1
|
Xu K, Yang M, Guan L, Yang C, Qiao L, Li Y, Lin J, Li X. Therapeutic Potential of Mesenchymal Stem Cells in Niemann-Pick Disease. Mol Biotechnol 2025:10.1007/s12033-025-01435-3. [PMID: 40281376 DOI: 10.1007/s12033-025-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Niemann-Pick disease (NPD) is a rare autosomal recessive neurodegenerative disease characterized by hepatosplenomegaly, neuropathy, and a significantly shortened lifespan. Lipid metabolism disorder is the main pathological feature of NPD. Currently, the exact pathogenesis of NPD remains unclear, and drug therapy is largely palliative, focusing on symptom management, but it has side effects. Mesenchymal stem cells (MSCs) possess several advantageous properties, including their differentiation potential, wide availability, low immunogenicity, and the ability to secrete regulatory factors, which have led to their extensive application in basic research targeting neurodegenerative diseases. Studies have demonstrated that transplantation of MSCs from different sources into animal models of NPD can delay the loss of Purkinje cells in the cerebellum, reduce lipid deposition, improve motor coordination, slow the rate of weight loss, and extend lifespan. This review explores the therapeutic potential of MSCs in the treatment of NPD, highlighting their emerging role in addressing this challenging condition.
Collapse
Affiliation(s)
- Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ciqing Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yonghai Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan International Joint Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
2
|
Tang Y, Guo T, Wang X, Li C, Zhang X, Zhang J. Cyclodextrin-Derived Macromolecular Therapies for Inflammatory Diseases. Macromol Biosci 2025:e2400637. [PMID: 40271896 DOI: 10.1002/mabi.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Inflammation is an essential physiological defense mechanism against harmful stimuli, yet dysregulated inflammatory responses are closely associated with the pathogenesis of numerous acute and chronic diseases. Recent advances highlight the remarkable anti-inflammatory potential of bioactive macromolecules, particularly cyclodextrins (CDs) and their engineered derivatives, which are emerging as promising therapeutic agents. This review systematically introduces different CDs and CD-derived macromolecules that demonstrate anti-inflammatory properties, with emphasis on their molecular mechanisms of action. Native CDs exhibit direct therapeutic effects through host-guest interactions, enabling selective sequestration of pathogenic components such as cholesterol crystals and proteins that drive inflammatory cascades. Moreover, chemically modified CD derivatives incorporating functional groups demonstrate enhanced capabilities in neutralizing inflammatory mediators and modulating immune cell responses. This work further discusses the expanding therapeutic applications of these macromolecules across diverse inflammatory conditions, ranging from acute tissue injuries to chronic autoimmune disorders. Finally, this work critically analyzes the crucial challenges and emerging opportunities in translating CD-based macromolecular therapies into clinical practice, addressing key considerations in biocompatibility, targeted delivery, and therapeutic efficacy optimization.
Collapse
Affiliation(s)
- Yige Tang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Tao Guo
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xuanran Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiangjun Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Yu-Yue Pathology Scientific Research Center, 313 Gaoteng Avenue, Jiulongpo District, Chongqing, 400039, China
| |
Collapse
|
3
|
Rezaei A, Kocsis-Jutka V, Gunes ZI, Zeng Q, Kislinger G, Bauernschmitt F, Isilgan HB, Parisi LR, Kaya T, Franzenburg S, Koppenbrink J, Knogler J, Arzberger T, Farny D, Nuscher B, Katona E, Dhingra A, Yang C, Gouna G, LaClair KD, Janjic A, Enard W, Zhou Q, Hagan N, Ofengeim D, Beltrán E, Gokce O, Simons M, Liebscher S, Edbauer D. Correction of dysregulated lipid metabolism normalizes gene expression in oligodendrocytes and prolongs lifespan in female poly-GA C9orf72 mice. Nat Commun 2025; 16:3442. [PMID: 40216746 PMCID: PMC11992041 DOI: 10.1038/s41467-025-58634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Clinical and genetic research links altered cholesterol metabolism with ALS development and progression, yet pinpointing specific pathomechanisms remain challenging. We investigated how cholesterol dysmetabolism interacts with protein aggregation, demyelination, and neuronal loss in ALS. Bulk RNAseq transcriptomics showed decreased cholesterol biosynthesis and increased cholesterol export in ALS mouse models (GA-Nes, GA-Camk2a GA-CFP, rNLS8) and patient samples (spinal cord), suggesting an adaptive response to cholesterol overload. Consequently, we assessed the efficacy of the cholesterol-binding drug 2-hydroxypropyl-β-cyclodextrin (CD) in a fast-progressing C9orf72 ALS mouse model with extensive poly-GA expression and myelination deficits. CD treatment normalized cholesteryl ester levels, lowered neurofilament light chain levels, and prolonged lifespan in female but not male GA-Nes mice, without impacting poly-GA aggregates. Single nucleus transcriptomics indicated that CD primarily affected oligodendrocytes, significantly restored myelin gene expression, increased density of myelinated axons, inhibited the disease-associated oligodendrocyte response, and downregulated the lipid-associated genes Plin4 and ApoD. These results suggest that reducing excess free cholesterol in the CNS could be a viable ALS treatment strategy.
Collapse
Affiliation(s)
- Ali Rezaei
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | | | - Zeynep I Gunes
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Qing Zeng
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Georg Kislinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Franz Bauernschmitt
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | | | - Laura R Parisi
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | - Tuğberk Kaya
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Jonas Koppenbrink
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Julia Knogler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Brigitte Nuscher
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Eszter Katona
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Ashutosh Dhingra
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Chao Yang
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Garyfallia Gouna
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | | | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nellwyn Hagan
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | | | - Eduardo Beltrán
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Ozgun Gokce
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Sabine Liebscher
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
- Institute of Neurobiochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
| |
Collapse
|
4
|
Matsuo M, Ishitsuka Y, Irie T. Reply to "Levacetylleucine a game changer for Niemann-Pick disease type-C". Brain Dev 2025; 47:104301. [PMID: 39765147 DOI: 10.1016/j.braindev.2024.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 02/25/2025]
Affiliation(s)
- Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan.
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Moiz B, Walls M, Alpizar Vargas V, Addepalli A, Weber C, Li A, Sriram G, Clyne AM. Instationary metabolic flux analysis reveals that NPC1 inhibition increases glycolysis and decreases mitochondrial metabolism in brain microvascular endothelial cells. Neurobiol Dis 2025; 204:106769. [PMID: 39706535 DOI: 10.1016/j.nbd.2024.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Niemann Pick Disease Type C (NP-C), a rare neurogenetic disease with no known cure, is caused by mutations in the cholesterol trafficking protein NPC1. Brain microvascular endothelial cells (BMEC) are thought to play a critical role in the pathogenesis of several neurodegenerative diseases; however, little is known about how these cells are altered in NP-C. In this study, we investigated how NPC1 inhibition perturbs BMEC metabolism in human induced pluripotent stem cell-derived BMEC (hiBMEC). We incorporated extracellular metabolite and isotope labeling data into an instationary metabolic flux analysis (INST-MFA) model to estimate intracellular metabolic fluxes. We found that NPC1 inhibition significantly increased glycolysis and pentose phosphate pathway flux while decreasing mitochondrial metabolism. These changes may have been driven by gene expression changes due to increased cholesterol biosynthesis, in addition to mitochondrial cholesterol accumulation. We corroborated these findings in primary BMEC, an alternative in vitro human brain endothelial model. Finally, we found that co-treatment with hydroxypropyl-β cyclodextrin (HPβCD) partially restored metabolic phenotype in U18666A-treated BMECs, suggesting that this drug may have therapeutic effects on the brain endothelium in NP-C. Together, our data highlight the importance of NPC1 in BMEC metabolism and implicate brain endothelial dysfunction in NP-C pathogenesis.
Collapse
Affiliation(s)
- Bilal Moiz
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Matthew Walls
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Viviana Alpizar Vargas
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Anirudh Addepalli
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Callie Weber
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Andrew Li
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - Ganesh Sriram
- Department of Chemical and Biochemical Engineering, University of Maryland, College Park, MD 20742, United States of America
| | - Alisa Morss Clyne
- Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America.
| |
Collapse
|
6
|
Beaudin M, Dupre N, Manto M. The importance of synthetic pharmacotherapy for recessive cerebellar ataxias. Expert Rev Neurother 2024; 24:897-912. [PMID: 38980086 DOI: 10.1080/14737175.2024.2376840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.
Collapse
Affiliation(s)
- Marie Beaudin
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nicolas Dupre
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgique
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgique
| |
Collapse
|
7
|
Zhang C, Su K, Jiang X, Tian Y, Li K. Advances in research on potential therapeutic approaches for Niemann-Pick C1 disease. Front Pharmacol 2024; 15:1465872. [PMID: 39263569 PMCID: PMC11387184 DOI: 10.3389/fphar.2024.1465872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Keke Su
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuping Tian
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
8
|
Matsuo M, Sakakibara T, Sakiyama Y, So T, Kosuga M, Kakiuchi T, Ichinose F, Nakamura T, Ishitsuka Y, Irie T. Long-term efficacy of intrathecal cyclodextrin in patients with Niemann-Pick disease type C. Brain Dev 2024; 46:207-212. [PMID: 38448301 DOI: 10.1016/j.braindev.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND OBJECTIVES Niemann-Pick type C (NPC) is a rare lysosomal storage disease characterized by hepatosplenomegaly and progressive neurological deterioration due to abnormal intracellular cholesterol transport. Cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPBCD) is an effective treatment for NPC; however, few reports have shown its long-term efficacy and safety. To demonstrate long-term efficacy and safety of intrathecal HPBCD (IT-HPBCD) treatment for NPC, we herein reports five patients with NPC treated using IT-HPBCD for 4-11 years. CASES AND RESULTS Patients' ages at the onset ranged from 1.5 to 20 years. Notably, all patients showed rapid disease progression despite treatment with miglustat before IT-HPBCD treatment. Similarly, some patients showed transient improvement; however, all patients' conditions stabilized after long-term IT-HPBCD therapy. Mild-to-moderate hearing loss was observed in three patients. Furthermore, long-term treatment with IT-HPBCD may suppress neurological deterioration in patients with NPC; however, patients still experience some disease progression. CONCLUSIONS Long-term treatment with IT-HPBCD may suppress neurological deterioration in patients with NPC; however, the treatment outcome is dependent on the neurological status at the time of diagnosis, and disease progression is not completely inhibited. Awareness of the disease and newborn screening is needed for earlier disease detection. In addition, further optimization of the treatment protocol and additional treatments are needed to improve patient outcomes.
Collapse
Affiliation(s)
- Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan.
| | | | - Yoshio Sakiyama
- Department of Neurology, Jichi Medical University, Saitama Medical Center, Japan
| | - Tetsumin So
- Division of Medical Genetics, National Center for Child Health and Development, Japan
| | - Motomichi Kosuga
- Division of Medical Genetics, National Center for Child Health and Development, Japan
| | - Toshihiko Kakiuchi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Fumio Ichinose
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Takuji Nakamura
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
9
|
Zhang S, Tamura A, Yui N. Enhanced Tumor Targeting and Antitumor Activity of Methylated β-Cyclodextrin-Threaded Polyrotaxanes by Conjugating Cyclic RGD Peptides. Biomolecules 2024; 14:223. [PMID: 38397461 PMCID: PMC10886891 DOI: 10.3390/biom14020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We previously reported that acid-degradable methylated β-cyclodextrins (Me-β-CDs)-threaded polyrotaxanes (Me-PRXs) can induce autophagic cell death through endoplasmic reticulum (ER) stress-related autophagy, even in apoptosis-resistant cells. Hence, Me-PRXs show great potential as anticancer therapeutics. In this study, peptide-supermolecule conjugates were designed to achieve the targeted delivery of Me-PRX to malignant tumors. Arg-Gly-Asp peptides are well-known binding motifs of integrin αvβ3, which is overexpressed on angiogenic sites and many malignant tumors. The tumor-targeted cyclic Arg-Gly-Asp (cRGD) peptide was orthogonally post-modified to Me-PRX via click chemistry. Surface plasmon resonance (SPR) results indicated that cRGD-Me-PRX strongly binds to integrin αvβ3, whereas non-targeted cyclic Arg-Ala-Glu (cRGE) peptide conjugated to Me-PRX (cRGE-Me-PRX) failed to interact with integrins αvβ3. In vitro, cRGD-Me-PRX demonstrated enhanced cellular internalization and antitumor activity in 4T1 cells than that of unmodified Me-PRX and non-targeted cRGE-Me-PRX, due to its ability to recognize integrin αvβ3. Furthermore, cRGD-Me-PRX accumulated effectively in tumors, leading to antitumor effects, and exhibited excellent biocompatibility and safety in vivo. Therefore, cRGD conjugation to enhance selectivity for integrin αvβ3-positive cancer cells is a promising design strategy for Me-PRXs in antitumor therapy.
Collapse
Affiliation(s)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | | |
Collapse
|
10
|
Maekawa M. Analysis of Metabolic Changes in Endogenous Metabolites and Diagnostic Biomarkers for Various Diseases Using Liquid Chromatography and Mass Spectrometry. Biol Pharm Bull 2024; 47:1087-1105. [PMID: 38825462 DOI: 10.1248/bpb.b24-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Analysis of endogenous metabolites in various diseases is useful for searching diagnostic biomarkers and elucidating the molecular mechanisms of pathophysiology. The author and collaborators have developed some LC/tandem mass spectrometry (LC/MS/MS) methods for metabolites and applied them to disease-related samples. First, we identified urinary conjugated cholesterol metabolites and serum N-palmitoyl-O-phosphocholine serine as useful biomarkers for Niemann-Pick disease type C (NPC). For the purpose of intraoperative diagnosis of glioma patients, we developed the LC/MS/MS analysis methods for 2-hydroxyglutaric acid or cystine and found that they could be good differential biomarkers. For renal cell carcinoma, we searched for various biomarkers for early diagnosis, malignancy evaluation and recurrence prediction by global metabolome analysis and targeted LC/MS/MS analysis. In pathological analysis, we developed a simultaneous LC/MS/MS analysis method for 13 steroid hormones and applied it to NPC cells, we found 6 types of reductions in NPC model cells. For non-alcoholic steatohepatitis (NASH), model mice were prepared with special diet and plasma bile acids were measured, and as a result, hydrophilic bile acids were significantly increased. In addition, we developed an LC/MS/MS method for 17 sterols and analyzed liver cholesterol metabolites and found a decrease in phytosterols and cholesterol synthetic markers and an increase in non-enzymatic oxidative sterols in the pre-onset stage of NASH. We will continue to challenge themselves to add value to clinical practice based on cutting-edge analytical chemistry methodology.
Collapse
|
11
|
Pan T, Zhao Z, Lu J, Wen H, Zhang J, Xu Y, Chen Y, Jin X. Fenofibrate inhibits MOXD1 and PDZK1IP1 expression and improves lipid deposition and inflammation in mice with alcoholic fatty liver. Life Sci 2024; 336:122321. [PMID: 38042280 DOI: 10.1016/j.lfs.2023.122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
AIMS Alcoholic liver disease (ALD) can develop into cirrhosis and hepatocellular carcinoma but no specific drugs are available. Fenofibrate is therapeutically effective in ALD, however, the exact mechanism remains unknown. We explored the hub genes of ALD and the role of fenofibrate in ALD. MAIN METHODS The hub genes of ALD were screened by bioinformatics method, and their functional enrichment, signalling pathways, target genes and their correlation with immune microenvironment and pathogenic genes were analysed. We also analysed the binding affinity of fenofibrate to proteins of hub genes using molecular docking techniques, and the effects on hub gene expression, lipid deposition, oxidative stress and inflammation in the liver of National Institute on Alcohol Abuse and Alcoholism (NIAAA) model mice. The regulatory effects of fenofibrate on MOXD1 and PDZK1P1 were investigated after gene silencing of peroxisome proliferator-activated receptor-α (Ppar-α). KEY FINDINGS Hub genes identified, including monooxygenase DBH-like 1 (MOXD1), PDZK1-interacting protein 1 (PDZK1IP1) and solute carrier 51 β (SLC51B), are highly predictive for ALD. Hepatic MOXD1 and PDZK1IP1 expression was elevated in patients with ALD and NIAAA model mice, with no significant difference in SLC51B expression between the groups. Fenofibrate binds tightly to MOXD1 and PDZK1IP1, inhibits their hepatic expression independently of PPAR-α signalling, and ameliorates lipid deposition, oxidative stress and inflammatory responses in NIAAA model mice. SIGNIFICANCE MOXD1 and PDZK1IP1 are key genes in ALD progression; fenofibrate improves liver damage in NIAAA model mice by downregulating their expression. Our findings provide insight for improving diagnostic and therapeutic strategies for ALD.
Collapse
Affiliation(s)
- Tongtong Pan
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Zhiguang Zhao
- Department of Pathology, Wenzhou Medical University Second Affiliated Hospital, Wenzhou 325000, Zhejiang, China
| | - Jianshuang Lu
- Infection Control Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Hong Wen
- Infection Control Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jiarong Zhang
- Infection Control Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yali Xu
- Infection Control Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Xiaoya Jin
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Infection Control Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
12
|
Itoh M, Tamura A, Kanai S, Tanaka M, Kanamori Y, Shirakawa I, Ito A, Oka Y, Hidaka I, Takami T, Honda Y, Maeda M, Saito Y, Murata Y, Matozaki T, Nakajima A, Kataoka Y, Ogi T, Ogawa Y, Suganami T. Lysosomal cholesterol overload in macrophages promotes liver fibrosis in a mouse model of NASH. J Exp Med 2023; 220:e20220681. [PMID: 37725372 PMCID: PMC10506914 DOI: 10.1084/jem.20220681] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/27/2023] [Accepted: 07/20/2023] [Indexed: 09/21/2023] Open
Abstract
Accumulation of lipotoxic lipids, such as free cholesterol, induces hepatocyte death and subsequent inflammation and fibrosis in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms remain unclear. We have previously reported that hepatocyte death locally induces phenotypic changes in the macrophages surrounding the corpse and remnant lipids, thereby promoting liver fibrosis in a murine model of NASH. Here, we demonstrated that lysosomal cholesterol overload triggers lysosomal dysfunction and profibrotic activation of macrophages during the development of NASH. β-cyclodextrin polyrotaxane (βCD-PRX), a unique supramolecule, is designed to elicit free cholesterol from lysosomes. Treatment with βCD-PRX ameliorated cholesterol accumulation and profibrotic activation of macrophages surrounding dead hepatocytes with cholesterol crystals, thereby suppressing liver fibrosis in a NASH model, without affecting the hepatic cholesterol levels. In vitro experiments revealed that cholesterol-induced lysosomal stress triggered profibrotic activation in macrophages predisposed to the steatotic microenvironment. This study provides evidence that dysregulated cholesterol metabolism in macrophages would be a novel mechanism of NASH.
Collapse
Affiliation(s)
- Michiko Itoh
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Bioelectronics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Kanai
- Department of Bioelectronics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Yohei Kanamori
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ibuki Shirakawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ayaka Ito
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Isao Hidaka
- Department of Gastroenterology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Taro Takami
- Department of Gastroenterology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| |
Collapse
|
13
|
Yang M, Zhao Y, Li X, Li H, Cheng F, Liu Y, Jia Z, He Y, Lin J, Guan L. Conditioned medium of human menstrual blood-derived endometrial stem cells protects against cell inflammation and apoptosis of Npc1 KO N2a cells. Metab Brain Dis 2023; 38:2301-2313. [PMID: 37261632 DOI: 10.1007/s11011-023-01243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Niemann-Pick disease type C1 (NPC1) is a hereditary neurodegenerative disorder caused by a mutation in the NPC1 gene. This gene encodes a transmembrane protein found in lysosomes. This disease characterized by hepatosplenomegaly, neurological impairments and premature death. Recent preclinical studies have shown promising results in using mesenchymal stem cells (MSCs) to alleviate the symptoms of NPC1. One type of MSCs, known as human menstrual blood-derived endometrial stem cells (MenSCs), has attracted attention due to its accessibility, abundant supply, and strong proliferation and regeneration capabilities. However, it remains uncertain whether the conditioned medium of MenSCs (MenSCs-CM) can effectively relieve the symptoms of NPC1. To investigate this further, we employed the CRISPR-Cas9 technique to successfully create a Npc1 gene knockout N2a cell line (Npc1KO N2a). Sanger sequencing confirmed the occurrence of Npc1 gene mutation in these cells, while western blotting revealed a lack of NPC1 protein expression. Filipin staining provided visual evidence of unesterified cholesterol accumulation in Npc1KO N2a cells. Moreover, Npc1KO N2a cells exhibited significantly decreased viability, increased inflammation, and heightened cell apoptosis. Notably, our study demonstrated that the viability of Npc1KO N2a cells was most significantly improved after being cultured by 36 h-collected MenSCs-CM for 0.5 days. Additionally, MenSCs-CM exhibited the ability to effectively reduce inflammation, counteract cell apoptosis, and ameliorate unesterified cholesterol accumulation in Npc1KO N2a cells. This groundbreaking finding establishes, for the first time, the protective effect of MenSCs-CM on N2a cells with Npc1 gene deletion. These findings suggest that the potential of MenSCs-CM as a beneficial therapeutic approach for NPC1 and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yanchun Zhao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Han Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Fangfang Cheng
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yanli Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Ya'nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang, Henan, 453003, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
14
|
Sharma R, Hastings C, Staretz-Chacham O, Raiman J, Paucar M, Spiegel R, Murray B, Hurst B, Liu B, Kjems L, Hrynkow S. Long-term administration of intravenous Trappsol® Cyclo™ (HP-β-CD) results in clinical benefits and stabilization or slowing of disease progression in patients with Niemann-Pick disease type C1: Results of an international 48-week Phase I/II trial. Mol Genet Metab Rep 2023; 36:100988. [PMID: 37670901 PMCID: PMC10475848 DOI: 10.1016/j.ymgmr.2023.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/21/2023] [Indexed: 09/07/2023] Open
Abstract
Background Niemann-Pick disease type C (NPC) is a rare, fatal, pan-ethnic, autosomal recessive lysosomal storage disease characterized by progressive major organ failure and neurodegeneration. Preclinical studies confirmed a critical role of systemically administered hydroxypropyl-β-cyclodextrin (HP-β-CD; Trappsol® Cyclo™) in cholesterol metabolism and homeostasis in peripheral tissues of the body, including the liver, and in the central nervous system (CNS). Herein, the pharmacokinetics (PK), safety, and efficacy of HP-β-CD, and biomarkers of NPC were assessed in pediatric and adult patients with NPC1. Methods This was a multicenter, Phase I/II, randomized, double-blind, parallel-group, 48-week study (ClinicalTrials.gov identifier NCT02912793) to compare the PK of three different single intravenous (IV) doses of HP-β-CD in pediatric and adult patients with NPC1 and to evaluate the efficacy and tolerability of three different dosages of HP-β-CD in patients with NPC1 after long-term treatment. Twelve patients aged at least 2 years (2-39 years of age) with a confirmed diagnosis of NPC1 were randomized to receive one of three IV doses of HP-β-CD (1500 mg/kg, 2000 mg/kg, or 2500 mg/kg) every 2 weeks for 48 weeks. All patients received HP-β-CD; there was no placebo or other control. PK testing of plasma and cerebrospinal fluid (CSF) was at set times after the first infusion. Pharmacodynamic assessments included biomarkers of cholesterol metabolism (synthesis and breakdown products), N-palmitoyl-O-phosphocholineserine (PPCS), and specific biomarkers of CSF neurodegeneration (including total Tau), CNS inflammation (glial fibrillary acidic protein [GFAP] and tumor necrosis factor α [TNFα]), CNS cholesterol metabolism (24S-hydroxycholesterol) and inflammatory markers. Efficacy measures included clinical disease severity, neurologic symptoms, and clinical impressions of improvement. Safety assessment included physical examination, vital signs, clinical safety laboratory assessment and adverse events (AEs). Results Nine patients completed the study, 2 in the 1500 mg/kg group, 4 in the 2000 mg/kg group and 3 in the 2500 mg/kg group. Three patients (all in the 1500 mg/kg group) discontinued the study because of either physician decision/site Principal Investigator (PI) discretion, withdrawal by subject/patient/parent/guardian, or other non-safety reasons. In 5 patients who underwent serial lumbar punctures, HP-β-CD was detected in the CSF. Of the 9 patients who completed the study, 8 (88.9%) improved in at least two domains of the 17-Domain Niemann-Pick disease Type C-Clinical Severity Scale (17D-NPC-CSS), and 6 of these patients improved in at least one domain viewed by patients and their caregivers to be key to quality of life, namely, speech, swallow, fine and gross motor skills, and cognition. Of the 9 patients who completed the study, 7 were viewed by their treating physicians as having improved to some degree at the end of the study, and 2 remained stable; both outcomes are highly relevant in a progressive neurodegenerative disease. Some patients and families reported improvement in quality of life.All three doses of HP-β-CD were well tolerated overall, with most treatment-emergent adverse events transient, mild-to-moderate in nature, and considered by the site PIs to be not related to study drug. Interpretation This 48-week trial is the longest to date to evaluate the safety, tolerability, and efficacy across multiple clinical endpoints of IV administration of Trappsol® Cyclo™ (HP-β-CD) in NPC1 patients. In pediatric and adult patients with NPC, Trappsol® Cyclo™ IV improved clinical signs and symptoms and was generally well tolerated. The findings presented here demonstrate a favorable benefit-risk profile and support the global pivotal trial now underway to evaluate the long-term treatment benefits and the potential of Trappsol® Cyclo™ as a disease-modifying treatment in this patient population.
Collapse
Affiliation(s)
- Reena Sharma
- Salford Royal Hospital NHS Foundation Trust, Department of Adult Inherited Metabolic Diseases, Stott Lane, Salford, Greater Manchester M6 8HD, UK
| | | | | | - Julian Raiman
- Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Martin Paucar
- Karolinska University Hospital, Huddinge, Department of Neurology, R43 Rehabgatan, 4th Floor, 141 86 Stockholm, Sweden
| | - Ronen Spiegel
- Department of Pediatrics B, Emek Medical Center, Afula 1834111, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Bryan Murray
- Boyd Consultants Ltd, Electra House, Crewe Business Park, Crewe, Cheshire CW1 6GL, UK
| | - Bryan Hurst
- Boyd Consultants Ltd, Electra House, Crewe Business Park, Crewe, Cheshire CW1 6GL, UK
| | - Benny Liu
- Highland Hospital, 1411 East 31st Street, Oakland, CA 94602, USA
| | - Lise Kjems
- Cyclo Therapeutics, Inc, 6714 NW 16th Street, Suite B, Gainesville, FL 32653, USA
| | - Sharon Hrynkow
- Cyclo Therapeutics, Inc, 6714 NW 16th Street, Suite B, Gainesville, FL 32653, USA
| |
Collapse
|
15
|
Jana B, Jin S, Go EM, Cho Y, Kim D, Kim S, Kwak SK, Ryu JH. Intra-Lysosomal Peptide Assembly for the High Selectivity Index against Cancer. J Am Chem Soc 2023; 145:18414-18431. [PMID: 37525328 DOI: 10.1021/jacs.3c04467] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lysosomes remain powerful organelles and important targets for cancer therapy because cancer cell proliferation is greatly dependent on effective lysosomal function. Recent studies have shown that lysosomal membrane permeabilization induces cell death and is an effective way to treat cancer by bypassing the classical caspase-dependent apoptotic pathway. However, most lysosome-targeted anticancer drugs have very low selectivity for cancer cells. Here, we show intra-lysosomal self-assembly of a peptide amphiphile as a powerful technique to overcome this problem. We designed a peptide amphiphile that localizes in the cancer lysosome and undergoes cathepsin B enzyme-instructed supramolecular assembly. This localized assembly induces lysosomal swelling, membrane permeabilization, and damage to the lysosome, which eventually causes caspase-independent apoptotic death of cancer cells without conventional chemotherapeutic drugs. It has specific anticancer effects and is effective against drug-resistant cancers. Moreover, this peptide amphiphile exhibits high tumor targeting when attached to a tumor-targeting ligand and causes significant inhibition of tumor growth both in cancer and drug-resistant cancer xenograft models.
Collapse
Affiliation(s)
- Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun Min Go
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yumi Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
16
|
Las Heras M, Szenfeld B, Ballout RA, Buratti E, Zanlungo S, Dardis A, Klein AD. Understanding the phenotypic variability in Niemann-Pick disease type C (NPC): a need for precision medicine. NPJ Genom Med 2023; 8:21. [PMID: 37567876 PMCID: PMC10421955 DOI: 10.1038/s41525-023-00365-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease (LSD) characterized by the buildup of endo-lysosomal cholesterol and glycosphingolipids due to loss of function mutations in the NPC1 and NPC2 genes. NPC patients can present with a broad phenotypic spectrum, with differences at the age of onset, rate of progression, severity, organs involved, effects on the central nervous system, and even response to pharmacological treatments. This article reviews the phenotypic variation of NPC and discusses its possible causes, such as the remaining function of the defective protein, modifier genes, sex, environmental cues, and splicing factors, among others. We propose that these factors should be considered when designing or repurposing treatments for this disease. Despite its seeming complexity, this proposition is not far-fetched, considering the expanding interest in precision medicine and easier access to multi-omics technologies.
Collapse
Affiliation(s)
- Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Benjamín Szenfeld
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Rami A Ballout
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center and Children's Health, Dallas, TX, 75235, USA
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330033, Chile
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100, Udine, Italy
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile.
| |
Collapse
|
17
|
Dong L, Xiao J, Liu S, Deng G, Liao Y, Chu B, Zhao X, Song BL, Luo J. Lysosomal cholesterol accumulation is commonly found in most peroxisomal disorders and reversed by 2-hydroxypropyl-β-cyclodextrin. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1786-1799. [PMID: 36971991 DOI: 10.1007/s11427-022-2260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/10/2022] [Indexed: 03/29/2023]
Abstract
Peroxisomal disorders (PDs) are a heterogenous group of diseases caused by defects in peroxisome biogenesis or functions. X-linked adrenoleukodystrophy is the most prevalent form of PDs and results from mutations in the ABCD1 gene, which encodes a transporter mediating the uptake of very long-chain fatty acids (VLCFAs). The curative approaches for PDs are very limited. Here, we investigated whether cholesterol accumulation in the lysosomes is a biochemical feature shared by a broad spectrum of PDs. We individually knocked down fifteen PD-associated genes in cultured cells and found ten induced cholesterol accumulation in the lysosome. 2-Hydroxypropyl-β-cyclodextrin (HPCD) effectively alleviated the cholesterol accumulation phenotype in PD-mimicking cells through reducing intracellular cholesterol content as well as promoting cholesterol redistribution to other cellular membranes. In ABCD1 knockdown cells, HPCD treatment lowered reactive oxygen species and VLCFA to normal levels. In Abcd1 knockout mice, HPCD injections reduced cholesterol and VLCFA sequestration in the brain and adrenal cortex. The plasma levels of adrenocortical hormones were increased and the behavioral abnormalities were greatly ameliorated upon HPCD administration. Together, our results suggest that defective cholesterol transport underlies most, if not all, PDs, and that HPCD can serve as a novel and effective strategy for the treatment of PDs.
Collapse
Affiliation(s)
- Lewei Dong
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Jian Xiao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Shuai Liu
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Gang Deng
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Yacheng Liao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaolu Zhao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Bao-Liang Song
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Jie Luo
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
18
|
Kunkel TJ, Townsend A, Sullivan KA, Merlet J, Schuchman EH, Jacobson DA, Lieberman AP. The cholesterol transporter NPC1 is essential for epigenetic regulation and maturation of oligodendrocyte lineage cells. Nat Commun 2023; 14:3964. [PMID: 37407594 DOI: 10.1038/s41467-023-39733-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
The intracellular cholesterol transporter NPC1 functions in late endosomes and lysosomes to efflux unesterified cholesterol, and its deficiency causes Niemann-Pick disease Type C, an autosomal recessive lysosomal disorder characterized by progressive neurodegeneration and early death. Here, we use single-nucleus RNA-seq on the forebrain of Npc1-/- mice at P16 to identify cell types and pathways affected early in pathogenesis. Our analysis uncovers significant transcriptional changes in the oligodendrocyte lineage during developmental myelination, accompanied by diminished maturation of myelinating oligodendrocytes. We identify upregulation of genes associated with neurogenesis and synapse formation in Npc1-/- oligodendrocyte lineage cells, reflecting diminished gene silencing by H3K27me3. Npc1-/- oligodendrocyte progenitor cells reproduce impaired maturation in vitro, and this phenotype is rescued by treatment with GSK-J4, a small molecule inhibitor of H3K27 demethylases. Moreover, mobilizing stored cholesterol in Npc1-/- mice by a single administration of 2-hydroxypropyl-β-cyclodextrin at P7 rescues myelination, epigenetic marks, and oligodendrocyte gene expression. Our findings highlight an important role for NPC1 in oligodendrocyte lineage maturation and epigenetic regulation, and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alice Townsend
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Kyle A Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jean Merlet
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel A Jacobson
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Han S, Wang Q, Song Y, Pang M, Ren C, Wang J, Guan D, Xu W, Li F, Wang F, Zhou X, Fernández-Hernando C, Zhang H, Wu D, Ye Z. Lithium ameliorates Niemann-Pick C1 disease phenotypes by impeding STING/SREBP2 activation. iScience 2023; 26:106613. [PMID: 37128603 PMCID: PMC10148154 DOI: 10.1016/j.isci.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023] Open
Abstract
Niemann-Pick disease type C (NP-C) is a genetic lysosomal disorder associated with progressive neurodegenerative phenotypes. Its therapeutic options are very limited. Here, we show that lithium treatment improves ataxia and feeding phenotypes, attenuates cerebellar inflammation and degeneration, and extends survival in Npc1 mouse models. In addition, lithium suppresses STING activation, SREBP2 processing to its mature form and the expression of the target genes in the Npc1 mice and in Npc1-deficient fibroblasts. Lithium impedes STING/SREBP2 transport from the ER to the Golgi, a step required for STING activation and SREBP2 processing, probably by lowering cytosolic calcium concentrations. This effect of lithium on STING/SREBP2 transport provides a mechanistic explanation for lithium's effects on Npc1 mice. Thus, this study reveals a potential therapeutic option for NP-C patients as well as a strategy to reduce active STING/SREBP2 pathway.
Collapse
Affiliation(s)
- Shiqian Han
- Department of Tropical Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qijun Wang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT06520, USA
- Departments of Pharmacology, Yale University School of Medicine, New Haven, CT06520, USA
- Shanghai Institute of Immunology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yongfeng Song
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT06520, USA
- Departments of Pharmacology, Yale University School of Medicine, New Haven, CT06520, USA
| | - Mao Pang
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing 400044, China
| | - Chunguang Ren
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT06520, USA
- Departments of Pharmacology, Yale University School of Medicine, New Haven, CT06520, USA
| | - Jing Wang
- Department of Tropical Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dongwei Guan
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing 400044, China
| | - Wei Xu
- Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fangyong Li
- Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fengchao Wang
- Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xinyuan Zhou
- Department of Immunology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT06520, USA
- Comparative Medicine and Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Dianqing Wu
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT06520, USA
- Departments of Pharmacology, Yale University School of Medicine, New Haven, CT06520, USA
| | - Zhijia Ye
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing 400044, China
| |
Collapse
|
20
|
Ohashi M, Tamura A, Yui N. Exploring Receptor Binding Affinities and Hepatic Cell Association of N-Acetyl-d-Galactosamine-Modified β-Cyclodextrin-Based Polyrotaxanes for Liver-Targeted Therapies. Biomacromolecules 2023; 24:2327-2341. [PMID: 37036902 DOI: 10.1021/acs.biomac.3c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Acid-degradable polyrotaxanes (PRXs) containing threading β-cyclodextrins (β-CDs) are promising candidates for therapeutic applications of β-CDs in metabolic diseases with cholesterol overload or imbalance. To improve cellular uptake specificity and efficiency of PRXs in hepatocytes, N-acetyl-d-galactosamine (GalNAc)-modified PRXs were developed to facilitate asialoglycoprotein receptor (ASGR)-mediated endocytosis. Binding affinity studies revealed that the dissociation constant (KD) values between recombinant ASGR and GalNAc-PRXs decreased with an increase in the number of modified GalNAc units. Additionally, the KD values for GalNAc-PRXs were smaller than those for GalNAc-modified β-CD and amylose, suggesting that the PRX backbone structure improves the binding affinity with ASGR. However, the intracellular uptake levels of GalNAc-PRXs in HepG2 cells increased with a decrease in the number of modified GalNAc units, which was opposite to the trend observed in the binding affinity study. We found that GalNAc-PRXs had a large number of GalNAc units localized in recycling endosomes, resulting in the low intracellular uptake. The cholesterol-reducing abilities of GalNAc-PRXs were assessed using cholesterol-overloaded HepG2 cells. GalNAc-PRXs with a small number of GalNAc units were demonstrated to show superior cholesterol-reducing effects compared to previously designed acid-degradable PRX and clinically tested β-CD derivatives. Thus, we conclude that GalNAc modification is a promising molecular design for the therapeutic application of β-CD-threaded PRXs in various metabolic diseases with cholesterol overload or imbalance in the liver.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
21
|
Ohno Y, Toshino M, Mohammed AFA, Fujiwara Y, Komohara Y, Onodera R, Higashi T, Motoyama K. Mannose-methyl-β-cyclodextrin suppresses tumor growth by targeting both colon cancer cells and tumor-associated macrophages. Carbohydr Polym 2023; 305:120551. [PMID: 36737200 DOI: 10.1016/j.carbpol.2023.120551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Methylated β-cyclodextrin (MβCD) can extract cholesterol from lipid rafts and induce apoptosis in cancer cells by inhibiting activation of the PI3K-Akt-Bad pathway. In this study, we modified MβCD with mannose (Man-MβCD) and assessed its in vitro and in vivo potential for targeting colon cancer cells expressing the mannose receptor (MR) and tumor-associated macrophages (TAM). Man-MβCD showed a significantly greater level of cellular association with colon-26 cells and M2 macrophages, and much more prominent anticancer activity than that of MβCD against MR-positive colon-26 cells. These results revealed that autophagy was the main mechanism of cell death associated with Man-MβCD. Furthermore, compared with MβCD, Man-MβCD significantly reduced tumor development following intravenous delivery to tumor-bearing mice, with no apparent side effects. Thus, Man-MβCD has the potential to be a novel anticancer drug.
Collapse
Affiliation(s)
- Yoshitaka Ohno
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Cross-disciplinary Doctoral Human Resource Development Program to Lead the Well-being Society, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Maiko Toshino
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ahmed F A Mohammed
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Yukio Fujiwara
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yoshihiro Komohara
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
22
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
23
|
El-Darzi N, Mast N, Hammer SS, Dorweiler TF, Busik JV, Pikuleva IA. 2-Hydroxypropyl-β-cyclodextrin mitigates pathological changes in a mouse model of retinal cholesterol dyshomeostasis. J Lipid Res 2023; 64:100323. [PMID: 36586438 PMCID: PMC9883287 DOI: 10.1016/j.jlr.2022.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
CYP46A1 is a CNS-specific enzyme, which eliminates cholesterol from the brain and retina by metabolism to 24-hydroxycholesterol, thus contributing to cholesterol homeostasis in both organs. 2-Hydroxypropyl-β-cyclodextrin (HPCD), a Food and Drug Administration-approved formulation vehicle, is currently being investigated off-label for treatment of various diseases, including retinal diseases. HPCD was shown to lower retinal cholesterol content in mice but had not yet been evaluated for its therapeutic benefits. Herein, we put Cyp46a1-/- mice on high fat cholesterol-enriched diet from 1 to 14 months of age (control group) and at 12 months of age, started to treat a group of these animals with HPCD until the age of 14 months. We found that as compared with mature and regular chow-fed Cyp46a1-/- mice, control group had about 6-fold increase in the retinal total cholesterol content, focal cholesterol and lipid deposition in the photoreceptor-Bruch's membrane region, and retinal macrophage activation. In addition, aged animals had cholesterol crystals at the photoreceptor-retinal pigment epithelium interface and changes in the Bruch's membrane ultrastructure. HPCD treatment mitigated all these manifestations of retinal cholesterol dyshomeostasis and altered the abundance of six groups of proteins (genetic information transfer, vesicular transport, and cytoskeletal organization, endocytosis and lysosomal processing, unfolded protein removal, lipid homeostasis, and Wnt signaling). Thus, aged Cyp46a1-/- mice on high fat cholesterol-enriched diet revealed pathological changes secondary to retinal cholesterol overload and supported further studies of HPCD as a potential therapeutic for age-related macular degeneration and diabetic retinopathy associated with retinal cholesterol dyshomeostasis.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Tim F Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
24
|
Campbell K, Cawley NX, Luke R, Scott KEJ, Johnson N, Farhat NY, Alexander D, Wassif CA, Li W, Cologna SM, Berry-Kravis E, Do AD, Dale RK, Porter FD. Identification of cerebral spinal fluid protein biomarkers in Niemann-Pick disease, type C1. Biomark Res 2023; 11:14. [PMID: 36721240 PMCID: PMC9887810 DOI: 10.1186/s40364-023-00448-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Niemann-Pick disease, type C1 (NPC1) is an ultrarare, recessive, lethal, lysosomal disease characterized by progressive cerebellar ataxia and cognitive impairment. Although the NPC1 phenotype is heterogeneous with variable age of onset, classical NPC1 is a pediatric disorder. Currently there are no therapies approved by the FDA and therapeutics trials for NPC1 are complicated by disease rarity, heterogeneity, and the relatively slow rate of neurological decline. Thus, identification of disease relevant biomarkers is necessary to provide tools that can support drug development efforts for this devastating neurological disease. METHODS Proximal extension assays (O-link® Explore 1536) were used to compare cerebrospinal fluid (CSF) samples from individuals with NPC1 enrolled in a natural history study and non-NPC1 comparison samples. Relative expression levels of 1467 proteins were determined, and candidate protein biomarkers were identified by evaluating fold-change and adjusted Kruskal-Wallis test p-values. Selected proteins were orthogonally confirmed using ELISA. To gain insight into disease progression and severity we evaluated the altered protein expression with respect to clinically relevant phenotypic aspects: NPC Neurological Severity Score (NPC1 NSS), Annual Severity Increment Score (ASIS) and age of neurological onset. RESULTS This study identified multiple proteins with altered levels in CSF from individuals with NPC1 compared to non-NPC1 samples. These included proteins previously shown to be elevated in NPC1 (NEFL, MAPT, CHIT1, CALB1) and additional proteins confirmed by orthogonal assays (PARK7, CALB2/calretinin, CHI3L1/YKL-40, MIF, CCL18 and ENO2). Correlations with clinically relevant phenotypic parameters demonstrated moderate negative (p = 0.0210, r = -0.41) and possible moderate positive (p = 0.0631, r = 0.33) correlation of CSF CALB2 levels with age of neurological onset and ASIS, respectively. CSF CHI3L1 levels showed a moderate positive (p = 0.0183, r = 0.40) correlation with the concurrent NPC1 NSS. A strong negative correlation (p = 0.0016, r = -0.648) was observed between CSF CCL18 and age of neurological onset for childhood/adolescent cases. CSF CCL18 levels also showed a strong positive correlation (p = 0.0017, r = 0.61) with ASIS. CONCLUSION Our study identified and validated multiple proteins in CSF from individuals with NPC1 that are candidates for further investigation in a larger cohort. These analytes may prove to be useful as supportive data in therapeutic trials. TRIAL REGISTRATIONS NCT00344331, NCT00001721, NCT02931682.
Collapse
Affiliation(s)
- Kiersten Campbell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10CRC, Rm. 1-3330, 10 Center Dr., Bethesda, MD, 20879, USA
| | - Niamh X Cawley
- Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rachel Luke
- Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Katelin E J Scott
- Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10CRC, Rm. 1-3330, 10 Center Dr., Bethesda, MD, 20879, USA
| | - Nicole Y Farhat
- Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Derek Alexander
- Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Christopher A Wassif
- Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Wenping Li
- Department of Chemistry and Laboratory of Integrative Neuroscience, University of Illinois Chicago, Chicago, IL, USA
| | - Stephanie M Cologna
- Department of Chemistry and Laboratory of Integrative Neuroscience, University of Illinois Chicago, Chicago, IL, USA
| | | | - An Dang Do
- Unit On Cellular Stress in Development and Diseases, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10CRC, Rm. 1-3330, 10 Center Dr., Bethesda, MD, 20879, USA
| | - Forbes D Porter
- Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Cologna SM, Pathmasiri KC, Pergande MR, Rosenhouse-Dantsker A. Alterations in Cholesterol and Phosphoinositides Levels in the Intracellular Cholesterol Trafficking Disorder NPC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:143-165. [PMID: 36988880 DOI: 10.1007/978-3-031-21547-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lipid mistrafficking is a biochemical hallmark of Niemann-Pick Type C (NPC) disease and is classically characterized with endo/lysosomal accumulation of unesterified cholesterol due to genetic mutations in the cholesterol transporter proteins NPC1 and NPC2. Storage of this essential signaling lipid leads to a sequence of downstream events, including oxidative stress, calcium imbalance, neuroinflammation, and progressive neurodegeneration, another hallmark of NPC disease. These observations have been validated in a growing number of studies ranging from NPC cell cultures and animal models to patient specimens. In recent reports, alterations in the levels of another class of critical signaling lipids, namely phosphoinositides, have been described in NPC disease. Focusing on cholesterol and phosphoinositides, the chapter begins by reviewing the interactions of NPC proteins with cholesterol and their role in cholesterol transport. It then continues to describe the modulation of cholesterol efflux in NPC disease. The chapter concludes with a summary of findings related to the functional consequences of perturbations in phosphoinositides in this fatal disease.
Collapse
Affiliation(s)
| | | | - Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | |
Collapse
|
26
|
Organ Weights in NPC1 Mutant Mice Partly Normalized by Various Pharmacological Treatment Approaches. Int J Mol Sci 2022; 24:ijms24010573. [PMID: 36614015 PMCID: PMC9820376 DOI: 10.3390/ijms24010573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick Type C1 (NPC1, MIM 257220) is a rare, progressive, lethal, inherited autosomal-recessive endolysosomal storage disease caused by mutations in the NPC1 leading to intracellular lipid storage. We analyzed mostly not jet known alterations of the weights of 14 different organs in the BALB/cNctr-Npc1m1N/-J Jackson Npc1 mice in female and male Npc1+/+ and Npc1-/- mice under various treatment strategies. Mice were treated with (i) no therapy, (ii) vehicle injection, (iii) a combination of miglustat, allopregnanolone, and 2-hydroxypropyl-ß-cyclodextrin (HPßCD), (iv) miglustat, and (v) HPßCD alone starting at P7 and repeated weekly throughout life. The 12 respective male and female wild-type mice groups were evaluated in parallel. In total, 351 mice (176 Npc1+/+, 175 Npc1-/-) were dissected at P65. In both sexes, the body weights of None and Sham Npc1-/- mice were lower than those of respective Npc1+/+ mice. The influence of the Npc1 mutation and/or sex on the weights of various organs, however, differed considerably. In males, Npc1+/+ and Npc1-/- mice had comparable absolute weights of lungs, spleen, and adrenal glands. In Npc1-/- mice, smaller weights of hearts, livers, kidneys, testes, vesicular, and scent glands were found. In female Npc1-/- mice, ovaries, and uteri were significantly smaller. In Npc1-/- mice, relative organ weights, i.e., normalized with body weights, were sex-specifically altered to different extents by the different therapies. The combination of miglustat, allopregnanolone, and the sterol chelator HPßCD partly normalized the weights of more organs than miglustat or HPßCD mono-therapies.
Collapse
|
27
|
Sakai A, Yamashita Y, Misumi S, Kishimoto N, Onodera R, Higashi T, Arima H, Motoyama K. Nanoparticles of folic acid-methyl-β-cyclodextrin (FA-MβCD)/adamantane-albumin exhibit enhanced antitumor activity compared with FA-MβCD alone. FEBS Open Bio 2022; 13:233-245. [PMID: 36537756 PMCID: PMC9900082 DOI: 10.1002/2211-5463.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Supramolecular drug carriers are a promising approach for delivering anticancer drugs with high blood retention after administration. We previously synthesized folic acid-modified methyl-β-cyclodextrin (FA-MβCD) as an anticancer drug. FA-MβCD has a selective autophagy-mediated antitumor effect on folic acid receptor (FR)-expressing cancer cells. Here, we enhanced the antitumor effect and safety of FA-MβCD by preparing a supramolecular nanoparticle formulation of FA-MβCD via host-guest interactions using an adamantane conjugate with human serum albumin (Ad-HSA). The Ad-HSA/FA-MβCD supramolecular complex prolonged the blood retention of FA-MβCD and improved its antitumor effect and safety after intravenous administration in tumor-bearing mice xenografted with FR-expressing cancer cells. These results suggest that the supramolecular technique using Ad-HSA is a promising approach for the delivery of CD-based anticancer drugs.
Collapse
Affiliation(s)
- Aiko Sakai
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| | - Yuki Yamashita
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| | - Shogo Misumi
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| | - Naoki Kishimoto
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| | - Risako Onodera
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| | - Taishi Higashi
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan,Priority Organization for Innovation and ExcellenceKumamoto UniversityJapan
| | - Hidetoshi Arima
- Laboratory of Evidence‐Based PharmacotherapyDaiichi University of PharmacyFukuokaJapan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| |
Collapse
|
28
|
Hastings C, Liu B, Hurst B, Cox GF, Hrynkow S. Intravenous 2-hydroxypropyl-β-cyclodextrin (Trappsol® Cyclo™) demonstrates biological activity and impacts cholesterol metabolism in the central nervous system and peripheral tissues in adult subjects with Niemann-Pick Disease Type C1: Results of a phase 1 trial. Mol Genet Metab 2022; 137:309-319. [PMID: 36279795 DOI: 10.1016/j.ymgme.2022.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Niemann-Pick Disease Type C1 (NPC1) is a disorder of intracellular cholesterol and lipid trafficking that leads to the accumulation of cholesterol and lipids in the late endosomal/lysosomal compartment, resulting in systemic manifestations (including hepatosplenomegaly and lung infiltration) and neurodegeneration. Preclinical studies have demonstrated that systemically administered 2-hydroxypropyl-β-cyclodextrin (HPβCD; Trappsol® Cyclo™) restores cholesterol metabolism and homeostasis in peripheral organs and tissues and in the central nervous system (CNS). Here, we assessed the safety, pharmacokinetics, and pharmacodynamics of HPβCD in peripheral tissues and the CNS in adult subjects with NPC1. METHODS A Phase 1, randomized, double-blind, parallel group study enrolled 13 subjects with NPC1 who received either 1500 mg/kg or 2500 mg/kg HPβCD intravenously every 2 weeks for a total of 7 doses (14 weeks). Subjects were 18 years or older, with a confirmed diagnosis of NPC1 and evidence of systemic involvement on clinical assessment. Pharmacokinetic evaluations in plasma and cerebrospinal fluid (CSF) were performed at the first and seventh infusions. Pharmacodynamic assessments included biomarkers of systemic cholesterol synthesis (serum lathosterol) and degradation (serum 4β-hydroxycholesterol), secondary sphingomyelin storage (plasma lysosphingomyelin-509, now more accurately referred to as N-palmitoyl-O-phosphocholineserine [PPCS]), and CNS-specific biomarkers of neurodegeneration (CSF total Tau) and cholesterol metabolism (serum 24(S)-hydroxycholesterol [24(S)-HC]). Safety monitoring included assessments of liver and kidney function, infusion related adverse events, and hearing evaluations. RESULTS Ten subjects completed the study, with 6 at the 1500 mg/kg dose and 4 at the 2500 mg/kg dose. One subject withdrew following the first infusion after experiencing hypersensitivity pneumonitis, and 2 subjects withdrew after meeting a stopping rule related to hearing loss. Overall, HPβCD had an acceptable safety profile. The observed pharmacokinetic profile of HPβCD was similar following the first and seventh infusions, with a plasma half-life of 2 h, a maximum concentration reached at 6 to 8 h, and no evidence of accumulation. Serum biomarkers of cholesterol metabolism showed reduced synthesis and increased degradation. Compared to Baseline, filipin staining of liver tissue showed significant reductions of trapped unesterified cholesterol at both dose levels at Week 14. Plasma PPCS levels were also reduced. HPβCD was detected at low concentrations in the CSF (maximum, 33 μM) at both dose levels and persisted longer in CSF than in plasma. Total Tau levels in CSF decreased in most subjects. Serum levels of 24(S)-HC, a cholesterol metabolite from the CNS that is exported across the blood-brain barrier and into the circulation, decreased after both the first and seventh doses. Hence, pharmacodynamic assessments in both peripheral and CNS-related tissue show target engagement. While not the aim of the study, subjects reported favorable impacts on their quality of life. CONCLUSIONS The plasma pharmacokinetics and pharmacodynamics of HPβCD administered at two intravenous dose levels to subjects with NPC1 were comparable to those observed in preclinical models. HPβCD cleared cholesterol from the liver and improved peripheral biomarkers of cholesterol homeostasis. At low CSF concentrations, HPβCD appeared to be pharmacologically active in the CNS based on the increased efflux of 24(S)-HC and reduction in CSF total Tau, a biomarker of CNS neurodegeneration. These data support the initiation of longer-term clinical trials to evaluate the safety and efficacy of intravenous HPβCD in subjects with NPC1. (ClinicalTrials.gov numbers: present trial, NCT02939547; open-label extension of the present trial, NCT03893071; global pivotal trial, NCT04860960).
Collapse
Affiliation(s)
- Caroline Hastings
- Department of Pediatric Hematology Oncology, UCSF Benioff Children's Hospital Oakland, 747 52(nd) Street, Oakland, CA 94609-1809, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Benny Liu
- GI & Liver Clinics, Highland Hospital, Alameda Health System, Highland Hospital, Oakland, CA, USA; Division of Gastroenterology & Hepatology, Highland Hospital, Alameda Health Systems, Highland Care Pavilion 5th floor, 1411 East 31st Street, Oakland, CA 94602, USA
| | - Bryan Hurst
- Boyd Consultants, Electra House, Electra Avenue, Crewe CW1 6GL, UK
| | - Gerald F Cox
- Cyclo Therapeutics, Inc., 6714 NW 16(th) St., Ste B, Gainesville, FL 32653, USA
| | - Sharon Hrynkow
- Cyclo Therapeutics, Inc., 6714 NW 16(th) St., Ste B, Gainesville, FL 32653, USA
| |
Collapse
|
29
|
Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 191:114617. [PMID: 36356931 DOI: 10.1016/j.addr.2022.114617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide, is a pharmaceutical additive that improves the solubility of hydrophobic compounds. Recent research has focused on the potential active pharmaceutical abilities of CD. Lysosomal storage diseases are inherited metabolic diseases characterized by lysosomal dysfunction and abnormal lipid storage. Niemann-Pick disease type C (NPC) is caused by mutations in cholesterol transporter genes (NPC1, NPC2) and is characterized by cholesterol accumulation in lysosomes. A biocompatible cholesterol solubilizer 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was recently used in NPC patients for compassionate use and in clinical trials. HP-β-CD is an attractive drug candidate for NPC; however, its adverse effects, such as ototoxicity, should be solved. In this review, we discuss the current use of HP-β-CD in basic and clinical research and discuss alternative CD derivatives that may outperform HP-β-CD, which should be considered for clinical use. The potential of CD therapy for the treatment of other lysosomal storage diseases is also discussed.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
30
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
31
|
Okada BY, Kuroiwa S, Noi A, Tanaka A, Nishikawa J, Kondo Y, Ishitsuka Y, Irie T, Higaki K, Matsuo M, Ichikawa A. Effects of 6-O-α-maltosyl-β cyclodextrin on lipid metabolism in Npc1-deficient Chinese hamster ovary cells. Mol Genet Metab 2022; 137:239-248. [PMID: 36182715 DOI: 10.1016/j.ymgme.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
Abstract
Niemann-Pick disease Type C (NPC) is a lysosomal storage disorder caused by mutation of the NPC1/NPC2 genes, which ultimately results in the accumulation of unesterified cholesterol (UEC) in lysosomes, thereby inducing symptoms such as progressive neurodegeneration and hepatosplenomegaly. This study determines the effects of 6-O-α-maltosyl-β cyclodextrin (Mal-βCD) on lipid levels and synthesis in Npc1-deficient (Npc1-KO cells) and vehicle CHO cells. Compared to vehicle cells, Npc1-KO cells exhibited high level of UEC, and low levels of esterified cholesterols (ECs) and long-chain fatty acids (LCFAs). The difference in lipid levels between Npc1-KO and CHO cells was largely ameliorated by Mal-βCD administration. Moreover, the effects of Mal-βCD were reproduced in the lysosomes prepared from Npc1-KO cells. Stable isotope tracer analysis with extracellular addition of D4-deuterated palmitic acid (D4-PA) to Npc1-KO cells increased the synthesis of D4-deuterated LCFAs (D4-LCFAs) and D4-deuterated ECs (D4-ECs) in a Mal-βCD-dependent manner. Simultaneous addition of D6-deuterated UEC (D6-UEC) and D4-PA promoted the Mal-βCD-dependent synthesis of D6-/D4-ECs, consisting of D6-UEC and D4-PA, D4-deuterated stearic acid, or D4-deuterated myristic acid, in Npc1-KO cells. These results suggest that Mal-βCD helps to maintain normal lipid metabolism by restoring balance among UEC, ECs, and LCFAs through acting on behalf of NPC1 in Npc1-KO cells and may therefore be useful in designing effective therapies for NPC.
Collapse
Affiliation(s)
- By Yasuyo Okada
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan.
| | - Sayako Kuroiwa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Ayaka Noi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Ayaka Tanaka
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Junichi Nishikawa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Atsushi Ichikawa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Bio-Education Laboratory, Tawara Building #702, 1-21-33 Higashinakajima, Osaka 533-0033, Japan.
| |
Collapse
|
32
|
Gao G, Guo S, Zhang Q, Zhang H, Zhang C, Peng G. Kiaa1024L/Minar2 is essential for hearing by regulating cholesterol distribution in hair bundles. eLife 2022; 11:e80865. [PMID: 36317962 PMCID: PMC9714970 DOI: 10.7554/elife.80865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Unbiased genetic screens implicated a number of uncharacterized genes in hearing loss, suggesting some biological processes required for auditory function remain unexplored. Loss of Kiaa1024L/Minar2, a previously understudied gene, caused deafness in mice, but how it functioned in the hearing was unclear. Here, we show that disruption of kiaa1024L/minar2 causes hearing loss in the zebrafish. Defects in mechanotransduction, longer and thinner hair bundles, and enlarged apical lysosomes in hair cells are observed in the kiaa1024L/minar2 mutant. In cultured cells, Kiaa1024L/Minar2 is mainly localized to lysosomes, and its overexpression recruits cholesterol and increases cholesterol labeling. Strikingly, cholesterol is highly enriched in the hair bundle membrane, and loss of kiaa1024L/minar2 reduces cholesterol localization to the hair bundles. Lowering cholesterol levels aggravates, while increasing cholesterol levels rescues the hair cell defects in the kiaa1024L/minar2 mutant. Therefore, cholesterol plays an essential role in hair bundles, and Kiaa1024L/Minar2 regulates cholesterol distribution and homeostasis to ensure normal hearing.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Shuyu Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Quan Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Hefei Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Cuizhen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Gang Peng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
33
|
Furtado D, Cortez-Jugo C, Hung YH, Bush AI, Caruso F. mRNA Treatment Rescues Niemann-Pick Disease Type C1 in Patient Fibroblasts. Mol Pharm 2022; 19:3987-3999. [PMID: 36125338 DOI: 10.1021/acs.molpharmaceut.2c00463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Messenger RNA (mRNA) holds great potential as a disease-modifying treatment for a wide array of monogenic disorders. Niemann-Pick disease type C1 (NP-C1) is an ultrarare monogenic disease that arises due to loss-of-function mutations in the NPC1 gene, resulting in the entrapment of unesterified cholesterol in the lysosomes of affected cells and a subsequent reduction in their capacity for cholesterol esterification. This causes severe damage to various organs including the brain, liver, and spleen. In this work, we describe the use of NPC1-encoded mRNA to rescue the protein insufficiency and pathogenic phenotype caused by biallelic NPC1 mutations in cultured fibroblasts derived from an NP-C1 patient. We first evaluated engineering strategies for the generation of potent mRNAs capable of eliciting high protein expression across multiple cell types. We observed that "GC3" codon optimization, coupled with N1-methylpseudouridine base modification, yielded an mRNA that was approximately 1000-fold more potent than wild-type, unmodified mRNA in a luciferase reporter assay and consistently superior to other mRNA variants. Our data suggest that the improved expression associated with this design strategy was due in large part to the increased secondary structure of the designed mRNAs. Both codon optimization and base modification appear to contribute to increased secondary structure. Applying these principles to the engineering of NPC1-encoded mRNA, we observed a normalization in NPC1 protein levels after mRNA treatment, as well as a rescue of the mutant phenotype. Specifically, mRNA treatment restored the cholesterol esterification capacity of patient cells to wild-type levels and induced a significant reduction in both unesterified cholesterol levels (>57% reduction compared to Lipofectamine-treated control in a cholesterol esterification assay) and lysosome size (157 μm2 reduction compared to Lipofectamine-treated control). These findings show that engineered mRNA can correct the deficit caused by NPC1 mutations. More broadly, they also serve to further validate the potential of this technology to correct diseases associated with loss-of-function mutations in genes coding for large, complex, intracellular proteins.
Collapse
Affiliation(s)
- Denzil Furtado
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ya Hui Hung
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Tamura A, Nishida K, Zhang S, Kang TW, Tonegawa A, Yui N. Cografting of Zwitterionic Sulfobetaines and Cationic Amines on β-Cyclodextrin-Threaded Polyrotaxanes Facilitates Cellular Association and Tissue Accumulation with High Biocompatibility. ACS Biomater Sci Eng 2022; 8:2463-2476. [PMID: 35536230 DOI: 10.1021/acsbiomaterials.2c00324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Cyclodextrins (β-CDs) and β-CD-containing polymers have attracted considerable attention as potential candidates for the treatment of cholesterol-related metabolic and intractable diseases. We have advocated the use of β-CD-threaded acid-degradable polyrotaxanes (PRXs) as intracellular delivery carriers for β-CDs. As unmodified PRXs are insoluble in aqueous solutions, chemical modification of PRXs is an essential process to improve their solubility and impart novel functionalities. In this study, we investigated the effect of the modification of zwitterionic sulfobetaines on PRXs due to their excellent solubility, biocompatibility, and bioinert properties. Sulfobetaine-modified PRXs were synthesized by converting the tertiary amino groups of precursor 2-(N,N-dimethylamino)ethyl carbamate-modified PRXs (DMAE-PRXs) using 1,3-propanesultone. The resulting sulfobetaine-modified PRXs showed high solubility in aqueous solutions and no cytotoxicity, while their intracellular uptake levels were low. To further improve this system, we designed PRXs cografted with zwitterionic sulfobetaine and cationic DMAE groups via partial betainization of the DMAE groups. Consequently, the interaction with proteins, intracellular uptake levels, and liver accumulation of partly betainized PRXs were found to be higher than those of completely betainized PRXs. Additionally, partly betainized PRXs showed no toxicity in vitro or in vivo despite the presence of residual cationic DMAE groups. Furthermore, partly betainized PRXs ameliorated the abnormal free cholesterol accumulation in Niemann-Pick type C disease patient-derived cells at lower concentrations than β-CD derivatives and previously designed PRXs. Overall, the cografting of sulfobetaines and amines on PRXs is a promising chemical modification for therapeutic applications due to the high cholesterol-reducing ability and biocompatibility of such modified PRXs. In addition, modification with both zwitterionic and cationic groups can be used for the design of various polymeric materials exhibiting both bioinert and bioactive characteristics.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Kei Nishida
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tae Woong Kang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
35
|
Nishida T, Yokoyama R, Kubohira Y, Maeda Y, Takeo T, Nakagata N, Takagi H, Ishikura K, Yanagihara K, Misumi S, Kishimoto N, Ishitsuka Y, Kondo Y, Irie T, Soga M, Era T, Onodera R, Higashi T, Motoyama K. Lactose-Appended Hydroxypropyl-β-Cyclodextrin Lowers Cholesterol Accumulation and Alleviates Motor Dysfunction in Niemann-Pick Type C Disease Model Mice. ACS APPLIED BIO MATERIALS 2022; 5:2377-2388. [PMID: 35506864 DOI: 10.1021/acsabm.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Niemann-Pick disease type C (NPC) is characterized by the accumulation of glycolipids such as free cholesterol, sphingomyelin, and gangliosides in late endosomes/lysosomes (endolysosomes) due to abnormalities in the membrane proteins NPC1 or NPC2. The main symptoms of NPC caused by free cholesterol accumulation in various tissues vary depending on the time of onset, but hepatosplenomegaly and neurological symptoms accompanied by decreased motor, cognitive, and mental functions are observed in all age groups. However, the efficacy of NPC treatment remains limited. Herein, we have fabricated lactose-appended hydroxypropyl-β-cyclodextrin (Lac-HPβCD) and evaluated its lowering effects on cholesterol accumulation in NPC model mice. We reveal that Lac-HPβCD lowers cholesterol accumulation in the liver and spleen by reducing the amount of free cholesterol. Moreover, Lac-HPβCD reduces the amount of free cholesterol in the cerebrum and slightly alleviates motor dysfunction. These results suggest that Lac-HPβCD has potential for the treatment of NPC.
Collapse
Affiliation(s)
- Takumi Nishida
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryoma Yokoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuto Kubohira
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Takeo
- Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroki Takagi
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Kandai Ishikura
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Kazunori Yanagihara
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Shogo Misumi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Naoki Kishimoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kondo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsumi Irie
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Minami Soga
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
36
|
Irie T. Inclusion Solves Insolubility —Translational Research Cycle from Bedside to Bench and Bench to Bedside for Drug Development Targeting Niemann-Pick Disease Type C—. YAKUGAKU ZASSHI 2022; 142:389-400. [DOI: 10.1248/yakushi.21-00215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tetsumi Irie
- Graduate School of Life Sciences, Kumamoto University
| |
Collapse
|
37
|
Ortega-Gonzalez P, Taylor G, Jangra RK, Tenorio R, Fernandez de Castro I, Mainou BA, Orchard RC, Wilen CB, Brigleb PH, Sojati J, Chandran K, Sachse M, Risco C, Dermody TS. Reovirus infection is regulated by NPC1 and endosomal cholesterol homeostasis. PLoS Pathog 2022; 18:e1010322. [PMID: 35263388 PMCID: PMC8906592 DOI: 10.1371/journal.ppat.1010322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-β-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.
Collapse
Affiliation(s)
- Paula Ortega-Gonzalez
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
- PhD Program in Molecular Biosciences, Autonoma de Madrid University, Madrid, Spain
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gwen Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Isabel Fernandez de Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Bernardo A. Mainou
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Craig B. Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pamela H. Brigleb
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jorna Sojati
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Martin Sachse
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
38
|
Baxter LL, Watkins-Chow DE, Johnson NL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ, Rodriguez-Gil JL. Correlation of age of onset and clinical severity in Niemann-Pick disease type C1 with lysosomal abnormalities and gene expression. Sci Rep 2022; 12:2162. [PMID: 35140266 PMCID: PMC8828765 DOI: 10.1038/s41598-022-06112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a rare, prematurely fatal lysosomal storage disorder which exhibits highly variable severity and disease progression as well as a wide-ranging age of onset, from perinatal stages to adulthood. This heterogeneity has made it difficult to obtain prompt diagnosis and to predict disease course. In addition, small NPC1 patient sample sizes have been a limiting factor in acquiring genome-wide transcriptome data. In this study, primary fibroblasts from an extensive cohort of 41 NPC1 patients were used to validate our previous findings that the lysosomal quantitative probe LysoTracker can be used as a predictor for age of onset and disease severity. We also examined the correlation between these clinical parameters and RNA expression data from primary fibroblasts and identified a set of genes that were significantly associated with lysosomal defects or age of onset, in particular neurological symptom onset. Hierarchical clustering showed that these genes exhibited distinct expression patterns among patient subgroups. This study is the first to collect transcriptomic data on such a large scale in correlation with clinical and cellular phenotypes, providing a rich genomic resource to address NPC1 clinical heterogeneity and discover potential biomarkers, disease modifiers, or therapeutic targets.
Collapse
Affiliation(s)
- Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
Groenen AG, La Rose AM, Li M, Bazioti V, Svendsen AF, Kloosterhuis NJ, Ausema A, Pranger A, Heiner-Fokkema MR, Niezen-Koning KE, Houben T, Shiri-Sverdlov R, Westerterp M. Elevated granulocyte-colony stimulating factor and hematopoietic stem cell mobilization in Niemann-Pick type C1 disease. J Lipid Res 2022; 63:100167. [PMID: 35007562 PMCID: PMC8953690 DOI: 10.1016/j.jlr.2021.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.
Collapse
Affiliation(s)
- Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anouk M La Rose
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mengying Li
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arthur F Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertina Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alle Pranger
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tom Houben
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
40
|
Aqul AA, Ramirez CM, Lopez AM, Burns DK, Repa JJ, Turley SD. Molecular markers of brain cholesterol homeostasis are unchanged despite a smaller brain mass in a mouse model of cholesteryl ester storage disease. Lipids 2022; 57:3-16. [PMID: 34618372 PMCID: PMC8766890 DOI: 10.1002/lipd.12325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Lysosomal acid lipase (LAL), encoded by the gene LIPA, facilitates the intracellular processing of lipids by hydrolyzing cholesteryl esters and triacylglycerols present in newly internalized lipoproteins. Loss-of-function mutations in LIPA result in cholesteryl ester storage disease (CESD) or Wolman disease when mutations cause complete loss of LAL activity. Although the phenotype of a mouse CESD model has been extensively characterized, there has not been a focus on the brain at different stages of disease progression. In the current studies, whole-brain mass and the concentrations of cholesterol in both the esterified (EC) and unesterified (UC) fractions were measured in Lal-/- and matching Lal+/+ mice (FVB-N strain) at ages ranging from 14 up to 280 days after birth. Compared to Lal+/+ controls at 50, 68-76, 140-142, and 230-280 days of age, Lal-/- mice had brain weights that averaged approximately 6%, 7%, 18%, and 20% less, respectively. Brain EC levels were higher in the Lal-/- mice at every age, being elevated 27-fold at 230-280 days. Brain UC concentrations did not show a genotypic difference at any age. The elevated brain EC levels in the Lal-/- mice did not reflect EC in residual blood. An mRNA expression analysis for an array of genes involved in the synthesis, catabolism, storage, and transport of cholesterol in the brains of 141-day old mice did not detect any genotypic differences although the relative mRNA levels for several markers of inflammation were moderately elevated in the Lal-/- mice. The possible sites of EC accretion in the central nervous system are discussed.
Collapse
Affiliation(s)
- Amal A. Aqul
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Charina M. Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Adam M. Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Dennis K. Burns
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Joyce J. Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Stephen D. Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| |
Collapse
|
41
|
Maekawa M, Mano N. Searching, Structural Determination, and Diagnostic Performance Evaluation of Biomarker Molecules for Niemann-Pick Disease Type C Using Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2022; 11:A0111. [PMID: 36713801 PMCID: PMC9853955 DOI: 10.5702/massspectrometry.a0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder that is characterized by progressive neuronal degeneration. Patients with NPC have a wide age of onset and various clinical symptoms. Therefore, the discovery and diagnosis of NPC are very difficult. Conventional laboratory tests are complicated and time consuming. In this context, biomarker searches have recently been performed. Our research group has previously also investigated NPC biomarkers based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) and related techniques. To identify biomarker candidates, nontargeted analysis with high-resolution MS and MS/MS scanning is commonly used. Structural speculation has been performed using LC/MS/MS fragmentation and chemical derivatization, while identification is performed by matching authentic standards and sample specimens. Diagnostic performance evaluation was performed using the validated LC/MS/MS method and analysis of samples from patients and control subjects. NPC biomarkers, which have been identified and evaluated in terms of performance, are various classes of lipid molecules. Oxysterols, cholenoic acids, and conjugates are cholesterol-derived molecules detected in the blood or urine. Plasma lyso-sphingolipids are biomarkers for both NPC and other lysosomal diseases. N-palmitoyl-O-phosphocholine-serine is a novel class of lipid biomarkers for NPC. This article reviews biomarkers for NPC and the analysis methods employed to that end.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan,Correspondence to: Masamitsu Maekawa, Department of Pharmaceutical Sciences, Tohoku University Hospital, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan, e-mail:
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
42
|
Cabrera-Reyes F, Parra-Ruiz C, Yuseff MI, Zanlungo S. Alterations in Lysosome Homeostasis in Lipid-Related Disorders: Impact on Metabolic Tissues and Immune Cells. Front Cell Dev Biol 2021; 9:790568. [PMID: 34957117 PMCID: PMC8703004 DOI: 10.3389/fcell.2021.790568] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid-related disorders, which primarily affect metabolic tissues, including adipose tissue and the liver are associated with alterations in lysosome homeostasis. Obesity is one of the more prevalent diseases, which results in energy imbalance within metabolic tissues and lysosome dysfunction. Less frequent diseases include Niemann-Pick type C (NPC) and Gaucher diseases, both of which are known as Lysosomal Storage Diseases (LSDs), where lysosomal dysfunction within metabolic tissues remains to be fully characterized. Adipocytes and hepatocytes share common pathways involved in the lysosome-autophagic axis, which are regulated by the function of cathepsins and CD36, an immuno-metabolic receptor and display alterations in lipid diseases, and thereby impacting metabolic functions. In addition to intrinsic defects observed in metabolic tissues, cells of the immune system, such as B cells can infiltrate adipose and liver tissues, during metabolic imbalance favoring inflammation. Moreover, B cells rely on lysosomes to promote the processing and presentation of extracellular antigens and thus could also present lysosome dysfunction, consequently affecting such functions. On the other hand, growing evidence suggests that cells accumulating lipids display defective inter-organelle membrane contact sites (MCSs) established by lysosomes and other compartments, which contribute to metabolic dysfunctions at the cellular level. Overall, in this review we will discuss recent findings addressing common mechanisms that are involved in lysosome dysregulation in adipocytes and hepatocytes during obesity, NPC, and Gaucher diseases. We will discuss whether these mechanisms may modulate the function of B cells and how inter-organelle contacts, emerging as relevant cellular mechanisms in the control of lipid homeostasis, have an impact on these diseases.
Collapse
Affiliation(s)
- Fernanda Cabrera-Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Parra-Ruiz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
43
|
Sitarska D, Tylki-Szymańska A, Ługowska A. Treatment trials in Niemann-Pick type C disease. Metab Brain Dis 2021; 36:2215-2221. [PMID: 34596813 PMCID: PMC8580890 DOI: 10.1007/s11011-021-00842-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/14/2021] [Indexed: 10/28/2022]
Abstract
Niemann-Pick type C (NPC) disease is a genetically determined neurodegenerative metabolic disease. It belongs to the lysosomal storage diseases and its main cause is impaired cholesterol transport in late endosomes or lysosomes. It is an autosomal recessive inherited disease that results from mutations in the NPC1 or NPC2 genes. The treatment efforts are focused on the slowing its progression. The only registered drug, devoted for NPC patients is Miglustat. Effective treatment is still under development. NPC disease mainly affects the nervous system, and the crossing of the blood-brain barrier by medicines is still a challenge, therefore the combination therapies of several compounds are increasingly being worked on. The aim of this paper is to present the possibilities in treatment of Niemann-Pick type C disease. The discussed research results relate to animal studies.
Collapse
Affiliation(s)
- Dominika Sitarska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| | - Anna Tylki-Szymańska
- Department of Pediatric Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
44
|
Cougnoux A, Yerger JC, Fellmeth M, Serra-Vinardell J, Navid F, Wassif CA, Cawley NX, Porter FD. Reduction of glutamate neurotoxicity: A novel therapeutic approach for Niemann-Pick disease, type C1. Mol Genet Metab 2021; 134:330-336. [PMID: 34802899 PMCID: PMC8767495 DOI: 10.1016/j.ymgme.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Niemann-Pick disease, type C1 is a progressive, lethal, neurodegenerative disorder due to endolysosomal storage of unesterified cholesterol. Cerebellar ataxia, as a result of progressive loss of cerebellar Purkinje neurons, is a major symptom of Nieman-Pick disease, type C1. Comparing single cell RNAseq data from control (Npc1+/+) and mutant (Npc1-/-) mice, we observed significantly decreased expression of Slc1a3 in Npc1-/- astrocytes. Slc1a3 encodes a glutamate transporter (GLAST, EAAT1) which functions to decrease glutamate concentrations in the post synaptic space after neuronal firing. Glutamate is an excitatory neurotransmitter and elevated extracellular levels of glutamate can be neurotoxic. Impaired EAAT1 function underlies type-6 episodic ataxia, a rare disorder with progressive cerebellar dysfunction, thus suggesting that impaired glutamate uptake in Niemann-Pick disease, type C1 could contribute to disease progression. We now show that decreased expression of Slc1a3 in Npc1-/- mice has functional consequences that include decreased surface protein expression and decreased glutamate uptake by Npc1-/- astrocytes. To test whether glutamate neurotoxicity plays a role in Niemann-Pick disease, type C1 progression, we treated NPC1 deficient mice with ceftriaxone and riluzole. Ceftriaxone is a β-lactam antibiotic that is known to upregulate the expression of Slc1a2, an alternative glial glutamate transporter. Although ceftriaxone increased Slc1a2 expression, we did not observe a treatment effect in NPC1 mutant mice. Riluzole is a glutamate receptor antagonist that inhibits postsynaptic glutamate receptor signaling and reduces the release of glutamate. We found that treatment with riluzole increased median survival in Npc1-/- by 12%. Given that riluzole is an approved drug for the treatment of amyotrophic lateral sclerosis, repurposing of this drug may provide a novel therapeutic approach to decrease disease progression in Niemann-Pick disease type, C1 patients.
Collapse
Affiliation(s)
- Antony Cougnoux
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Julia C Yerger
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mason Fellmeth
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Serra-Vinardell
- Human Biochemical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fatemeh Navid
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Christopher A Wassif
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Niamh X Cawley
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
45
|
Zhang H, Hong Y, Yang W, Wang R, Yao T, Wang J, Liu K, Yuan H, Xu C, Zhou Y, Li G, Zhang L, Luo H, Zhang X, Du D, Sun H, Zheng Q, Zhang YW, Zhao Y, Zhou Y, Xu H, Wang X. SNX14 deficiency-induced defective axonal mitochondrial transport in Purkinje cells underlies cerebellar ataxia and can be reversed by valproate. Natl Sci Rev 2021; 8:nwab024. [PMID: 34691693 PMCID: PMC8310771 DOI: 10.1093/nsr/nwab024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Loss-of-function mutations in sorting nexin 14 (SNX14) cause autosomal recessive spinocerebellar ataxia 20, which is a form of early-onset cerebellar ataxia that lacks molecular mechanisms and mouse models. We generated Snx14-deficient mouse models and observed severe motor deficits and cell-autonomous Purkinje cell degeneration. SNX14 deficiency disrupted microtubule organization and mitochondrial transport in axons by destabilizing the microtubule-severing enzyme spastin, which is implicated in dominant hereditary spastic paraplegia with cerebellar ataxia, and compromised axonal integrity and mitochondrial function. Axonal transport disruption and mitochondrial dysfunction further led to degeneration of high-energy-demanding Purkinje cells, which resulted in the pathogenesis of cerebellar ataxia. The antiepileptic drug valproate ameliorated motor deficits and cerebellar degeneration in Snx14-deficient mice via the restoration of mitochondrial transport and function in Purkinje cells. Our study revealed an unprecedented role for SNX14-dependent axonal transport in cerebellar ataxia, demonstrated the convergence of SNX14 and spastin in mitochondrial dysfunction, and suggested valproate as a potential therapeutic agent.
Collapse
Affiliation(s)
- Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weijie Yang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ruimin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ting Yao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jian Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ke Liu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Huilong Yuan
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chaoqun Xu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuanyuan Zhou
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guanxian Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lishan Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Dan Du
- Cancer Research Center, Department of Stomatology, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yun-Wu Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yingjun Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
46
|
Prabhu AV, Kang I, De Pace R, Wassif CA, Fujiwara H, Kell P, Jiang X, Ory DS, Bonifacino JS, Ward ME, Porter FD. A human iPSC-derived inducible neuronal model of Niemann-Pick disease, type C1. BMC Biol 2021; 19:218. [PMID: 34592985 PMCID: PMC8485536 DOI: 10.1186/s12915-021-01133-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Niemann-Pick disease, type C (NPC) is a childhood-onset, lethal, neurodegenerative disorder caused by autosomal recessive mutations in the genes NPC1 or NPC2 and characterized by impaired cholesterol homeostasis, a lipid essential for cellular function. Cellular cholesterol levels are tightly regulated, and mutations in either NPC1 or NPC2 lead to deficient transport and accumulation of unesterified cholesterol in the late endosome/lysosome compartment, and progressive neurodegeneration in affected individuals. Previous cell-based studies to understand the NPC cellular pathophysiology and screen for therapeutic agents have mainly used patient fibroblasts. However, these do not allow modeling the neurodegenerative aspect of NPC disease, highlighting the need for an in vitro system that permits understanding the cellular mechanisms underlying neuronal loss and identifying appropriate therapies. This study reports the development of a novel human iPSC-derived, inducible neuronal model of Niemann-Pick disease, type C1 (NPC1). RESULTS We generated a null i3Neuron (inducible × integrated × isogenic) (NPC1-/- i3Neuron) iPSC-derived neuron model of NPC1. The NPC1-/- and the corresponding isogenic NPC1+/+ i3Neuron cell lines were used to efficiently generate homogenous, synchronized neurons that can be used in high-throughput screens. NPC1-/- i3Neurons recapitulate cardinal cellular NPC1 pathological features including perinuclear endolysosomal storage of unesterified cholesterol, accumulation of GM2 and GM3 gangliosides, mitochondrial dysfunction, and impaired axonal lysosomal transport. Cholesterol storage, mitochondrial dysfunction, and axonal trafficking defects can be ameliorated by treatment with 2-hydroxypropyl-β-cyclodextrin, a drug that has shown efficacy in NPC1 preclinical models and in a phase 1/2a trial. CONCLUSION Our data demonstrate the utility of this new cell line in high-throughput drug/chemical screens to identify potential therapeutic agents. The NPC1-/- i3Neuron line will also be a valuable tool for the NPC1 research community to explore the pathological mechanisms contributing to neuronal degeneration.
Collapse
Affiliation(s)
- Anika V Prabhu
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, 10CRC, Rm. 5-2571, 10 Center Dr, Bethesda, MD, USA
| | - Insung Kang
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, 10CRC, Rm. 5-2571, 10 Center Dr, Bethesda, MD, USA
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Christopher A Wassif
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, 10CRC, Rm. 5-2571, 10 Center Dr, Bethesda, MD, USA
| | - Hideji Fujiwara
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, 10CRC, Rm. 5-2571, 10 Center Dr, Bethesda, MD, USA.
| |
Collapse
|
47
|
Onodera R, Sakai A, Tokuda A, Higashi T, Motoyama K. The effect of folate-appended methyl-β-cyclodextrin increases on survival rates in a peritoneal dissemination mouse models of human ovarian cancer. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Ohashi M, Tamura A, Yui N. Terminal Structure of Triethylene Glycol-Tethered Chains on β-Cyclodextrin-Threaded Polyrotaxanes Dominates Temperature Responsivity and Biointeractions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11102-11114. [PMID: 34478294 DOI: 10.1021/acs.langmuir.1c01894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pharmacological and biomedical applications of cyclodextrin (CD)-threaded polyrotaxanes (PRXs) have gained increasing attention. We had previously investigated the therapeutic effects of oligo(ethylene glycol) (OEG)-modified β-CD PRXs in congenital metabolic disorders. Although the chemical modification of PRXs is crucial for these applications, the influences of the chemical structure of OEG modified on PRXs were not completely understood. The current study focuses on the terminal group structures of triethylene glycol (TEG)-tethered chains, wherein three series of TEG-tethered PRXs (TEG-PRXs) with various TEG terminal group structures (hydroxy, methoxy, and ethoxy) were synthesized to investigate their physicochemical properties and biointeractions. The methoxy and ethoxy-terminated TEG-PRXs exhibited temperature-dependent phase transitions in phosphate buffer saline and formed coacervate droplets above their cloud points. A comprehensive analysis revealed that the hydrophobicity of the terminal group structures of the TEG-tethered chains played a dominant role in exhibiting temperature-dependent phase transition. Furthermore, the hydrophobicity of the terminal group structures of TEG-tethered chains on PRXs also affected the interactions with lipids and proteins, with the hydrophobic ethoxy-terminated TEG-tethered chains showing the highest interactions. However, in normal human skin fibroblasts, the moderately hydrophobic methoxy-terminated TEG-modified PRXs showed the highest intracellular uptake levels. As a result, we concluded that methoxy-terminated TEG is a suitable chemical modification for the biomedical applications of PRXs due to the negligible temperature responsivity around physiological temperature and significant intracellular uptake levels. The findings of this study shall contribute significantly to the rational design of PRXs and CD-based materials for future pharmacological and biomedical applications.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
49
|
Nisar H, Wajid B, Shahid S, Anwar F, Wajid I, Khatoon A, Sattar MU, Sadaf S. Whole-genome sequencing as a first-tier diagnostic framework for rare genetic diseases. Exp Biol Med (Maywood) 2021; 246:2610-2617. [PMID: 34521224 DOI: 10.1177/15353702211040046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rare diseases affect nearly 300 million people globally with most patients aged five or less. Traditional diagnostic approaches have provided much of the diagnosis; however, there are limitations. For instance, simply inadequate and untimely diagnosis adversely affects both the patient and their families. This review advocates the use of whole genome sequencing in clinical settings for diagnosis of rare genetic diseases by showcasing five case studies. These examples specifically describe the utilization of whole genome sequencing, which helped in providing relief to patients via correct diagnosis followed by use of precision medicine.
Collapse
Affiliation(s)
- Haseeb Nisar
- Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore 54000, Pakistan.,School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54000, Pakistan
| | - Bilal Wajid
- Department of Electrical Engineering, University of Engineering and Technology, Lahore 54000, Pakistan.,Ibn Sina Research & Development Division, Sabz-Qalam, Lahore 54000, Pakistan.,Department of Computer Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Samiah Shahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Faria Anwar
- Out Patient Department, Mayo Hospital, Lahore 54000, Pakistan
| | - Imran Wajid
- Ibn Sina Research & Development Division, Sabz-Qalam, Lahore 54000, Pakistan
| | - Asia Khatoon
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54000, Pakistan
| | - Mian Usman Sattar
- Institute of Social Sciences, Istanbul Commerce University, Istanbul, Turkey
| | - Saima Sadaf
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54000, Pakistan
| |
Collapse
|
50
|
Glial contribution to cyclodextrin-mediated reversal of cholesterol accumulation in murine NPC1-deficient neurons in vivo. Neurobiol Dis 2021; 158:105469. [PMID: 34364974 DOI: 10.1016/j.nbd.2021.105469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Niemann-Pick type C disease is a rare and fatal lysosomal storage disorder presenting severe neurovisceral symptoms. Disease-causing mutations in genes encoding either NPC1 or NPC2 protein provoke accumulation of cholesterol and other lipids in specific structures of the endosomal-lysosomal system and degeneration of specific cells, notably neurons in the central nervous system (CNS). 2-hydroxypropyl-beta-cyclodextrin (CD) emerged as potential therapeutic approach based on animal studies and clinical data, but the mechanism of action in neurons has remained unclear. To address this topic in vivo, we took advantage of the retina as highly accessible part of the CNS and intravitreal injections as mode of drug administration. Coupling CD to gold nanoparticles allowed us to trace its intracellular location. We report that CD enters the endosomal-lysosomal system of neurons in vivo and enables the release of lipid-laden lamellar inclusions, which are then removed from the extracellular space by specific types of glial cells. Our data suggest that CD induces a concerted action of neurons and glial cells to restore lipid homeostasis in the central nervous system.
Collapse
|