophages, for which (FLSC) IgG1 has a more potent antiviral activity than FLSC alone, due in part to its higher binding affinity for CCR5. We also test both compounds in a relevant humanized mouse model and show that, as anticipated, the IgG1 moiety confers a greatly extended half-life. These data, taken together with previous results, suggest potential clinical utility for (FLSC) IgG1 and support further developmental work toward eventual clinical trials.
Collapse
Affiliation(s)
- Olga S. Latinovic
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sandra Medina-Moreno
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kate Schneider
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Neelakshi Gohain
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juan Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marzena Pazgier
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marvin Reitz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- School of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert R. Redfield
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- School of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Heredia A, Latinovic OS, Barbault F, de Leeuw EPH. A novel small-molecule inhibitor of HIV-1 entry. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5469-78. [PMID: 26491257 PMCID: PMC4598220 DOI: 10.2147/dddt.s89338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Antiretroviral therapy has transformed HIV-1 infection into a managed condition with near-normal life expectancy. However, a significant number of patients remain with limited therapeutic options due to HIV-1 resistance, side effects, or drug costs. Further, it is likely that current drugs will not retain efficacy, due to risks of side effects and transmitted resistance. Results We describe compound 5660386 (3-ethyl-2-[3-(1,3,3-trimethyl-1,3-dihydro-2H-indol-2-ylidene)-1-propen-1-yl]-1,3-benzothiazol-3-ium) as a novel inhibitor of HIV-1 entry. Compound 5660386 inhibits HIV-1 entry in cell lines and primary cells, binds to HIV-1 envelope protein, and inhibits the interaction of GP120 to CD4. Further, compound 5660386 showed a unique and broad-range activity against primary HIV-1 isolates from different subtypes and geographical areas. Conclusion Development of small-molecule entry inhibitors of HIV-1 such as 5660386 may lead to novel classes of anti-HIV-1 therapeutics. These inhibitors may be particularly effective against viruses resistant to current antiretroviral drugs and could have potential applications in both treatment and prevention.
Collapse
Affiliation(s)
- Alonso Heredia
- Department of Medicine, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA ; Institute of Human Virology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Olga S Latinovic
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA ; Institute of Human Virology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Florent Barbault
- Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMRCNRS7086, Paris, France
| | - Erik P H de Leeuw
- Institute of Human Virology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA ; Department of Biochemistry and Molecular Biology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Targeting of mTOR catalytic site inhibits multiple steps of the HIV-1 lifecycle and suppresses HIV-1 viremia in humanized mice. Proc Natl Acad Sci U S A 2015; 112:9412-7. [PMID: 26170311 DOI: 10.1073/pnas.1511144112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HIV necessitates host factors for successful completion of its life cycle. Mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that forms two complexes, mTORC1 and mTORC2. Rapamycin is an allosteric inhibitor of mTOR that selectively inhibits mTORC1. Rapamycin interferes with viral entry of CCR5 (R5)-tropic HIV and with basal transcription of the HIV LTR, potently inhibiting replication of R5 HIV but not CXCR4 (X4)-tropic HIV in primary cells. The recently developed ATP-competitive mTOR kinase inhibitors (TOR-KIs) inhibit both mTORC1 and mTORC2. Using INK128 as a prototype TOR-KI, we demonstrate potent inhibition of both R5 and X4 HIV in primary lymphocytes (EC50 < 50 nM), in the absence of toxicity. INK128 inhibited R5 HIV entry by reducing CCR5 levels. INK128 also inhibited both basal and induced transcription of HIV genes, consistent with inhibition of mTORC2, whose activity is critical for phosphorylation of PKC isoforms and, in turn, induction of NF-κB. INK128 enhanced the antiviral potency of the CCR5 antagonist maraviroc, and had favorable antiviral interactions with HIV inhibitors of reverse transcriptase, integrase and protease. In humanized mice, INK128 decreased plasma HIV RNA by >2 log10 units and partially restored CD4/CD8 cell ratios. Targeting of cellular mTOR with INK128 (and perhaps others TOR-KIs) provides a potential strategy to inhibit HIV, especially in patients with drug resistant HIV strains.
Collapse
|
25
|
Garcia-Perez J, Staropoli I, Azoulay S, Heinrich JT, Cascajero A, Colin P, Lortat-Jacob H, Arenzana-Seisdedos F, Alcami J, Kellenberger E, Lagane B. A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity. Retrovirology 2015; 12:50. [PMID: 26081316 PMCID: PMC4470041 DOI: 10.1186/s12977-015-0177-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
Background Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of receptor binding. To date however, information about the binding affinities to receptors for inhibitor-resistant HIV-1 remains limited. Results Here, we show by means of viral envelope (gp120) binding experiments and virus-cell fusion kinetics that a MVC-resistant virus (MVC-Res) that had emerged as a dominant viral quasispecies in a patient displays reduced affinities for CD4 and CCR5 either free or bound to MVC, as compared to its MVC-sensitive counterpart isolated before MVC therapy. An alanine insertion within the GPG motif (G310_P311insA) of the MVC-resistant gp120 V3 loop is responsible for the decreased CCR5 binding affinity, while impaired binding to CD4 is due to sequence changes outside V3. Molecular dynamics simulations of gp120 binding to CCR5 further emphasize that the Ala insertion alters the structure of the V3 tip and weakens interaction with CCR5 ECL2. Paradoxically, infection experiments on cells expressing high levels of CCR5 also showed that Ala allows MVC-Res to use CCR5 efficiently, thereby improving viral fusion and replication efficiencies. Actually, although we found that the V3 loop of MVC-Res is required for high levels of MVC resistance, other regions outside V3 are sufficient to confer a moderate level of resistance. These sequence changes outside V3, however, come with a replication cost, which is compensated for by the Ala insertion in V3. Conclusion These results indicate that changes in the V3 loop of MVC-resistant viruses can augment the efficiency of CCR5-dependent steps of viral entry other than gp120 binding, thereby compensating for their decreased affinity for entry receptors and improving their fusion and replication efficiencies. This study thus sheds light on unsuspected mechanisms whereby MVC-resistant HIV-1 could emerge and grow in treated patients. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0177-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Garcia-Perez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Isabelle Staropoli
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | | | | | - Almudena Cascajero
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Philippe Colin
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France. .,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, 75015, Paris, France.
| | - Hugues Lortat-Jacob
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), 38027, Grenoble, France. .,CNRS, IBS, 38027, Grenoble, France. .,CEA, DSV, IBS, 38027, Grenoble, France.
| | - Fernando Arenzana-Seisdedos
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | | | - Bernard Lagane
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
26
|
Zhu JD, Meng W, Wang XJ, Wang HCR. Broad-spectrum antiviral agents. Front Microbiol 2015; 6:517. [PMID: 26052325 PMCID: PMC4440912 DOI: 10.3389/fmicb.2015.00517] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/09/2015] [Indexed: 12/24/2022] Open
Abstract
Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Jun-Da Zhu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Wen Meng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Hwa-Chain R Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville TN, USA
| |
Collapse
|
27
|
Richterman A, Blumberg E. The Challenges and Promise of HIV-Infected Donors for Solid Organ Transplantation. Curr Infect Dis Rep 2015; 17:471. [DOI: 10.1007/s11908-015-0471-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Stosor V. Organ Transplantation in HIV Patients: Current Status and New Directions. Curr Infect Dis Rep 2013; 15:526-35. [PMID: 24142801 DOI: 10.1007/s11908-013-0381-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Combination antiretroviral therapy has resulted in longer life expectancies in persons living with HIV; however, end organ disease and death from organ failure have become growing issues for this population. With effective therapies for viral suppression, HIV is no longer considered an absolute contraindication to organ transplantation. Over the past decade, studies of transplantation in patients with HIV have had encouraging results such that patients with organ failure are pursuing transplantation. This review focuses on the current status of organ transplantation for HIV-infected persons.
Collapse
Affiliation(s)
- Valentina Stosor
- Divisions of Infectious Diseases and Organ Transplantation and Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, 645 North Michigan Avenue, Suite 900, Chicago, IL, 60611, USA,
| |
Collapse
|
29
|
Abstract
Systemic chronic immune activation is considered today as the driving force of CD4(+) T-cell depletion and acquired immunodeficiency syndrome (AIDS). A residual chronic immune activation persists even in HIV-infected patients in which viral replication is successfully inhibited by anti-retroviral therapy, with the extent of this residual immune activation being associated with CD4(+) T-cell loss. Unfortunately, the causal link between chronic immune activation and CD4(+) T-cell loss has not been formally established. This article provides first a brief historical overview on how the perception of the causative role of immune activation has changed over the years and lists the different kinds of immune activation characteristic of human immunodeficiency virus (HIV) infection. The mechanisms proposed to explain the chronic immune activation are multiple and are enumerated here, as well as the mechanisms proposed on how chronic immune activation could lead to AIDS. In addition, we summarize the lessons learned from natural hosts that know how to 'show AIDS the door', and discuss how these studies informed the design of novel immune modulatory interventions that are currently being tested. Finally, we review the current approaches aimed at targeting chronic immune activation and evoke future perspectives.
Collapse
Affiliation(s)
- Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30329, USA.
| | | |
Collapse
|
30
|
Kidney disease in children and adolescents with perinatal HIV-1 infection. J Int AIDS Soc 2013; 16:18596. [PMID: 23782479 PMCID: PMC3687339 DOI: 10.7448/ias.16.1.18596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/14/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022] Open
Abstract
Introduction Involvement of the kidney in children and adolescents with perinatal (HIV-1) infection can occur at any stage during the child's life with diverse diagnoses, ranging from acute kidney injury, childhood urinary tract infections (UTIs), electrolyte imbalances and drug-induced nephrotoxicity, to diseases of the glomerulus. The latter include various immune-mediated chronic kidney diseases (CKD) and HIV-associated nephropathy (HIVAN). Discussion The introduction of highly active anti-retroviral therapy (HAART) has dramatically reduced the incidence of HIVAN, once the commonest form of CKD in children of African descent living with HIV, and also altered its prognosis from eventual progression to end-stage kidney disease to one that is compatible with long-term survival. The impact of HAART on the outcome of other forms of kidney diseases seen in this population has not been as impressive. Increasingly important is nephrotoxicity secondary to the prolonged use of anti-retroviral agents, and the occurrence of co-morbid kidney disease unrelated to HIV infection or its treatment. Improved understanding of the molecular pathogenesis and genetics of kidney diseases associated with HIV will result in better screening, prevention and treatment efforts, as HIV specialists and nephrologists coordinate clinical care of these patients. Both haemodialysis (HD) and peritoneal dialysis (PD) are effective as renal replacement therapy in HIV-infected patients with end-stage kidney disease, with PD being preferred in resource-limited settings. Kidney transplantation, once contraindicated in this population, has now become the most effective renal replacement therapy, provided rigorous criteria are met. Given the attendant morbidity and mortality in HIV-infected children and adolescents with kidney disease, routine screening for kidney disease is recommended where resources permit. Conclusions This review focuses on the pathogenesis and genetics, clinical presentation and management of kidney disease in children and adolescents with perinatal HIV-1 infection.
Collapse
|
31
|
Rapamycin-induced modulation of miRNA expression is associated with amelioration of HIV-associated nephropathy (HIVAN). Exp Cell Res 2013; 319:2073-2080. [PMID: 23611955 DOI: 10.1016/j.yexcr.2013.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/12/2013] [Accepted: 04/14/2013] [Indexed: 02/06/2023]
Abstract
Recent studies suggested that miRNAs are involved in the development of the pathogenesis of HIV-associated nephropathy (HIVAN). Rapamycin, a widely used mTOR inhibitor, has been demonstrated to slow down the progression of HIVAN. However, the role of miRNA in the regulation of these processes has not been investigated so far. In the current study, we have used a microarray-based approach in combination with real-time PCR to profile the miRNA expression patterns in rapamycin-treated HIVAN mice (Tg26). Our results demonstrated that 19 miRNAs belonging to 13 different families expressed differentially in renal tissues of rapamycin-receiving Tg26 mice when compared to Tg26 mice-receiving saline only. The patterns of miRNAs expression in rapamycin-receiving Tg26 mice took a reverse turn. These miRNAs were classified into 8 functional categories. In in vitro studies, we examined the expression of specific miRNAs in HIV-1 transduced human podocytes (HIV/HPs). HIV/HPs displayed attenuation of expression of miR-99a, -100a, -199a and miR-200, whereas, rapamycin inhibited this effect of HIV. These findings suggest that rapamycin-mediated up-regulation of specific miRNAs could contribute to amelioration of renal lesions in HIVAN mice.
Collapse
|
32
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
33
|
Brennan DC, Aguado JM, Potena L, Jardine AG, Legendre C, Säemann MD, Mueller NJ, Merville P, Emery V, Nashan B. Effect of maintenance immunosuppressive drugs on virus pathobiology: evidence and potential mechanisms. Rev Med Virol 2012; 23:97-125. [PMID: 23165654 DOI: 10.1002/rmv.1733] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 09/07/2012] [Accepted: 09/20/2012] [Indexed: 12/11/2022]
Abstract
Recent evidence suggesting a potential anti-CMV effect of mTORis is of great interest to the transplant community. However, the concept of an immunosuppressant with antiviral properties is not new, with many accounts of the antiviral properties of several agents over the years. Despite these reports, to date, there has been little effort to collate the evidence into a fuller picture. This manuscript was developed to gather the evidence of antiviral activity of the agents that comprise a typical immunosuppressive regimen against viruses that commonly reactivate following transplant (HHV1 and 2, VZV, EBV, CMV and HHV6, 7, and 8, HCV, HBV, BKV, HIV, HPV, and parvovirus). Appropriate immunosuppressive regimens posttransplant that avoid acute rejection while reducing risk of viral reactivation are also reviewed. The existing literature was disparate in nature, although indicating a possible stimulatory effect of tacrolimus on BKV, potentiation of viral reactivation by steroids, and a potential advantage of mammalian target of rapamycin (mTOR) inhibition in several viral infections, including BKV, HPV, and several herpesviruses.
Collapse
|
34
|
van Maarseveen EM, Rogers CC, Trofe-Clark J, van Zuilen AD, Mudrikova T. Drug-drug interactions between antiretroviral and immunosuppressive agents in HIV-infected patients after solid organ transplantation: a review. AIDS Patient Care STDS 2012; 26:568-81. [PMID: 23025916 DOI: 10.1089/apc.2012.0169] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since the introduction of combination antiretroviral therapy (cART) resulting in the prolonged survival of HIV-infected patients, HIV infection is no longer considered to be a contraindication for solid organ transplantation (SOT). The combined management of antiretroviral and immunosuppressive therapy proved to be extremely challenging, as witnessed by high rates of allograft rejection and drug toxicity, but the profound drug-drug interactions between immunosuppressants and cART, especially protease inhibitors (PIs) also play an important role. Caution and frequent drug level monitoring of calcineurin inhibitors, such as tacrolimus are necessary when PIs are (re)introduced or withdrawn in HIV-infected recipients. Furthermore, the pharmacokinetics of glucocorticoids and mTOR inhibitors are seriously affected by PIs. With the introduction of integrase inhibitors, CCR5-antagonists and fusion inhibitors which cause significantly less pharmacokinetic interactions, have minor overlapping toxicity, and offer the advantage of pharmacodynamic synergy, it is time to revaluate what may be considered the optimal antiretroviral regimen in SOT recipients. In this review we provide a brief overview of the recent success of SOT in the HIV population, and an update on the pharmacokinetic and pharmacodynamic interactions between currently available cART and immunosuppressants in HIV-infected patients, who underwent SOT.
Collapse
Affiliation(s)
| | - Christin C. Rogers
- Department of Pharmacy, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jennifer Trofe-Clark
- Department of Pharmacy, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania
| | - Arjan D. van Zuilen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Tania Mudrikova
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
35
|
Rai P, Plagov A, Kumar D, Pathak S, Ayasolla KR, Chawla AK, Mathieson PW, Saleem MA, Husain M, Malhotra A, Singhal PC. Rapamycin-induced modulation of HIV gene transcription attenuates progression of HIVAN. Exp Mol Pathol 2012; 94:255-61. [PMID: 23010541 DOI: 10.1016/j.yexmp.2012.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/15/2012] [Indexed: 11/15/2022]
Abstract
HIV-associated nephropathy (HIVAN) is the manifestation of HIV gene expression by kidney cells in the presence of specific host factors. Recently, rapamycin (sirolimus) has been demonstrated to modulate the progression of HIVAN. We hypothesized that rapamycin would modulate the progression of HIVAN by attenuating HIV gene expression. To test our hypothesis, three weeks old Tg26 mice (n=6) were administered either vehicle or rapamycin (5 mg/kg, every other day, intraperitoneal) for eight weeks. At the end of the experimental period, the kidneys were harvested. In in vitro studies, human podocytes were transduced with either HIV-1 (NL4-3) or empty vector (EV), followed by treatment with either vehicle or rapamycin. Total RNA and proteins were extracted from renal tissues/cellular lysates and HIV gene transcription/translation was measured by real time PCR and Western blotting studies. Renal histological slides were graded for glomerular sclerosis and tubular dilatation with microcyst formation. Rapamycin attenuated both glomerular and tubular lesions in Tg26 mice. Rapamycin decreased transcription of HIV genes both in renal tissues as well as in HIV-1 transduced podocytes. Our data strongly indicate that HIV-1 long terminal repeat-mediated transcriptional activity was targeted by rapamycin. Rapamycin enhanced podocyte NF-κB and CREB activities but then it decreased AP-1 binding activity. Since expression of HIV genes by kidney cells has been demonstrated to be the key factor in the development HIVAN, it appears that rapamycin-induced altered transcription of HIV genes might have partly contributed to its disease modulating effects.
Collapse
Affiliation(s)
- Partab Rai
- Department of Medicine, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Picton ACP, Shalekoff S, Paximadis M, Tiemessen CT. Marked differences in CCR5 expression and activation levels in two South African populations. Immunology 2012; 136:397-407. [PMID: 22509959 DOI: 10.1111/j.1365-2567.2012.03592.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The chemokine receptor CCR5 is pivotal in determining an individual's susceptibility to HIV-1 infection and rate of disease progression. To establish whether population-based differences exist in cell surface expression of CCR5 we evaluated the extent of CCR5 expression across all peripheral blood cell types in individuals from two populations, South African Africans (SAA) and South African Caucasians (SAC). Significant differences in CCR5 expression, both in number of CCR5 molecules per cell (density) and the percentage of CCR5-expressing cells, were observed between the two study groups, within all cell subsets. Most notably, the percentage of all CCR5(+) cell subsets was significantly lower in SAC compared with SAA individuals (P < 0·01) among natural killer (NK) -cell subsets (CD56(+) , CD16(+) CD56(+) and CD56(dim) ) whereas CCR5 density was significantly higher in SAC compared with SAA individuals in CCR5(+) CD8(+) T-cell subsets and CCR5(+) NK-cell subsets (CD56(+) , CD16(+) CD56(+) and CD56(dim) ) (all P < 0·05). These relationships were maintained after exclusion of CCR5Δ32 heterozygous individuals (n = 7) from the SAC dataset. The SAA individuals exhibited significantly higher cell activation levels, as measured by HLA-DR expression, than SAC individuals in CD4(+) T-cell subsets (P = 0·002) and CD56(+) NK-cell subsets (P < 0·001). This study serves to demonstrate that ethnically divergent populations show marked differences in both cell activation and CCR5 expression, which are likely to impact on both susceptibility to HIV-1 infection and the rate of HIV-1 disease progression.
Collapse
Affiliation(s)
- Anabela C P Picton
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | | | | |
Collapse
|
37
|
Yadav A, Kumar D, Salhan D, Rattanavich R, Maheshwari S, Adabala M, Ding G, Singhal PC. Sirolimus modulates HIVAN phenotype through inhibition of epithelial mesenchymal transition. Exp Mol Pathol 2012; 93:173-81. [PMID: 22579465 DOI: 10.1016/j.yexmp.2012.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
HIV-associated nephropathy (HIVAN) is characterized by proliferative phenotype in the form of collapsing glomerulopathy and microcystic dilatation of tubules. Recently, epithelial mesenchymal transition (EMT) of renal cells has been demonstrated to contribute to the pathogenesis of proliferative HIVAN phenotype. We hypothesized that sirolimus would modulate HIVAN phenotype by attenuating renal cell EMT. In the present study, we evaluated the effect of sirolimus on the development of renal cell EMT as well as on display of HIVAN phenotype in a mouse model of HIVAN (Tg26). Tg26 mice receiving normal saline (TgNS) showed enhanced proliferation of both glomerular and tubular cells when compared to control mice-receiving normal saline (CNS); on the other hand, Tg26 mice receiving sirolimus (TgS) showed attenuated renal cell proliferation when compared with TgNS. TgNS also showed increased number of α-SMA-, vimentin-, and FSP1-positive cells (glomerular as well as tubular) when compared with CNS; however, TgS showed reduced number of SMA, vimentin, and FSP1+ve renal cells when compared to TgNS. Interestingly, sirolimus preserved renal epithelial cell expression of E-cadherin in TgS. Since sirolimus attenuated renal cell ZEB expression (a repressor of E-cadherin transcription), it appears that sirolimus may be attenuating renal cell EMT by preserving epithelial cell E-cadherin expression.
Collapse
Affiliation(s)
- Anju Yadav
- Immunology Center, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030, United States
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rehman S, Husain M, Yadav A, Kasinath BS, Malhotra A, Singhal PC. HIV-1 promotes renal tubular epithelial cell protein synthesis: role of mTOR pathway. PLoS One 2012; 7:e30071. [PMID: 22253885 PMCID: PMC3253808 DOI: 10.1371/journal.pone.0030071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 12/13/2011] [Indexed: 01/01/2023] Open
Abstract
Tubular cell HIV-infection has been reported to manifest in the form of cellular hypertrophy and apoptosis. In the present study, we evaluated the role of mammalian target of rapamycin (mTOR) pathway in the HIV induction of tubular cell protein synthesis. Mouse proximal tubular epithelial cells (MPTECs) were transduced with either gag/pol-deleted NL4-3 (HIV/MPTEC) or empty vector (Vector/MPTEC). HIV/MPTEC showed enhanced DNA synthesis when compared with Vector/MPTECs by BRDU labeling studies. HIV/MPTECs also showed enhanced production of β-laminin and fibronection in addition to increased protein content per cell. In in vivo studies, renal cortical sections from HIV transgenic mice and HIVAN patients showed enhanced tubular cell phosphorylation of mTOR. Analysis of mTOR revealed increased expression of phospho (p)-mTOR in HIV/MPTECs when compared to vector/MPTECs. Further downstream analysis of mTOR pathway revealed enhanced phosphorylation of p70S6 kinase and associated diminished phosphorylation of eEF2 (eukaryotic translation elongation factor 2) in HIV/MPTECs; moreover, HIV/MPTECs displayed enhanced phosphorylation of eIF4B (eukaryotic translation initiation factor 4B) and 4EBP-1 (eukaryotic 4E binding protein). To confirm our hypothesis, we evaluated the effect of rapamycin on HIV-induced tubular cell downstream signaling. Rapamycin not only attenuated phosphorylation of p70S6 kinase and associated down stream signaling in HIV/MPTECs but also inhibited HIV-1 induced tubular cell protein synthesis. These findings suggest that mTOR pathway is activated in HIV-induced enhanced tubular cell protein synthesis and contributes to tubular cell hypertrophy.
Collapse
Affiliation(s)
- Shabina Rehman
- Department of Medicine, North Shore LIJ Health System, New York, New York, United States of America
| | - Mohammad Husain
- Department of Medicine, North Shore LIJ Health System, New York, New York, United States of America
| | - Anju Yadav
- Department of Medicine, North Shore LIJ Health System, New York, New York, United States of America
| | - Balakuntalam S. Kasinath
- Department of Medicine, Texas Health Science Center, San Antonio, Texas, United States of America
| | - Ashwani Malhotra
- Department of Medicine, North Shore LIJ Health System, New York, New York, United States of America
| | - Pravin C. Singhal
- Department of Medicine, North Shore LIJ Health System, New York, New York, United States of America
| |
Collapse
|
39
|
HIV-1 clinical isolates resistant to CCR5 antagonists exhibit delayed entry kinetics that are corrected in the presence of drug. J Virol 2011; 86:1119-28. [PMID: 22090117 DOI: 10.1128/jvi.06421-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV CCR5 antagonists select for env gene mutations that enable virus entry via drug-bound coreceptor. To investigate the mechanisms responsible for viral adaptation to drug-bound coreceptor-mediated entry, we studied viral isolates from three participants who developed CCR5 antagonist resistance during treatment with vicriviroc (VCV), an investigational small-molecule CCR5 antagonist. VCV-sensitive and -resistant viruses were isolated from one HIV subtype C- and two subtype B-infected participants; VCV-resistant isolates had mutations in the V3 loop of gp120 and were cross-resistant to TAK-779, an investigational antagonist, and maraviroc (MVC). All three resistant isolates contained a 306P mutation but had variable mutations elsewhere in the V3 stem. We used a virus-cell β-lactamase (BlaM) fusion assay to determine the entry kinetics of recombinant viruses that incorporated full-length VCV-sensitive and -resistant envelopes. VCV-resistant isolates exhibited delayed entry rates in the absence of drug, relative to pretherapy VCV-sensitive isolates. The addition of drug corrected these delays. These findings were generalizable across target cell types with a range of CD4 and CCR5 surface densities and were observed when either population-derived or clonal envelopes were used to construct recombinant viruses. V3 loop mutations alone were sufficient to restore virus entry in the presence of drug, and the accumulation of V3 mutations during VCV therapy led to progressively higher rates of viral entry. We propose that the restoration of pre-CCR5 antagonist therapy HIV entry kinetics drives the selection of V3 loop mutations and may represent a common mechanism that underlies the emergence of CCR5 antagonist resistance.
Collapse
|
40
|
Synergistic inhibition of R5 HIV-1 by maraviroc and CCR5 antibody HGS004 in primary cells: implications for treatment and prevention. AIDS 2011; 25:1232-5. [PMID: 21505306 DOI: 10.1097/qad.0b013e3283471edb] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CCR5 blockers inhibit CCR5-tropic (R5) HIV-1, including strains resistant to other antiretrovirals. We demonstrate that the CCR5 antibody HGS004 and the CCR5 antagonist maraviroc have potent antiviral synergy against R5 HIV-1, translating into dose reductions of more than 10-fold for maraviroc and more than 150-fold for HGS004. These data, together with the high barrier of resistance to HGS004, suggest that combinations of maraviroc and HGS004 could provide effective preventive and therapeutic strategies against R5 HIV-1.
Collapse
|
41
|
Mulampaka SN, Dixit NM. Estimating the threshold surface density of Gp120-CCR5 complexes necessary for HIV-1 envelope-mediated cell-cell fusion. PLoS One 2011; 6:e19941. [PMID: 21647388 PMCID: PMC3103592 DOI: 10.1371/journal.pone.0019941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022] Open
Abstract
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as ∼20 µm(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.
Collapse
Affiliation(s)
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian
Institute of Science, Bangalore, India
- Bioinformatics Centre, Indian Institute of
Science, Bangalore, India
| |
Collapse
|
42
|
Donia M, McCubrey JA, Bendtzen K, Nicoletti F. Potential use of rapamycin in HIV infection. Br J Clin Pharmacol 2011; 70:784-93. [PMID: 21175433 DOI: 10.1111/j.1365-2125.2010.03735.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The strong need for the development of alternative anti-HIV agents is primarily due to the emergence of strain-resistant viruses, the need for sustained adherence to complex treatment regimens and the toxicity of currently used antiviral drugs. This review analyzes proof of concept studies indicating that the immunomodulatory drug rapamycin (RAPA) possesses anti-HIV properties both in vitro and in vivo that qualifies it as a potential new anti-HIV drug. It represents a literature review of published studies that evaluated the in vitro and in vivo activity of RAPA in HIV. RAPA represses HIV-1 replication in vitro through different mechanisms including, but not limited, to down regulation of CCR5. In addition RAPA synergistically enhances the anti-HIV activity of entry inhibitors such as vicriviroc, aplaviroc and enfuvirtide in vitro. RAPA also inhibits HIV-1 infection in human peripheral blood leucocytes-SCID reconstituted mice. In addition, a prospective nonrandomized trial of HIV patient series receiving RAPA monotherapy after liver transplantation indicated significantly better control of HIV and hepatitis C virus (HCV) replication among patients taking RAPA monotherapy. Taken together, the evidence presented in this review suggests that RAPA may be a useful drug that should be evaluated for the prevention and treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Marco Donia
- Department of Biomedical Sciences, University of Catania, Italy
| | | | | | | |
Collapse
|
43
|
Mendelian randomization: potential use of genetics to enable causal inferences regarding HIV-associated biomarkers and outcomes. Curr Opin HIV AIDS 2011; 5:545-59. [PMID: 20978399 DOI: 10.1097/coh.0b013e32833f2087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW It is unknown whether biomarkers simply correlate with or are causal for HIV-associated outcomes. Mendelian randomization is a genetic epidemiologic approach used to disentangle causation from association. Here, we discuss the potential use of Mendelian randomization for differentiating whether biomarkers are correlating with or causal for HIV-associated outcomes. RECENT FINDINGS Mendelian randomization refers to the random allocation of alleles at the time of gamete formation. In observational epidemiology, this refers to the use of genetic variants to estimate a causal effect between a modifiable risk factor and an outcome of interest. A formal Mendelian randomization study using a genetic marker as a proxy for the biomarker has not been conducted in the HIV field. However, in the postgenomic era, this approach is being used increasingly. Examples are evidence for the causal role of BMI in blood pressure and noncausal role of C-reactive protein in coronary heart disease. We discuss the conceptual framework, uses, and limitations of Mendelian randomization in the context of HIV infection as well as specific biomarkers (IL-6, C-reactive protein) and genetic determinants (e.g., in CCR5, chemokine, and DARC genes) that associate with HIV-related outcomes. SUMMARY Making the distinction between correlation and causality has particular relevance when a biomarker (e.g., IL-6) is potentially modifiable, in which case a biomarker-guided targeted treatment strategy may be feasible. Although the tenets of Mendelian randomization rest on strong assumptions, and conducting a Mendelian randomization study in HIV infection presents many challenges, it may offer the potential to identify causal biomarkers for HIV-associated outcomes.
Collapse
|
44
|
Abstract
Since the discovery of CCR5 as a coreceptor for HIV entry, there has been interest in blockade of the receptor for treatment and prevention of HIV infection. Although several CCR5 antagonists have been evaluated in clinical trials, only maraviroc has been approved for clinical use in the treatment of HIV-infected patients. The efficacy, safety and resistance profile of CCR5 antagonists with a focus on maraviroc are reviewed here along with their usage in special and emerging clinical situations. Despite being approved for use since 2007, the optimal use of maraviroc has yet to be well-defined in HIV and potentially in other diseases. Maraviroc and other CCR5 antagonists have the potential for use in a variety of other clinical situations such as the prevention of HIV transmission, intensification of HIV treatment and prevention of rejection in organ transplantation. The use of CCR5 antagonists may be potentiated by other agents such as rapamycin which downregulate CCR5 receptors thus decreasing CCR5 density. There may even be a role for their use in combination with other entry inhibitors. However, clinical use of CCR5 antagonists may have negative consequences in diseases such as West Nile and Tick-borne encephalitis virus infections. In summary, CCR5 antagonists have great therapeutic potential in the treatment and prevention of HIV as well as future use in novel situations such as organ transplantation. Their optimal use either alone or in combination with other agents will be defined by further investigation.
Collapse
Affiliation(s)
- Bruce L Gilliam
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard St, Baltimore, 21201 Maryland, USA
| | | | | |
Collapse
|
45
|
Latinovic O, Reitz M, Le NM, Foulke JS, Fätkenheuer G, Lehmann C, Redfield RR, Heredia A. CCR5 antibodies HGS004 and HGS101 preferentially inhibit drug-bound CCR5 infection and restore drug sensitivity of Maraviroc-resistant HIV-1 in primary cells. Virology 2011; 411:32-40. [PMID: 21232779 DOI: 10.1016/j.virol.2010.12.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 10/26/2010] [Accepted: 12/16/2010] [Indexed: 11/16/2022]
Abstract
R5 HIV-1 strains resistant to the CCR5 antagonist Maraviroc (MVC) can use drug-bound CCR5. We demonstrate that MVC-resistant HIV-1 exhibits delayed kinetics of coreceptor engagement and fusion during drug-bound versus free CCR5 infection of cell lines. Antibodies directed against the second extracellular loop (ECL2) of CCR5 had greater antiviral activity against MVC-bound compared to MVC-free CCR5 infection. However, in PBMCs, only ECL2 CCR5 antibodies HGS004 and HGS101, but not 2D7, inhibited infection by MVC resistant HIV-1 more potently with MVC-bound than with free CCR5. In addition, HGS004 and HGS101, but not 2D7, restored the antiviral activity of MVC against resistant virus in PBMCs. In flow cytometric studies, CCR5 binding by the HGS mAbs, but not by 2D7, was increased when PBMCs were treated with MVC, suggesting MVC increases exposure of the relevant epitope. Thus, HGS004 and HGS101 have antiviral mechanisms distinct from 2D7 and could help overcome MVC resistance.
Collapse
Affiliation(s)
- Olga Latinovic
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cravedi P, Ruggenenti P, Remuzzi G. Sirolimus for calcineurin inhibitors in organ transplantation: contra. Kidney Int 2010; 78:1068-74. [DOI: 10.1038/ki.2010.268] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Garcia-Perez J, Rueda P, Staropoli I, Kellenberger E, Alcami J, Arenzana-Seisdedos F, Lagane B. New insights into the mechanisms whereby low molecular weight CCR5 ligands inhibit HIV-1 infection. J Biol Chem 2010; 286:4978-90. [PMID: 21118814 DOI: 10.1074/jbc.m110.168955] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CC chemokine receptor 5 (CCR5) is a G-protein-coupled receptor for the chemokines CCL3, -4, and -5 and a coreceptor for entry of R5-tropic strains of human immunodeficiency virus type 1 (HIV-1) into CD4(+) T-cells. We investigated the mechanisms whereby nonpeptidic, low molecular weight CCR5 ligands block HIV-1 entry and infection. Displacement binding assays and dissociation kinetics demonstrated that two of these molecules, i.e. TAK779 and maraviroc (MVC), inhibit CCL3 and the HIV-1 envelope glycoprotein gp120 binding to CCR5 by a noncompetitive and allosteric mechanism, supporting the view that they bind to regions of CCR5 distinct from the gp120- and CCL3-binding sites. We observed that TAK779 and MVC are full and weak inverse agonists for CCR5, respectively, indicating that they stabilize distinct CCR5 conformations with impaired abilities to activate G-proteins. Dissociation of [(125)I]CCL3 from CCR5 was accelerated by TAK779, to a lesser extent by MVC, and by GTP analogs, suggesting that inverse agonism contributes to allosteric inhibition of the chemokine binding to CCR5. TAK779 and MVC also promote dissociation of [(35)S]gp120 from CCR5 with an efficiency that correlates with their ability to act as inverse agonists. Displacement experiments revealed that affinities of MVC and TAK779 for the [(35)S]gp120-binding receptors are in the same range (IC(50) ∼6.4 versus 22 nm), although we found that MVC is 100-fold more potent than TAK779 for inhibiting HIV infection. This suggests that allosteric CCR5 inhibitors not only act by blocking gp120 binding but also alter distinct steps of CCR5 usage in the course of HIV infection.
Collapse
Affiliation(s)
- Javier Garcia-Perez
- INSERM U819/Unité de Pathogénie Virale, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Trasplante hepático en pacientes con infección por VIH. GASTROENTEROLOGIA Y HEPATOLOGIA 2010; 33:660-9. [DOI: 10.1016/j.gastrohep.2010.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/22/2010] [Indexed: 01/18/2023]
|
49
|
De Clercq E. Yet another ten stories on antiviral drug discovery (part D): paradigms, paradoxes, and paraductions. Med Res Rev 2010; 30:667-707. [PMID: 19626594 DOI: 10.1002/med.20173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review article presents the fourth part (part D) in the series of stories on antiviral drug discovery. The stories told in part D focus on: (i) the cyclotriazadisulfonamide compounds; (ii) the {5-[(4-bromophenylmethyl]-2-phenyl-5H-imidazo[4,5-c]pyridine} compounds; (iii) (1H,3H-thiazolo[3,4-a]benzimidazole) derivatives; (iv) T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) and (v) its structurally closely related analogue pyrazine 2-carboxamide (pyrazinamide); (vi) new strategies for the treatment of hemorrhagic fever virus infections, including, as the most imminent, (vii) dengue fever, (viii) the veterinary use of acyclic nucleoside phosphonates; (ix) the potential (off-label) use of cidofovir in the treatment of papillomatosis, particularly RRP (recurrent respiratory papillomatosis); and (x) finally, the prophylactic use of tenofovir to prevent HIV infections.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
50
|
Ahuja SK, He W. Double-edged genetic swords and immunity: lesson from CCR5 and beyond. J Infect Dis 2010; 201:171-4. [PMID: 20025529 DOI: 10.1086/649427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|