1
|
Bouchareb E, Dallel S, De Haze A, Damon-Soubeyrand C, Renaud Y, Baabdaty E, Vialat M, Fabre J, Pouchin P, De Joussineau C, Degoul F, Sanmukh S, Gendronneau J, Sanchez P, Gonthier-Gueret C, Trousson A, Morel L, Lobaccaro JM, Kocer A, Baron S. Liver X Receptors Enhance Epithelial to Mesenchymal Transition in Metastatic Prostate Cancer Cells. Cancers (Basel) 2024; 16:2776. [PMID: 39199549 PMCID: PMC11353074 DOI: 10.3390/cancers16162776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. Metastasis is the leading cause of death in prostate cancer patients. One of the crucial processes involved in metastatic spread is the "epithelial-mesenchymal transition" (EMT), which allows cells to acquire the ability to invade distant organs. Liver X Receptors (LXRs) are nuclear receptors that have been demonstrated to regulate EMT in various cancers, including hepatic cancer. Our study reveals that the LXR pathway can control pro-invasive cell capacities through EMT in prostate cancer, employing ex vivo and in vivo approaches. We characterized the EMT status of the commonly used LNCaP, DU145, and PC3 prostate cancer cell lines through molecular and immunohistochemistry experiments. The impact of LXR activation on EMT function was also assessed by analyzing the migration and invasion of these cell lines in the absence or presence of an LXR agonist. Using in vivo experiments involving NSG-immunodeficient mice xenografted with PC3-GFP cells, we were able to study metastatic spread and the effect of LXRs on this process. LXR activation led to an increase in the accumulation of Vimentin and Amphiregulin in PC3. Furthermore, the migration of PC3 cells significantly increased in the presence of the LXR agonist, correlating with an upregulation of EMT. Interestingly, LXR activation significantly increased metastatic spread in an NSG mouse model. Overall, this work identifies a promoting effect of LXRs on EMT in the PC3 model of advanced prostate cancer.
Collapse
Affiliation(s)
- Erwan Bouchareb
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Sarah Dallel
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
- Service d’Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, 63003 Clermont-Ferrand, France
| | - Angélique De Haze
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Christelle Damon-Soubeyrand
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Yoan Renaud
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Elissa Baabdaty
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Marine Vialat
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Julien Fabre
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Pierre Pouchin
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Cyrille De Joussineau
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Françoise Degoul
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Swapnil Sanmukh
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Juliette Gendronneau
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Phelipe Sanchez
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Céline Gonthier-Gueret
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Amalia Trousson
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Laurent Morel
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Jean Marc Lobaccaro
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Ayhan Kocer
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| | - Silvère Baron
- iGReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France; (E.B.); (S.D.); (C.D.-S.); (Y.R.); (E.B.); (M.V.); (J.F.); (P.P.); (C.D.J.); (F.D.); (S.S.); (J.G.); (P.S.); (C.G.-G.); (A.T.); (L.M.); (J.M.L.)
- Groupe Cancer Clermont Auvergne, 28, Place Henri Dunant, BP38, 63001 Clermont-Ferrand, France
| |
Collapse
|
2
|
Song X, Wu W, Dai Y, Warner M, Nalvarte I, Antonson P, Varshney M, Gustafsson JÅ. Loss of ERβ in Aging LXRαβ Knockout Mice Leads to Colitis. Int J Mol Sci 2023; 24:12461. [PMID: 37569842 PMCID: PMC10419301 DOI: 10.3390/ijms241512461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Liver X receptors (LXRα and LXRβ) are oxysterol-activated nuclear receptors that play key roles in cholesterol homeostasis, the central nervous system, and the immune system. We have previously reported that LXRαβ-deficient mice are more susceptible to dextran sodium sulfate (DSS)-induced colitis than their WT littermates, and that an LXR agonist protects against colitis in mice mainly via the regulation of the immune system in the gut. We now report that both LXRα and LXRβ are expressed in the colonic epithelium and that in aging LXRαβ-/- mice there is a reduction in the intensity of goblet cells, mucin (MUC2), TFF3, and estrogen receptor β (ERβ) levels. The cytoplasmic compartment of the surface epithelial cells was markedly reduced and there was a massive invasion of macrophages in the lamina propria. The expression and localization of β-catenin, α-catenin, and E-cadherin were not changed, but the shrinkage of the cytoplasm led to an appearance of an increase in staining. In the colonic epithelium there was a reduction in the expression of plectin, a hemidesmosome protein whose loss in mice leads to spontaneous colitis, ELOVL1, a fatty acid elongase protein coding gene whose overexpression is found in colorectal cancer, and non-neuronal choline acetyltransferase (ChAT) involved in the regulation of epithelial cell adhesion. We conclude that in aging LXRαβ-/- mice, the phenotype in the colon is due to loss of ERβ expression.
Collapse
Affiliation(s)
- Xiaoyu Song
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (X.S.); (W.W.); (Y.D.); (M.W.)
| | - Wanfu Wu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (X.S.); (W.W.); (Y.D.); (M.W.)
| | - Yubing Dai
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (X.S.); (W.W.); (Y.D.); (M.W.)
| | - Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (X.S.); (W.W.); (Y.D.); (M.W.)
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, 14186 Huddinge, Sweden; (I.N.); (P.A.); (M.V.)
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska Institutet, 14186 Huddinge, Sweden; (I.N.); (P.A.); (M.V.)
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institutet, 14186 Huddinge, Sweden; (I.N.); (P.A.); (M.V.)
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (X.S.); (W.W.); (Y.D.); (M.W.)
- Department of Biosciences and Nutrition, Karolinska Institutet, 14186 Huddinge, Sweden; (I.N.); (P.A.); (M.V.)
| |
Collapse
|
3
|
Song XY, Wu WF, Dai YB, Xu HW, Roman A, Wang L, Warner M, Gustafsson JÅ. Ablation of Liver X receptor β in mice leads to overactive macrophages and death of spiral ganglion neurons. Hear Res 2022; 422:108534. [PMID: 35623301 DOI: 10.1016/j.heares.2022.108534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/30/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Age-related hearing loss is the most common type of hearing impairment, and is typically characterized by the loss of spiral ganglion neurons (SGNs). The two Liver X receptors (LXRs) are oxysterol-activated nuclear receptors which in adults, regulate genes involved in cholesterol homeostasis and modulation of macrophage activity. LXRβ plays a key role in maintenance of health of dopaminergic neurons in the substantia nigra, large motor neurons in the spinal cord, and retinal ganglion cells in adult mice. We now report that LXRβ is expressed in the SGNs of the cochlea and that loss of LXRβ leads to age-related cochlea degeneration. We found that in the cochlea of LXRβ-/- mice, there is loss of SGNs, activation of macrophages, demyelination in the spiral ganglion, decrease in glutamine synthetase (GS) expression and increase in glutamate accumulation in the cochlea. Part of the cause of damage to the SGNs might be glutamate toxicity which is known to be very toxic to these cells. Our study provides a so far unreported role of LXRβ in maintenance of SGNs whose loss is a very common cause of hearing impairment.
Collapse
Affiliation(s)
- Xiao-Yu Song
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Wan-Fu Wu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Yu-Bing Dai
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Hai-Wei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Andrew Roman
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Li Wang
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States; Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Stockholm 14186, Sweden.
| |
Collapse
|
4
|
Eskandari M, Mellati AA. Liver X Receptor as a Possible Drug Target for Blood-Brain Barrier Integrity. Adv Pharm Bull 2021; 12:466-475. [PMID: 35935038 PMCID: PMC9348539 DOI: 10.34172/apb.2022.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: blood-brain barrier (BBB) is made of specialized cells that are responsible for the selective passage of substances directed to the brain. The integrated BBB is essential for precise controlling of the different substances passage as well as protecting the brain from various damages. In this article, we attempted to explain the role of liver X receptor (LXR) in maintaining BBB integrity as a possible drug target.
Methods: In this study, various databases, including PubMed, Google Scholar, and Scopus were searched using the following keywords: blood-brain barrier, BBB, liver X receptor, and LXR until July, 2020. Additionally, contents close to the subject of our study were surveyed.
Results: LXR is a receptor the roles of which in various diseases have been investigated. LXR can affect maintaining BBB by affecting various ways such as ATP-binding cassette transporter A1 (ABCA1), matrix metalloproteinase-9 (MMP9), insulin-like growth factor 1 (IGF1), nuclear factor-kappa B (NF-κB) signaling, mitogen-activated protein kinase (MAPK), tight junction molecules, both signal transducer and activator of transcription 1 (STAT1), Wnt/β-catenin Signaling, transforming growth factor beta (TGF-β) signaling, and expressions of Smad 2/3 and Snail.
Conclusion: LXR could possibly be used either as a target for drug delivery to brain tissue or as a target for maintaining the BBB integrity in different diseases; thereby the drug will be conducted to tissues, other than the brain. If it is verified that only LXRα is necessary for protecting BBB, some specific LXRα ligands must be found and then used in medication.
Collapse
Affiliation(s)
- Mahsa Eskandari
- Medical school, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Awsat Mellati
- Zanjan Metabolic Disease Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Wouters E, de Wit NM, Vanmol J, van der Pol SMA, van het Hof B, Sommer D, Loix M, Geerts D, Gustafsson JA, Steffensen KR, Vanmierlo T, Bogie JFJ, Hendriks JJA, de Vries HE. Liver X Receptor Alpha Is Important in Maintaining Blood-Brain Barrier Function. Front Immunol 2019; 10:1811. [PMID: 31417573 PMCID: PMC6685401 DOI: 10.3389/fimmu.2019.01811] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) contributes significantly to the pathogenesis of several neuroinflammatory diseases, including multiple sclerosis (MS). Potential players that regulate BBB function are the liver X receptors (LXRs), which are ligand activated transcription factors comprising two isoforms, LXRα, and LXRβ. However, the role of LXRα and LXRβ in regulating BBB (dys)function during neuroinflammation remains unclear, as well as their individual involvement. Therefore, the goal of the present study is to unravel whether LXR isoforms have different roles in regulating BBB function under neuroinflammatory conditions. We demonstrate that LXRα, and not LXRβ, is essential to maintain barrier integrity in vitro. Specific knockout of LXRα in brain endothelial cells resulted in a more permeable barrier with reduced expression of tight junctions. Additionally, the observed dysfunction was accompanied by increased endothelial inflammation, as detected by enhanced expression of vascular cell adhesion molecule (VCAM-1) and increased transendothelial migration of monocytes toward inflammatory stimuli. To unravel the importance of LXRα in BBB function in vivo, we made use of the experimental autoimmune encephalomyelitis (EAE) MS mouse model. Induction of EAE in a constitutive LXRα knockout mouse and in an endothelial specific LXRα knockout mouse resulted in a more severe disease score in these animals. This was accompanied by higher numbers of infiltrating leukocytes, increased endothelial VCAM-1 expression, and decreased expression of the tight junction molecule claudin-5. Together, this study reveals that LXRα is indispensable for maintaining BBB integrity and its immune quiescence. Targeting the LXRα isoform may help in the development of novel therapeutic strategies to prevent BBB dysfunction, and thereby neuroinflammatory disorders.
Collapse
Affiliation(s)
- Elien Wouters
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nienke M. de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jasmine Vanmol
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Susanne M. A. van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bert van het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Daniela Sommer
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Melanie Loix
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, United States
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Knut R. Steffensen
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tim Vanmierlo
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Division Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jeroen F. J. Bogie
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jerome J. A. Hendriks
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
LXRα limits TGFβ-dependent hepatocellular carcinoma associated fibroblast differentiation. Oncogenesis 2019; 8:36. [PMID: 31097694 PMCID: PMC6522550 DOI: 10.1038/s41389-019-0140-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 03/14/2019] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor β (TGFβ) is deposited in the extracellular space of diverse tissues. Resident fibroblasts respond to TGFβ and undergo myofibroblastic differentiation during tissue wound healing and cancer progression. Cancer-associated fibroblasts (CAFs) communicate with tumor cells during cancer progression, under the guidance of TGFβ signaling. We report that agonist-activated liver X receptors (LXR) limit the expression of key components of myofibroblast differentiation, including the α-smooth muscle actin (αSMA) gene in liver cancer cells. CAFs derived from hepatocellular carcinoma (HCC) express high αSMA and low LXRα levels, whereas hepatocarcinoma cells exhibit an inverse expression pattern. All hepatoma cells analyzed responded to the LXRα agonist T0901317 by inducing fatty acid synthase (FASN) expression. On the other hand, T0901317 antagonized TGFβ-induced fibroblastic marker responses, such as fibronectin and calponin, in a subset of hepatoma cells and all CAFs analyzed. Mechanistically, LXRα antagonized TGFβ signaling at the transcriptional level. Smad3 and LXRα were recruited to adjacent DNA motifs of the ACTA2 promoter. Upon cloning the human ACTA2 promoter, we confirmed its transcriptional induction by TGFβ stimulation, and LXRα overexpression repressed the promoter activity. Hepatosphere formation by HCC cells was enhanced upon co-culturing with CAFs. T0901317 suppressed the positive effects exerted on hepatosphere growth by CAFs. Taken together, the data suggest that LXRα agonists limit TGFβ-dependent CAF differentiation, potentially limiting primary HCC growth.
Collapse
|
7
|
Torres-Luquis O, Madden K, N'dri NM, Berg R, Olopade OF, Ngwa W, Abuidris D, Mittal S, Lyn-Cook B, Mohammed SI. LXR/RXR pathway signaling associated with triple-negative breast cancer in African American women. BREAST CANCER-TARGETS AND THERAPY 2018; 11:1-12. [PMID: 30588086 PMCID: PMC6304259 DOI: 10.2147/bctt.s185960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Triple-negative breast cancer (TNBC) is more prevalent in African and African American (AA) women compared to European American (EA) women. African and AA women diagnosed with TNBC experience high frequencies of metastases and less favorable outcomes. Emerging evidence indicates that this disparity may in fact be the result of the uniquely aggressive biology of African and AA disease. Purpose To understand the reasons for TNBC in AA aggressive biology, we designed the present study to examine the proteomic profiles of TNBC and luminal A (LA) breast cancer within and across patients’ racial demographic groups in order to identify proteins or molecular pathways altered in TNBC that offer some explanation for its aggressiveness and potential targets for treatment. Materials and methods Proteomic profiles of TNBC, LA tumors, and their adjacent normal tissues from AA and EA women were obtained using 2-dimensional gel electrophoresis and bioinformatics, and differentially expressed proteins were validated by Western blot and immunohistochemistry. Our data showed that a number of proteins have significantly altered in expression in LA tumors compared to TNBC, both within and across patients’ racial demographic groups. The differentially overexpressed proteins in TNBC (compared to LA) of AA samples were distinct from those in TNBC (compared to LA) of EA women samples. Among the signaling pathways altered in AA TNBC compared to EA TNBC are innate immune signaling, calpain protease, and pyrimidine de novo synthesis pathways. Furthermore, liver LXR/RXR signaling pathway was altered between LA and TNBC in AA women and may be due to the deficiency of the CYP7B1 enzyme responsible for cholesterol degradation. Conclusion These findings suggest that TNBC in AA women enriched in signaling pathways that are different from TNBC in EA women. Our study draws a link between LXR/RXR expression, cholesterol, obesity, and the TNBC in AA women.
Collapse
Affiliation(s)
- Odalys Torres-Luquis
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA, .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA,
| | - Krystal Madden
- Department of Learning Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - N'sanh Mr N'dri
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA,
| | - Richard Berg
- Department of Surgery, Indiana University Health, Lafayette, IN, USA
| | - Olufunmilayo F Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Wilfred Ngwa
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Radiation Oncology, Harvard Medical School, Boston, MA, USA
| | - Dafalla Abuidris
- Department of Oncology, National Cancer Institute, University of Gezira, Gezira, Sudan
| | - Suresh Mittal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA, .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA,
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA, .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA,
| |
Collapse
|
8
|
Cariello M, Ducheix S, Maqdasy S, Baron S, Moschetta A, Lobaccaro JMA. LXRs, SHP, and FXR in Prostate Cancer: Enemies or Ménage à Quatre With AR? NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801070. [PMID: 30718981 PMCID: PMC6348739 DOI: 10.1177/1550762918801070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022]
Abstract
Androgens and androgen receptor (AR, NR3C4) clearly play a crucial role in
prostate cancer progression. Besides, the link between metabolic disorders and
the risk of developing a prostate cancer has been emerging these last years.
Interestingly, “lipid” nuclear receptors such as LXRα/NR1H3 and LXRβ/NR1H2 (as
well as FXRα/NR1H4 and SHP/NR0B2) have been described to decrease the lipid
metabolism, while AR increases it. Moreover, these former orphan nuclear
receptors can regulate androgen levels and modulate AR activity. Thus, it is not
surprising to find such receptors involved in the physiology of prostate. This
review is focused on the roles of liver X receptors (LXRs), farnesoid X receptor
(FXR), and small heterodimeric partner (SHP) in prostate physiology and their
capabilities to interfere with the androgen-regulated pathways by modulating the
levels of active androgen within the prostate. By the use of prostate cancer
cell lines, mice deficient for these nuclear receptors and human tissue
libraries, several authors have pointed out the putative possibility to
pharmacologically target these receptors. These data open a new field of
research for the development of new drugs that could overcome the castration
resistance in prostate cancer, a usual phenomenon in patients.
Collapse
Affiliation(s)
| | - Simon Ducheix
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Salwan Maqdasy
- Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France.,CHU Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Antonio Moschetta
- "Aldo Moro" University of Bari, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy.,IRCCS Istituto Oncologico "Giovanni Paolo II," Bari, Italy
| | - Jean-Marc A Lobaccaro
- "Aldo Moro" University of Bari, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy.,Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| |
Collapse
|
9
|
Bousset L, Rambur A, Fouache A, Bunay J, Morel L, Lobaccaro JMA, Baron S, Trousson A, de Joussineau C. New Insights in Prostate Cancer Development and Tumor Therapy: Modulation of Nuclear Receptors and the Specific Role of Liver X Receptors. Int J Mol Sci 2018; 19:E2545. [PMID: 30154328 PMCID: PMC6164771 DOI: 10.3390/ijms19092545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) incidence has been dramatically increasing these last years in westernized countries. Though localized PCa is usually treated by radical prostatectomy, androgen deprivation therapy is preferred in locally advanced disease in combination with chemotherapy. Unfortunately, PCa goes into a castration-resistant state in the vast majority of the cases, leading to questions about the molecular mechanisms involving the steroids and their respective nuclear receptors in this relapse. Interestingly, liver X receptors (LXRα/NR1H3 and LXRβ/NR1H2) have emerged as new actors in prostate physiology, beyond their historical roles of cholesterol sensors. More importantly LXRs have been proposed to be good pharmacological targets in PCa. This rational has been based on numerous experiments performed in PCa cell lines and genetic animal models pointing out that using selective liver X receptor modulators (SLiMs) could actually be a good complementary therapy in patients with a castration resistant PCa. Hence, this review is focused on the interaction among the androgen receptors (AR/NR3C4), estrogen receptors (ERα/NR3A1 and ERβ/NR3A2), and LXRs in prostate homeostasis and their putative pharmacological modulations in parallel to the patients' support.
Collapse
Affiliation(s)
- Laura Bousset
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Amandine Rambur
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Julio Bunay
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Laurent Morel
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Cyrille de Joussineau
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| |
Collapse
|
10
|
Bellomo C, Caja L, Fabregat I, Mikulits W, Kardassis D, Heldin CH, Moustakas A. Snail mediates crosstalk between TGFβ and LXRα in hepatocellular carcinoma. Cell Death Differ 2017; 25:885-903. [PMID: 29230000 PMCID: PMC5943406 DOI: 10.1038/s41418-017-0021-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
Understanding the complexity of changes in differentiation and cell survival in hepatocellular carcinoma (HCC) is essential for the design of new diagnostic tools and therapeutic modalities. In this context, we have analyzed the crosstalk between transforming growth factor β (TGFβ) and liver X receptor α (LXRα) pathways. TGFβ is known to promote cytostatic and pro-apoptotic responses in HCC, and to facilitate mesenchymal differentiation. We here demonstrate that stimulation of the nuclear LXRα receptor system by physiological and clinically useful agonists controls the HCC response to TGFβ. Specifically, LXRα activation antagonizes the mesenchymal, reactive oxygen species and pro-apoptotic responses to TGFβ and the mesenchymal transcription factor Snail mediates this crosstalk. In contrast, LXRα activation and TGFβ cooperate in enforcing cytostasis in HCC, which preserves their epithelial features. LXRα influences Snail expression transcriptionally, acting on the Snail promoter. These findings propose that clinically used LXR agonists may find further application to the treatment of aggressive, mesenchymal HCCs, whose progression is chronically dependent on autocrine or paracrine TGFβ.
Collapse
Affiliation(s)
- Claudia Bellomo
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden.,Ludwig Institute for Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden.,Ludwig Institute for Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, and Department of Physiological Sciences, School of Medicine, University of Barcelona, ES-08908, Barcelona, Spain
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090, Vienna, Austria
| | - Dimitris Kardassis
- Division of Basic Medical Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, GR-71003, Heraklion, Greece
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden.,Ludwig Institute for Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden. .,Ludwig Institute for Cancer Research, Science for Life Laboratory, Box 595, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden.
| |
Collapse
|
11
|
Ferrucci D, Biancardi MF, Nishan U, Rosa-Ribeiro R, Carvalho HF. Desquamation takes center stage at the origin of proliferative inflammatory atrophy, epithelial-mesenchymal transition, and stromal growth in benign prostate hyperplasia. Cell Biol Int 2017; 41:1265-1270. [PMID: 28877372 DOI: 10.1002/cbin.10867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/03/2017] [Indexed: 01/24/2023]
Abstract
In this commentary, we propose a relationship between desquamation, initially described as the collective detachment and deletion of epithelial cell in the prostate gland after castration, and proliferative inflammatory atrophy (PIA) and stromal growth in benign prostate hyperplasia (BPH). First, in response to diverse stimuli, including inflammatory mediators, epithelial cells desquamate and leave a large surface of the luminal side of the basement membrane (BM) exposed. Basal cells are activated into intermediate-type cells, which change morphology to cover and remodel the exposed BM (simple atrophy) to a new physiological demand (such as in the hypoandrogen environment, simulated by surgical and/or chemical castration) and/or to support re-epithelialization (under normal androgen levels). In the presence of inflammation (that might be the cause of desquamation), the intermediate-type cells proliferate and characterize PIA. Second, in other circumstances, desquamation is an early step of epithelial-to-mesenchymal transition (EMT), which contributes to stromal growth, as suggested by some experimental models of BPH. The proposed associations correlate unexplored cell behaviors and reveal the remarkable plasticity of the prostate epithelium that might be at the origin of prostate diseases.
Collapse
Affiliation(s)
- Danilo Ferrucci
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas SP, Brazil
| | - Manoel F Biancardi
- Department of Histology, Embryology, and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiania GO, Brazil
| | - Umar Nishan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Rafaela Rosa-Ribeiro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas SP, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas SP, Brazil
| |
Collapse
|
12
|
Alioui A, Dufour J, Leoni V, Loregger A, Moeton M, Iuliano L, Zerbinati C, Septier A, Val P, Fouache A, Russo V, Volle DH, Lobaccaro JMA, Zelcer N, Baron S. Liver X receptors constrain tumor development and metastasis dissemination in PTEN-deficient prostate cancer. Nat Commun 2017; 8:445. [PMID: 28874658 PMCID: PMC5585406 DOI: 10.1038/s41467-017-00508-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/01/2017] [Indexed: 01/19/2023] Open
Abstract
Advanced prostate cancer (PCa) is a clinical challenge as no curative therapeutic is available. In this context, a better understanding of metastasis and resistance mechanisms in PCa is an important issue. As phosphatase and tensin homolog (PTEN) loss is the most common genetic lesion in such cancer, we investigate human data sets for mechanisms that can constrain cancer evolution in this setting. Here we report a liver X receptor (LXR) signature, which tightly correlates with PTEN loss, in PCa. Accordingly, the LXR pathway is deregulated in prostate carcinomas in Pten-null mice. Genetic ablation of LXRs in Pten-null mice, exacerbates PCa invasiveness and metastatic dissemination, which involves mesenchymal transition and accumulation of matrix metalloproteinases. Mechanistically, PTEN deletion governed LXR transcriptional activity through deregulation of cholesterol de novo synthesis, resulting in accumulation of endogenous LXR ligands. Our study therefore reveals a functional circuit linking PTEN and LXR, and highlights LXRs as metabolic gatekeepers that are able to constrain PCa progression. Treatment of prostate cancer, especially in its advanced stage, is still challenging; therefore, strategies to prevent metastatic dissemination are of great interest. Here the authors reveal a crucial role for liver X receptors in suppressing prostate carcinogenesis and metastatic progression in PTEN-null tumors.
Collapse
Affiliation(s)
- Anthony Alioui
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France.,Department of Medical Biochemistry, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Julie Dufour
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, AST_Settelaghi, Varese, Italy
| | - Anke Loregger
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Martina Moeton
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Luigi Iuliano
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Latina, 04100, Italy
| | - Chiara Zerbinati
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Latina, 04100, Italy
| | - Amandine Septier
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France
| | - Pierre Val
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France
| | - Allan Fouache
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France
| | - Vincenzo Russo
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - David H Volle
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France.,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France. .,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France. .,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France. .,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France.
| | - Noam Zelcer
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Silvère Baron
- Université Clermont Auvergne, Génétique Reproduction et Développement, BP 38, F-63001, Clermont-Ferrand, France. .,CNRS, UMR 6293, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France. .,INSERM, UMR 1103, Génétique Reproduction et Développement, F-63001, Clermont-Ferrand, France. .,Centre de Recherche en Nutrition Humaine d'Auvergne, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
13
|
Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids 2017; 207:108-126. [PMID: 28583434 DOI: 10.1016/j.chemphyslip.2017.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested an etiological role for hypercholesterolemia in the pathogenesis of breast cancer and prostate cancer (PCa). However, the molecular mechanisms that underlie and mediate the hypercholesterolemia-fostered increased risk for breast cancer and PCa are yet to be determined. The discovery that the most abundant cholesterol oxidized metabolite in the plasma, 27 hydroxycholesterol (27-OHC), is a selective estrogen receptor modulator (SERM) and an agonist of Liver X receptors (LXR) partially fills the void in our understanding and knowledge of the mechanisms that may link hypercholesterolemia to development and progression of breast cancer and PCa. The wide spectrum and repertoire of SERM and LXR-dependent effects of 27-OHC in the context of all facets and aspects of breast cancer and prostate cancer biology are reviewed in this manuscript in a very comprehensive manner. This review highlights recent findings pertaining to the role of 27-OHC in breast cancer and PCa and delineates the signaling mechanisms involved in the governing of different facets of tumor biology, that include tumor cell proliferation, epithelial-mesenchymal transition (EMT), as well as tumor cell invasion, migration, and metastasis. We also discuss the limitations of contemporary studies and lack of our comprehension of the entire gamut of effects exerted by 27-OHC that may be relevant to the pathogenesis of breast cancer and PCa. We unveil and propose potential future directions of research that may further our understanding of the role of 27-OHC in breast cancer and PCa and help design therapeutic interventions against endocrine therapy-resistant breast cancer and PCa.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Kimberly Hammer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA; Department of Veteran Affairs, Fargo VA Health Care System, Fargo, North Dakota 58102, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
14
|
Kaneko T, Kanno C, Ichikawa-Tomikawa N, Kashiwagi K, Yaginuma N, Ohkoshi C, Tanaka M, Sugino T, Imura T, Hasegawa H, Chiba H. Liver X receptor reduces proliferation of human oral cancer cells by promoting cholesterol efflux via up-regulation of ABCA1 expression. Oncotarget 2016; 6:33345-57. [PMID: 26452260 PMCID: PMC4741770 DOI: 10.18632/oncotarget.5428] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/18/2015] [Indexed: 11/25/2022] Open
Abstract
Liver X receptors (LXRs) contribute not only to maintain cholesterol homeostasis but also to control cell growth. However, the molecular mechanisms behind the LXR-mediated anti-proliferative effects are largely unknown. Here we show, by immunohistochemistry, that LXRα and LXRβ are differentially distributed in oral stratified squamous epithelia. By immunohistochemical and Western blot analyses, we also reveal that LXRα is abundantly expressed in human oral squamous cell carcinoma (HOSCC) tissues and cell lines. Cell counting, BrdU labeling and cell cycle assay indicated that LXR stimulation led to significant reduction of proliferation in HOSCC cells. Importantly, our study highlights, by using RNA interference, that the ATP-binding cassette transporter A1 (ABCA1)-accelerated cholesterol efflux is critical for the growth inhibitory action of LXRs in HOSCC cells. Moreover, we demonstrate that LXR activation reduces the growth of xenograft tumour of HOSCC cells in mice accompanied by the upregulation of ABCA1 expression and the decline of cholesterol levels in the tumour. These findings strongly suggested that targeting the LXR-regulated cholesterol transport, yielding in lowering intracellular cholesterol levels, could be a promising therapeutic option for certain types of cancers.
Collapse
Affiliation(s)
- Tetsuharu Kaneko
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.,Division of Dentistry and Oral Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Chihiro Kanno
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.,Division of Dentistry and Oral Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Korehito Kashiwagi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nanae Yaginuma
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Chihiro Ohkoshi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mizuko Tanaka
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Sugino
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Tetsuya Imura
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Hasegawa
- Division of Dentistry and Oral Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
15
|
Carthy JM, Stöter M, Bellomo C, Vanlandewijck M, Heldin A, Morén A, Kardassis D, Gahman TC, Shiau AK, Bickle M, Zerial M, Heldin CH, Moustakas A. Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation. Sci Rep 2016; 6:29868. [PMID: 27430378 PMCID: PMC4949434 DOI: 10.1038/srep29868] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/27/2016] [Indexed: 12/23/2022] Open
Abstract
Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition. In addition to TGF-β receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked α-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-β-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-β-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer.
Collapse
Affiliation(s)
- Jon M Carthy
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Martin Stöter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Claudia Bellomo
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Biomedical Center, SE-751 23 Uppsala, Sweden
| | - Michael Vanlandewijck
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Angelos Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Anita Morén
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Dimitris Kardassis
- Department of Biochemistry, University of Crete Medical School, 71003 Heraklion, Crete, Greece
| | - Timothy C Gahman
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Biomedical Center, SE-751 23 Uppsala, Sweden
| |
Collapse
|
16
|
Liver X receptors regulate cerebrospinal fluid production. Mol Psychiatry 2016; 21:844-56. [PMID: 26324101 DOI: 10.1038/mp.2015.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 11/08/2022]
Abstract
Of the two isoforms of Liver X receptor (LXR), LXRβ has been shown to have major effects in the central nervous system (CNS) and on the regulation of aquaporins while LXRα has its most marked effects on cholesterol homeostasis. Both receptors have immunomodulatory functions. In LXRαβ knockout (ko) mice, the CNS phenotype is much more severe than in the LXRβ ko mice, suggesting a contribution of LXRα in CNS functions. One of the most striking abnormalities in the brains of LXRαβ ko mice is the occlusion of the lateral ventricles with age. In the present study, we have found by immunohistochemical staining that both LXRα and LXRβ are expressed in the cell nuclei of the epithelium of the choroid plexus and in the ependymal cells surrounding the lateral ventricles. The two receptors regulate several genes and can compensate for each other on expression of genes involved in structural integrity (E-cadherin, P-cadherin and β-catenin) and function (aquaporin 1 and carbonic anhydrase IX). Aquaporin 4 (AQ4) is not expressed in the choroid plexus but is expressed in the astrocytic end feet and ependymal cells. AQP4 expression was increased in white matter around lateral ventricles but not in neurons of LXRαβ ko mice. The data show that LXR is a regulator of cerebrospinal fluid (CSF) both at the choroid plexus and at the astrocytic end feet and defects in the synthesis of cerebrospinal fluid may be targeted by LXR agonists to facilitate CSF production, turnover and clearance in CNS diseases.
Collapse
|
17
|
Pytlowanciv EZ, Pinto-Fochi ME, Reame V, Gobbo MG, Ribeiro DL, Taboga SR, Góes RM. Differential ontogenetic exposure to obesogenic environment induces hyperproliferative status and nuclear receptors imbalance in the rat prostate at adulthood. Prostate 2016; 76:662-78. [PMID: 26847797 DOI: 10.1002/pros.23158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Experimental data indicate that high-fat diet (HFD) may alter proliferative activity and prostate health. However, the consequences of HFD exposure during different periods of ontogenetic development on prostate histophysiology remain to be elucidated. Herein, we compare the influence of obesogenic environment (OE) due to maternal obesity and HFD at different periods of life on proliferative activity and nuclear receptors frequency in the rat ventral prostate and a possible relationship with metabolic and hormonal alterations. METHODS Male Wistar rats (19 weeks old), treated with balanced chow (Control group-C; 3% high-fat, 3.5 Kcal/g), were compared with those exposed to HFD (20% high-fat, 4.9 kcal/g) during gestation (G-maternal obesity), gestation and lactation (GL), from post-weaning to adulthood (WA), from lactation to adulthood (LA) and from gestation to adulthood (GA). After the experimental period, the ventral prostate lobes were removed and analyzed with different methods. RESULTS Metabolic data indicated that G and GL rats became insulin resistant and WA, LA, and GA became insulin resistant and obese. There was a strong inverse correlation between serum testosterone (∼133% lower) and leptin levels (∼467% higher) in WA, LA, and GA groups. Estrogen serum levels increased in GA, and insulin levels increased in all groups, especially in WA (64.8×). OE-groups exhibited prostatic hypertrophy, since prostate weight increased ∼40% in G, GL, LA, and GA and 31% in WA. As indicated by immunohistochemistry, all HFD-groups except G exhibited an increase in epithelial cell proliferation (PCNA-positive) and a decrease in frequency of AR- and ERβ-positive epithelial cells; there was also an increment of ERα-positive stromal cells in comparison with control. Cells containing PPARγ increased in both epithelium and stroma of all OE groups and those expressing LXRα decreased, particularly in groups OE-exposed during gestation (G, GL and GA). CONCLUSIONS OE leads to prostate hypertrophy regardless of the period of development and, except when restricted to gestation, leads to a hyperproliferative status which was correlated to downregulation of AR and LXRα and upregulation of ERα and PPARγ signaling.
Collapse
Affiliation(s)
- Eloísa Zanin Pytlowanciv
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University-UNICAMP, Campinas, São Paulo, Brazil
| | - Maria Etelvina Pinto-Fochi
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Vanessa Reame
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University-UNICAMP, Campinas, São Paulo, Brazil
| | - Marina Guimarães Gobbo
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University-UNICAMP, Campinas, São Paulo, Brazil
| | - Daniele Lisboa Ribeiro
- Histology Sector, Institute of Biomedical Sciences, Federal University of Uberlândia-UFU, Uberlândia, MG, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Rejane Maira Góes
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
18
|
Tsui KH, Chung LC, Feng TH, Lee TY, Chang PL, Chen WT, Juang HH. Divergent effect of liver X receptor agonists on prostate-specific antigen expression is dependent on androgen receptor in prostate carcinoma cells. Prostate 2015; 75:603-15. [PMID: 25560459 DOI: 10.1002/pros.22944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/17/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Liver X receptor (LXR) isoforms, LXRα and LXRβ, have similar protein structures and ligands, but diverse tissue distribution. We used two synthetic, non-steroidal LXR agonists, T0901317 and GW3965, to investigate the effects of LXR agonist modulation on prostate specific antigen (PSA) via the expressions of androgen receptors (AR), LXRα, or LXRβ, in prostate carcinoma cells. METHODS LXRα- or LXRβ-knockdown cells were transduced with specific shRNA lentiviral particles. LXRα and LXRβ expressions were assessed by immunoblotting and RT-qPCR assays. Cell proliferation was determined by (3) H-thymidine incorporation assays. The effects of LXR agonists and epigallocatechin gallate (EGCG) on PSA expression were determined by ELISA, immunoblotting, or transient gene expression assays. RESULTS Treatment with either T0901317 or GW3965 significantly attenuated cell proliferation of LNCaP cells. T0901317 treatment suppressed PSA expression while GW3965 treatment enhanced PSA expression. The increase of PSA promoter activity by GW3965 was dependent on the expression of AR. Either LXRα- or LXRβ-knockdown did not affect the activation of androgen on PSA gene expression. However, as compared with mock knockdown-LNCaP cells, the LXRα-knockdown but not the LXRβ-knockdown attenuated the effects of T0901317 and GW3965 on PSA expressions. The effect of GW3965 on PSA expression was blocked by the addition of EGCG. CONCLUSIONS Our results indicate that T0901317 and GW3965 have divergent effects on PSA expressions. The effects of LXR agonists on PSA expression are LXRα-dependent and AR-dependent. EGCG blocks the inducing effect of GW3965 on PSA expression.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linko, Kwei-Shan, Tao-Yuan, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
19
|
Candelaria NR, Addanki S, Zheng J, Nguyen-Vu T, Karaboga H, Dey P, Gabbi C, Vedin LL, Liu K, Wu W, Jonsson PK, Lin JZ, Su F, Bollu LR, Hodges SE, McElhany AL, Issazadeh MA, Fisher WE, Ittmann MM, Steffensen KR, Gustafsson JÅ, Lin CY. Antiproliferative effects and mechanisms of liver X receptor ligands in pancreatic ductal adenocarcinoma cells. PLoS One 2014; 9:e106289. [PMID: 25184494 PMCID: PMC4153644 DOI: 10.1371/journal.pone.0106289] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and is often resistant to standard chemotherapeutic options, contributing to extremely poor disease outcomes. Members of the nuclear receptor superfamily carry out essential biological functions such as hormone signaling and are successfully targeted in the treatment of endocrine-related malignancies. Liver X receptors (LXRs) are nuclear receptors that regulate cholesterol homeostasis, lipid metabolism, and inflammation, and LXR agonists have been developed to regulate LXR function in these processes. Intriguingly, these compounds also exhibit antiproliferative activity in diverse types of cancer cells. In this study, LXR agonist treatments disrupted proliferation, cell-cycle progression, and colony-formation of PDAC cells. At the molecular level, treatments downregulated expression of proteins involved in cell cycle progression and growth factor signaling. Microarray experiments further revealed changes in expression profiles of multiple gene networks involved in biological processes and pathways essential for cell growth and proliferation following LXR activation. These results establish the antiproliferative effects of LXR agonists and potential mechanisms of action in PDAC cells and provide evidence for their potential application in the prevention and treatment of PDAC.
Collapse
Affiliation(s)
- Nicholes R. Candelaria
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Sridevi Addanki
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Jine Zheng
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Trang Nguyen-Vu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Husna Karaboga
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Prasenjit Dey
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Chiara Gabbi
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Lise-Lotte Vedin
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ka Liu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Wanfu Wu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Philip K. Jonsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Jean Z. Lin
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Center for Diabetes Research, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Fei Su
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Lakshmi Reddy Bollu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Sally E. Hodges
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
- The Elkins Pancreas Center at Baylor College of Medicine, Houston, Texas, United States of America
| | - Amy L. McElhany
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
- The Elkins Pancreas Center at Baylor College of Medicine, Houston, Texas, United States of America
| | - Mehdi A. Issazadeh
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
- The Elkins Pancreas Center at Baylor College of Medicine, Houston, Texas, United States of America
| | - William E. Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
- The Elkins Pancreas Center at Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael M. Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Knut R. Steffensen
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Department of Biosciences and Nutrition at NOVUM, Karolinska Institutet, Huddinge, Sweden
| | - Chin-Yo Lin
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Prajapati A, Rao A, Patel J, Gupta S, Gupta S. A single low dose of cadmium exposure induces benign prostate hyperplasia like condition in rat: A novel benign prostate hyperplasia rodent model. Exp Biol Med (Maywood) 2014; 239:829-841. [DOI: 10.1177/1535370214536118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Abnormal prostate growth is the most prevalent pathological sign in aged human males, as reflected by high incidence of benign prostate hyperplasia (BPH) and prostate cancer. In spite of the high prevalence, the etiology and pathophysiology of BPH is unclear due to the lack of any established rodent model for study. It has been demonstrated that the cadmium (Cd) mimics the activity of androgen or estrogen by interacting with the steroid hormone receptors in the prostate and elicits BPH, but the specific receptor which binds to Cd is still unknown. Our lab studies with BPH patients highlighted a strong co-relation between smokings with increased Cd content. Changes in the maximum urinary flow rate (Qmax) and prostatic acid phosphatase (PAP) level further supports that Cd can induce BPH like condition. Therefore, the present study was aimed to induce BPH like condition in rats by Cd administration. The dose of cadmium was standardized in an age- and time-dependent manner, which was further examined by prostate weight, histology, and PAP levels that elucidated the pathogenesis of BPH. Further to understand the molecular basis, steroid hormone receptor antagonist experiment was performed. Gene expression and immunohistochemistry data suggest that Cd induces hyperplasia like condition by activating the androgen receptor and estrogen receptor-α and suppresses the action of estrogen receptor-β. The experimental model used here is a cost effective, less time consuming and potentially valuable tool for investigating the respective functions of epithelial and stromal hormone receptors. The applicability of this model would be helpful in understanding the pathogenesis of BPH and its progression.
Collapse
Affiliation(s)
- Akhilesh Prajapati
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Akshay Rao
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Jhanvi Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Sharad Gupta
- Gupta Pathology laboratory, Vadodara, Gujarat 390001, India
| | - Sarita Gupta
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| |
Collapse
|
21
|
Kitazawa T. Contractile signaling pathways in mouse prostate smooth muscle. Prostate 2013; 73:996-1006. [PMID: 23389830 DOI: 10.1002/pros.22647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/08/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Prostate smooth muscle plays an important role in the physiological ejection of prostatic fluid and also in the pathogenesis of benign prostate hyperplasia. Although mouse is the best genetically engineered animal model to identify potential molecular targets for human diseases, only fragmentary information is available for basic mechanism of mouse prostate contraction. METHODS Small smooth muscle tubular rings were excised from four mouse prostate lobes to measure their isometric contractions. High K(+) , noradrenaline (NA), or acetylcholine (ACh) was applied with and without various antagonists and/or inhibitors to examine the contractile signaling pathways. RESULTS Maximum amplitude of agonist-induced contractions varied greatly with different lobes but not with different locations or orientations within each lobe. Both NA and ACh produced large contractions in ventral and dorsal rings, whereas only small contractions were elicited in lateral and anterior rings. Combination of alpha-1 and muscarinic antagonists suppressed K(+) depolarization-induced contraction potently in ventral rings, but slightly in anterior rings. Blocking of either Ca(2+) -release or Ca(2+) -influx reduced agonist-induced contraction of ventral rings, however, a considerable amount of contractility remained even with both blockers. Inhibitors of ROCK and PKC partially inhibited NA-induced contractions, whereas a combination of Ca(2+) -blockers and Ca(2+) -sensitization inhibitors strongly suppressed the contraction. CONCLUSIONS The ejection of prostatic fluid is differentially regulated in each prostate lobe. In ventral prostate smooth muscle, Ca(2+) -release, Ca(2+) -influx, and ROCK- and PKC-mediated Ca(2+) -sensitizations are all involved in NA-induced contractions. This finding is a useful step toward the understanding of the phenotypic changes in the smooth muscle of BPH prostate.
Collapse
Affiliation(s)
- Toshio Kitazawa
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA.
| |
Collapse
|
22
|
Pommier AJC, Dufour J, Alves G, Viennois E, De Boussac H, Trousson A, Volle DH, Caira F, Val P, Arnaud P, Lobaccaro JMA, Baron S. Liver x receptors protect from development of prostatic intra-epithelial neoplasia in mice. PLoS Genet 2013; 9:e1003483. [PMID: 23675307 PMCID: PMC3649972 DOI: 10.1371/journal.pgen.1003483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/14/2013] [Indexed: 12/13/2022] Open
Abstract
LXR (Liver X Receptors) act as “sensor” proteins that regulate cholesterol uptake, storage, and efflux. LXR signaling is known to influence proliferation of different cell types including human prostatic carcinoma (PCa) cell lines. This study shows that deletion of LXR in mouse fed a high-cholesterol diet recapitulates initial steps of PCa development. Elevation of circulating cholesterol in Lxrαβ-/- double knockout mice results in aberrant cholesterol ester accumulation and prostatic intra-epithelial neoplasia. This phenotype is linked to increased expression of the histone methyl transferase EZH2 (Enhancer of Zeste Homolog 2), which results in the down-regulation of the tumor suppressors Msmb and Nkx3.1 through increased methylation of lysine 27 of histone H3 (H3K27) on their promoter regions. Altogether, our data provide a novel link between LXR, cholesterol homeostasis, and epigenetic control of tumor suppressor gene expression. Cholesterol is one of the major metabolic molecules required for a broad range of cellular processes. Recent advances in prostate cancer research have demonstrated that tumor cells need to increase their supply of cholesterol to sustain membrane building, proliferation, and survival capacities. Liver X receptors, which belong to the nuclear receptor superfamily, are central mediators of cholesterol homeostasis. Indeed, they regulate the expression of many genes involved in cholesterol uptake storage and efflux. Here, we show that genetic ablation of LXRs in mice results in the formation of precancerous lesions in the prostate, called prostatic intra-epithelial neoplasia. These are only observed when mice are fed a high-cholesterol diet. Hence, LXRs regulate cholesterol homeostasis in the prostate and protect cells from abnormal proliferation when exposed to high dietary cholesterol.
Collapse
Affiliation(s)
- Aurélien J. C. Pommier
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Julie Dufour
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Georges Alves
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Emilie Viennois
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Hugues De Boussac
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Amalia Trousson
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - David H. Volle
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Françoise Caira
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Pierre Val
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
| | - Philippe Arnaud
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
| | - Jean-Marc A. Lobaccaro
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Silvère Baron
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
23
|
Maqdasy S, Baptissart M, Vega A, Baron S, Lobaccaro JMA, Volle DH. Cholesterol and male fertility: what about orphans and adopted? Mol Cell Endocrinol 2013; 368:30-46. [PMID: 22766106 DOI: 10.1016/j.mce.2012.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 12/24/2022]
Abstract
The link between cholesterol homeostasis and male fertility has been clearly suggested in patients who suffer from hyperlipidemia and metabolic syndrome. This has been confirmed by the generation of several transgenic mouse models or in animals fed with high cholesterol diet. Next to the alteration of the endocrine signaling pathways through steroid receptors (androgen and estrogen receptors); "orphan" and "adopted" nuclear receptors, such as the Liver X Receptors (LXRs), the Proliferating Peroxisomal Activated Receptors (PPARs) or the Liver Receptor Homolog-1 (LRH-1), have been involved in this cross-talk. These transcription factors show distinct expression patterns in the male genital tract, explaining the large panel of phenotypes observed in transgenic male mice and highlighting the importance of lipid homesostasis and the complexity of the molecular pathways involved. Increasing our knowledge of the roles of these nuclear receptors in male germ cell differentiation could help in proposing new approaches to either treat infertile men or define new strategies for contraception.
Collapse
|
24
|
Dufour J, Pommier A, Alves G, De Boussac H, Lours-Calet C, Volle DH, Lobaccaro JMA, Baron S. Lack of liver X receptors leads to cell proliferation in a model of mouse dorsal prostate epithelial cell. PLoS One 2013; 8:e58876. [PMID: 23554947 PMCID: PMC3595217 DOI: 10.1371/journal.pone.0058876] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/07/2013] [Indexed: 11/19/2022] Open
Abstract
Recent studies underline the implication of Liver X Receptors (LXRs) in several prostate diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs) of wild type (WT) or Lxrαβ−/− mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxrαβ−/− mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer.
Collapse
Affiliation(s)
- Julie Dufour
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Aurélien Pommier
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Georges Alves
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Hugues De Boussac
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Corinne Lours-Calet
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - David H. Volle
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Silvère Baron
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- CNRS, UMR 6293, GReD, Aubiere, France
- INSERM, UMR 1103, GReD, Aubiere, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
25
|
Cholesterol accumulation in prostate cancer: a classic observation from a modern perspective. Biochim Biophys Acta Rev Cancer 2013; 1835:219-29. [PMID: 23357067 DOI: 10.1016/j.bbcan.2013.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 12/26/2022]
Abstract
Prostate cancer (PCa) is the most common cancer in men in developed countries. Epidemiological studies have associated high blood-cholesterol levels with an increased risk of PCa, whilst cholesterol-lowering drugs (statins) reduce the risk of advanced PCa. Furthermore, normal prostate epithelial cells have an abnormally high cholesterol content, with cholesterol levels increasing further during progression to PCa. In this review, we explore why and how this occurs. Concurrent to this observation, intense efforts have been expended in cardiovascular research to better understand the regulators of cholesterol homeostasis. Here, we apply this knowledge to elucidate the molecular mechanisms driving the accumulation of cholesterol in PCa. For instance, recent evidence from our group and others shows that major signalling players in prostate growth and differentiation, such as androgens and Akt, modulate the key transcriptional regulators of cholesterol homeostasis to enhance cholesterol levels. This includes adjusting central carbon metabolism to sustain greater lipid synthesis. Perturbations in cholesterol homeostasis appear to be maintained even when PCa approaches the advanced, 'castration-resistant' state. Overall, this provides a link between cholesterol accumulation and PCa cell growth. Given there is currently no cure for castration-resistant PCa, could cholesterol metabolism be a novel target for PCa therapy? Overall, this review presents a picture that cholesterol metabolism is important for PCa development: growth-promoting factors stimulate cholesterol accumulation, which in turn presents a possible target for chemotherapy. Consequently, we recommend future investigations, both to better elucidate the mechanisms driving this accumulation and applying it in novel chemotherapeutic strategies.
Collapse
|
26
|
Baniahmad A. Benign prostate hyperplasia meets liver x receptor. Endocrinology 2012; 153:3558-60. [PMID: 22733967 DOI: 10.1210/en.2012-1474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Aria Baniahmad
- Institute for Human Genetics, Jena University Hospital, 07740 Jena, Germany.
| |
Collapse
|
27
|
Dufour J, Viennois E, De Boussac H, Baron S, Lobaccaro JM. Oxysterol receptors, AKT and prostate cancer. Curr Opin Pharmacol 2012; 12:724-8. [PMID: 22819197 DOI: 10.1016/j.coph.2012.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 01/11/2023]
Abstract
Oxysterols derive from cholesterol oxidation. They display various biological activities such as regulating cholesterol, fatty acid and glucose homeostasis as well as cell survival/apoptosis balance. Oxysterols display these metabolic and transcriptional activities mainly through their nuclear receptors known as Liver X Receptors (LXRs) α and β. There is accumulating evidence that LXRs are key modulators of prostate cancer cell survival. Hence, LXR activation increases cholesterol efflux and induces a disruption of lipid rafts. The decrease of membrane cholesterol causes a down regulation of AKT survival pathway and consequently apoptosis. Moreover cholesterol is associated with an increased risk of developing aggressive forms of prostate cancer. These data highlight the interest of targeting the LXR-AKT axis in prostate carcinogenesis.
Collapse
Affiliation(s)
- Julie Dufour
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
28
|
Viennois E, Esposito T, Dufour J, Pommier A, Fabre S, Kemeny JL, Guy L, Morel L, Lobaccaro JM, Baron S. Lxrα regulates the androgen response in prostate epithelium. Endocrinology 2012; 153:3211-23. [PMID: 22547570 DOI: 10.1210/en.2011-1996] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Benign prostatic hyperplasia is a nonmalignant enlargement of the prostate that commonly occurs in older men. We show that liver X receptor (Lxr)-α knockout mice (lxrα(-/-)) develop ventral prostate hypertrophy, correlating with an overaccumulation of secreted proteins in prostatic ducts and an alteration of vesicular trafficking in epithelial cells. In the fluid of the lxrα(-/-) prostates, spermine binding protein is highly accumulated and shows a 3000-fold increase of its mRNA. This overexpression is mediated by androgen hypersensitivity in lxrα(-/-) mice, restricted to the ventral prostate. Generation of chimeric recombinant prostates demonstrates that Lxrα is involved in the establishment of the epithelial-mesenchymal interactions in the mouse prostate. Altogether these results point out the crucial role of Lxrα in the homeostasis of the ventral prostate and suggest lxrα(-/-) mice may be a good model to investigate the molecular mechanisms of benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Emilie Viennois
- Department of Génétique Reproduction et Développement, Clermont Université, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation 2011; 82:184-99. [PMID: 21620560 DOI: 10.1016/j.diff.2011.04.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 01/28/2023]
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms (LUTS) are common clinical problems in urology. While the precise molecular etiology remains unclear, sex steroids have been implicated in the development and maintenance of BPH. Sufficient data exists linking androgens and androgen receptor pathways to BPH and use of androgen reducing compounds, such as 5α-reductase inhibitors which block the conversion of testosterone into dihydrotestosterone, are a component of the standard of care for men with LUTS attributed to an enlarged prostate. However, BPH is a multifactorial disease and not all men respond well to currently available treatments, suggesting factors other than androgens are involved. Testosterone, the primary circulating androgen in men, can also be metabolized via CYP19/aromatase into the potent estrogen, estradiol-17β. The prostate is an estrogen target tissue and estrogens directly and indirectly affect growth and differentiation of prostate. The precise role of endogenous and exogenous estrogens in directly affecting prostate growth and differentiation in the context of BPH is an understudied area. Estrogens and selective estrogen receptor modulators (SERMs) have been shown to promote or inhibit prostate proliferation signifying potential roles in BPH. Recent research has demonstrated that estrogen receptor signaling pathways may be important in the development and maintenance of BPH and LUTS; however, new models are needed to genetically dissect estrogen regulated molecular mechanisms involved in BPH. More work is needed to identify estrogens and associated signaling pathways in BPH in order to target BPH with dietary and therapeutic SERMs.
Collapse
Affiliation(s)
- Tristan M Nicholson
- University of Rochester School of Medicine & Dentistry, Rochester, NY, United States
| | | |
Collapse
|
30
|
Bełtowski J. Inhibition of cell proliferation: a new role of liver X receptors. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
El-Hajjaji FZ, Oumeddour A, Pommier AJC, Ouvrier A, Viennois E, Dufour J, Caira F, Drevet JR, Volle DH, Baron S, Saez F, Lobaccaro JMA. Liver X receptors, lipids and their reproductive secrets in the male. Biochim Biophys Acta Mol Basis Dis 2011; 1812:974-81. [PMID: 21334438 DOI: 10.1016/j.bbadis.2011.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/07/2011] [Accepted: 02/11/2011] [Indexed: 12/31/2022]
Abstract
Liver X receptor (LXR) α and LXRβ belong to the nuclear receptor superfamily. For many years, they have been called orphan receptors, as no natural ligand was identified. In the last decade, the LXR natural ligands have been shown to be oxysterols, molecules derived from cholesterol. While these nuclear receptors have been abundantly studied for their roles in the regulation of lipid metabolism, it appears that they also present crucial activities in reproductive organs such as testis and epididymis, as well as prostate. Phenotypic analyses of mice lacking LXRs (lxr-/-) pointed out their physiological activities in the various cells and organs regulating reproductive functions. This review summarizes the impact of LXR-deficiency in male reproduction, highlighting the novel information coming from the phenotypic analyses of lxrα-/-, lxrβ-/- and lxrα;β-/- mice. This article is part of a Special Issue entitled: Translating nuclear receptor from health to disease.
Collapse
Affiliation(s)
- Fatim-Zorah El-Hajjaji
- CNRS Unité Mixte de Recherche 6247 Génétique, Reproduction et Développement, F-63171 Aubière, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Viennois E, Pommier AJC, Mouzat K, Oumeddour A, Hajjaji FZE, Dufour J, Caira F, Volle DH, Baron S, Lobaccaro JMA. Targeting liver X receptors in human health: deadlock or promising trail? Expert Opin Ther Targets 2011; 15:219-32. [DOI: 10.1517/14728222.2011.547853] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Abstract
Although the etiology of benign prostatic hyperplasia (BPH) is unknown, various animal models have been used for several decades to identify potential therapeutic approaches. These models can be divided into those measuring smooth muscle tone and those measuring cellular proliferation. Animal models have played an important role in the development of the two drug classes currently approved for the treatment of BPH: the α-adrenoceptor antagonists and the steroid 5-α-reductase inhibitors. However, models measuring prostatic tone have not been particularly useful in the identification of new α-adrenoceptor antagonists having advantages over currently available drugs, and it is not certain that reduction of prostatic smooth muscle tone is responsible for the relief of BPH symptoms. A further limitation with BPH models is that prostatic hyperplasia similar to the human condition does not occur spontaneously or cannot be induced in any suitable animal species. The identification of a more useful BPH model is focused on cellular mechanisms of prostatic growth, looking similarities between humans and experimental animals.
Collapse
Affiliation(s)
- J Paul Hieble
- Department of Urology Research, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA, 19406, USA
| |
Collapse
|
34
|
Estrogen-dependent gallbladder carcinogenesis in LXRbeta-/- female mice. Proc Natl Acad Sci U S A 2010; 107:14763-8. [PMID: 20679224 DOI: 10.1073/pnas.1009483107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gallbladder cancer is a highly aggressive disease with poor prognosis that is two to six times more frequent in women than men. The development of gallbladder cancer occurs over a long time (more than 15 y) and evolves from chronic inflammation to dysplasia/metaplasia, carcinoma in situ, and invasive carcinoma. In the present study we found that, in female mice in which the oxysterol receptor liver X receptor-beta (LXRbeta) has been inactivated, preneoplastic lesions of the gallbladder developed and evolved to cancer in old animals. LXRbeta is a nuclear receptor involved in the control of lipid homeostasis, glucose metabolism, inflammation, proliferation, and CNS development. LXRbeta(-/-) female gallbladders were severely inflamed, with regions of dysplasia and high cell density, hyperchromasia, metaplasia, and adenomas. No abnormalities were evident in male mice, nor in LXRalpha(-/-) or LXRalpha(-/-)beta(-/-) animals of either sex. Interestingly, the elimination of estrogens with ovariectomy prevented development of preneoplastic lesions in LXRbeta(-/-) mice. The etiopathological mechanism seems to involve TGF-beta signaling, as the precancerous lesions were characterized by strong nuclear reactivity of phospho-SMAD-2 and SMAD-4 and loss of E-cadherin expression. Upon ovariectomy, E-cadherin was reexpressed on the cell membranes and immunoreactivity of pSMAD-2 in the nuclei was reduced. These findings suggest that LXRbeta in a complex interplay with estrogens and TGF-beta could play a crucial role in the malignant transformation of the gallbladder epithelium.
Collapse
|
35
|
Liver X Receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells. Oncogene 2010; 29:2712-23. [PMID: 20190811 DOI: 10.1038/onc.2010.30] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cholesterol is a structural component of lipid rafts within the plasma membrane. These domains, used as platforms for various signaling molecules, regulate cellular processes including cell survival. Cholesterol contents are tightly correlated with the structure and function of lipid rafts. Liver X receptors (LXRs) have a central role in the regulation of cholesterol homeostasis within the cell. Therefore, we investigated whether these nuclear receptors could modulate lipid raft signaling and consequently alter prostate cancer (PCa) cell survival. Treatment with the synthetic LXR agonist T0901317 downregulated the AKT survival pathway and thus induced apoptosis of LNCaP PCa cells in both xenografted nude mice and cell culture. The decrease in tumor cholesterol content resulted from the upregulation of ABCG1 and the subsequent increase in reverse cholesterol transport. RNA interference experiments showed that these effects were mediated by LXRs. Atomic force microscopy scanning of the inner plasma membrane sheet showed smaller and thinner lipid rafts after LXR stimulation, associated with the downregulation of AKT phosphorylation in these lipid rafts. Replenishment of cell membranes with exogenous cholesterol antagonized these effects, showing that cholesterol is a key modulator in this process. Altogether, pharmacological modulation of LXR activity could thus reduce prostate tumor growth by enhancing apoptosis in a lipid raft-dependent manner.
Collapse
|
36
|
Wang L, Cao XX, Chen Q, Zhu TF, Zhu HG, Zheng L. DIXDC1 targets p21 and cyclin D1 via PI3K pathway activation to promote colon cancer cell proliferation. Cancer Sci 2009; 100:1801-8. [PMID: 19572978 PMCID: PMC11159846 DOI: 10.1111/j.1349-7006.2009.01246.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DIXDC1 is the human homolog of Ccd1, a recently identified DIX domain containing protein in zebrafish. It is a positive regulator in the Wnt signaling pathway functioning downstream of Wnt and upstream of Axin. Since Wnt pathway activation is correlated with human colon cancer formation and progression, the biological role of DIXDC1 in human colon cancer was examined. In the current study, up-regulation of DIXDC1 protein was detected in human colorectal adenocarcinoma tissues and was found to be correlated well with high cell proliferation index. Ectopic over-expression of DIXDC1 resulted in increased cell proliferation in vitro and accelerated tumorigenesis on nude mice in vivo. We also showed that DIXDC1 promoted G0/G1 to S phase transition concomitantly with up-regulation of cyclin D1 and down-regulation of p21 protein. DIXDC1 over-expression cells showed activation of the PI3K/AKT pathway. Both siRNA knockdown of DIXDC1 and blocking the PI3K pathway using a specific inhibitor caused G1/S phase arrest, as well as down-regulation of cyclin D1 and up-regulation of p21 in DIXDC1 over-expression colon cancer cells. Collectively, this study demonstrates that over-expression of DIXDC1 might target p21 and cyclin D1 to promote colon cancer cell proliferation and tumorigenesis at least partially through activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Shanghai Medical School, Research Center for Pathology, Institute of Biomedical Science, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|