1
|
Galli G, Melcón-Fernández E, de Garnica García MG, Martínez-Fernández B, Dehnavi M, Andrés S, Pérez-Pertejo Y, Reguera RM, García-Estrada C, Martínez-Valladares M, Balaña-Fouce R. Development of Sheep Duodenum Intestinal Organoids and Implementation of High-Throughput Screening Platform for Veterinary Applications. Int J Mol Sci 2025; 26:3452. [PMID: 40244396 PMCID: PMC11989482 DOI: 10.3390/ijms26073452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
New therapeutic molecules for farm animals are needed to address worldwide problems in the food industry, like the rise of resistance among ruminant parasites and pathogenic microbes. Since in vivo testing would involve an excessive number of animals, with consequent ethical and economic issues, the generation of sheep intestinal organoids represents a promising close-to-reality in vitro model for veterinary drug development; however, the characterization and application of such organoids remain limited. In this study, ovine intestinal organoids were generated from adult LGR5+ stem cells from the intestinal crypts of freshly slaughtered lambs, and developed in an in vitro culture system. Morphological analysis via brightfield microscopy and immunocytochemical staining revealed a pseudostratified epithelium with multiple cell types, and distinct apical-basal polarity, while RNA sequencing validated the preservation of the physiological characteristics of the original organ. The development and characterization of a robust and reproducible protocol for culturing sheep duodenum intestinal organoids in a high-throughput screening (HTS) compatible format demonstrated reliability in HTS applications, with Z'-factor tests indicating robust assay performance. Dose-response studies using pre-identified compounds showed comparable pharmacodynamic profiles between mouse and sheep organoids. These findings establish sheep intestinal organoids as an innovative tool for veterinary pharmacology and toxicology, offering a cost-effective and sustainable platform to address challenges such as drug resistance and improve livestock health.
Collapse
Affiliation(s)
- Giulio Galli
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain; (G.G.); (E.M.-F.); (Y.P.-P.); (R.M.R.); (C.G.-E.)
| | - Estela Melcón-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain; (G.G.); (E.M.-F.); (Y.P.-P.); (R.M.R.); (C.G.-E.)
| | | | | | - Mahsa Dehnavi
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, Grulleros, 24346 León, Spain; (M.D.); (S.A.); (M.M.-V.)
| | - Sonia Andrés
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, Grulleros, 24346 León, Spain; (M.D.); (S.A.); (M.M.-V.)
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain; (G.G.); (E.M.-F.); (Y.P.-P.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24007 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain; (G.G.); (E.M.-F.); (Y.P.-P.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24007 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain; (G.G.); (E.M.-F.); (Y.P.-P.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24007 León, Spain
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, Grulleros, 24346 León, Spain; (M.D.); (S.A.); (M.M.-V.)
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24007 León, Spain; (G.G.); (E.M.-F.); (Y.P.-P.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24007 León, Spain
| |
Collapse
|
2
|
Kufrin V, Seiler A, Brilloff S, Rothfuß H, Küchler S, Schäfer S, Rahimian E, Baumgarten J, Ding L, Buchholz F, Ball CR, Bornhäuser M, Glimm H, Bill M, Wurm AA. The histone modifier KAT2A presents a selective target in a subset of well-differentiated microsatellite-stable colorectal cancers. Cell Death Differ 2025:10.1038/s41418-025-01479-7. [PMID: 40140561 DOI: 10.1038/s41418-025-01479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/27/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Lysine acetyltransferase 2 A (KAT2A) plays a pivotal role in epigenetic gene regulation across various types of cancer. In colorectal cancer (CRC), increased KAT2A expression is associated with a more aggressive phenotype. Our study aims to elucidate the molecular underpinnings of KAT2A dependency in CRC and assess the consequences of KAT2A depletion. We conducted a comprehensive analysis by integrating CRISPR-Cas9 screening data with genomics, transcriptomics, and global acetylation patterns in CRC cell lines to pinpoint molecular markers indicative of KAT2A dependency. Additionally, we characterized the phenotypic effect of a CRISPR-interference-mediated KAT2A knockdown in CRC cell lines and patient-derived 3D spheroid cultures. Moreover, we assessed the effect of KAT2A depletion within a patient-derived xenograft mouse model in vivo. Our findings reveal that KAT2A dependency is closely associated with microsatellite stability, lower mutational burden, and increased molecular differentiation signatures in CRC, independent of the KAT2A expression levels. KAT2A-dependent CRC cells display higher gene expression levels and enriched H3K27ac marks at gene loci linked to enterocytic differentiation. Furthermore, loss of KAT2A leads to decreased cell growth and viability in vitro and in vivo, downregulation of proliferation- and stem cell-associated genes, and induction of differentiation markers. Altogether, our data show that a specific subset of CRCs with a more differentiated phenotype relies on KAT2A. For these CRC cases, KAT2A might represent a promising novel therapeutic target.
Collapse
Affiliation(s)
- Vida Kufrin
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Annika Seiler
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Silke Brilloff
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Helen Rothfuß
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Sandra Küchler
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Silvia Schäfer
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Elahe Rahimian
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Jonas Baumgarten
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Li Ding
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- TUD Dresden University of Technology, Faculty of Biology, Dresden, Germany
| | - Martin Bornhäuser
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marius Bill
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Alexander A Wurm
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- German Cancer Consortium (DKTK), Dresden, Germany.
| |
Collapse
|
3
|
Moraitis I, Taelman J, Arozamena B, Mularoni L, Wienskowska O, Sanjuan Garriga X, Arregui L, Stefanovic M, Modolell Farré I, Guedea F, Diaz M, Guiu J. Mucosal Macrophages Govern Intestinal Regeneration in Response to Injury. Gastroenterology 2025:S0016-5085(25)00465-2. [PMID: 40086603 DOI: 10.1053/j.gastro.2025.01.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS Radiation-induced enteritis develops in cancer patients treated with radiotherapy in the abdominal and pelvic cavity, a condition that impairs their quality of life. Radiation injury depletes proliferative intestinal stem cells; in response to this, the epithelium activates a regenerative program that facilitates the healing of the intestine. However, the mechanisms that induce the activation of the intestinal regenerative program are poorly characterized. METHODS In this study, we induced radiation-induced enteritis in mice through abdominal irradiation, mimicking clinical scenarios. Through imaging and flow cytometric analysis, we investigated the recruitment of macrophages to the small intestine during injury and healing. Additionally, we developed a coculture system for mouse and human intestinal organoids and macrophages to explore the cross talk between these cells. Then by combining in vivo ablation of macrophages, fluorescent lineage tracing, imaging, bulk RNA-sequencing (RNA-seq), single-cell RNA-seq, human intestinal organoids, and cell trajectory analysis, we studied the macrophage induction of intestinal regeneration at the cellular and molecular level. RESULTS Our findings revealed that macrophages are recruited around the intestinal stem cell compartment upon radiation injury, promoting a fetal-like reprogramming and proliferation of epithelial cells that drives the regeneration process. In contrast, macrophage ablation led to compromised regeneration. Moreover, our single-cell RNA-seq analysis identified key secreted molecules, neuregulin 1 and osteopontin, as pivotal players in regulating this process. Additionally, characterization of human macrophage/organoid cocultures and cell trajectory inference confirmed the conservation of macrophages' role in triggering the regenerative program in primary human cells. CONCLUSIONS This study identifies macrophages as essential contributors to intestinal regeneration beyond their innate immune response. Targeting macrophages therapeutically may hold promise in enhancing regeneration and improving the quality of life for cancer survivors.
Collapse
Affiliation(s)
- Ilias Moraitis
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain; Biomedicine PhD Program, Universitat de Barcelona, Barcelona, Spain
| | - Jasin Taelman
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Borja Arozamena
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Loris Mularoni
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Wienskowska
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Sanjuan Garriga
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Arregui
- HUB-ICO-IDIBELL Biobank, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Milica Stefanovic
- Department of Radiobiology and Cancer, ONCOBELL, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Radiation Oncology, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ignasi Modolell Farré
- Servei de Física Mèdica i Protecció Radiològica, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ferran Guedea
- Department of Radiobiology and Cancer, ONCOBELL, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Radiation Oncology, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mònica Diaz
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain; Centre for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
4
|
Huang W, Djebali K, Cho KY, Gardner K, Fasano A, Meng D, Walker WA. Synergism between TLR4 and B. infantis in the development of the premature intestine. Pediatr Res 2025:10.1038/s41390-024-03676-5. [PMID: 39939519 DOI: 10.1038/s41390-024-03676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Intestinal microbiota has a role in early life maturation including maturation of intestinal immune function. However, the interaction of the TLR4 with colonizing bacteria in intestinal development is incompletely understood. METHODS An established human immature small intestinal cell line, human fetal intestinal organoids, and wild-type (WT) and TLR4 gene knockout (TLR4 -/-) neonatal mice were used to test the synergism between the innate immune receptor TLR4 and postbiotics from Bifidobacteria longum subsp. infantis (B. infantis) in development of the premature intestine. RESULTS TLR4-mediated postbiotics induced immature enterocyte proliferation and filamentous actin (F-actin) maturation both at the mRNA and protein levels. Proliferation of mRNA levels increased in wild-type mice but not in TLR4 -/- mice fed by postbiotics, both in the ileum and colon. Postbiotics can also change tight junction distribution in WT neonatal colon but not in TLR4 -/- mice. CONCLUSIONS Our data suggest a novel regulation of intestinal development by a synergistic role of the innate immune receptor TLR4 and early life colonizing bacteria, such as B. infantis. This study should provide new insights into the mechanisms of intestinal maturation as well as opportunities to target novel approaches to NEC prevention and treatment. IMPACT The innate immune system and postbiotics affect immature intestinal development. The innate immune receptor TLR4 prevention of NEC. Mechanism of prevention of NEC. This is the first time this has been demonstrated in human fetal intestine. In vitro process for future clinical studies for prevention of NEC.
Collapse
Affiliation(s)
- Wuyang Huang
- Institute of Agro‑Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
| | - Karim Djebali
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
- Department of Microbial Diseases, Eastman Dental Institute, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Ky Young Cho
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - Kimberly Gardner
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
- Howard University, 2400 6th ST NW, Washington, DC, 20059, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA.
| | - Di Meng
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114‑3503), Charlestown, MA, 02129, USA
| |
Collapse
|
5
|
Özkan A, Merry GE, Chou DB, Posey RR, Stejskalova A, Calderon K, Sperry M, Horvath V, Ferri LE, Carlotti E, McDonald SAC, Winton DJ, Riccardi R, Bordeianou L, Hall S, Goyal G, Ingber DE. Human Organ Chips Reveal New Inflammatory Bowel Disease Drivers. RESEARCH SQUARE 2025:rs.3.rs-5627712. [PMID: 39975910 PMCID: PMC11838723 DOI: 10.21203/rs.3.rs-5627712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inflammatory bowel disease (IBD) patients exhibit compromised intestinal barrier function and decreased mucus accumulation, as well as increased inflammation, fibrosis, and cancer risk, with symptoms often being exacerbated in women during pregnancy. Here, we show that these IBD hallmarks can be replicated using human Organ Chips lined by IBD patient-derived colon epithelial cells interfaced with matched fibroblasts cultured under flow. Use of heterotypic tissue recombinants revealed that IBD fibroblasts are the primary drivers of multiple IBD symptoms. Inflammation and fibrosis are accentuated by peristalsis-like motions in IBD Chips and when exposed to pregnancy-associated hormones in female IBD Chips. Carcinogen exposure also increases inflammation, gene mutations, and chromosome duplication in IBD Chips, but not in Healthy Chips. These data enabled by human Organ Chip technology suggest that the intestinal stroma, sex hormones, and peristalsis-associated mechanical deformations play a key role in driving inflammation, fibrosis, and disease progression in male and female IBD patients.
Collapse
Affiliation(s)
- Alican Özkan
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Gwenn E. Merry
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - David B. Chou
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Ryan R. Posey
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Karina Calderon
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Megan Sperry
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Viktor Horvath
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
- Current address: Entact Bio, Watertown, MA
| | - Lorenzo E. Ferri
- Thoracic and Upper GI Cancer Research Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Experimental Surgery and Department of Surgery, McGill University, Montreal, QC, Canada
| | - Emanuela Carlotti
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Stuart A. C. McDonald
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Douglas J. Winton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Rocco Riccardi
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| | | | - Sean Hall
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
- Current address: Iovance Therapeutics, Tampa, FL
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA
| |
Collapse
|
6
|
Özkan A, Merry G, Chou DB, Posey RR, Stejskalova A, Calderon K, Sperry M, Horvath V, Ferri LE, Carlotti E, McDonald SAC, Winton DJ, Riccardi R, Bordeianou L, Hall S, Goyal G, Ingber DE. Inflammatory Bowel Disease Drivers Revealed in Human Organ Chips. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.05.24318563. [PMID: 39677416 PMCID: PMC11643285 DOI: 10.1101/2024.12.05.24318563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Inflammatory bowel disease (IBD) patients exhibit compromised intestinal barrier function and decreased mucus accumulation, as well as increased inflammation, fibrosis, and cancer risk, with symptoms often being exacerbated in women during pregnancy. Here, we show that these IBD hallmarks can be replicated using human Organ Chips lined by IBD patient-derived colon epithelial cells interfaced with matched fibroblasts cultured under flow. Use of heterotypic tissue recombinants revealed that IBD fibroblasts are the primary drivers of multiple IBD symptoms. Inflammation and fibrosis are accentuated by peristalsis-like motions in IBD Chips and when exposed to pregnancy-associated hormones in female IBD Chips. Carcinogen exposure also increases inflammation, gene mutations, and chromosome duplication in IBD Chips, but not in Healthy Chips. These data enabled by human Organ Chip technology suggest that the intestinal stroma and peristalsis-associated mechanical deformations play a key role in driving inflammation and disease progression in male and female IBD patients.
Collapse
Affiliation(s)
- Alican Özkan
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Gwenn Merry
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - David B. Chou
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Ryan R. Posey
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Karina Calderon
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Megan Sperry
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Viktor Horvath
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
- Current address: Entact Bio, Watertown, MA
| | - Lorenzo E. Ferri
- Thoracic and Upper GI Cancer Research Laboratories, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Experimental Surgery and Department of Surgery, McGill University, Montreal, QC, Canada
| | - Emanuela Carlotti
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Stuart A. C. McDonald
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Douglas J. Winton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Rocco Riccardi
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| | | | - Sean Hall
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
- Current address: Iovance Therapeutics, Tampa, FL
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA
| |
Collapse
|
7
|
Nazari E, Khalili-Tanha G, Pourali G, Khojasteh-Leylakoohi F, Azari H, Dashtiahangar M, Fiuji H, Yousefli Z, Asadnia A, Maftooh M, Akbarzade H, Nassiri M, Hassanian SM, Ferns GA, Peters GJ, Giovannetti E, Batra J, Khazaei M, Avan A. The diagnostic and prognostic value of C1orf174 in colorectal cancer. BIOIMPACTS : BI 2024; 15:30566. [PMID: 40256241 PMCID: PMC12008501 DOI: 10.34172/bi.30566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 04/22/2025]
Abstract
Introduction Colorectal cancer (CRC) is among the lethal cancers, indicating the need for the identification of novel biomarkers for the detection of patients in earlier stages. RNA and microRNA sequencing were analyzed using bioinformatics and machine learning algorithms to identify differentially expressed genes (DEGs), followed by validation in CRC patients. Methods The genome-wide RNA sequencing of 631 samples, comprising 398 patients and 233 normal cases was extracted from the Cancer Genome Atlas (TCGA). The DEGs were identified using DESeq package in R. Survival analysis was evaluated using Kaplan-Meier analysis to identify prognostic biomarkers. Predictive biomarkers were determined by machine learning algorithms such as Deep learning, Decision Tree, and Support Vector Machine. The biological pathways, protein-protein interaction (PPI), the co-expression of DEGs, and the correlation between DEGs and clinical data were evaluated. Additionally, the diagnostic markers were assessed with a combioROC package. Finally, the candidate tope score gene was validated by Real-time PCR in CRC patients. Results The survival analysis revealed five novel prognostic genes, including KCNK13, C1orf174, CLEC18A, SRRM5, and GPR89A. Thirty-nine upregulated, 40 downregulated genes, and 20 miRNAs were detected by SVM with high accuracy and AUC. The upregulation of KRT20 and FAM118A genes and the downregulation of LRAT and PROZ genes had the highest coefficient in the advanced stage. Furthermore, our findings showed that three miRNAs (mir-19b-1, mir-326, and mir-330) upregulated in the advanced stage. C1orf174, as a novel gene, was validated using RT-PCR in CRC patients. The combineROC curve analysis indicated that the combination of C1orf174-AKAP4-DIRC1-SKIL-Scan29A4 can be considered as diagnostic markers with sensitivity, specificity, and AUC values of 0.90, 0.94, and 0.92, respectively. Conclusion Machine learning algorithms can be used to Identify key dysregulated genes/miRNAs involved in the pathogenesis of diseases, leading to the detection of patients in earlier stages. Our data also demonstrated the prognostic value of C1orf174 in colorectal cancer.
Collapse
Affiliation(s)
- Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hanieh Azari
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Fiuji
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, The Netherlands
| | - Zahra Yousefli
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Asadnia
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, The Netherlands
- Professor In Biochemistry, Medical University of Gdansk,Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Jyotsna Batra
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane 4059, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
8
|
Abdullayeva G, Liu H, Liu TC, Simmons A, Novelli M, Huseynova I, Lastun VL, Bodmer W. Goblet cell differentiation subgroups in colorectal cancer. Proc Natl Acad Sci U S A 2024; 121:e2414213121. [PMID: 39401352 PMCID: PMC11513979 DOI: 10.1073/pnas.2414213121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
The poor prognosis of relatively undifferentiated cancers has long been recognized, suggesting that selection against differentiation and in favor of uncontrolled growth is one of the most powerful drivers of cancer progression. Goblet cells provide the mucous surface of the gut, and when present in colorectal cancers (CRC), the cancers are called mucinous. We have used the presence of MUC2, the main mucous product of goblet cells, and an associated gene product, TFF3, to classify a large panel of nearly 80 CRC-derived cell lines into five categories based on their levels of MUC2 and TFF3 expression. We have then shown that these five patterns of expression can be easily identified in the direct analysis of tumor specimens allowing a much finer characterization of CRCs with respect to the presence of goblet cell differentiation. In particular, about 30% of all CRCs fall into the category of expressing TFF3 but not MUC2, which has not previously been acknowledged. Using the cell line data, we suggest that there are up to 12 genes (MUC2, TFF3, ATOH1, SPDEF, CDX1, CDX2, GATA6, HES1, ETS2, OLFM4, TOX3, and LGR5) that may be involved in selection against goblet cell differentiation in CRC by changes in methylation rather than mutations. Of these, LGR5, which is particularly associated with lack of goblet cell features, may function in the control of differentiation rather than direct control of cell growth, as has so far mostly been assumed. These results emphasize the importance of methylation changes in driving cancer progression.
Collapse
Affiliation(s)
- Gulnar Abdullayeva
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, BakuAZ1073, Azerbaijan
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, OX3 7TY, United Kingdom
| | - Haoyu Liu
- Tencent Technology (Shenzhen) Co. Ltd., Shenzhen City518000, China
| | - Ta-Chun Liu
- Hayawaka Building, OxfordOX4 4GA, United Kingdom
| | - Alison Simmons
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, OxfordOX3 9DS, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Marco Novelli
- University College London Department of Pathology, LondonWC1E 6HX, United Kingdom
| | - Irada Huseynova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, BakuAZ1073, Azerbaijan
| | - Viorica L. Lastun
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, United Kingdom
| | - Walter Bodmer
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, United Kingdom
| |
Collapse
|
9
|
Nieuwenhuis TO, Giles HH, Arking JVA, Patil AH, Shi W, McCall MN, Halushka MK. Patterns of Unwanted Biological and Technical Expression Variation Among 49 Human Tissues. J Transl Med 2024; 104:102069. [PMID: 38670317 PMCID: PMC11726374 DOI: 10.1016/j.labinv.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Tissue gene expression studies are impacted by biological and technical sources of variation, which can be broadly classified into wanted and unwanted variation. The latter, if not addressed, results in misleading biological conclusions. Methods have been proposed to reduce unwanted variation, such as normalization and batch correction. A more accurate understanding of all causes of variation could significantly improve the ability of these methods to remove unwanted variation while retaining variation corresponding to the biological question of interest. We used 17,282 samples from 49 human tissues in the Genotype-Tissue Expression data set (v8) to investigate patterns and causes of expression variation. Transcript expression was transformed to z-scores, and only the most variable 2% of transcripts were evaluated and clustered based on coexpression patterns. Clustered gene sets were assigned to different biological or technical causes based on histologic appearances and metadata elements. We identified 522 variable transcript clusters (median: 11 per tissue) among the samples. Of these, 63% were confidently explained, 16% were likely explained, 7% were low confidence explanations, and 14% had no clear cause. Histologic analysis annotated 46 clusters. Other common causes of variability included sex, sequencing contamination, immunoglobulin diversity, and compositional tissue differences. Less common biological causes included death interval (Hardy score), disease status, and age. Technical causes included blood draw timing and harvesting differences. Many of the causes of variation in bulk tissue expression were identifiable in the Tabula Sapiens data set of single-cell expression. This is among the largest explorations of the underlying sources of tissue expression variation. It uncovered expected and unexpected causes of variable gene expression and demonstrated the utility of matched histologic specimens. It further demonstrated the value of acquiring meaningful tissue harvesting metadata elements to use for improved normalization, batch correction, and analysis of both bulk and single-cell RNA-seq data.
Collapse
Affiliation(s)
- Tim O Nieuwenhuis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hunter H Giles
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeremy V A Arking
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arun H Patil
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - Wen Shi
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York
| | - Marc K Halushka
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
10
|
Ran R, Muñoz Briones J, Jena S, Anderson NL, Olson MR, Green LN, Brubaker DK. Detailed survey of an in vitro intestinal epithelium model by single-cell transcriptomics. iScience 2024; 27:109383. [PMID: 38523788 PMCID: PMC10959667 DOI: 10.1016/j.isci.2024.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
The co-culture of two adult human colorectal cancer cell lines, Caco-2 and HT29, on Transwell is commonly used as an in vitro gut mimic, yet the translatability of insights from such a system to adult human physiological contexts is not fully characterized. Here, we used single-cell RNA sequencing on the co-culture to obtain a detailed survey of cell type heterogeneity in the system and conducted a holistic comparison with human physiology. We identified the intestinal stem cell-, transit amplifying-, enterocyte-, goblet cell-, and enteroendocrine-like cells in the system. In general, the co-culture was fetal intestine-like, with less variety of gene expression compared to the adult human gut. Transporters for major types of nutrients were found in the majority of the enterocytes-like cells in the system. TLR 4 was not expressed in the sample, indicating that the co-culture model is incapable of mimicking the innate immune aspect of the human epithelium.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Javier Muñoz Briones
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Interdisciplinary Life Science Program, West Lafayette, IN, USA
| | - Smrutiti Jena
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Nicole L. Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew R. Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Leopold N. Green
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA
| |
Collapse
|
11
|
Pope HF, Pilmane M, Junga A, Pētersons A. The Assessment of CDX1, IHH, SHH, GATA4, FOXA2, FOXF1 in Congenital Intra-Abdominal Adhesions. Acta Med Litu 2024; 31:109-121. [PMID: 38978864 PMCID: PMC11227690 DOI: 10.15388/amed.2024.31.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 07/10/2024] Open
Abstract
Congenital abdominal adhesions are a rare condition that can result in a small bowel obstruction at any age, more frequently in pediatric populations. The cause remains unknown, and the importance of aberrant congenital bands is related to the difficulty of diagnosis, and cases of death with late detection have been documented. This research examines the expression of Caudal Type Homeobox 1 (CDX1), Indian Hedgehog (IHH), Sonic Hedgehog (SHH), GATA Binding Protein 4 (GATA4), Forkhead Box A2 (FOXA2) and Forkhead Box F1 (FOXF1) gene expression in human abdominal congenital adhesion fibroblast and endothelium cells by chromogenic in situ hybridization, with the aim of elucidating their potential association with the etiology of congenital intra-abdominal adhesion band development. The potential genes' signals were examined using a semi-quantitative approach. Significant correlations were observed between the expression of CDX1 (p <.001) and SHH (p=0.032) genes in fibroblasts from congenital intra-abdominal adhesions compared to fibroblasts from control peritoneal tissue. Statistically significant very strong correlations were found between the CDX1 and IHH comparing endothelium and fibroblast cells in congenital abdominal adhesion bands. There was no statistically significant difference found in the distribution of IHH, FOXA2, GATA4, and FOXF1 between the fibroblasts and endothelium of the patients compared to the control group. The presence of notable distinctions and diverse associations suggests the potential involvement of numerous morpho-pathogenetic processes in the development of intraabdominal adhesions.
Collapse
Affiliation(s)
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga, Latvia
| | - Anna Junga
- Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga, Latvia
| | - Aigars Pētersons
- Children’s Clinical University Hospital, Riga Stradiņš University, Riga, Latvia
| |
Collapse
|
12
|
Yang L, Tu L, Bisht S, Mao Y, Petkovich D, Thursby SJ, Liang J, Patel N, Yen RWC, Largent T, Zahnow C, Brock M, Gabrielson K, Salimian KJ, Baylin SB, Easwaran H. Tissue-location-specific transcription programs drive tumor dependencies in colon cancer. Nat Commun 2024; 15:1384. [PMID: 38360902 PMCID: PMC10869357 DOI: 10.1038/s41467-024-45605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cancers of the same tissue-type but in anatomically distinct locations exhibit different molecular dependencies for tumorigenesis. Proximal and distal colon cancers exemplify such characteristics, with BRAFV600E predominantly occurring in proximal colon cancers along with increased DNA methylation phenotype. Using mouse colon organoids, here we show that proximal and distal colon stem cells have distinct transcriptional programs that regulate stemness and differentiation. We identify that the homeobox transcription factor, CDX2, which is silenced by DNA methylation in proximal colon cancers, is a key mediator of the differential transcriptional programs. Cdx2-mediated proximal colon-specific transcriptional program concurrently is tumor suppressive, and Cdx2 loss sufficiently creates permissive state for BRAFV600E-driven transformation. Human proximal colon cancers with CDX2 downregulation showed similar transcriptional program as in mouse proximal organoids with Cdx2 loss. Developmental transcription factors, such as CDX2, are thus critical in maintaining tissue-location specific transcriptional programs that create tissue-type origin specific dependencies for tumor development.
Collapse
Affiliation(s)
- Lijing Yang
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shilpa Bisht
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Yiqing Mao
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Daniel Petkovich
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Sara-Jayne Thursby
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Jinxiao Liang
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Nibedita Patel
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Ray-Whay Chiu Yen
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Tina Largent
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Cynthia Zahnow
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Malcolm Brock
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Kathy Gabrielson
- Department of Comparative Medicine, Johns Hopkins Medical Institutions, 863 Broadway Research Building, 733 N. Broadway, Baltimore, MD, 21205-2196, USA
| | - Kevan J Salimian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen B Baylin
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Hariharan Easwaran
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA.
| |
Collapse
|
13
|
Shen MH, Liu CY, Chang KW, Lai CL, Chang SC, Huang CJ. Propolis Has an Anticancer Effect on Early Stage Colorectal Cancer by Affecting Epithelial Differentiation and Gut Immunity in the Tumor Microenvironment. Nutrients 2023; 15:4494. [PMID: 37960147 PMCID: PMC10648826 DOI: 10.3390/nu15214494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and is the second leading cause of cancer-related death in the world. Due to the westernization of diets, young patients with CRC are often diagnosed at advanced stages with an associated poor prognosis. Improved lifestyle choices are one way to minimize CRC risk. Among diet choices is the inclusion of bee propolis, long recognized as a health supplement with anticancer activities. Understanding the effect of propolis on the gut environment is worth exploring, and especially its associated intratumoral immune changes and its anticancer effect on the occurrence and development of CRC. In this study, early stage CRC was induced with 1,2-dimethylhydrazine (DMH) and dextran sulfate sodium (DSS) for one month in an animal model, without and with propolis administration. The phenotypes of early stage CRC were evaluated by X-ray microcomputed tomography and histologic examination. The gut immunity of the tumor microenvironment was assessed by immunohistochemical staining for tumor-infiltrating lymphocytes (TILs) and further comparative quantification. We found that the characteristics of the CRC mice, including the body weight, tumor loading, and tumor dimensions, were significantly changed due to propolis administration. With further propolis administration, the CRC tissues of DMH/DSS-treated mice showed decreased cytokeratin 20 levels, a marker for intestinal epithelium differentiation. Additionally, the signal intensity and density of CD3+ and CD4+ TILs were significantly increased and fewer forkhead box protein P3 (FOXP3) lymphocytes were observed in the lamina propria. In conclusion, we found that propolis, a natural supplement, potentially prevented CRC progression by increasing CD3+ and CD4+ TILs and reducing FOXP3 lymphocytes in the tumor microenvironment of early stage CRC. Our study could suggest a promising role for propolis in complementary medicine as a food supplement to decrease or prevent CRC progression.
Collapse
Affiliation(s)
- Ming-Hung Shen
- Department of Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 243089, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Department of Pathology, Sijhih Cathay General Hospital, New Taipei City 221037, Taiwan
| | - Kang-Wei Chang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 110301, Taiwan;
- Laboratory Animal Center, Taipei Medical University, Taipei City 110301, Taiwan
| | - Ching-Long Lai
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City 333324, Taiwan;
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 333324, Taiwan
| | - Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei City 106438, Taiwan;
| | - Chi-Jung Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114201, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei City 106438, Taiwan
| |
Collapse
|
14
|
Büttner J, Blüthner E, Greif S, Kühl A, Elezkurtaj S, Ulrich J, Maasberg S, Jochum C, Tacke F, Pape UF. Predictive Potential of Biomarkers of Intestinal Barrier Function for Therapeutic Management with Teduglutide in Patients with Short Bowel Syndrome. Nutrients 2023; 15:4220. [PMID: 37836505 PMCID: PMC10574292 DOI: 10.3390/nu15194220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION The human intestinal tract reacts to extensive resection with spontaneous intestinal adaptation. We analyzed whether gene expression analyses or intestinal permeability (IP) testing could provide biomarkers to describe regulation mechanisms in the intestinal barrier in short bowel syndrome (SBS) patients during adaptive response or treatment with the glucagon-like peptide-2 analog teduglutide. METHODS Relevant regions of the GLP-2 receptor gene were sequenced. Gene expression analyses and immunohistochemistry were performed from mucosal biopsies. IP was assessed using a carbohydrate oral ingestion test. RESULTS The study includes 59 SBS patients and 19 controls. Increases in gene expression with teduglutide were received for sucrase-isomaltase, sodium/glucose cotransporter 1, and calcium/calmodulin serine protein kinase. Mannitol recovery was decreased in SBS but elevated with teduglutide (Δ 40%), showed a positive correlation with remnant small bowel and an inverse correlation with parenteral support. CONCLUSIONS Biomarkers predicting clinical and functional features in human SBS are very limited. Altered specific gene expression was shown for genes involved in nutrient transport but not for genes controlling tight junctions. However, mannitol recovery proved useful in describing the absorptive capacity of the gut during adaptation and treatment with teduglutide.
Collapse
Affiliation(s)
- Janine Büttner
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
| | - Elisabeth Blüthner
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Sophie Greif
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
| | - Anja Kühl
- iPATH.Berlin, Core Unit der Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt, Campus Benjamin Franklin, 12203 Berlin, Germany;
| | - Sefer Elezkurtaj
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Pathology, Campus Mitte, 10117 Berlin, Germany;
| | - Jan Ulrich
- Department of Internal Medicine and Gastroenterology, Asklepios Klinik St. Georg, 20099 Hamburg, Germany; (J.U.); (S.M.)
| | - Sebastian Maasberg
- Department of Internal Medicine and Gastroenterology, Asklepios Klinik St. Georg, 20099 Hamburg, Germany; (J.U.); (S.M.)
| | - Christoph Jochum
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
| | - Frank Tacke
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
| | - Ulrich-Frank Pape
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow Klinikum, 10117 Berlin, Germany; (E.B.); (S.G.); (C.J.); (F.T.)
- Department of Internal Medicine and Gastroenterology, Asklepios Klinik St. Georg, 20099 Hamburg, Germany; (J.U.); (S.M.)
| |
Collapse
|
15
|
Zheng X, Betjes MA, Ender P, Goos YJ, Huelsz-Prince G, Clevers H, van Zon JS, Tans SJ. Organoid cell fate dynamics in space and time. SCIENCE ADVANCES 2023; 9:eadd6480. [PMID: 37595032 PMCID: PMC10438469 DOI: 10.1126/sciadv.add6480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Organoids are a major new tool to study tissue renewal. However, characterizing the underlying differentiation dynamics remains challenging. Here, we developed TypeTracker, which identifies cell fates by AI-enabled cell tracking and propagating end point fates back along the branched lineage trees. Cells that ultimately migrate to the villus commit to their new type early, when still deep inside the crypt, with important consequences: (i) Secretory cells commit before terminal division, with secretory fates emerging symmetrically in sister cells. (ii) Different secretory types descend from distinct stem cell lineages rather than an omnipotent secretory progenitor. (iii) The ratio between secretory and absorptive cells is strongly affected by proliferation after commitment. (iv) Spatial patterning occurs after commitment through type-dependent cell rearrangements. This "commit-then-sort" model contrasts with the conventional conveyor belt picture, where cells differentiate by moving up the crypt-villus axis and hence raises new questions about the underlying commitment and sorting mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
| | | | - Sander J Tans
- Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
- AMOLF, Amsterdam, Netherlands.
| |
Collapse
|
16
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
17
|
Nieuwenhuis TO, Giles HH, McCall MN, Halushka MK. Patterns of unwanted biological and technical expression variation across 49 human tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531935. [PMID: 36945408 PMCID: PMC10028996 DOI: 10.1101/2023.03.09.531935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
All tissue-based gene expression studies are impacted by biological and technical sources of variation. Numerous methods are used to normalize and batch correct these datasets. A more accurate understanding of all causes of variation could further optimize these approaches. We used 17,282 samples from 49 tissues in the Genotype Tissue Expression (GTEx) dataset (v8) to investigate patterns and causes of expression variation. Transcript expression was normalized to Z-scores and only the most variable 2% of transcripts were evaluated and clustered based on co-expression patterns. Clustered gene sets were solved to different biological or technical causes related to metadata elements and histologic images. We identified 522 variable transcript clusters (median 11 per tissue) across the samples. Of these, 64% were confidently explained, 15% were likely explained, 7% were low confidence explanations and 14% had no clear cause. Common causes included sex, sequencing contamination, immunoglobulin diversity, and compositional tissue differences. Less common biological causes included death interval (Hardy score), muscle atrophy, diabetes status, and menopause. Technical causes included brain pH and harvesting differences. Many of the causes of variation in bulk tissue expression were identifiable in the Tabula Sapiens dataset of single cell expression. This is the largest exploration of the underlying sources of tissue expression variation. It uncovered expected and unexpected causes of variable gene expression. These identified sources of variation will inform which metadata to acquire with tissue harvesting and can be used to improve normalization, batch correction, and analysis of both bulk and single cell RNA-seq data.
Collapse
Affiliation(s)
- Tim O Nieuwenhuis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hunter H Giles
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
In-Depth Analysis of the N-Glycome of Colorectal Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24054842. [PMID: 36902272 PMCID: PMC10003090 DOI: 10.3390/ijms24054842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer deaths worldwide. A well-known hallmark of cancer is altered glycosylation. Analyzing the N-glycosylation of CRC cell lines may provide potential therapeutic or diagnostic targets. In this study, an in-depth N-glycomic analysis of 25 CRC cell lines was conducted using porous graphitized carbon nano-liquid chromatography coupled to electrospray ionization mass spectrometry. This method allows for the separation of isomers and performs structural characterization, revealing profound N-glycomic diversity among the studied CRC cell lines with the elucidation of a number of 139 N-glycans. A high degree of similarity between the two N-glycan datasets measured on the two different platforms (porous graphitized carbon nano-liquid chromatography electrospray ionization tandem mass spectrometry (PGC-nano-LC-ESI-MS) and matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS)) was discovered. Furthermore, we studied the associations between glycosylation features, glycosyltransferases (GTs), and transcription factors (TFs). While no significant correlations between the glycosylation features and GTs were found, the association between TF CDX1 and (s)Le antigen expression and relevant GTs FUT3/6 suggests that CDX1 contributes to the expression of the (s)Le antigen through the regulation of FUT3/6. Our study provides a comprehensive characterization of the N-glycome of CRC cell lines, which may contribute to the future discovery of novel glyco-biomarkers of CRC.
Collapse
|
19
|
Madunić K, Luijkx YMCA, Mayboroda OA, Janssen GMC, van Veelen PA, Strijbis K, Wennekes T, Lageveen-Kammeijer GSM, Wuhrer M. O-Glycomic and Proteomic Signatures of Spontaneous and Butyrate-Stimulated Colorectal Cancer Cell Line Differentiation. Mol Cell Proteomics 2023; 22:100501. [PMID: 36669592 PMCID: PMC9999233 DOI: 10.1016/j.mcpro.2023.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Gut microbiota of the gastrointestinal tract provide health benefits to the human host via bacterial metabolites. Bacterial butyrate has beneficial effects on intestinal homeostasis and is the preferred energy source of intestinal epithelial cells, capable of inducing differentiation. It was previously observed that changes in the expression of specific proteins as well as protein glycosylation occur with differentiation. In this study, specific mucin O-glycans were identified that mark butyrate-induced epithelial differentiation of the intestinal cell line CaCo-2 (Cancer Coli-2), by applying porous graphitized carbon nano-liquid chromatography with electrospray ionization tandem mass spectrometry. Moreover, a quantitative proteomic approach was used to decipher changes in the cell proteome. It was found that the fully differentiated butyrate-stimulated cells are characterized by a higher expression of sialylated O-glycan structures, whereas fucosylation is downregulated with differentiation. By performing an integrative approach, we generated hypotheses about the origin of the observed O-glycome changes. These insights pave the way for future endeavors to study the dynamic O-glycosylation patterns in the gut, either produced via cellular biosynthesis or through the action of bacterial glycosidases as well as the functional role of these patterns in homeostasis and dysbiosis at the gut-microbiota interface.
Collapse
Affiliation(s)
- K Madunić
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - Y M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - O A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - K Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - T Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands.
| |
Collapse
|
20
|
Jia R, Xu L, Sun D, Han B. Genetic marker identification of SEC13 gene for milk production traits in Chinese holstein. Front Genet 2023; 13:1065096. [PMID: 36685890 PMCID: PMC9846039 DOI: 10.3389/fgene.2022.1065096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
SEC13 homolog, nuclear pore and COPII coat complex component (SEC13) is the core component of the cytoplasmic COPII complex, which mediates material transport from the endoplasmic reticulum to the Golgi complex. Our preliminary work found that SEC13 gene was differentially expressed in dairy cows during different stages of lactation, and involved in metabolic pathways of milk synthesis such as citric acid cycle, fatty acid, starch and sucrose metabolisms, so we considered that the SEC13 might be a candidate gene affecting milk production traits. In this study, we detected the polymorphisms of SEC13 gene and verified their genetic effects on milk yield and composition traits in a Chinese Holstein cow population. By sequencing the whole coding and partial flanking regions of SEC13, we found four single nucleotide polymorphisms (SNPs). Subsequent association analysis showed that these four SNPs were significantly associated with milk yield, fat yield, protein yield or protein percentage in the first and second lactations (p ≤.0351). We also found that two SNPs in SEC13 formed one haplotype block by Haploview4.2, and the block was significantly associated with milk yield, fat yield, fat percentage, protein yield or protein percentage (p ≤ .0373). In addition, we predicted the effect of SNP on 5'region on transcription factor binding sites (TFBSs), and found that the allele A of 22:g.54362761A>G could bind transcription factors (TFs) GATA5, GATA3, HOXD9, HOXA10, CDX1 and Hoxd13; and further dual-luciferase reporter assay verified that the allele A of this SNP inhibited the fluorescence activity. We speculate that the A allele of 22:g.54362761A>G might inhibit the transcriptional activity of SEC13 gene by binding the TFs, which may be a cause mutation affecting the formation of milk production traits in dairy cows. In summary, we proved that SEC13 has a significant genetic effect on milk production traits and the identified significant SNPs could be used as candidate genetic markers for GS SNP chips development; on the other hand, we verified the transcriptional regulation of 22:g.54362761A>G on SEC13 gene, providing research direction for further function validation tests.
Collapse
Affiliation(s)
- Ruike Jia
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Lingna Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
- National Dairy Innovation Center, Hohhot, China
| | - Bo Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
González-Loyola A, Bernier-Latmani J, Roci I, Wyss T, Langer J, Durot S, Munoz O, Prat-Luri B, Delorenzi M, Lutolf MP, Zamboni N, Verdeil G, Petrova TV. c-MAF coordinates enterocyte zonation and nutrient uptake transcriptional programs. J Exp Med 2022; 219:213478. [PMID: 36121415 PMCID: PMC9486085 DOI: 10.1084/jem.20212418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 12/13/2022] Open
Abstract
Small intestinal villi are structural and functional units present in higher vertebrates and uniquely adapted to nutrient absorption. Villus enterocytes are organized in transcriptional "zones" dedicated to specialized tasks such as absorption of specific nutrients. We report that the transcription factor c-MAF is expressed in differentiated lower and mid-villus enterocytes and is a target of BMP signaling. Maf inactivation perturbed the villus zonation program by increasing carbohydrate-related transcripts while suppressing transcripts linked to amino-acid and lipid absorption. The formation of cytoplasmic lipid droplets, shuttling dietary fat to chylomicrons, was impaired upon Maf loss indicating its role in dietary lipid handling. Maf inactivation under homeostatic conditions expanded tuft cells and led to compensatory gut lengthening, preventing weight loss. However, delayed Maf-/- enterocyte maturation impaired weight recovery after acute intestinal injury, resulting in reduced survival. Our results identify c-MAF as a regulator of the intestinal villus zonation program, while highlighting the importance of coordination between stem/progenitor and differentiation programs for intestinal regeneration.
Collapse
Affiliation(s)
- Alejandra González-Loyola
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Irena Roci
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Tania Wyss
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland.,Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jakob Langer
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephan Durot
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Olivia Munoz
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Borja Prat-Luri
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Mauro Delorenzi
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland.,Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Grégory Verdeil
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| |
Collapse
|
22
|
Lee H, Jung KB, Kwon O, Son YS, Choi E, Yu WD, Son N, Jeon JH, Jo H, Yang H, Son YR, Yun CS, Cho HS, Kim SK, Kim DS, Park DS, Son MY. Limosilactobacillus reuteri DS0384 promotes intestinal epithelial maturation via the postbiotic effect in human intestinal organoids and infant mice. Gut Microbes 2022; 14:2121580. [PMID: 36130031 PMCID: PMC9519030 DOI: 10.1080/19490976.2022.2121580] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Little is known about the modulatory capacity of the microbiota in early intestinal development. We examined various intestinal models that respond to gut microbial metabolites based on human pluripotent stem cell-derived human intestinal organoids (hIOs): physiologically relevant in vitro fetal-like intestine, intestinal stem cell, and intestinal disease models. We found that a newly isolated Limosilactobacillus reuteri strain DS0384 accelerated maturation of the fetal intestine using 3D hIO with immature fetal characteristics. Comparative metabolomic profiling analysis revealed that the secreted metabolite N-carbamyl glutamic acid (NCG) is involved in the beneficial effect of DS0384 cell-free supernatants on the intestinal maturation of hIOs. Experiments in an intestinal stem cell spheroid model and hIO-based intestinal inflamed model revealed that the cell-free supernatant from DS0384 comprising NCG promoted intestinal stem cell proliferation and was important for intestinal protection against cytokine-induced intestinal epithelial injury. The probiotic properties of DS0384 were also evaluated, including acid and bile tolerance and ability to adhere to human intestinal cells. Seven-day oral administration of DS0384 and cell-free supernatant promoted the intestinal development of newborn mice. Moreover, NCG exerted a protective effect on experimental colitis in mice. These results suggest that DS0384 is a useful agent for probiotic applications and therapeutic treatment for disorders of early gut development and for preventing intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Hana Lee
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang Bo Jung
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ohman Kwon
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ye Seul Son
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Eunho Choi
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea,KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Dong Yu
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea,KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Naeun Son
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea,KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jun Hyoung Jeon
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea
| | - Hana Jo
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea
| | - Haneol Yang
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea
| | - Yeong Rak Son
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea
| | - Chan-Seok Yun
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea
| | - Hyun-Soo Cho
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea,Digital Biotech Innovation Center, KRIBB, Daejeon, Republic of Korea
| | - Sang Kyu Kim
- Laboratory of Efficacy Research, Korea Ginseng Corp., Daejeon, Republic of Korea
| | - Dae-Soo Kim
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea,Digital Biotech Innovation Center, KRIBB, Daejeon, Republic of Korea
| | - Doo-Sang Park
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea,Doo-Sang Park Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, 56212, Republic of Korea
| | - Mi-Young Son
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea,KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea,CONTACT Mi-Young Son Stem Cell Research Convergence Center, KRIBB, Daejeon, 34141, Republic of Korea
| |
Collapse
|
23
|
Dietary Inclusion of Dried Chicory Root Affects Cecal Mucosa Proteome of Nursery Pigs. Animals (Basel) 2022; 12:ani12131710. [PMID: 35804609 PMCID: PMC9264899 DOI: 10.3390/ani12131710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A well-balanced diet seems to play a key role in disease prevention and health promotion in young animals. Therefore, many attempts have been made to supplement feeds with novel nutritional components, with potential prebiotic capacity. It seems that chicory root fulfils those criteria as it contains high amounts of inulin-type fructans. Hence, the aim of the study was to determine the effect of dietary supplementation with 4% dried chicory root on the cecal mucosa proteome of piglets. It is shown that this feed additive may affect cellular metabolism in the cecal epithelium and may be beneficial for gut health. Abstract Prebiotics are known to have many beneficial effects on intestinal health by modulating the gut microbiota composition, thereby affecting epithelial cell proliferation and metabolism. This study had two aims: (1) to identify the protein constituents in the cecal mucosa of 50-day-old healthy (PIC × Penarlan P76) barrows, and (2) to assess the effects of 4% inclusion of dried chicory root in a cereal-based diet on the cecal mucosa proteome changes. Pigs (eight per group) were randomly allotted to the groups and were fed a control diet from the tenth day of life (C) or a diet supplemented with 4% of died chicory root (CR), for 40 days. At the age of 50 days, animals were sacrificed and cecal tissue samples were collected. It was found that feeding a CR diet significantly decreased the expression of 16 cecal mucosa proteins. Among them, fifteen proteins were down-regulated, while only one (KRT20) was shown to be up-regulated when compared to the C group. Dietary supplementation with CR caused down-expression of metabolism-associated proteins including enzymes involved in the process of glycolysis (G6PD, TPI1, ALDH9A1, CKMT1 and AKR1A1) as well as those engaged in transcriptional and translational activity (PRPF19, EEF1G) and several structural proteins (ACTR3, KRT77, CAP1 and actin). From our findings, it is possible to conclude that dietary chicory root at 4% had beneficial effects on the gut health of pigs as indicated by a changed abundance of certain cecal proteins such as KRT20, SERPINB1, HSP27, ANAXA2 and ANAXA4.
Collapse
|
24
|
SFRP4 and CDX1 Are Predictive Genes for Extragastric Recurrence of Early Gastric Cancer after Curative Resection. J Clin Med 2022; 11:jcm11113072. [PMID: 35683460 PMCID: PMC9181378 DOI: 10.3390/jcm11113072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Extragastric recurrence of early gastric cancer (EGC) after curative resection is rare, but prognosis has been poor in previous reports. Recently, single patient classifier (SPC) genes, such as secreted frizzled-related protein 4 (SFRP4) and caudal-type homeobox 1 (CDX1), were associated with prognosis and chemotherapy response in stage II–III gastric cancer. The aim of our study is, therefore, to elucidate predictive factors for extragastric recurrence of EGC after curative resection, including with the expression of SPC genes. We retrospectively reviewed electronic medical records of 1974 patients who underwent endoscopic or surgical curative resection for EGC. We analyzed clinicopathological characteristics to determine predictive factors for extragastric recurrence. Total RNA was extracted from formalin-fixed, paraffin-embedded (FFPE) tumor tissue and amplified by real-time reverse transcription polymerase chain reaction to evaluate expression of SPC genes. Overall incidences of extragastric recurrence were 0.9%. In multivariate analysis, submucosal invasion (odds ratio [OR] = 6.351, p = 0.032) and N3 staging (OR = 171.512, p = 0.012) were independent predictive factors for extragastric recurrence. Mean expression of SFRP4 in extragastric recurrence (−2.8 ± 1.3) was significantly higher than in the control group (−4.3 ± 1.6) (p = 0.047). Moreover, mean expression of CDX1 in extragastric recurrence (−4.6 ± 2.0) was significantly lower than in the control group (−2.4 ± 1.8) (p = 0.025). Submucosal invasion and metastasis of more than seven lymph nodes were independent predictive factors for extragastric recurrence. In addition, SFRP4 and CDX1 may be novel predictive markers for extragastric recurrence of EGC after curative resection.
Collapse
|
25
|
Grinat J, Kosel F, Goveas N, Kranz A, Alexopoulou D, Rajewsky K, Sigal M, Stewart AF, Heuberger J. Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Sci Alliance 2022; 5:5/4/e202101187. [PMID: 35064075 PMCID: PMC8807877 DOI: 10.26508/lsa.202101187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
The histone methyltransferase Mll1 controls intestinal secretory cell fate by promoting Wnt-driven Paneth and restricting Mapk-dependent goblet cell differentiation through regulation of Gata4/6 transcription factors Differentiation and lineage specification are controlled by cooperation of growth factor signalling. The involvement of epigenetic regulators in lineage specification remains largely elusive. Here, we show that the histone methyltransferase Mll1 prevents intestinal progenitor cells from differentiation, whereas it is also involved in secretory lineage specification of Paneth and goblet cells. Using conditional mutagenesis in mice and intestinal organoids, we demonstrate that loss of Mll1 renders intestinal progenitor cells permissive for Wnt-driven secretory differentiation. However, Mll1-deficient crypt cells fail to segregate Paneth and goblet cell fates. Mll1 deficiency causes Paneth cell-determined crypt progenitors to exhibit goblet cell features by unleashing Mapk signalling, resulting in increased numbers of mixed Paneth/goblet cells. We show that loss of Mll1 abolishes the pro-proliferative effect of Mapk signalling in intestinal progenitor cells and promotes Mapk-induced goblet cell differentiation. Our data uncover Mll1 and its downstream targets Gata4/6 as a regulatory hub of Wnt and Mapk signalling in the control of lineage specification of intestinal secretory Paneth and goblet cells.
Collapse
Affiliation(s)
- Johanna Grinat
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Frauke Kosel
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Neha Goveas
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Dimitra Alexopoulou
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Klaus Rajewsky
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Michael Sigal
- Medical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julian Heuberger
- Medical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany .,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
26
|
Huang W, Cho KY, Meng D, Walker WA. The impact of indole-3-lactic acid on immature intestinal innate immunity and development: a transcriptomic analysis. Sci Rep 2021; 11:8088. [PMID: 33850185 PMCID: PMC8044159 DOI: 10.1038/s41598-021-87353-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
An excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA's effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.
Collapse
Affiliation(s)
- Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114-3503), Charlestown, MA, 02129, USA
| | - Ky Young Cho
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114-3503), Charlestown, MA, 02129, USA
| | - Di Meng
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114-3503), Charlestown, MA, 02129, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114-3503), Charlestown, MA, 02129, USA.
| |
Collapse
|
27
|
Zhang M, Hu S, Min M, Ni Y, Lu Z, Sun X, Wu J, Liu B, Ying X, Liu Y. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut 2021; 70:464-475. [PMID: 32532891 PMCID: PMC7873416 DOI: 10.1136/gutjnl-2019-320368] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Tumour heterogeneity represents a major obstacle to accurate diagnosis and treatment in gastric adenocarcinoma (GA). Here, we report a systematic transcriptional atlas to delineate molecular and cellular heterogeneity in GA using single-cell RNA sequencing (scRNA-seq). DESIGN We performed unbiased transcriptome-wide scRNA-seq analysis on 27 677 cells from 9 tumour and 3 non-tumour samples. Analysis results were validated using large-scale histological assays and bulk transcriptomic datasets. RESULTS Our integrative analysis of tumour cells identified five cell subgroups with distinct expression profiles. A panel of differentiation-related genes reveals a high diversity of differentiation degrees within and between tumours. Low differentiation degrees can predict poor prognosis in GA. Among them, three subgroups exhibited different differentiation grade which corresponded well to histopathological features of Lauren's subtypes. Interestingly, the other two subgroups displayed unique transcriptome features. One subgroup expressing chief-cell markers (eg, LIPF and PGC) and RNF43 with Wnt/β-catenin signalling pathway activated is consistent with the previously described entity fundic gland-type GA (chief cell-predominant, GA-FG-CCP). We further confirmed the presence of GA-FG-CCP in two public bulk datasets using transcriptomic profiles and histological images. The other subgroup specifically expressed immune-related signature genes (eg, LY6K and major histocompatibility complex class II) with the infection of Epstein-Barr virus. In addition, we also analysed non-malignant epithelium and provided molecular evidences for potential transition from gastric chief cells into MUC6+TFF2+ spasmolytic polypeptide expressing metaplasia. CONCLUSION Altogether, our study offers valuable resource for deciphering gastric tumour heterogeneity, which will provide assistance for precision diagnosis and prognosis.
Collapse
Affiliation(s)
- Min Zhang
- Academy of Military Medical Sciences, Beijing, China,The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuofeng Hu
- Academy of Military Medical Sciences, Beijing, China,Center for Computational Biology, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Min Min
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanli Ni
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng Lu
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaotian Sun
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,Department of internal medicine, Beijing South Medical District of Chinese PLA General Hospital, Beijing, China
| | - Jiaqi Wu
- Academy of Military Medical Sciences, Beijing, China,Center for Computational Biology, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Bing Liu
- Academy of Military Medical Sciences, Beijing, China .,The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaomin Ying
- Academy of Military Medical Sciences, Beijing, China .,Center for Computational Biology, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Yan Liu
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Kabeya T, Mima S, Imakura Y, Miyashita T, Ogura I, Yamada T, Yasujima T, Yuasa H, Iwao T, Matsunaga T. Pharmacokinetic functions of human induced pluripotent stem cell-derived small intestinal epithelial cells. Drug Metab Pharmacokinet 2020; 35:374-382. [PMID: 32651148 DOI: 10.1016/j.dmpk.2020.04.334] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Abstract
To develop a novel intestinal drug absorption system using intestinal epithelial cells derived from human induced pluripotent stem (iPS) cells, the cells must possess sufficient pharmacokinetic functions. However, the CYP3A4/5 activities of human iPS cell-derived small intestinal epithelial cells prepared using conventional differentiation methods is low. Further, studies of the CYP3A4/5 activities of human iPS-derived and primary small intestinal cells are not available. To fill this gap in our knowledge, here we used forskolin to develop a new differentiation protocol that activates adenosine monophosphate signaling. mRNA expressions of human iPS cell-derived small intestinal epithelial cells, such as small intestine markers, drug-metabolizing enzymes, and drug transporters, were comparable to or greater than those of the adult small intestine. The activities of CYP3A4/5 in the differentiated cells were equal to those of human primary small intestinal cells. The differentiated cells had P-glycoprotein and PEPT1 activities equivalent to those of Caco-2 cells. Differentiated cells were superior to Caco-2 cells for predicting the membrane permeability of drugs that were absorbed through a paracellular pathway and via drug transporters. In summary, here we produced human iPS cell-derived small intestinal epithelial cells with CYP3A4/5 activities equivalent to those of human primary small intestinal cells.
Collapse
Affiliation(s)
- Tomoki Kabeya
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Mima
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Yuki Imakura
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Toshihide Miyashita
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Izumi Ogura
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Tadanori Yamada
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
29
|
Kren N, Michaud D, Bagchi S, Greene K, Pylayeva-Gupta Y. Rab27a plays a dual role in metastatic propensity of pancreatic cancer. Sci Rep 2020; 10:7390. [PMID: 32355248 PMCID: PMC7193593 DOI: 10.1038/s41598-020-64248-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is an aggressive malignancy, often diagnosed at metastatic stages. Several studies have implicated systemic factors, such as extracellular vesicle release and myeloid cell expansion, in the establishment of pre-metastatic niches in cancer. The Rab27a GTPase is overexpressed in advanced cancers, can regulate vesicle trafficking, and has been previously linked to non-cell autonomous control of tumor growth and metastasis, however, the role of Rab27a itself in the metastatic propensity of pancreatic cancer is not well understood. Here, we have established a model to study how Rab27a directs formation of the pre-metastatic niche. Loss of Rab27a in pancreatic cancer cells did not decrease tumor growth in vivo, but resulted in altered systemic myeloid cell expansion, both in the primary tumors and at the distant organ sites. In metastasis assays, loss of Rab27a expression in tumor cells injected into circulation compromised efficient outgrowth of metastatic lesions. However, Rab27a knockdown cells had an unexpected advantage at initial steps of metastatic seeding, suggesting that Rab27a may alter cell-autonomous invasive properties of the tumor cells. Gene expression analysis of gene expression revealed that downregulation of Rab27a increased expression of genes involved in epithelial-to-mesenchymal transition pathways, consistent with our findings that primary tumors arising from Rab27a knockdown cells were more invasive. Overall, these data reveal that Rab27a can play divergent roles in regulating pro-metastatic propensity of pancreatic cancer cells: by generating pro-metastatic environment at the distant organ sites, and by suppressing invasive properties of the cancer cells.
Collapse
Affiliation(s)
- Nancy Kren
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, USA
| | - Daniel Michaud
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Sukriti Bagchi
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, USA.,University of Arizona, AZ, USA
| | - Kevin Greene
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, USA. .,Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
30
|
Yamamoto K, Tamura T, Nakamura R, Hosoe S, Matsubara M, Nagata K, Kodaira H, Uemori T, Takahashi Y, Suzuki M, Saito JI, Ueno K, Shuto S. Development of a novel class of peroxisome proliferator-activated receptor (PPAR) gamma ligands as an anticancer agent with a unique binding mode based on a non-thiazolidinedione scaffold. Bioorg Med Chem 2019; 27:115122. [PMID: 31623970 DOI: 10.1016/j.bmc.2019.115122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/10/2019] [Accepted: 09/14/2019] [Indexed: 01/12/2023]
Abstract
We previously identified dibenzooxepine derivative 1 as a potent PPARγ ligand with a unique binding mode owing to its non-thiazolidinedione scaffold. However, while 1 showed remarkably potent MKN-45 gastric cancer cell aggregation activity, an indicator of cancer differentiation-inducing activity induced by PPARγ activation, we recognized that 1 was metabolically unstable. In the present study, we identified a metabolically soft spot, and successfully discovered 3-fluoro dibenzooxepine derivative 9 with better metabolic stability. Further optimization provided imidazo[1,2-a]pyridine derivative 17, which showed potent MKN-45 gastric cancer cell aggregation activity and excellent PK profiles compared with 9. Compound 17 exerted a growth inhibitory effect on AsPC-1/AG1 pancreatic tumor in mice. Furthermore, the decrease in the hematocrit (an indicator of localized edema, a serious adverse effect of PPARγ ligands) was tolerable even with oral administration at 200 mg/kg in healthy mice.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Tomohiro Tamura
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Rina Nakamura
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Shintaro Hosoe
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Masahiro Matsubara
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Keiko Nagata
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Hiroshi Kodaira
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Takeshi Uemori
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Yuichi Takahashi
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Michihiko Suzuki
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Jun-Ichi Saito
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Kimihisa Ueno
- Fuji Research Park, R&D Division, Kyowa Kirin, 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
31
|
Omerzu M, Fenderico N, de Barbanson B, Sprangers J, de Ridder J, Maurice MM. Three-dimensional analysis of single molecule FISH in human colon organoids. Biol Open 2019; 8:bio.042812. [PMID: 31362950 PMCID: PMC6737975 DOI: 10.1242/bio.042812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The culturing of mini-organs (organoids) in three-dimensions (3D) presents a simple and powerful tool to investigate the principles underlying human organ development and tissue self-organization in both healthy and diseased states. Applications of single molecule analysis are highly informative for a comprehensive understanding of the complexity underlying tissue and organ physiology. To fully exploit the potential of single molecule technologies, the adjustment of protocols and tools to 3D tissue culture is required. Single molecule RNA fluorescence in situ hybridization (smFISH) is a robust technique for visualizing and quantifying individual transcripts. In addition, smFISH can be employed to study splice variants, fusion transcripts as well as transcripts of multiple genes at the same time. Here, we develop a 3-day protocol and validation method to perform smFISH in 3D in whole human organoids. We provide a number of applications to exemplify the diverse possibilities for the simultaneous detection of distinct mRNA transcripts, evaluation of their spatial distribution and the identification of divergent cell lineages in 3D in organoids.
Collapse
Affiliation(s)
- Manja Omerzu
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nicola Fenderico
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Buys de Barbanson
- Oncode Institute and Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands.,Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Joep Sprangers
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeroen de Ridder
- Oncode Institute and Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
32
|
Self-organized intestinal epithelial monolayers in crypt and villus-like domains show effective barrier function. Sci Rep 2019; 9:10140. [PMID: 31300688 PMCID: PMC6625996 DOI: 10.1038/s41598-019-46497-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal organoids have emerged as a powerful in vitro tool for studying intestinal biology due to their resemblance to in vivo tissue at the structural and functional levels. However, their sphere-like geometry prevents access to the apical side of the epithelium, making them unsuitable for standard functional assays designed for flat cell monolayers. Here, we describe a simple method for the formation of epithelial monolayers that recapitulates the in vivo-like cell type composition and organization and that is suitable for functional tissue barrier assays. In our approach, epithelial monolayer spreading is driven by the substrate stiffness, while tissue barrier function is achieved by the basolateral delivery of medium enriched with stem cell niche and myofibroblast-derived factors. These monolayers contain major intestinal epithelial cell types organized into proliferating crypt-like domains and differentiated villus-like regions, closely resembling the in vivo cell distribution. As a unique characteristic, these epithelial monolayers form functional epithelial barriers with an accessible apical surface and physiologically relevant transepithelial electrical resistance values. Our technology offers an up-to-date and novel culture method for intestinal epithelium, providing an in vivo-like cell composition and distribution in a tissue culture format compatible with high-throughput drug absorption or microbe-epithelium interaction studies.
Collapse
|
33
|
Samadani AA, Nikbakhsh N, Taheri H, Shafaee S, Fattahi S, Pilehchian Langroudi M, Hajian K, Akhavan-Niaki H. CDX1/2 and KLF5 Expression and Epigenetic Modulation of Sonic Hedgehog Signaling in Gastric Adenocarcinoma. Pathol Oncol Res 2019; 25:1215-1222. [DOI: 10.1007/s12253-019-00594-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
|
34
|
Guo C, Kong W, Kamimoto K, Rivera-Gonzalez GC, Yang X, Kirita Y, Morris SA. CellTag Indexing: genetic barcode-based sample multiplexing for single-cell genomics. Genome Biol 2019; 20:90. [PMID: 31072405 PMCID: PMC6509836 DOI: 10.1186/s13059-019-1699-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
High-throughput single-cell assays increasingly require special consideration in experimental design, sample multiplexing, batch effect removal, and data interpretation. Here, we describe a lentiviral barcode-based multiplexing approach, CellTag Indexing, which uses predefined genetic barcodes that are heritable, enabling cell populations to be tagged, pooled, and tracked over time in the same experimental replicate. We demonstrate the utility of CellTag Indexing by sequencing transcriptomes using a variety of cell types, including long-term tracking of cell engraftment and differentiation in vivo. Together, this presents CellTag Indexing as a broadly applicable genetic multiplexing tool that is complementary with existing single-cell technologies.
Collapse
Affiliation(s)
- Chuner Guo
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Wenjun Kong
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Guillermo C Rivera-Gonzalez
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Xue Yang
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Yuhei Kirita
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Division of Nephrology, Department of Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA.
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA.
| |
Collapse
|
35
|
Guo C, Kong W, Kamimoto K, Rivera-Gonzalez GC, Yang X, Kirita Y, Morris SA. CellTag Indexing: genetic barcode-based sample multiplexing for single-cell genomics. Genome Biol 2019. [PMID: 31072405 DOI: 10.1101/335547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
High-throughput single-cell assays increasingly require special consideration in experimental design, sample multiplexing, batch effect removal, and data interpretation. Here, we describe a lentiviral barcode-based multiplexing approach, CellTag Indexing, which uses predefined genetic barcodes that are heritable, enabling cell populations to be tagged, pooled, and tracked over time in the same experimental replicate. We demonstrate the utility of CellTag Indexing by sequencing transcriptomes using a variety of cell types, including long-term tracking of cell engraftment and differentiation in vivo. Together, this presents CellTag Indexing as a broadly applicable genetic multiplexing tool that is complementary with existing single-cell technologies.
Collapse
Affiliation(s)
- Chuner Guo
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Wenjun Kong
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Guillermo C Rivera-Gonzalez
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Xue Yang
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Yuhei Kirita
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
- Division of Nephrology, Department of Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine in St Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA.
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, Campus Box 8103, St. Louis, MO, 63110, USA.
| |
Collapse
|
36
|
Vukmirovic D, Vo NTK, Seymour C, Rollo D, Mothersill C. Characterization of Radioprotective, Radiomitigative and Bystander Signaling Modulating Effects of Endogenous Metabolites - Phenylacetate, Ursodeoxycholate and Tauroursodeoxycholate - on HCT116 Human Colon Carcinoma Cell Line. Radiat Res 2019; 192:28-39. [PMID: 31058578 DOI: 10.1667/rr15323.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposures to ionizing radiation can cause depletion in stem cell reservoirs and lead to chronic injury processes that exacerbate carcinogenic and inflammatory responses. Therefore, radioprotective measures, against both acute and chronic biological effects of radiation, require frequent intake of nontoxic natural products, which have practical oral administration. The goal of this study was to characterize the radioprotective, radiomitigative and radiation-induced bystander effect-inhibiting properties of endogenous metabolites: phenylacetate, ursodeoxycholate and tauroursodeoxycholate. Compounds were administered pre- and postirradiation as well as in donor and recipient bystander flasks to analyze whether these might adequately protect against radiation injury as well as facilitate recovery from the exposures. The clonogenic HCT116 p53 wild-type cancer cell line in this study shares characteristics of stem cells, such as high reproductive viability, which is an effective marker to demonstrate compound effectiveness. Clonogenic assays were therefore used to characterize radioprotective, radiomitigative and bystander inhibiting properties of treatment compounds whereby cellular responses to radiation were quantified with macroscopic colony counts to measure cell survival in flasks. The results were statistically significant for phenylacetate and tauroursodeoxycholate when administered preirradiation, conferring radioprotection up to 2 Gy, whereas administration postirradiation and in bystander experiments did not confer radioprotection in vitro. These findings suggest that phenylacetate and tauroursodeoxycholate might be effective radioprotectors, although they possess no radiomitigative properties.
Collapse
Affiliation(s)
| | - Nguyen T K Vo
- b Department of Biology, McMaster University, West, Hamilton, Ontario, Canada, L8S 4L8
| | - Colin Seymour
- b Department of Biology, McMaster University, West, Hamilton, Ontario, Canada, L8S 4L8
| | | | - Carmel Mothersill
- b Department of Biology, McMaster University, West, Hamilton, Ontario, Canada, L8S 4L8
| |
Collapse
|
37
|
Holst S, Wilding JL, Koprowska K, Rombouts Y, Wuhrer M. N-Glycomic and Transcriptomic Changes Associated with CDX1 mRNA Expression in Colorectal Cancer Cell Lines. Cells 2019; 8:cells8030273. [PMID: 30909444 PMCID: PMC6468459 DOI: 10.3390/cells8030273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
The caudal-related homeobox protein 1 (CDX1) is a transcription factor, which is important in the development, differentiation, and homeostasis of the gut. Although the involvement of CDX genes in the regulation of the expression levels of a few glycosyltransferases has been shown, associations between glycosylation phenotypes and CDX1 mRNA expression have hitherto not been well studied. Triggered by our previous study, we here characterized the N-glycomic phenotype of 16 colon cancer cell lines, selected for their differential CDX1 mRNA expression levels. We found that high CDX1 mRNA expression associated with a higher degree of multi-fucosylation on N-glycans, which is in line with our previous results and was supported by up-regulated gene expression of fucosyltransferases involved in antenna fucosylation. Interestingly, hepatocyte nuclear factors (HNF)4A and HNF1A were, among others, positively associated with high CDX1 mRNA expression and have been previously proven to regulate antenna fucosylation. Besides fucosylation, we found that high CDX1 mRNA expression in cancer cell lines also associated with low levels of sialylation and galactosylation and high levels of bisection on N-glycans. Altogether, our data highlight a possible role of CDX1 in altering the N-glycosylation of colorectal cancer cells, which is a hallmark of tumor development.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Jennifer L Wilding
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Kamila Koprowska
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
38
|
Nakayama C, Yamamichi N, Tomida S, Takahashi Y, Kageyama‐Yahara N, Sakurai K, Takeuchi C, Inada K, Shiogama K, Nagae G, Ono S, Tsuji Y, Niimi K, Fujishiro M, Aburatani H, Tsutsumi Y, Koike K. Transduced caudal-type homeobox (CDX) 2/CDX1 can induce growth inhibition on CDX-deficient gastric cancer by rapid intestinal differentiation. Cancer Sci 2018; 109:3853-3864. [PMID: 30289576 PMCID: PMC6272106 DOI: 10.1111/cas.13821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/04/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022] Open
Abstract
Intestinal metaplasia induced by ectopic expression of caudal-type homeobox (CDX)2 and/or CDX1 (CDX) is frequently observed around gastric cancer (GC). Abnormal expression of CDX is also observed in GC and suggests that inappropriate gastrointestinal differentiation plays essential roles in gastric tumorigenesis, but their roles on tumorigenesis remain unelucidated. Publicly available databases show that GC patients with higher CDX expression have significantly better clinical outcomes. We introduced CDX2 and CDX1 genes separately into GC-originated MKN7 and TMK1 cells deficient in CDX. Marked suppression of cell growth and dramatic morphological change into spindle-shaped flat form were observed along with induction of intestinal marker genes. G0-G1 growth arrest was accompanied by changed expression of cell cycle-related genes but not with apoptosis or senescence. Microarray analyses additionally showed decreased expression of gastric marker genes and increased expression of stemness-associated genes. Hierarchical clustering of 111 GC tissues and 21 non-cancerous gastric tissues by selected 18 signature genes based on our transcriptome analyses clearly categorized the 132 tissues into non-cancer, "CDX signature"-positive GC, and "CDX signature"-negative GC. Gene set enrichment analysis indicated that "CDX signature"-positive GC has lower malignant features. Immunohistochemistry of 89 GC specimens showed that 50.6% were CDX2-deficient, 66.3% were CDX1-deficient, and 44.9% were concomitant CDX2/CDX1-deficient, suggesting that potentially targetable GC cases by induced intestinal differentiation are quite common. In conclusion, exogenous expression of CDX2/CDX1 can lead to efficient growth inhibition of CDX-deficient GC cells. It is based on rapidly induced intestinal differentiation, which may be a future therapeutic strategy.
Collapse
Affiliation(s)
- Chiemi Nakayama
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Nobutake Yamamichi
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Shuta Tomida
- Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Yu Takahashi
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | | | - Kouhei Sakurai
- Department of Diagnostic Pathology IIFujita Health University School of MedicineAichiJapan
| | - Chihiro Takeuchi
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Ken‐ichi Inada
- Department of Diagnostic Pathology IIFujita Health University School of MedicineAichiJapan
| | - Kazuya Shiogama
- 1st Department of PathologyFujita Health University School of MedicineAichiJapan
| | - Genta Nagae
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Satoshi Ono
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yosuke Tsuji
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Keiko Niimi
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Mitsuhiro Fujishiro
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Aburatani
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Yutaka Tsutsumi
- 1st Department of PathologyFujita Health University School of MedicineAichiJapan
| | - Kazuhiko Koike
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
39
|
Shakery A, Pourvali K, Ghorbani A, Fereidani SS, Zand H. Beta-Hydroxybutyrate Promotes Proliferation, Migration and Stemness in a Subpopulation of 5FU Treated SW480 Cells: Evidence for Metabolic Plasticity in Colon Cancer. Asian Pac J Cancer Prev 2018; 19:3287-3294. [PMID: 30486639 PMCID: PMC6318419 DOI: 10.31557/apjcp.2018.19.11.3287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/07/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Beta-hydroxybutyrate (BHB) as a ketone body is the metabolic fuel in oxidative phosphorylation pathway. So far the effects of BHB on the biology of tumor cells is contradictory. Therefore, we investigated the effect of BHB on viability, metabolism, proliferation and migration of 5FU treated SW480 colon cancer cell line. Methods: we treated the SW480 cells with IC50 dose of 5-fluorouracil (5FU) for 72 h to isolate a subpopulation of 5FU treated cells that were resistant to it. Effects of BHB on cell viability was investigated by MTT assay. Measurement of oxygen consumption rate (OCR) in parallel with extracellular acidification rate (ECAR) upon BHB treatment was used for determination of metabolic profile of these cells. Investigating the relationship between metabolic phenotype and the status of differentiation and stemness was done by analyzing the expression of PGC-1α, c-MYC, NANOG, ALPi and KRT20 genes by qRT-PCR. Clonogenic and scratch assay were performed to determine the proliferation and migration abilities of incubated with BHB compared to untreated cells. Results: BHB increased cell viability in SW480 and 5FU treated SW480 cells. The results showed a significantly decreased ECAR and increased OCR in both cell types following BHB treatment reflecting the superiority of oxidative phosphorylation profile compared to glycolysis in both cell types. Also, treatment with BHB increases the expression of genes normally associated with stemness and mitochondrial biogenesis and decreases the expression of genes related to glycolytic program and differentiation in 5FU treated cells. Self-renewal and migration potential of BHB treated cells increased significantly. Conclusion: These findings suggest that BHB utilization via oxidative mitochondrial metabolism can fuel proliferation, migration and stemness in 5FU treated SW480 colon cancer cells.
Collapse
Affiliation(s)
- Azam Shakery
- Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | |
Collapse
|
40
|
Hashimoto T, Tanaka Y, Ogawa R, Mori T, Yoshida H, Taniguchi H, Hiraoka N, Kojima M, Oono Y, Saito Y, Sekine S. Superficially serrated adenoma: a proposal for a novel subtype of colorectal serrated lesion. Mod Pathol 2018; 31:1588-1598. [PMID: 29789649 DOI: 10.1038/s41379-018-0069-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
We describe a series of colorectal polyps characterized by mixed adenomatous and serrated features, herein referred to as superficially serrated adenomas. Twenty superficially serrated adenomas were obtained from 11 female and 9 male patients aged 62-87 years. Most lesions endoscopically appeared as small sessile polyps, but larger lesions were plaque-like (2-20 mm; median, 5 mm). Eighteen lesions (90%) were located in the sigmoid colon or rectum. They consisted primarily of straight, adenomatous glands but showed serration confined to the superficial layer. Immunohistochemistry revealed CK20 expression in the upper layer. Proliferating cells, determined by their expression of Ki-67, were localized to the middle to bottom layers. Genetic analyses identified KRAS mutations in 19 lesions and a BRAF mutation in one lesion. Furthermore, RSPO fusions and/or overexpression were observed in 18 lesions and truncating APC mutations were observed in the two remaining lesions. Consistent with the presence of WNT pathway gene alterations, all superficially serrated adenomas showed focal or diffuse nuclear β-catenin accumulation. Since concurrent KRAS mutations and RSPO fusions are reportedly common in traditional serrated adenomas, we reviewed 129 traditional serrated adenomas and found 15 lesions (12%) that were associated with superficially serrated adenoma components. Remarkably, all but one superficially serrated adenoma-associated traditional serrated adenoma exhibited concurrent KRAS mutations and RSPO fusions/overexpression. The present study suggests that superficially serrated adenoma is a morphologically and molecularly distinct type of colorectal serrated polyp that is histogenetically related to traditional serrated adenoma.
Collapse
Affiliation(s)
- Taiki Hashimoto
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Yusaku Tanaka
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Reiko Ogawa
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Taisuke Mori
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Yoshida
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Taniguchi
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Motohiro Kojima
- Division of Pathology, Research Center for Innovative Oncology, National Cancer Center, Chiba, Kashiwa, Japan
| | - Yasuhiro Oono
- Endoscopy Division, National Cancer Center Hospital East, Chiba, Kashiwa, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan. .,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
41
|
Qi L, Ding Y. Analysis of metastasis associated signal regulatory network in colorectal cancer. Biochem Biophys Res Commun 2018; 501:113-118. [DOI: 10.1016/j.bbrc.2018.04.186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 11/27/2022]
|
42
|
Roumeliotis TI, Williams SP, Gonçalves E, Alsinet C, Del Castillo Velasco-Herrera M, Aben N, Ghavidel FZ, Michaut M, Schubert M, Price S, Wright JC, Yu L, Yang M, Dienstmann R, Guinney J, Beltrao P, Brazma A, Pardo M, Stegle O, Adams DJ, Wessels L, Saez-Rodriguez J, McDermott U, Choudhary JS. Genomic Determinants of Protein Abundance Variation in Colorectal Cancer Cells. Cell Rep 2018; 20:2201-2214. [PMID: 28854368 PMCID: PMC5583477 DOI: 10.1016/j.celrep.2017.08.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 12/15/2022] Open
Abstract
Assessing the impact of genomic alterations on protein networks is fundamental in identifying the mechanisms that shape cancer heterogeneity. We have used isobaric labeling to characterize the proteomic landscapes of 50 colorectal cancer cell lines and to decipher the functional consequences of somatic genomic variants. The robust quantification of over 9,000 proteins and 11,000 phosphopeptides on average enabled the de novo construction of a functional protein correlation network, which ultimately exposed the collateral effects of mutations on protein complexes. CRISPR-cas9 deletion of key chromatin modifiers confirmed that the consequences of genomic alterations can propagate through protein interactions in a transcript-independent manner. Lastly, we leveraged the quantified proteome to perform unsupervised classification of the cell lines and to build predictive models of drug response in colorectal cancer. Overall, we provide a deep integrative view of the functional network and the molecular structure underlying the heterogeneity of colorectal cancer cells.
Collapse
Affiliation(s)
| | - Steven P Williams
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Emanuel Gonçalves
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Clara Alsinet
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Nanne Aben
- Division of Molecular Carcinogenesis, Computational Cancer Biology, the Netherlands Cancer Institute, Amsterdam 1066, the Netherlands
| | - Fatemeh Zamanzad Ghavidel
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Magali Michaut
- Division of Molecular Carcinogenesis, Computational Cancer Biology, the Netherlands Cancer Institute, Amsterdam 1066, the Netherlands
| | - Michael Schubert
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Stacey Price
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - James C Wright
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Lu Yu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Mi Yang
- Faculty of Medicine, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52057, Germany
| | - Rodrigo Dienstmann
- Computational Oncology, Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA; Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona 08035, Spain
| | - Justin Guinney
- Computational Oncology, Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Mercedes Pardo
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, Computational Cancer Biology, the Netherlands Cancer Institute, Amsterdam 1066, the Netherlands; Faculty of EEMCS, Delft University of Technology, Delft 2628, the Netherlands
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Faculty of Medicine, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52057, Germany
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jyoti S Choudhary
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK; Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
43
|
El Beaino M, Roszik J, Livingston JA, Wang WL, Lazar AJ, Amini B, Subbiah V, Lewis V, Conley AP. Mesenchymal Chondrosarcoma: a Review with Emphasis on its Fusion-Driven Biology. Curr Oncol Rep 2018; 20:37. [PMID: 29582189 DOI: 10.1007/s11912-018-0668-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mesenchymal chondrosarcoma is a rare but deadly form of chondrosarcoma that typically affects adolescents and young adults. While curative intent is possible for patients with localized disease, few options exist for patients in the unresectable/metastatic setting. Thus, it is imperative to understand the fusion-driven biology of this rare malignant neoplasm so as to lead to the future development of better therapeutics for this disease. This manuscript will briefly review the clinical and pathologic features of mesenchymal chondrosarcoma followed by an appraisal of existing data linked to the fusions, HEY1-NCOA2 and IRF2BP2-CDX1, and the associated downstream pathways.
Collapse
Affiliation(s)
- Marc El Beaino
- Department of Orthopaedic Oncology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Livingston
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei-Lien Wang
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alexander J Lazar
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Behrang Amini
- Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vivek Subbiah
- Department of Investigational Therapeutics, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Valerae Lewis
- Department of Orthopaedic Oncology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG, Harris CC. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun 2018; 9:771. [PMID: 29472616 PMCID: PMC5823939 DOI: 10.1038/s41467-018-03224-w] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
TP53 mutants (mutp53) are involved in the pathogenesis of most human cancers. Specific mutp53 proteins gain oncogenic functions (GOFs) distinct from the tumor suppressor activity of the wild-type protein. Tumor-associated macrophages (TAMs), a hallmark of solid tumors, are typically correlated with poor prognosis. Here, we report a non-cell-autonomous mechanism, whereby human mutp53 cancer cells reprogram macrophages to a tumor supportive and anti-inflammatory state. The colon cancer cells harboring GOF mutp53 selectively shed miR-1246-enriched exosomes. Uptake of these exosomes by neighboring macrophages triggers their miR-1246-dependent reprogramming into a cancer-promoting state. Mutp53-reprogammed TAMs favor anti-inflammatory immunosuppression with increased activity of TGF-β. These findings, associated with poor survival in colon cancer patients, strongly support a microenvironmental GOF role for mutp53 in actively engaging the immune system to promote cancer progression and metastasis. p53 gain of function mutants (mutp53) are involved in the pathogenesis of most human cancers. Here, the authors show that mutp53 regulates the tumor microenvironment by inducing the release of specific exosomes containing miR-1246 that once received by macrophages turns them into tumor supportive macrophages.
Collapse
Affiliation(s)
- Tomer Cooks
- Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias St, Athens, GR-11527, Greece
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - Keval M Patel
- Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - James Morris
- Cancer Research UK, Cambridge Research Institute, Robinsons Way, Cambridge, CB2 0RE, UK
| | - Tim Forshew
- UCL Cancer Institute, Huntley St, Camden Town, London, WC1E 6DD, UK
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias St, Athens, GR-11527, Greece.,Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St., GR-11527, Athens, Greece.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health, Science Centre, Wilmslow Road, Manchester, M20 4QL, UK
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, 20892-4258, MD, USA.
| |
Collapse
|
45
|
Anwar T, Sen B, Aggarwal S, Nath R, Pathak N, Katoch A, Aiyaz M, Trehanpati N, Khosla S, Ramakrishna G. Differentially regulated gene expression in quiescence versus senescence and identification of ARID5A as a quiescence associated marker. J Cell Physiol 2017; 233:3695-3712. [PMID: 29044508 DOI: 10.1002/jcp.26227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/29/2017] [Indexed: 01/20/2023]
Abstract
In multicellular organisms majority of the cells remain in a non-dividing states of either quiescence (reversible) or senescence (irreversible). In the present study, gene expression signatures unique to quiescence and senescence were identified using microarray in osteosarcoma cell line, U2OS. It was noted that certain genes and pathways like NOD pathway was shared by both the growth arrest conditions. A major highlight of the present study was increased expression of number of chemokines and cytokines in both quiescence and senescence. While senescence-associated secretory phenotype (SASP) is well known, the quiescence-associated secretory phenotype (QASP) is relatively unknown and appeared novel in this study. ARID5A, a subunit of SWI/SNF complex was identified as a quiescence associated gene. The endogenous expression of ARID5A increased during serum starved condition of quiescence. Overexpression of ARID5A resulted in more number of cells in G0/G1 phase of cell cycle. Further ARID5A overexpressing cells when subjected to serum starvation showed a pronounced secretory phenotype. Overall, the present work has identified gene expression signatures which can distinguish quiescence from senescence.
Collapse
Affiliation(s)
- Tarique Anwar
- Institute of Liver and Biliary Sciences, Vasant Kunj, Delhi, India.,Cedars-Sinai Advanced Health Sciences Pavilion, Los Angeles, California, USA
| | - Bijoya Sen
- Institute of Liver and Biliary Sciences, Vasant Kunj, Delhi, India
| | - Savera Aggarwal
- Institute of Liver and Biliary Sciences, Vasant Kunj, Delhi, India
| | - Rhisita Nath
- Institute of Liver and Biliary Sciences, Vasant Kunj, Delhi, India
| | - Niteen Pathak
- Centre for DNA Fingerprinting and Diagnostics, Laboratory Block, Nampally 2, Hyderabad, Telangana, India
| | | | | | | | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics, Laboratory Block, Nampally 2, Hyderabad, Telangana, India
| | | |
Collapse
|
46
|
Olejniczak A, Szaryńska M, Kmieć Z. In vitro characterization of spheres derived from colorectal cancer cell lines. Int J Oncol 2017; 52:599-612. [PMID: 29207035 DOI: 10.3892/ijo.2017.4206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/08/2017] [Indexed: 11/06/2022] Open
Abstract
Spherical cultures (SCs) can be regarded in cancer research as a link between in vitro investigations on cancer lines and in vivo studies of tumor development. SCs are believed to mimic tumor architecture and to be enriched in cancer stem cell-like cells (CSC-like cells). In the present study we characterized colonospheres derived from colorectal cancer (CRC) cell lines, and we confirmed the ability of HCT116 and HT29 cell lines to form spheres within serum-free medium, however, the detailed analysis presented the major differences concerning their characteristics including morphology, phenotype, proliferative potential, distribution in the cell cycle phases and spherogenicity. Moreover, after we magnetically separated CD133+ and CD133- cells we could conduct the analogical analysis as we performed for the original cells. We observed that all cellular fractions unveiled sphere formation capacity, even when cultured in limited number of cells per well and only SCs originated from CD133+ fraction resembled morphologically the parental spheres. Both CD133+ and CD133- subsets derived from HCT116 line were more enriched in cells in G0/G1 phase of the cell cycle in comparison to their HT29 analogues. Additionally, proliferative potential also varied amongst all studied fractions. Surprisingly, 3-D invasion assay revealed that only HCT116-derived populations were able to migrate into extended regions of Matrigel Matrix confirming their higher aggressiveness. Our results provided comprehensive characterization of CRC cell lines culture in adherent and spherical forms and, what seems to be the most advantageous, the comparison of two distinct fractions after magnetic separation. As we found the specific features of cells presented line- and expansion mode-dependency, thus, such complete description might appear crucial before CRC lines would be involved into sophisticated assays, especially focused on potentially novel therapeutic agents targeting CSC-like cells.
Collapse
Affiliation(s)
- Agata Olejniczak
- Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Szaryńska
- Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
47
|
Lamprecht S, Schmidt EM, Blaj C, Hermeking H, Jung A, Kirchner T, Horst D. Multicolor lineage tracing reveals clonal architecture and dynamics in colon cancer. Nat Commun 2017; 8:1406. [PMID: 29127276 PMCID: PMC5681634 DOI: 10.1038/s41467-017-00976-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022] Open
Abstract
Colon cancers are composed of phenotypically heterogeneous tumor cell subpopulations with variable expression of putative stem cell and differentiation antigens. While in normal colonic mucosa, clonal repopulation occurs along differentiation gradients from crypt base toward crypt apex, the clonal architecture of colon cancer and the relevance of tumor cell subpopulations for clonal outgrowth are poorly understood. Using a multicolor lineage tracing approach in colon cancer xenografts that reflect primary colon cancer architecture, we here demonstrate that clonal outgrowth is mainly driven by tumor cells located at the leading tumor edge with clonal axis formation toward the tumor center. While our findings are compatible with lineage outgrowth in a cancer stem cell model, they suggest that in colorectal cancer tumor cell position may be more important for clonal outgrowth than tumor cell phenotype. The clonal architecture of colon cancer and the relevance of tumor cell subpopulations for clonal outgrowth are poorly understood. Here, the authors describe the clonal architecture and dynamics in human colon cancer by using a multicolor lineage tracing approach in colon cancer xenografts.
Collapse
Affiliation(s)
- Sebastian Lamprecht
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Germany
| | - Eva Marina Schmidt
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Germany
| | - Cristina Blaj
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Germany
| | - Heiko Hermeking
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Germany.,German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Jung
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Germany.,German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Kirchner
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Germany.,German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David Horst
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Germany. .,German Cancer Consortium (DKTK), 69120 Heidelberg, Germany. .,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Lu SH, Tsai WS, Chang YH, Chou TY, Pang ST, Lin PH, Tsai CM, Chang YC. Identifying cancer origin using circulating tumor cells. Cancer Biol Ther 2017; 17:430-8. [PMID: 26828696 PMCID: PMC4910938 DOI: 10.1080/15384047.2016.1141839] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK+ and CK18+ CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7+ or TTF-1+, (CK20/ CDX2)+, or (PSA/ PSMA)+ corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin.
Collapse
Affiliation(s)
- Si-Hong Lu
- a Graduate Institute of Life Sciences, National Defense Medical Center , Taiwan.,b Genomics Research Center, Academia Sinica , Taiwan
| | - Wen-Sy Tsai
- c Division of Colon and Rectal Surgery, Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University , Taiwan
| | - Ying-Hsu Chang
- d Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University , Taiwan
| | - Teh-Ying Chou
- e Pathology and Laboratory Medicine Department, Taipei Veterans General Hospital , Taiwan
| | - See-Tong Pang
- d Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University , Taiwan
| | - Po-Hung Lin
- d Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University , Taiwan
| | - Chun-Ming Tsai
- f Chest Department , Taipei Veterans General Hospital , Taiwan
| | - Ying-Chih Chang
- a Graduate Institute of Life Sciences, National Defense Medical Center , Taiwan.,b Genomics Research Center, Academia Sinica , Taiwan
| |
Collapse
|
49
|
Lai CH, Chang YC. Microfluidic Capture and Multiplex Immunofluorescence of Circulating Tumor Cells to Identify Cancer of Origin. Methods Mol Biol 2017; 1634:1-19. [PMID: 28819837 DOI: 10.1007/978-1-4939-7144-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Circulating tumor cells (CTCs) are an important biomarker and their analysis can be considered a form of "liquid biopsy." The purpose of this book chapter is to describe the use of the 4-channel CMx (cells captured in maximum) microfluidic chip, containing special micropatterns coated with an antibody-conjugated supported lipid bilayer (SLB) on its surface, to capture and isolate CTCs from the blood of cancer patients. Captured CTCs are subsequently released by an air foam to an immunofluorescence (IF) staining panel that enables further analysis, including the identification of the primary cancer source of the CTCs.
Collapse
Affiliation(s)
- Chian-Hui Lai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan
| | | |
Collapse
|
50
|
Izumi D, Ishimoto T, Miyake K, Eto T, Arima K, Kiyozumi Y, Uchihara T, Kurashige J, Iwatsuki M, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, Watanabe M, Goel A, Tan P, Baba H. Colorectal Cancer Stem Cells Acquire Chemoresistance Through the Upregulation of F-Box/WD Repeat-Containing Protein 7 and the Consequent Degradation of c-Myc. Stem Cells 2017; 35:2027-2036. [PMID: 28699179 DOI: 10.1002/stem.2668] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 06/04/2017] [Accepted: 06/14/2017] [Indexed: 12/17/2022]
Abstract
The cancer stem cell (CSC) paradigm suggests that tumors are organized hierarchically. Chugai previously established an LGR5+ human colorectal cancer (CRC) stem-cell-enriched cell line (colorectal CSCs) that expresses well-accepted colorectal CSC markers and that can dynamically switch between proliferative and drug-resistant noncycling states. We performed this study to elucidate the molecular mechanisms responsible for evading cell death in colorectal CSCs mediated by anticancer agents. During the cell cycle arrest caused by anticancer agents, we found that c-Myc expression was substantially decreased in colorectal CSCs. The c-Myc expression alterations were mediated by upregulation of F-box/WD repeat-containing protein 7 (FBXW7), as evidenced through FBXW7-small interfering RNA knockdown experiments that resulted in enhanced cell sensitivity to anticancer agents. Upregulation of FBXW7 following drug treatment was not evident in commercially available cancer cell lines. Colorectal CSCs were induced to differentiation by Matrigel and fetal bovine serum. Differentiated CSCs treated with anticancer agents did not show upregulation of FBXW7 and were more sensitive to irinotecan (CPT-11), highlighting the potential CSC-specific nature of our data. The FBXW7 over-expression was further validated in resected liver metastatic sites in CRC patients after chemotherapy. In conclusion, our study revealed that a CSC-specific FBXW7-regulatory mechanism is strongly associated with resistance to chemotherapeutic agents. Inhibition of FBXW7-upregulation in CSCs following chemotherapy may enhance the response to anticancer agents and represents an attractive strategy for the elimination of colorectal CSCs. Stem Cells 2017;35:2027-2036.
Collapse
Affiliation(s)
- Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Dallas, Texas, USA
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore.,The International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,The International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsugio Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,The International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kota Arima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,The International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,The International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastroenterological Surgery, The Cancer Institute Hospital of JCFR, Tokyo, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Dallas, Texas, USA
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|