1
|
He B, Karroum NB, Gealageas R, Mauvais FX, Warenghem S, Roignant M, Kraupner N, Lam BV, Azaroual N, Ultré V, Rech A, Lesire L, Couturier C, Leroux F, van Endert P, Deprez B, Deprez-Poulain R. Discovery of New Nanomolar Selective IRAP Inhibitors. J Med Chem 2025; 68:4168-4195. [PMID: 39916550 PMCID: PMC11874008 DOI: 10.1021/acs.jmedchem.4c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Among the M1 family of oxytocinase aminopeptidases, insulin-regulated aminopeptidase IRAP, is an emerging drug target implicated in various biological pathways and particularly in MHC-I antigen presentation through amino-terminal trimming of exogenous cross-presented peptides. A few series of inhibitors inspired either by angiotensin IV, one of IRAP substrates, or by bestatin a pan aminopeptidase inhibitor, have been disclosed. However, the variety and number of chemotypes remains relatively limited. Here we disclose the design and optimization of a series of hydroxamic acids IRAP inhibitors bearing a 5-substituted indole. Docking studies of the best compound 43 (BDM_92499), a single-digit nanomolar and selective inhibitor of IRAP, suggest an original binding mode and highlight the substituent on the indole and a primary amide as groups driving selectivity. Several inhibitors in the series displayed IRAP-dependent inhibition of antigen cross-presentation. These results pave the way to the development of novel therapeutic agents targeting IRAP.
Collapse
Affiliation(s)
- Ben He
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Nour Bou Karroum
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Ronan Gealageas
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - François-Xavier Mauvais
- Institut
Necker Enfants Malades, Université
Paris Cité, INSERM, CNRS, Paris F-75015, France
- Service
de Physiologie—Explorations Fonctionnelles, AP-HP, Hôpital
Robert-Debré, Paris F-75019, France
| | - Sandrine Warenghem
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Matthieu Roignant
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Nicolas Kraupner
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Bao Vy Lam
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Nathalie Azaroual
- University
Lille, CHU Lille, ULR 7365—GRITA—Groupe de Recherche
Sur Les Formes Injectables Et Les Technologies Associées, Lille F-59000, France
| | - Vincent Ultré
- University
Lille, Plateau RMN Pharmacie, UFR3S-Pharmacie, Lille F-59000, France
| | - Alexandre Rech
- University
Lille, Plateau RMN Pharmacie, UFR3S-Pharmacie, Lille F-59000, France
| | - Laetitia Lesire
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Cyril Couturier
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Florence Leroux
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
- European
Genomic Institute for Diabetes, EGID, University
of Lille, Lille F-59000, France
| | - Peter van Endert
- Institut
Necker Enfants Malades, Université
Paris Cité, INSERM, CNRS, Paris F-75015, France
- Service
Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants
Malades, Paris F-75015, France
| | - Benoit Deprez
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
- European
Genomic Institute for Diabetes, EGID, University
of Lille, Lille F-59000, France
| | - Rebecca Deprez-Poulain
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
- European
Genomic Institute for Diabetes, EGID, University
of Lille, Lille F-59000, France
| |
Collapse
|
2
|
Wang J, Zhang Y, Jia Y, Xing H, Xu F, Xia B, Lai W, Yuan Y, Li X, Shan S, Chen J, Guo W, Zhang J, Zheng A, Li J, Gong N, Liang XJ. Targeting vaccines to dendritic cells by mimicking the processing and presentation of antigens in xenotransplant rejection. Nat Biomed Eng 2025; 9:201-214. [PMID: 39948171 DOI: 10.1038/s41551-025-01343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/07/2025] [Indexed: 02/21/2025]
Abstract
Targeting the delivery of vaccines to dendritic cells (DCs) is challenging. Here we show that, by mimicking the fast and strong antigen processing and presentation that occurs during the rejection of xenotransplanted tissue, xenogeneic cell membrane-derived vesicles exposing tissue-specific antibodies can be leveraged to deliver peptide antigens and mRNA-encoded antigens to DCs. In mice with murine melanoma and murine thymoma, xenogeneic vesicles encapsulating a tumour-derived antigenic peptide or coated on lipid nanoparticles encapsulating an mRNA coding for a tumour antigen elicited potent tumour-specific T-cell responses that inhibited tumour growth. Mice immunized with xenogeneic vesicle-coated lipid nanoparticles encapsulating an mRNA encoding for the spike protein of severe acute respiratory syndrome coronavirus 2 elicited titres of anti-spike receptor-binding domain immunoglobulin G and of neutralizing antibodies that were approximately 32-fold and 6-fold, respectively, those elicited by a commercialized mRNA-lipid nanoparticle vaccine. The advantages of mimicking the biological recognition between immunoglobulin G on xenogeneic vesicles and fragment crystallizable receptors on DCs may justify the assessment of the safety risks of using animal-derived biological products in humans.
Collapse
Affiliation(s)
- Jinjin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaru Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, China
| | - Haonan Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjia Lai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yuan Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Xianlei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Shaobo Shan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Junge Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Weisheng Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Ningqiang Gong
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, China.
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Girik V, van Ek L, Dentand Quadri I, Azam M, Cruz Cobo M, Mandavit M, Riezman I, Riezman H, Gavin AC, Nunes-Hasler P. Development of Genetically Encoded Fluorescent KSR1-Based Probes to Track Ceramides during Phagocytosis. Int J Mol Sci 2024; 25:2996. [PMID: 38474242 DOI: 10.3390/ijms25052996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Ceramides regulate phagocytosis; however, their exact function remains poorly understood. Here, we sought (1) to develop genetically encoded fluorescent tools for imaging ceramides, and (2) to use them to examine ceramide dynamics during phagocytosis. Fourteen enhanced green fluorescent protein (EGFP) fusion constructs based on four known ceramide-binding domains were generated and screened. While most constructs localized to the nucleus or cytosol, three based on the CA3 ceramide-binding domain of kinase suppressor of ras 1 (KSR1) localized to the plasma membrane or autolysosomes. C-terminally tagged CA3 with a vector-based (C-KSR) or glycine-serine linker (C-KSR-GS) responded sensitively and similarly to ceramide depletion and accumulation using a panel of ceramide modifying drugs, whereas N-terminally tagged CA3 (N-KSR) responded differently to a subset of treatments. Lipidomic and liposome microarray analysis suggested that, instead, N-KSR may preferentially bind glucosyl-ceramide. Additionally, the three probes showed distinct dynamics during phagocytosis. Despite partial autolysosomal degradation, C-KSR and C-KSR-GS accumulated at the plasma membrane during phagocytosis, whereas N-KSR did not. Moreover, the weak recruitment of C-KSR-GS to the endoplasmic reticulum and phagosomes was enhanced through overexpression of the endoplasmic reticulum proteins stromal interaction molecule 1 (STIM1) and Sec22b, and was more salient in dendritic cells. The data suggest these novel probes can be used to analyze sphingolipid dynamics and function in living cells.
Collapse
Affiliation(s)
- Vladimir Girik
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Larissa van Ek
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Isabelle Dentand Quadri
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Maral Azam
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - María Cruz Cobo
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Marion Mandavit
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Isabelle Riezman
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Anne-Claude Gavin
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Paula Nunes-Hasler
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
4
|
Zhang T, Aipire A, Li Y, Guo C, Li J. Antigen cross-presentation in dendric cells: From bench to bedside. Biomed Pharmacother 2023; 168:115758. [PMID: 37866002 DOI: 10.1016/j.biopha.2023.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Cross-presentation (XPT) is an adaptation of the cellular process in which dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules for recognition of the cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, resulting in immunity or tolerance. Recent advances in DCs have broadened our understanding of the underlying mechanisms of XPT and strengthened their application in tumor immunotherapy. In this review, we summarized the known mechanisms of XPT, including the receptor-mediated internalization of exogenous antigens, endosome escape, engagement of the other XPT-related proteins, and adjuvants, which significantly enhance the XPT capacity of DCs. Consequently, various strategies to enhance XPT can be adopted and optimized to improve outcomes of DC-based therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yijie Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Changying Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
5
|
Cruz FM, Chan A, Rock KL. Pathways of MHC I cross-presentation of exogenous antigens. Semin Immunol 2023; 66:101729. [PMID: 36804685 PMCID: PMC10023513 DOI: 10.1016/j.smim.2023.101729] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Phagocytes, particularly dendritic cells (DCs), generate peptide-major histocompatibility complex (MHC) I complexes from antigens they have collected from cells in tissues and report this information to CD8 T cells in a process called cross-presentation. This process allows CD8 T cells to detect, respond and eliminate abnormal cells, such as cancers or cells infected with viruses or intracellular microbes. In some settings, cross-presentation can help tolerize CD8 T cells to self-antigens. One of the principal ways that DCs acquire tissue antigens is by ingesting this material through phagocytosis. The resulting phagosomes are key hubs in the cross-presentation (XPT) process and in fact experimentally conferring the ability to phagocytize antigens can be sufficient to allow non-professional antigen presenting cells (APCs) to cross-present. Once in phagosomes, exogenous antigens can be cross-presented (XPTed) through three distinct pathways. There is a vacuolar pathway in which peptides are generated and then bind to MHC I molecules within the confines of the vacuole. Ingested exogenous antigens can also be exported from phagosomes to the cytosol upon vesicular rupture and/or possibly transport. Once in the cytosol, the antigen is degraded by the proteasome and the resulting oligopeptides can be transported to MHC I molecule in the endoplasmic reticulum (ER) (a phagosome-to-cytosol (P2C) pathway) or in phagosomes (a phagosome-to-cytosol-to-phagosome (P2C2P) pathway). Here we review how phagosomes acquire the necessary molecular components that support these three mechanisms and the contribution of these pathways. We describe what is known as well as the gaps in our understanding of these processes.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amanda Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Henry CM, Castellanos CA, Reis E Sousa C. DNGR-1-mediated cross-presentation of dead cell-associated antigens. Semin Immunol 2023; 66:101726. [PMID: 36758378 DOI: 10.1016/j.smim.2023.101726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Conventional dendritic cells type 1 (cDC1) are critical for inducing protective CD8+ T cell responses to tumour and viral antigens. In many instances, cDC1 access those antigens in the form of material internalised from dying tumour or virally-infected cells. How cDC1 extract dead cell-associated antigens and cross-present them in the form of peptides bound to MHC class I molecules to CD8+ T cells remains unclear. Here we review the biology of dendritic cell natural killer group receptor-1 (DNGR-1; also known as CLEC9A), a C-type lectin receptor highly expressed on cDC1 that plays a key role in this process. We highlight recent advances that support a function for DNGR-1 signalling in promoting inducible rupture of phagocytic or endocytic compartments containing dead cell debris, thereby making dead cell-associated antigens accessible to the endogenous MHC class I processing and presentation machinery of cDC1. We further review how DNGR-1 detects dead cells, as well as the functions of the receptor in anti-viral and anti-tumour immunity. Finally, we highlight how the study of DNGR-1 has opened new perspectives into cross-presentation, some of which may have applications in immunotherapy of cancer and vaccination against viral diseases.
Collapse
Affiliation(s)
- Conor M Henry
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carlos A Castellanos
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
7
|
Vourloumis D, Mavridis I, Athanasoulis A, Temponeras I, Koumantou D, Giastas P, Mpakali A, Magrioti V, Leib J, van Endert P, Stratikos E, Papakyriakou A. Discovery of Selective Nanomolar Inhibitors for Insulin-Regulated Aminopeptidase Based on α-Hydroxy-β-amino Acid Derivatives of Bestatin. J Med Chem 2022; 65:10098-10117. [PMID: 35833347 DOI: 10.1021/acs.jmedchem.2c00904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxytocinase subfamily of M1 zinc aminopeptidases comprises emerging drug targets, including the ER-resident aminopeptidases 1 and 2 (ERAP1 and ERAP2) and insulin-regulated aminopeptidase (IRAP); however, reports on clinically relevant inhibitors are limited. Here we report a new synthetic approach of high diastereo- and regioselectivity for functionalization of the α-hydroxy-β-amino acid scaffold of bestatin. Stereochemistry and mechanism of inhibition were investigated by a high-resolution X-ray crystal structure of ERAP1 in complex with a micromolar inhibitor. By exploring the P1 side-chain functionalities, we achieve significant potency and selectivity, and we report a cell-active, low-nanomolar inhibitor of IRAP with >120-fold selectivity over homologous enzymes. X-ray crystallographic analysis of IRAP in complex with this inhibitor suggest that interactions with the GAMEN loop is an unappreciated key determinant for potency and selectivity. Overall, our results suggest that α-hydroxy-β-amino acid derivatives may constitute useful chemical tools and drug leads for this group of aminopeptidases.
Collapse
Affiliation(s)
- Dionisios Vourloumis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Mavridis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Alexandros Athanasoulis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Temponeras
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Pharmacy, University of Patras, 26504 Patra, Greece
| | - Despoina Koumantou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Petros Giastas
- Department of Biotechnology, Agricultural University of Athens, GR-11855 Athens, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Victoria Magrioti
- Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Jacqueline Leib
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France.,Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| | - Efstratios Stratikos
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| |
Collapse
|
8
|
Abstract
Fc-mediated effector functions are important for the clearance of pathologic cells by therapeutic IgG antibodies through two mechanisms: via the activation of the classical complement pathway and through the binding to Fcγ receptors (FcγRs) which mediate clearance of targeted cells by antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) by effector cells such as macrophages, NK cells, and other leukocytes subsets. Complement activation results in direct cell killing through the formation of the membrane attack complex (MAC, complement-dependent cytotoxicity or CDC) and in the deposition of complement opsonins on pathogen surfaces. The latter are recognized by complement receptors on effector cells in turn triggering complement-dependent cell cytotoxicity and phagocytosis (CDCC and CDCP, respectively). Little is known about the role of CDCC and CDCP on therapeutic antibody function because on the one hand, IgG isotype antibodies bind to both FcγR and C1q to activate the complement pathway, and on the other, immune cells express complement receptor as well as FcγRs. We engineered IgG1 Fc domains that bind with high affinity to C1q but have very little or no binding to FcγR. To this end, we employed display of IgG in E. coli (which lack protein glycosylation machinery) for the screening of very large libraries (>2 × 109) of randomly mutated human Fc domains to isolate Fc variants that bind to C1q. Herein we introduce and describe the method.
Collapse
Affiliation(s)
- Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.
| | - George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
9
|
Hubbard JJ, Pyzik M, Rath T, Kozicky LK, Sand KM, Gandhi AK, Grevys A, Foss S, Menzies SC, Glickman JN, Fiebiger E, Roopenian DC, Sandlie I, Andersen JT, Sly LM, Baker K, Blumberg RS. FcRn is a CD32a coreceptor that determines susceptibility to IgG immune complex-driven autoimmunity. J Exp Med 2020; 217:e20200359. [PMID: 32658257 PMCID: PMC7537387 DOI: 10.1084/jem.20200359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
IgG immune complexes (ICs) promote autoimmunity through binding fragment crystallizable (Fc) γ-receptors (FcγRs). Of these, the highly prevalent FcγRIIa (CD32a) histidine (H)-131 variant (CD32aH) is strongly linked to human autoimmune diseases through unclear mechanisms. We show that, relative to the CD32a arginine (R)-131 (CD32aR) variant, CD32aH more avidly bound human (h) IgG1 IC and formed a ternary complex with the neonatal Fc receptor (FcRn) under acidic conditions. In primary human and mouse cells, both CD32a variants required FcRn to induce innate and adaptive immune responses to hIgG1 ICs, which were augmented in the setting of CD32aH. Conversely, FcRn induced responses to IgG IC independently of classical FcγR, but optimal responses required FcRn and FcγR. Finally, FcRn blockade decreased inflammation in a rheumatoid arthritis model without reducing circulating autoantibody levels, providing support for FcRn's direct role in IgG IC-associated inflammation. Thus, CD32a and FcRn coregulate IgG IC-mediated immunity in a manner favoring the CD32aH variant, providing a novel mechanism for its disease association.
Collapse
Affiliation(s)
- Jonathan J. Hubbard
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Michal Pyzik
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Timo Rath
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lisa K. Kozicky
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kine M.K. Sand
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Amit K. Gandhi
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Algirdas Grevys
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stian Foss
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Susan C. Menzies
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan N. Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Edda Fiebiger
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | | | - Inger Sandlie
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Laura M. Sly
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristi Baker
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Harvard Digestive Diseases Center, Boston, MA
| |
Collapse
|
10
|
Deviant proteome profile of equine granulocytes associates to latent activation status in organ specific autoimmune disease. J Proteomics 2020; 230:103989. [PMID: 32977044 DOI: 10.1016/j.jprot.2020.103989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Equine recurrent uveitis (ERU) is a spontaneous, remitting-relapsing autoimmune disease driven by the adaptive immune system. Although T cells are described as the main effector cells in pathogenesis, granulocytes have also emerged as possible disease mediators. To explore the role of these innate immune cells, we investigated the whole cell proteome of granulocytes from equine recurrent uveitis cases and healthy controls. Among the 2362 proteins identified by mass spectrometry, we found 96 proteins with significantly changed abundance between groups (p < 0.05, fold change >1.2), representing 4.1% of total granulocyte proteome. Within these differential identifications, calgranulin B, a protein associated with pathogenesis in other autoimmune diseases, showed highest abundance in equine recurrent uveitis (18 fold). For a better interpretation of the results from our hypothesis-generating approach, we added a threshold for biological significance (ratio ERU/controls >2: 36 proteins) to the proteins with increased abundance in equine recurrent uveitis and analyzed their allocation to the subsets within the Immune System superpathway. The 36 differentially abundant proteins predominantly associated to RAF/MAP kinase cascade, MHC-I-mediated antigen presentation and neutrophil degranulation, suggesting a latently activated phenotype of these innate immune cells in disease. Raw data are available via ProteomeXchange with identifier PXD013648. SIGNIFICANCE: Our study provides new insights into the protein repertoire of primary equine granulocytes and identifies protein abundance changes associated to equine recurrent uveitis (ERU), an organ specific, spontaneously occurring autoimmune disease. We show that granulocyte proteins with increased abundance in ERU strongly associate to RAF/MAP kinase signaling, MHC-I antigen presentation and neutrophil degranulation, pointing to a more activated state of these cells in ERU cases. Since cells were obtained in quiescent stage of disease, latent activation of granulocytes underlines the role of these innate immune cells in ERU. These findings are highly relevant for veterinary medicine, further establishing the importance of granulocytes in this T cell-driven autoimmune disease. Moreover, they have translational quality for autoimmune uveitis in man, due to strong similarity in disease occurrence, progression and pathogenesis.
Collapse
|
11
|
Colbert JD, Cruz FM, Rock KL. Cross-presentation of exogenous antigens on MHC I molecules. Curr Opin Immunol 2020; 64:1-8. [PMID: 31927332 DOI: 10.1016/j.coi.2019.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
In order to get recognized by CD8 T cells, most cells present peptides from endogenously expressed self or foreign proteins on MHC class I molecules. However, specialized antigen-presenting cells, such as DCs and macrophages, can present exogenous antigen on MHC-I in a process called cross-presentation. This pathway plays key roles in antimicrobial and antitumor immunity, and also immune tolerance. Recent advances have broadened our understanding of the underlying mechanisms of cross-presentation. Here, we review some of these recent advances, including the distinct pathways that result in the cross-priming of CD8 T cells and the source of the class I molecules presenting exogenous peptides.
Collapse
Affiliation(s)
- Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, United States.
| |
Collapse
|
12
|
Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med 2019; 51:1-9. [PMID: 31735912 PMCID: PMC6859160 DOI: 10.1038/s12276-019-0345-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most widely used drug platforms for infectious diseases or cancer therapeutics because they selectively target pathogens, infectious cells, cancerous cells, and even immune cells. In this way, they mediate the elimination of target molecules and cells with fewer side effects than other therapeutic modalities. In particular, cancer therapeutic mAbs can recognize cell-surface proteins on target cells and then kill the targeted cells by multiple mechanisms that are dependent upon a fragment crystallizable (Fc) domain interacting with effector Fc gamma receptors, including antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated phagocytosis. Extensive engineering efforts have been made toward tuning Fc functions by either reinforcing (e.g. for targeted therapy) or disabling (e.g. for immune checkpoint blockade therapy) effector functions and prolonging the serum half-lives of antibodies, as necessary. In this report, we review Fc engineering efforts to improve therapeutic potency, and propose future antibody engineering directions that can fulfill unmet medical needs. Fine-tuning the function of monoclonal antibodies (mAbs) holds promise for developing new therapeutic agents. Antibodies bind to pathogens or cancer cells, flagging them with Fc (fragment crystallizable) domain for destruction by the immune system. mAbs attached only to specific target cells enable lower side effect than other conventional drugs. Sang Taek Jung at Korea University and Tae Hyun Kang at Kookmin University, both in Seoul, reviewed recent developments in engineering therapeutic potency of mAbs. They report that mAbs can be engineered to activate effective immune cell types to treat a particular disease. Engineering can also increase mAbs’ persistence in the blood, enabling less frequent administration. Antibodies engineered to bind to two different antigens at once can also improve therapeutic efficacy. Applying these techniques could help developing new treatments against cancer, and infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Tae Hyun Kang
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
13
|
Sengupta D, Graham M, Liu X, Cresswell P. Proteasomal degradation within endocytic organelles mediates antigen cross-presentation. EMBO J 2019; 38:e99266. [PMID: 31271236 DOI: 10.15252/embj.201899266] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 11/09/2022] Open
Abstract
During MHC-I-restricted antigen processing, peptides generated by cytosolic proteasomes are translocated by the transporter associated with antigen processing (TAP) into the endoplasmic reticulum, where they bind to newly synthesized MHC-I molecules. Dendritic cells and other cell types can also generate MHC-I complexes with peptides derived from internalized proteins, a process called cross-presentation. Here, we show that active proteasomes within cross-presenting cell phagosomes can generate these peptides. Active proteasomes are detectable within endocytic compartments in mouse bone marrow-derived dendritic cells. In TAP-deficient mouse dendritic cells, cross-presentation is enhanced by the introduction of human β2 -microglobulin, which increases surface expression of MHC-I and suggests a role for recycling MHC-I molecules. In addition, surface MHC-I can be reduced by proteasome inhibition and stabilized by MHC-I-restricted peptides. This is consistent with constitutive proteasome-dependent but TAP-independent peptide loading in the endocytic pathway. Rab-GTPase mutants that restrain phagosome maturation increase proteasome recruitment and enhance TAP-independent cross-presentation. Thus, phagosomal/endosomal binding of peptides locally generated by proteasomes allows cross-presentation to generate MHC-I-peptide complexes identical to those produced by conventional antigen processing.
Collapse
Affiliation(s)
- Debrup Sengupta
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
A personal retrospective on the mechanisms of antigen processing. Immunogenetics 2019; 71:141-160. [PMID: 30694344 DOI: 10.1007/s00251-018-01098-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
My intention here is to describe the history of the molecular aspects of the antigen processing field from a personal perspective, beginning with the early identification of the species that we now know as MHC class I and MHC class II molecules, to the recognition that their stable surface expression and detection by T cells depends on peptide association, and to the unraveling of the biochemical and cell biological mechanisms that regulate peptide binding. One goal is to highlight the role that serendipity or, more colloquially, pure blind luck can play in advancing the research enterprise when it is combined with an appropriately receptive mind. This is not intended to be an overarching review, and because of my own work I focus primarily on studies of the human MHC. This means that I neglect the work of many other individuals who made advances in other species, particularly those who produced the many knockout mouse strains used to demonstrate the importance of the antigen processing machinery for initiating immune responses. I apologize in advance to colleagues around the globe whose contributions I deal with inadequately for these reasons, and to those whose foundational work is now firmly established in text books and therefore not cited. So many individuals have worked to advance the field that giving all of them the credit they deserve is almost impossible. I have attempted, while focusing on work from my own laboratory, to point out contemporaneous or sometimes earlier advances made by others. Much of the success of my own laboratory came because we simultaneously worked on both the MHC class I and class II systems and used the findings in one area to inform the other, but mainly it depended on the extraordinary group of students and fellows who have worked on these projects over the years. To those who worked in other areas who are not mentioned here, rest assured that I appreciate your efforts just as much.
Collapse
|
15
|
Weimershaus M, Mauvais FX, Saveanu L, Adiko C, Babdor J, Abramova A, Montealegre S, Lawand M, Evnouchidou I, Huber KJ, Chadt A, Zwick M, Vargas P, Dussiot M, Lennon-Dumenil AM, Brocker T, Al-Hasani H, van Endert P. Innate Immune Signals Induce Anterograde Endosome Transport Promoting MHC Class I Cross-Presentation. Cell Rep 2018; 24:3568-3581. [DOI: 10.1016/j.celrep.2018.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 06/14/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
|
16
|
Lu Q, Grotzke JE, Cresswell P. A novel probe to assess cytosolic entry of exogenous proteins. Nat Commun 2018; 9:3104. [PMID: 30082832 PMCID: PMC6079096 DOI: 10.1038/s41467-018-05556-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/06/2018] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells use a specialized pathway called cross-presentation to activate CD8+ T cells by presenting peptides from exogenous protein antigens on major histocompatibility complex class I molecules. Considerable evidence suggests that internalized antigens cross endocytic membranes to access cytosolic proteasomes for processing. The mechanism of protein dislocation represents a major unsolved problem. Here we describe the development of a sensitive reporter substrate, an N-glycosylated variant of Renilla luciferase fused to the Fc region of human IgG1. The luciferase variant is designed to be enzymatically inactive when glycosylated, but active after the asparagine to aspartic acid conversion that occurs upon deglycosylation by the cytosolic enzyme N-glycanase-1. The generation of cytosolic luminescence depends on internalization, deglycosylation, the cytosolic AAA-ATPase VCP/p97, and the cytosolic chaperone HSP90. By incorporating a T cell epitope into the fusion protein, we demonstrate that antigen dislocation into the cytosol is the rate limiting step in cross-presentation.
Collapse
Affiliation(s)
- Qiao Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jeff E Grotzke
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
17
|
Maschalidi S, Nunes-Hasler P, Nascimento CR, Sallent I, Lannoy V, Garfa-Traore M, Cagnard N, Sepulveda FE, Vargas P, Lennon-Duménil AM, van Endert P, Capiod T, Demaurex N, Darrasse-Jèze G, Manoury B. UNC93B1 interacts with the calcium sensor STIM1 for efficient antigen cross-presentation in dendritic cells. Nat Commun 2017; 8:1640. [PMID: 29158474 PMCID: PMC5696382 DOI: 10.1038/s41467-017-01601-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Dendritic cells (DC) have the unique ability to present exogenous antigens via the major histocompatibility complex class I pathway to stimulate naive CD8+ T cells. In DCs with a non-functional mutation in Unc93b1 (3d mutation), endosomal acidification, phagosomal maturation, antigen degradation, antigen export to the cytosol and the function of the store-operated-Ca2+-entry regulator STIM1 are impaired. These defects result in compromised antigen cross-presentation and anti-tumor responses in 3d-mutated mice. Here, we show that UNC93B1 interacts with the calcium sensor STIM1 in the endoplasmic reticulum, a critical step for STIM1 oligomerization and activation. Expression of a constitutively active STIM1 mutant, which no longer binds UNC93B1, restores antigen degradation and cross-presentation in 3d-mutated DCs. Furthermore, ablation of STIM1 in mouse and human cells leads to a decrease in cross-presentation. Our data indicate that the UNC93B1 and STIM1 cooperation is important for calcium flux and antigen cross-presentation in DCs. STIM proteins sense Ca2+ depletion in the ER and activate store-operated Ca2+ entry in response, a process associated with dendritic cell (DC) functions. Here, the authors show that optimal antigen cross-presentation in DCs requires the association of the chaperone molecule UNC93B1 with STIM1.
Collapse
Affiliation(s)
- Sophia Maschalidi
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Imagine Institute, 75015, Paris, France.,Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France
| | - Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211, Geneva, Switzerland
| | - Clarissa R Nascimento
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Ignacio Sallent
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Valérie Lannoy
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Meriem Garfa-Traore
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Cell Imaging and Bioinformatic Platform, INSERM US24 Structure Federative de Recherche Necker, 75015, Paris, France
| | - Nicolas Cagnard
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Cell Imaging and Bioinformatic Platform, INSERM US24 Structure Federative de Recherche Necker, 75015, Paris, France
| | - Fernando E Sepulveda
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Imagine Institute, 75015, Paris, France.,Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France
| | - Pablo Vargas
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France.,Institut Pierre-Gilles de Genes, PSL Research University, 75005, Paris, France
| | - Ana-Maria Lennon-Duménil
- Institut National de la Santé et de la Recherché Médicale, Unité 932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Peter van Endert
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Thierry Capiod
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211, Geneva, Switzerland
| | - Guillaume Darrasse-Jèze
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Bénédicte Manoury
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France. .,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France. .,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France.
| |
Collapse
|
18
|
Zufferey A, Speck ER, Machlus KR, Aslam R, Guo L, McVey MJ, Kim M, Kapur R, Boilard E, Italiano JE, Semple JW. Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets. Blood Adv 2017; 1:1773-1785. [PMID: 29296823 PMCID: PMC5728336 DOI: 10.1182/bloodadvances.2017007021] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Megakaryocytes (MKs) are bone marrow-derived cells that are primarily responsible for generating platelets for the maintenance of hemostasis. Although MK can variably express major histocompatibility complex (MHC) class I and II molecules during their differentiation, little is known whether they can elicit nonhemostatic immune functions such as T-cell activation. Here, we demonstrate that mature CD34- MHC class II- CD41+ MKs can endocytose exogenous ovalbumin (OVA) and proteolytically generate its immunogenic peptide ligand, which is crosspresented on their surface in association with MHC class I molecules. This crosspresentation triggered in vitro and in vivo OVA-specific CD8+ T-cell activation and proliferation. In addition, the OVA-MHC class I complexes were transferred from MK to pro-platelets upon thrombopoiesis in vitro. MK could also present endogenous MK-associated (CD61) peptides to activate CD61-specific CD8+ T cells and mediate immune thrombocytopenia in vivo. These results suggest that, in addition to their hemostatic role, mature MKs can significantly affect antigen-specific CD8+ T-cell responses via antigen presentation and are able to spread this immunogenic information through platelets.
Collapse
Affiliation(s)
- Anne Zufferey
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Edwin R Speck
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Kellie R Machlus
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Rukhsana Aslam
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Li Guo
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Mark J McVey
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Departments of Anesthesia and Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael Kim
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Joseph E Italiano
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Boston, MA
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
- Departments of Pharmacology, Medicine, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; and
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Abstract
Cross-presentation of internalized antigens by dendritic cells requires efficient delivery of Major Histocompatibility Complex (MHC) class I molecules to peptide-loading compartments. Strong evidence suggests that such loading can occur outside of the endoplasmic reticulum; however, the trafficking pathways and sources of class I molecules involved are poorly understood. Examination of non-professional, non-phagocytic cells has revealed a clathrin-independent, Arf6-dependent recycling pathway likely traveled by internalized optimally loaded (closed) class I molecules. Some closed and all open MHC class I molecules travel to late endosomes to be degraded but might also partly be re-loaded with peptides and recycled. Studies of viral interference revealed pathways in which class I molecules are directed to degradation in lysosomes upon ubiquitination at the surface, or upon AP-1 and HIV-nef-dependent misrouting from the Golgi network to lysosomes. While many observations made in non-professional cells remain to be re-examined in dendritic cells, available evidence suggests that both recycling and neo-synthesized class I molecules can be loaded with cross-presented peptides. Recycling molecules can be recruited to phagosomes triggered by innate signals such as TLR4 ligands, and may therefore specialize in loading with phagocytosed antigens. In contrast, AP-1-dependent accumulation at, or trafficking through, a Golgi compartment of newly synthesized molecules appears to be important for cross-presentation of soluble proteins and possibly of long peptides that are processed in the so-called vacuolar pathway. However, significant cell biological work will be required to confirm this or any other model and to integrate knowledge on MHC class I biochemistry and trafficking in models of CD8(+) T-cell priming by dendritic cells.
Collapse
Affiliation(s)
- Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Centre National de la Recherche Scientifique, Unité 8253, Paris, France
| |
Collapse
|
20
|
Grotzke JE, Sengupta D, Lu Q, Cresswell P. The ongoing saga of the mechanism(s) of MHC class I-restricted cross-presentation. Curr Opin Immunol 2017; 46:89-96. [PMID: 28528219 PMCID: PMC5554740 DOI: 10.1016/j.coi.2017.03.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/23/2017] [Indexed: 11/21/2022]
Abstract
Cross-presentation is an MHC-I antigen processing pathway that results in the presentation of peptides from exogenous viral, bacterial, parasitic, and tumor antigens and ultimately leads to priming of naïve CD8+ T cells. This process involves several cellular compartments and multiple components. Successful generation of MHC-I-peptide complexes requires that these components act together in a coordinated fashion. We discuss recent findings on the source of MHC-I, the role of the TAP transporter, the importance of intracellular trafficking events, mechanisms of antigen access the cytosol, and how innate immune signals can affect presentation, with an emphasis on how these pathways compare to conventional antigen presentation and how they correlate with existing data.
Collapse
Affiliation(s)
- Jeff E Grotzke
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States
| | - Debrup Sengupta
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States
| | - Qiao Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8011, United States.
| |
Collapse
|
21
|
Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The Biology and Underlying Mechanisms of Cross-Presentation of Exogenous Antigens on MHC-I Molecules. Annu Rev Immunol 2017; 35:149-176. [PMID: 28125356 PMCID: PMC5508990 DOI: 10.1146/annurev-immunol-041015-055254] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To monitor the health of cells, the immune system tasks antigen-presenting cells with gathering antigens from other cells and bringing them to CD8 T cells in the form of peptides bound to MHC-I molecules. Most cells would be unable to perform this function because they use their MHC-I molecules to exclusively present peptides derived from the cell's own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC-I through a process called cross-presentation. How this important task is accomplished, its role in health and disease, and its potential for exploitation are the subject of this review.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Elena Merino
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Barry A Kriegsman
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| |
Collapse
|
22
|
Nunes-Hasler P, Demaurex N. The ER phagosome connection in the era of membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1513-1524. [PMID: 28432021 DOI: 10.1016/j.bbamcr.2017.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Abstract
Phagocytosis is an essential mechanism through which innate immune cells ingest foreign material that is either destroyed or used to generate and present antigens and initiate adaptive immune responses. While a role for the ER during phagosome biogenesis has been recognized, whether fusion with ER cisternae or vesicular derivatives occurs has been the source of much contention. Membrane contact sites (MCS) are tight appositions between ER membranes and various organelles that coordinate multiple functions including localized signalling, lipid transfer and trafficking. The discovery that MCS form between the ER and phagosomes now begs the question of whether MCS play a role in connecting the ER to phagosomes under different contexts. In this review, we consider the implications of MCS between the ER and phagosomes during cross-presentation and infection with intracellular pathogens. We also discuss the similarities between these contacts and those between the ER and plasma membrane and acidic organelles such as endosomes and lysosomes. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland.
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| |
Collapse
|
23
|
Gasteiger G, Ataide M, Kastenmüller W. Lymph node - an organ for T-cell activation and pathogen defense. Immunol Rev 2016; 271:200-20. [PMID: 27088916 DOI: 10.1111/imr.12399] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The immune system is a multicentered organ that is characterized by intimate interactions between its cellular components to efficiently ward off invading pathogens. A key constituent of this organ system is the distinct migratory activity of its cellular elements. The lymph node represents a pivotal meeting point of immune cells where adaptive immunity is induced and regulated. Additionally, besides barrier tissues, the lymph node is a critical organ where invading pathogens need to be eliminated in order to prevent systemic distribution of virulent microbes. Here, we explain how the lymph node is structurally and functionally organized to fulfill these two critical functions - pathogen defense and orchestration of adaptive immunity. We will discuss spatio-temporal aspects of cellular immune responses focusing on CD8 T cells and review how and where these cells are activated in the context of viral infections, as well as how viral antigen expression kinetics and different antigen presentation pathways are involved. Finally, we will describe how such responses are regulated and 'helped', and discuss how this relates to intranodal positioning and cellular migration of the various cellular components that are involved in these processes.
Collapse
Affiliation(s)
- Georg Gasteiger
- Institute of Medical Microbiology and Hygiene & FZI Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Marco Ataide
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
24
|
Kourjian G, Rucevic M, Berberich MJ, Dinter J, Wambua D, Boucau J, Le Gall S. HIV Protease Inhibitor-Induced Cathepsin Modulation Alters Antigen Processing and Cross-Presentation. THE JOURNAL OF IMMUNOLOGY 2016; 196:3595-607. [PMID: 27009491 DOI: 10.4049/jimmunol.1600055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
Immune recognition by T cells relies on the presentation of pathogen-derived peptides by infected cells, but the persistence of chronic infections calls for new approaches to modulate immune recognition. Ag cross-presentation, the process by which pathogen Ags are internalized, degraded, and presented by MHC class I, is crucial to prime CD8 T cell responses. The original degradation of Ags is performed by pH-dependent endolysosomal cathepsins. In this article, we show that HIV protease inhibitors (PIs) prescribed to HIV-infected persons variably modulate cathepsin activities in human APCs, dendritic cells and macrophages, and CD4 T cells, three cell subsets infected by HIV. Two HIV PIs acted in two complementary ways on cathepsin hydrolytic activities: directly on cathepsins and indirectly on their regulators by inhibiting Akt kinase activities, reducing NADPH oxidase 2 activation, and lowering phagolysosomal reactive oxygen species production and pH, which led to enhanced cathepsin activities. HIV PIs modified endolysosomal degradation and epitope production of proteins from HIV and other pathogens in a sequence-dependent manner. They altered cross-presentation of Ags by dendritic cells to epitope-specific T cells and T cell-mediated killing. HIV PI-induced modulation of Ag processing partly changed the MHC self-peptidome displayed by primary human cells. This first identification, to our knowledge, of prescription drugs modifying the regulation of cathepsin activities and the MHC-peptidome may provide an alternate therapeutic approach to modulate immune recognition in immune disease beyond HIV.
Collapse
Affiliation(s)
| | | | | | - Jens Dinter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Daniel Wambua
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
25
|
Zachova K, Krupka M, Raska M. Antigen Cross-Presentation and Heat Shock Protein-Based Vaccines. Arch Immunol Ther Exp (Warsz) 2015; 64:1-18. [DOI: 10.1007/s00005-015-0370-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/31/2015] [Indexed: 12/15/2022]
|
26
|
Gutiérrez-Martínez E, Planès R, Anselmi G, Reynolds M, Menezes S, Adiko AC, Saveanu L, Guermonprez P. Cross-Presentation of Cell-Associated Antigens by MHC Class I in Dendritic Cell Subsets. Front Immunol 2015; 6:363. [PMID: 26236315 PMCID: PMC4505393 DOI: 10.3389/fimmu.2015.00363] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/05/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) have the unique ability to pick up dead cells carrying antigens in tissue and migrate to the lymph nodes where they can cross-present cell-associated antigens by MHC class I to CD8+ T cells. There is strong in vivo evidence that the mouse XCR1+ DCs subset acts as a key player in this process. The intracellular processes underlying cross-presentation remain controversial and several pathways have been proposed. Indeed, a wide number of studies have addressed the cellular process of cross-presentation in vitro using a variety of sources of antigen and antigen-presenting cells. Here, we review the in vivo and in vitro evidence supporting the current mechanistic models and disscuss their physiological relevance to the cross-presentation of cell-associated antigens by DCs subsets.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Remi Planès
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Giorgio Anselmi
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Matthew Reynolds
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Shinelle Menezes
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Aimé Cézaire Adiko
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Loredana Saveanu
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Pierre Guermonprez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| |
Collapse
|
27
|
Abstract
Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response.
Collapse
Affiliation(s)
- Lillian Cohn
- Laboratory of Molecular Immunology, Rockefeller University , New York, NY , USA
| | | |
Collapse
|
28
|
Ménager J, Ebstein F, Oger R, Hulin P, Nedellec S, Duverger E, Lehmann A, Kloetzel PM, Jotereau F, Guilloux Y. Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but Not sec61 and/or Derlin-1. PLoS One 2014; 9:e89897. [PMID: 24587108 PMCID: PMC3937416 DOI: 10.1371/journal.pone.0089897] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/25/2014] [Indexed: 12/22/2022] Open
Abstract
Antitumor vaccination using synthetic long peptides (SLP) is an additional therapeutic strategy currently under development. It aims to activate tumor-specific CD8+ CTL by professional APCs such as DCs. DCs can activate T lymphocytes by MHC class I presentation of exogenous antigens - a process referred to as “cross-presentation”. Until recently, the intracellular mechanisms involved in cross-presentation of soluble antigens have been unclear. Here, we characterize the cross-presentation pathway of SLP Melan-A16–40 containing the HLA-A2-restricted epitope26–35 (A27L) in human DCs. Using confocal microscopy and specific inhibitors, we show that SLP16–40 is rapidly taken up by DC and follows a classical TAP- and proteasome-dependent cross-presentation pathway. Our data support a role for the ER-associated degradation machinery (ERAD)-related protein p97/VCP in the transport of SLP16–40 from early endosomes to the cytoplasm but formally exclude both sec61 and Derlin-1 as possible retro-translocation channels for cross-presentation. In addition, we show that generation of the Melan-A26–35 peptide from the SLP16–40 was absolutely not influenced by the proteasome subunit composition in DC. Altogether, our findings propose a model for cross-presentation of SLP which tends to enlarge the repertoire of potential candidates for retro-translocation of exogenous antigens to the cytosol.
Collapse
Affiliation(s)
- Jérémie Ménager
- INSERM U892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
| | - Frédéric Ebstein
- Institut of Biochemistry, Charité University Hospital, Humboldt University, Berlin, Germany
| | - Romain Oger
- INSERM U892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
| | - Philippe Hulin
- INSERM U892, Nantes, France
- CNRS, UMR 6299, Nantes, France
| | | | - Eric Duverger
- Glycobiochimie, ICOA, Université d’Orléans, Orléans, France
| | - Andrea Lehmann
- Institut of Biochemistry, Charité University Hospital, Humboldt University, Berlin, Germany
| | - Peter-Michael Kloetzel
- Institut of Biochemistry, Charité University Hospital, Humboldt University, Berlin, Germany
| | - Francine Jotereau
- INSERM U892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
| | - Yannick Guilloux
- INSERM U892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR 6299, Nantes, France
- * E-mail:
| |
Collapse
|
29
|
Cheng Y, Liu Y, Wu B, Zhang JZ, Gu J, Liao YL, Wang FK, Mao XH, Yu XJ. Proteomic analysis of the Ehrlichia chaffeensis phagosome in cultured DH82 cells. PLoS One 2014; 9:e88461. [PMID: 24558391 PMCID: PMC3928192 DOI: 10.1371/journal.pone.0088461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/07/2014] [Indexed: 02/02/2023] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that resides and multiplies within cytoplasmic vacuoles of phagocytes. The Ehrlichia-containing vacuole (ECV) does not fuse with lysosomes, an essential condition for Ehrlichia to survive inside phagocytes, but the mechanism of inhibiting the fusion of the phagosome with lysosomes is not clear. Understanding the ECV molecular composition may decipher the mechanism by which Ehrlichia inhibits phagosome-lysosome fusion. In this study, we obtained highly purified ECVs from E. chaffeensis-infected DH82 cells by sucrose density gradient centrifugation and analyzed their composition by mass spectrometry-based proteomics. The ECV composition was compared with that of phagolysosomes containing latex beads. Lysosomal proteins such as cathepsin D, cathepsin S, and lysosomal acid phosphatase were not detected in E. chaffeensis phagosome preparations. Some small GTPases, involved in membrane dynamics and phagocytic trafficking, were detected in ECVs. A notable finding was that Rab7, a late endosomal marker, was consistently detected in E. chaffeensis phagosomes by mass spectrometry. Confocal microscopy confirmed that E. chaffeensis phagosomes contained Rab7 and were acidified at approximately pH 5.2, suggesting that the E. chaffeensis vacuole was an acidified late endosomal compartment. Our results also demonstrated by mass spectrometry and immunofluorescence analysis that Ehrlichia morulae were not associated with the autophagic pathway. Ehrlichia chaffeensis did not inhibit phagosomes containing latex beads from fusing with lysosomes in infected cells. We concluded that the E. chaffeensis vacuole was a late endosome and E. chaffeensis might inhibit phagosome-lysosome fusion by modifying its vacuolar membrane composition, rather than by regulating the expression of host genes involved in trafficking.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, China
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Bethune International Peace Hospital, Shijiazhuang, China
| | - Yan Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Anhui Province Center for Disease Control and Prevention, Hefei, China
| | - Bin Wu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Jian-zhi Zhang
- School of Health Professions, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiang Gu
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, China
| | - Ya-ling Liao
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, China
| | - Fu-kun Wang
- Bethune International Peace Hospital, Shijiazhuang, China
| | - Xu-hu Mao
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, China
- * E-mail: (XJY); (XM)
| | - Xue-jie Yu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- School of Public Health, Shandong University, Jinan, China
- * E-mail: (XJY); (XM)
| |
Collapse
|
30
|
Lobato-Pascual A, Saether PC, Fossum S, Dissen E, Daws MR. Mincle, the receptor for mycobacterial cord factor, forms a functional receptor complex with MCL and FcεRI-γ. Eur J Immunol 2013; 43:3167-74. [PMID: 23921530 DOI: 10.1002/eji.201343752] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/08/2013] [Accepted: 08/01/2013] [Indexed: 11/07/2022]
Abstract
Upon receptor activation, the myeloid C-type lectin receptor Mincle signals via the Syk-CARD9-Bcl10-MALT1 pathway. It does so by recruiting the ITAM-bearing FcεRI-γ. The related receptor macrophage C-type Lectin (MCL) has also been shown to be associated with Syk and to be dependent upon this signaling axis. We have previously shown that MCL co-precipitates with FcεRI-γ, but were unable to show a direct association, suggesting that MCL associates with FcεRI-γ via another molecule. Here, we have used rat primary cells and cell lines to investigate this missing link. A combination of flow cytometric and biochemical analysis showed that Mincle and MCL form heteromers on the cell surface. Furthermore, association with MCL and FcεRI-γ increased Mincle expression and enhanced phagocytosis of Ab-coated beads. The results presented in this paper suggest that the Mincle/MCL/FcεRI-γ complex is the functionally optimal form for these C-type lectin receptors on the surface of myeloid cells.
Collapse
Affiliation(s)
- Ana Lobato-Pascual
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
31
|
Palmer AL, Dolan BP. MHC class I antigen presentation of DRiP-derived peptides from a model antigen is not dependent on the AAA ATPase p97. PLoS One 2013; 8:e67796. [PMID: 23844095 PMCID: PMC3699533 DOI: 10.1371/journal.pone.0067796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/13/2013] [Indexed: 12/24/2022] Open
Abstract
CD8+ T cells are responsible for killing cells of the body that have become infected or oncogenically transformed. In order to do so, effector CD8+ T cells must recognize their cognate antigenic peptide bound to a MHC class I molecule that has been directly presented by the target cell. Due to the rapid nature of antigen presentation, it is believed that antigenic peptides are derived from a subset of newly synthesized proteins which are degraded almost immediately following synthesis and termed Defective Ribosomal Products or DRiPs. We have recently reported on a bioassay which can distinguish antigen presentation of DRiP substrates from other forms of rapidly degraded proteins and found that poly-ubiquitin chain disassembly may be necessary for efficient DRiP presentation. The AAA ATPase p97 protein is necessary for efficient cross-presentation of antigens on MHC class I molecules and plays an important role in extracting mis-folded proteins from the endoplasmic reticulum. Here, we find that genetic ablation or chemical inhibition of p97 does not diminish DRiP antigen presentation to any great extent nor does it alter the levels of MHC class I molecules on the cell surface, despite our observations that p97 inhibition increased the levels of poly-ubiquitinated proteins in the cell. These data demonstrate that inhibiting poly-ubiquitin chain disassembly alone is insufficient to abolish DRiP presentation.
Collapse
Affiliation(s)
- Amy L. Palmer
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Brian P. Dolan
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
32
|
Baker K, Rath T, Lencer WI, Fiebiger E, Blumberg RS. Cross-presentation of IgG-containing immune complexes. Cell Mol Life Sci 2013; 70:1319-1334. [PMID: 22847331 PMCID: PMC3609906 DOI: 10.1007/s00018-012-1100-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 12/23/2022]
Abstract
IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4(+) T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8(+) T cells.
Collapse
Affiliation(s)
- Kristi Baker
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Timo Rath
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Wayne I. Lencer
- Division of Gastroenterology and Nutrition, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115 USA
- Harvard Digestive Diseases Center, Boston, MA 02115 USA
| | - Edda Fiebiger
- Division of Gastroenterology and Nutrition, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115 USA
- Harvard Digestive Diseases Center, Boston, MA 02115 USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
- Harvard Digestive Diseases Center, Boston, MA 02115 USA
| |
Collapse
|
33
|
Antibody-DEPENDENT, FcγRI-mediated neutralization of HIV-1 in TZM-bl cells occurs independently of phagocytosis. J Virol 2013; 87:5287-90. [PMID: 23408628 DOI: 10.1128/jvi.00278-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that expression of human FcγRI on TZM-bl cells potentiates neutralization by gp41 membrane-proximal external region (MPER)-specific antibodies. Here we show that lysosomotropic reagents known to block phagocytosis do not diminish this effect. We also show that FcγRI occasionally potentiates neutralization by antibodies against the V3 loop of gp120 and cluster I of gp41. We conclude that FcγRI provides a kinetic advantage for neutralizing antibodies against partially cryptic epitopes independent of phagocytosis.
Collapse
|
34
|
Crespo MI, Zacca ER, Núñez NG, Ranocchia RP, Maccioni M, Maletto BA, Pistoresi-Palencia MC, Morón G. TLR7 triggering with polyuridylic acid promotes cross-presentation in CD8α+ conventional dendritic cells by enhancing antigen preservation and MHC class I antigen permanence on the dendritic cell surface. THE JOURNAL OF IMMUNOLOGY 2013; 190:948-60. [PMID: 23284054 DOI: 10.4049/jimmunol.1102725] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
ssRNA can interact with dendritic cells (DCs) through binding to TLR7, inducing secretion of proinflammatory cytokines and type I IFN. Triggering TLR7 enhances cross-priming of CD8(+) T cells, which requires cross-presentation of exogenous Ag to DCs. However, how TLR triggering can affect Ag cross-presentation is still not clear. Using OVA as an Ag model, we observed that stimulation of TLR7 in DCs by polyuridylic acid (polyU), a synthetic ssRNA analog, generates a strong specific cytotoxic response in C57BL/6 mice. PolyU stimulate CD8α(+) DCs to cross-prime naive CD8(+) T cells in a type I IFN-dependent fashion. This enhanced cross-priming is accompanied by a higher density of OVA(256-264)/H-2K(b) complexes on CD8α(+) DCs treated with polyU, as well as by upregulation of costimulatory molecules and increased secretion of proinflammatory cytokines by DCs. Cross-priming of CD8(+) T cells by DCs treated with polyU requires proteasome and Ag translocation to cytosol through the Sec61 channel in DCs. The observed enhancement in OVA cross-presentation with polyU in DCs could be mediated by a limited Ag degradation in endophagosomal compartments and a higher permanence of OVA peptide/MHC class I complexes on DCs. These observations clearly reveal that key steps of Ag processing for cross-presentation can be modulated by TLR ligands, opening new avenues for understanding their mechanisms as adjuvants of the immune response.
Collapse
Affiliation(s)
- María I Crespo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wagner CS, Grotzke JE, Cresswell P. Intracellular events regulating cross-presentation. Front Immunol 2012; 3:138. [PMID: 22675326 PMCID: PMC3366438 DOI: 10.3389/fimmu.2012.00138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/14/2012] [Indexed: 01/07/2023] Open
Abstract
Cross-presentation plays a fundamental role in the induction of CD8-T cell immunity. However, although more than three decades have passed since its discovery, surprisingly little is known about the exact mechanisms involved. Here we give an overview of the components involved at different stages of this process. First, antigens must be internalized into the cross-presenting cell. The involvement of different receptors, method of antigen uptake, and nature of the antigen can influence intracellular trafficking and access to the cross-presentation pathway. Once antigens access the endocytic system, different requirements for endosomal/phagosomal processing arise, such as proteolysis and reduction of disulfide bonds. The majority of cross-presented peptides are generated by proteasomal degradation. Therefore, antigens must cross a membrane barrier in a manner analogous to the fate of misfolded proteins in the endoplasmic reticulum (ER) that are retrotranslocated into the cytosol for degradation. Indeed, some components of the ER-associated degradation machinery have been implicated in cross-presentation. Further complicating the matter, endosomal and phagosomal compartments have been suggested as alternative sites to the ER for loading of peptides on major histocompatibility complex class I molecules. Finally, the antigen presenting cells involved, particularly dendritic cell subsets and their state of maturation, influence the efficiency of cross-presentation.
Collapse
Affiliation(s)
- Claudia S Wagner
- Department of Immunobiology, Yale University Medical Center, New Haven, CT, USA
| | | | | |
Collapse
|
36
|
Caminschi I, Maraskovsky E, Heath WR. Targeting Dendritic Cells in vivo for Cancer Therapy. Front Immunol 2012; 3:13. [PMID: 22566899 PMCID: PMC3342351 DOI: 10.3389/fimmu.2012.00013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/20/2012] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies that recognize cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC) for induction of immune responses. The encouraging anti-tumor immunity elicited using this immunization strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialization of DC subsets, the immunological outcomes of targeting different DC subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumor CD4 and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review preclinical experiments and the progress toward targeting human DC in vivo.
Collapse
Affiliation(s)
- Irina Caminschi
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research Melbourne, VIC, Australia
| | | | | |
Collapse
|
37
|
Kreer C, Rauen J, Zehner M, Burgdorf S. Cross-presentation: how to get there - or how to get the ER. Front Immunol 2012; 2:87. [PMID: 22566876 PMCID: PMC3341993 DOI: 10.3389/fimmu.2011.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/16/2011] [Indexed: 11/13/2022] Open
Abstract
Antigen cross-presentation enables dendritic cells (DCs) to present extracellular antigens on major histocompatibility complex (MHC) I molecules, a process that plays an important role in the induction of immune responses against viruses and tumors and in the induction of peripheral tolerance. In order to allow intracellular processing for cross-presentation, internalized antigens are targeted by distinct endocytic receptors toward specific endosomal compartments, where they are protected from rapid lysosomal degradation. From these compartments, antigens are processed for loading onto MHC I molecules. Such processing generally includes antigen transport into the cytoplasm, a process that is regulated by members of the ER-associated degradation (ERAD) machinery. After proteasomal degradation in the cytoplasm, antigen-derived peptides have been shown to be re-imported into the same endosomal compartment by endosomal transporter associated with antigen processing, another ER protein, which is recruited toward the endosomes after DC maturation. In our review, we highlight the recent advances on the molecular mechanisms of cross-presentation. We focus on the necessity of such antigen storage compartments and point out important parallels to MHC I-restricted presentation of endogenous antigens. We discuss the composition of such endosomes and the targeting of extracellular antigens into this compartment by specific endocytic receptors. Finally, we highlight recent advances on the recruitment of the cross-presentation machinery, like the members of the MHC I loading complex and the ERAD machinery, from the ER toward these storage compartments, a process that can be induced by antigen encounter or by activation of the dendritic cell after contact with endotoxins.
Collapse
Affiliation(s)
- Christoph Kreer
- Life and Medical Sciences Institute, University of Bonn Bonn, Germany
| | | | | | | |
Collapse
|
38
|
King C, Sprent J. Emerging cellular networks for regulation of T follicular helper cells. Trends Immunol 2011; 33:59-65. [PMID: 22209178 DOI: 10.1016/j.it.2011.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/22/2011] [Accepted: 11/26/2011] [Indexed: 12/13/2022]
Abstract
The cellular networks that regulate humoral immune responses have been a focus of research over the past three decades. Studies have shown that inhibition of immune responses can be attributed to both suppressor T cells and B cells. More recently, T follicular helper (Tfh) cells have been identified as a target of immune regulation. Tfh cells are a subset of highly activated T helper cells specialized for providing cognate help to B cells during germinal center reactions. In this review, we describe emerging evidence for cellular networks that alter Tfh cell phenotype and function and regulate antibody production during the germinal center reaction. We discuss how these new findings influence our understanding of Tfh cells.
Collapse
Affiliation(s)
- Cecile King
- Department of Immunology, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|
39
|
Li Y, Wang LX, Pang P, Cui Z, Aung S, Haley D, Fox BA, Urba WJ, Hu HM. Tumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacy. Clin Cancer Res 2011; 17:7047-57. [PMID: 22068657 DOI: 10.1158/1078-0432.ccr-11-0951] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE We previously reported that autophagy in tumor cells plays a critical role in cross-presentation of tumor antigens and that autophagosomes are efficient antigen carriers for cross-priming of tumor-reactive CD8(+) T cells. Here, we sought to characterize further the autophagosome-enriched vaccine named DRibble (DRiPs-containing blebs), which is derived from tumor cells after inhibition of protein degradation, and to provide insights into the mechanisms responsible for their efficacy as a novel cancer immunotherapy. EXPERIMENTAL DESIGN DRibbles were characterized by Western blot and light or transmission electron microscopy. The efficiency of cross-presentation mediated by DRibbles was first compared with that of whole-tumor cells and pure proteins. The mechanisms of antigen cross-presentation by DRibbles were analyzed, and the antitumor efficacy of the DRibble vaccine was tested in 3LL Lewis lung tumors and B16F10 melanoma. RESULTS The DRibbles sequester both long-lived and short-lived proteins, including defective ribosomal products (DRiP), and damage-associated molecular pattern molecules exemplified by HSP90, HSP94, calreticulin, and HMGB1. DRibbles express ligands for CLEC9A, a newly described C-type lectin receptor expressed by a subset of conventional and plasmacytoid dendritic cells (DC), and cross-presentation was partially CLEC9A dependent. Furthermore, this autophagy-assisted antigen cross-presentation pathway involved both caveolae- and clathrin-mediated endocytosis and endoplasmic reticulum-associated degradation machinery. It depends on proteasome and TAP1, but not lysosome functions of antigen-presenting cells. Importantly, DCs loaded with autophagosome-enriched DRibbles can eradicate 3LL Lewis lung tumors and significantly delay the growth of B16F10 melanoma. CONCLUSIONS These data documented the unique characteristics and potent antitumor efficacy of the autophagosome-based DRibble vaccine. The efficacy of DRibble cancer vaccine will be further tested in clinical trials.
Collapse
Affiliation(s)
- Yuhuan Li
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon 97213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The Fc receptor-cytoskeleton complex from human neutrophils. J Proteomics 2011; 75:450-68. [PMID: 21911091 DOI: 10.1016/j.jprot.2011.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/12/2011] [Accepted: 08/14/2011] [Indexed: 11/23/2022]
Abstract
The Fc receptor complex and its associated phagocytic cytoskeleton machinery were captured from the surface of live cells by IgG coated microbeads and identified by mass spectrometry. The random and independently sampled intensity values of peptides were similar in the control and IgG samples. After log transformation, the parent and fragment intensity values showed a normal distribution where ≥99.9% of the data was well above the background noise. Some proteins showed significant differences in intensity between the IgG and control samples by ANOVA followed by the Tukey-Kramer honestly significant difference test. However many proteins were specific to the IgG beads or the control beads. The set of detected cytoskeleton proteins, binding proteins and enzymes detected on the IgG beads were used to predict the network of actin-associated regulatory factors. Signaling factors/proteins such as PIK3, PLC, GTPases (such CDC42, Rho GAPs/GEFs), annexins and inositol triphosphate receptors were all identified as being specific to the activated receptor complex by mass spectrometry. In addition, the tyrosine kinase Fak was detected with the IgG coated beads. Hence, an activated receptor cytoskeleton complex and its associated regulatory proteins were captured from the surface of live human primary leukocytes.
Collapse
|
41
|
Mannose receptor polyubiquitination regulates endosomal recruitment of p97 and cytosolic antigen translocation for cross-presentation. Proc Natl Acad Sci U S A 2011; 108:9933-8. [PMID: 21628571 DOI: 10.1073/pnas.1102397108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms regulating noncanonical protein transport across cellular membranes are poorly understood. Cross-presentation of exogenous antigens on MHC I molecules by dendritic cells (DCs) generally requires antigen translocation from the endosomal compartment into the cytosol for proteasomal degradation. In this study, we demonstrate that such translocation is controlled by the endocytic receptor and regulated by ubiquitination. Antigens internalized by the mannose receptor (MR), an endocytic receptor that targets its ligands specifically toward cross-presentation, were translocated into the cytosol only after attachment of a lysin48-linked polyubiquitin chain to the cytosolic region of the MR. Furthermore, we identify TSG101 as a central regulator of MR ubiquitination and antigen translocation. Importantly, we demonstrate that MR polyubiquitination mediates the recruitment of p97, a member of the ER-associated degradation machinery that provides the driving force for antigen translocation, toward the endosomal membrane, proving the central role of the endocytic receptor and its ubiquitination in antigen translocation.
Collapse
|
42
|
Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8-CD11b+ dendritic cells. Proc Natl Acad Sci U S A 2011; 108:9927-32. [PMID: 21628593 DOI: 10.1073/pnas.1019037108] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cross-presentation of IgG-containing immune complexes (ICs) is an important means by which dendritic cells (DCs) activate CD8(+) T cells, yet it proceeds by an incompletely understood mechanism. We show that monocyte-derived CD8(-)CD11b(+) DCs require the neonatal Fc receptor for IgG (FcRn) to conduct cross-presentation of IgG ICs. Consequently, in the absence of FcRn, Fcγ receptor (FcγR)-mediated antigen uptake fails to initiate cross-presentation. FcRn is shown to regulate the intracellular sorting of IgG ICs to the proper destination for such cross-presentation to occur. We demonstrate that FcRn traps antigen and protects it from degradation within an acidic loading compartment in association with the rapid recruitment of key components of the phagosome-to-cytosol cross-presentation machinery. This unique mechanism thus enables cross-presentation to evolve from an atypically acidic loading compartment. FcRn-driven cross-presentation is further shown to control cross-priming of CD8(+) T-cell responses in vivo such that during chronic inflammation, FcRn deficiency results in inadequate induction of CD8(+) T cells. These studies thus demonstrate that cross-presentation in CD8(-)CD11b(+) DCs requires a two-step mechanism that involves FcγR-mediated internalization and FcRn-directed intracellular sorting of IgG ICs. Given the centrality of FcRn in controlling cross-presentation, these studies lay the foundation for a unique means to therapeutically manipulate CD8(+) T-cell responses.
Collapse
|
43
|
Dolan BP, Bennink JR, Yewdell JW. Translating DRiPs: progress in understanding viral and cellular sources of MHC class I peptide ligands. Cell Mol Life Sci 2011; 68:1481-9. [PMID: 21416150 PMCID: PMC3393103 DOI: 10.1007/s00018-011-0656-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 11/27/2022]
Abstract
It has been 15 years since we proposed the defective ribosomal product (DRiP) hypothesis to explain the rapid presentation of viral peptides by MHC class I molecules on the surface of infected cells. Here, we review the evidence for the contribution of DRiPs to antigen processing, pointing to the uncertainties regarding the physical nature of DRiPs, and emphasizing recent findings suggesting that peptide generation is a specialized process involving compartmentalized translation.
Collapse
Affiliation(s)
- Brian P. Dolan
- Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892 USA
| | | | | |
Collapse
|
44
|
Delamarre L, Mellman I. Harnessing dendritic cells for immunotherapy. Semin Immunol 2011; 23:2-11. [PMID: 21377379 DOI: 10.1016/j.smim.2011.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DC) are the antigen presenting cells that initiate and direct adaptive immune responses, capable of inducing protective adaptive immune responses and tolerance. They sample their surroundings, internalizing, processing and presenting antigens to T cells. They distinguish between self and foreign antigens with a wide array of microbial sensors, and induce immunity when antigen is captured in the presence of microbial products or inflammatory stimuli, but tolerance in the absence of these signals. However, not all DCs are identical. There are distinct DC subsets spread throughout the body, and although they share common features, they also have specialized functions. As a consequence, the outcome of the immune response is determined by the context in which the antigen is acquired, and also by the DC subset(s) involved. Here we discuss the features of the DC subsets, their handling of antigens for MHCI- and MHCII-restricted presentation, how their functions are regulated by foreign and endogenous signals, the consequences on the type of immune response induced, and how they provide insights on the design of immunotherapy.
Collapse
Affiliation(s)
- Lélia Delamarre
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States.
| | | |
Collapse
|
45
|
Horst D, Verweij MC, Davison AJ, Ressing ME, Wiertz EJHJ. Viral evasion of T cell immunity: ancient mechanisms offering new applications. Curr Opin Immunol 2011; 23:96-103. [PMID: 21146386 DOI: 10.1016/j.coi.2010.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 11/17/2022]
Abstract
Upon infecting a host, viruses are confronted by a coordinated and multi-faceted immune response. Indeed, evolutionary combat between virus and host has contributed signally to the host's development of a formidable innate and adaptive immune defense arsenal, and to the virus' acquisition of effective means to evade it. Cytotoxic T lymphocytes play a key role in the elimination of virus-infected cells, which they detect through recognition of virus-derived peptides displayed at the cell surface in the context of MHC class I molecules. This highly sensitive recognition system is a prime target for immune evasion strategies deployed by many viruses, particularly large DNA viruses such as herpesviruses and poxviruses. Elucidation of the mode of action of the immune evasion proteins encoded by these viruses has not only provided new insights into viral pathogenesis, but has also led to the discovery of hitherto unknown cell biological and immunological phenomena. Moreover, viral immune evasion proteins constitute extremely useful tools to block defined stages of the MHC class I presentation pathway, not only for research purposes, but also for clinical applications.
Collapse
Affiliation(s)
- Daniëlle Horst
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Hunzeker JT, Elftman MD, Mellinger JC, Princiotta MF, Bonneau RH, Truckenmiller ME, Norbury CC. A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 186:183-94. [PMID: 21098225 DOI: 10.4049/jimmunol.1001737] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protracted psychological stress elevates circulating glucocorticoids, which can suppress CD8(+) T cell-mediated immunity, but the mechanisms are incompletely understood. Dendritic cells (DCs), required for initiating CTL responses, are vulnerable to stress/corticosterone, which can contribute to diminished CTL responses. Cross-priming of CD8(+) T cells by DCs is required for initiating CTL responses against many intracellular pathogens that do not infect DCs. We examined the effects of stress/corticosterone on MHC class I (MHC I) cross-presentation and priming and show that stress/corticosterone-exposed DCs have a reduced ability to cross-present OVA and activate MHC I-OVA(257-264)-specific T cells. Using a murine model of psychological stress and OVA-loaded β(2)-microglobulin knockout "donor" cells that cannot present Ag, DCs from stressed mice induced markedly less Ag-specific CTL proliferation in a glucocorticoid receptor-dependent manner, and endogenous in vivo T cell cytolytic activity generated by cross-presented Ag was greatly diminished. These deficits in cross-presentation/priming were not due to altered Ag donation, Ag uptake (phagocytosis, receptor-mediated endocytosis, or fluid-phase uptake), or costimulatory molecule expression by DCs. However, proteasome activity in corticosterone-treated DCs or splenic DCs from stressed mice was partially suppressed, which limits formation of antigenic peptide-MHC I complexes. In addition, the lymphoid tissue-resident CD11b(-)CD24(+)CD8α(+) DC subset, which carries out cross-presentation/priming, was preferentially depleted in stressed mice. At the same time, CD11b(-)CD24(+)CD8α(-) DC precursors were increased, suggesting a block in development of CD8α(+) DCs. Therefore, glucocorticoid-induced changes in both the cellular composition of the immune system and intracellular protein degradation contribute to impaired CTL priming in stressed mice.
Collapse
Affiliation(s)
- John T Hunzeker
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Sutherland RM, Zhan Y, Carrington EM, Londrigan SL, Lew AM. Selective depletion of cross-presenting dendritic cells enhances islet allograft survival. Cell Transplant 2010; 20:467-74. [PMID: 20887666 DOI: 10.3727/096368910x528094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MHC class I presentation of peptides derived from exogenous antigens (not synthesized within the antigen-presenting cell) is called cross-presentation and is mediated by selective subsets of dendritic cells (DC). A proportion of both donor and host DC may cross-present. Although there has been many studies that have investigated the role of donor versus host DC (i.e., direct vs. indirect pathway), what role cross-presenting DC play in allograft rejection has not been determined. We recently identified an agent, cytochrome c (cytc), that selectively depletes cross-presenting DC in vivo. By administering cytc we were able to study the impact of cross-presenting DC on rejection of islets grafted into fully mismatched mice. We found that cytc protected about half of the islet allografts from rejection. Our results indicate that cross-presenting DC can make potent contributions to the immune response to islet allografts, and contend that agents such as cytc that selectively target DC heralds a novel method of immunosuppression.
Collapse
Affiliation(s)
- Robyn M Sutherland
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne 3052, Victoria, Australia
| | | | | | | | | |
Collapse
|
48
|
Kamphorst AO, Guermonprez P, Dudziak D, Nussenzweig MC. Route of antigen uptake differentially impacts presentation by dendritic cells and activated monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3426-35. [PMID: 20729332 PMCID: PMC3013633 DOI: 10.4049/jimmunol.1001205] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), which maintain tolerance and orchestrate T cell immune responses, comprise a heterogeneous group of cells. For example, in the steady state, murine spleen contains pre-DC-derived CD8(+) and CD8(-) conventional DCs. During inflammation, monocytes become activated and acquire some DC-like features, such as expression of CD11c and MHC class II. Although each of these cell types can present Ag, the relative efficiency of processing and presentation after Ag capture by different routes has not yet been systematically compared. To this end, we administered OVA to various conventional DCs and activated monocytes by receptor-mediated endocytosis, pinocytosis, or phagocytosis and measured internalization and presentation to MHC class I- and MHC class II-restricted T cells. We find that CD8(-) DCs are more efficient than any other type of APC tested in terms of presenting Ag to MHC class II-restricted T cells, irrespective of the route of Ag capture. In contrast, both subsets of splenic DCs are highly effective in cross-presenting Ags to CD8(+) T cells. DCs and activated monocytes cross-presented Ags delivered by DEC205-mediated endocytosis and pinocytosis. However, DCs differ from activated monocytes in that the latter are several orders of magnitude less efficient in presenting Ags captured by phagocytosis to CD8(+) or CD4(+) T cells. We conclude that DCs derived from pre-DCs differ from monocyte-derived cells in that DCs process and present Ags efficiently irrespective of the route of Ag capture. Our observations have significant implications for understanding initiation of immune responses and vaccination strategies targeting DCs and activated monocytes.
Collapse
Affiliation(s)
- Alice O. Kamphorst
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, 10065 USA
| | - Pierre Guermonprez
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, 10065 USA
| | - Diana Dudziak
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, 10065 USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, 10065 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
49
|
Murshid A, Gong J, Calderwood SK. Heat shock protein 90 mediates efficient antigen cross presentation through the scavenger receptor expressed by endothelial cells-I. THE JOURNAL OF IMMUNOLOGY 2010; 185:2903-17. [PMID: 20686127 DOI: 10.4049/jimmunol.0903635] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ag cross presentation is an important mechanism for CD8(+) T cell activation by APCs. We have investigated mechanisms involved in heat shock protein 90 (Hsp90) chaperone-mediated cross presentation of OVA-derived Ags. Hsp90-OVA peptide complexes bound to scavenger receptor expressed by endothelial cells (SREC-I) on the surface of APCs. SREC-I then mediated internalization of Hsp90-OVA polypeptide complexes through a Cdc42-regulated, dynamin-independent endocytic pathway known as the GPI-anchored protein-enriched early endosomal compartment to recycling endosomes. Peptides that did not require processing could then be loaded directly onto MHC class I in endosomes, whereas longer peptides underwent endosomal and cytosomal processing by aminopeptidases and proteases. Cross presentation of Hsp90-chaperoned peptides through this pathway to CD8(+) T cells was highly efficient compared with processing of free polypeptides. In addition, Hsp90 also activated c-Src kinase associated with SREC-I, an activity that we determined to be required for effective cross presentation. Extracellular Hsp90 can thus convey antigenic peptides through an efficient endocytosis pathway in APCs and facilitate cross presentation in a highly regulated manner.
Collapse
Affiliation(s)
- Ayesha Murshid
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
50
|
Amigorena S, Savina A. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr Opin Immunol 2010; 22:109-17. [PMID: 20171863 DOI: 10.1016/j.coi.2010.01.022] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
Abstract
The induction of most CD8+ T cell responses by dendritic cells (DCs) requires the presentation of peptides from internalized antigen by class I MHC molecules. Increasing number of reports have shown that cross presentation is involved in transplant rejection, in immune responses to viral infections, in certain autoimmune diseases and cancer. The precise role of cross presentation in the initiation of immune responses in vivo, however, remains a matter of debate. This ongoing controversy is, at least in part, due to a lack of understanding of the molecular machinery that determine cross presentation pathways in terms of cell biology. The present review aims to summarize recent insights and advances that help enlighten the intracellular steps of antigen cross presentation in DCs.
Collapse
Affiliation(s)
- Sebastian Amigorena
- INSERM U932, Institut Curie, Immunity and Cancer Laboratory, F-75245 Paris Cedex 05, France.
| | | |
Collapse
|