1
|
Uveges BT, Izon G, Junium CK, Ono S, Summons RE. Aerobic nitrogen cycle 100 My before permanent atmospheric oxygenation. Proc Natl Acad Sci U S A 2025; 122:e2423481122. [PMID: 40354523 DOI: 10.1073/pnas.2423481122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
The Great Oxidation Event (GOE) represents a major shift in Earth's surficial redox balance. Delineating the driver(s) and tempo of the GOE and its impact on microbial evolution and biogeochemistry can be aided by characterizing the cycling of redox-sensitive elements such as nitrogen. While previous studies have shown that the transition to a broadly aerobic marine nitrogen cycle occurred in step with the final phase of the GOE ~2.33 billion years ago (Ga), an evolving understanding of the GOE as a dynamic oscillatory process and the narrow spatial distribution of existing studies highlight ambiguity in the marine nitrogen cycle in the lead up to permanent atmospheric oxygenation. Here, we present stable carbon (δ13C) and nitrogen (δ15N) isotope ratios derived from the ~2.43 Ga Duitschland and ~2.33 Ga Rooihoogte formations in four drill cores separated by hundreds of kilometers. A significant negative carbon isotope excursion (6 to 8‰) in the Duitschland Formation indicates massive oxidation of organic carbon in close association with a putative snowball Earth event and an earlier pulse of atmospheric oxygen at 2.43 Ga. Further, consistently positive δ15N values (≤ +20.3‰) within the Duitschland Formation, combined with a broad temporal shift across global δ15N records to a distribution comparable to modern marine sediments, signify an aerobic nitrogen cycle ~100 My earlier than previously accepted. Our results update a key timepoint in the evolution of the marine nitrogen cycle and the oxidation of the Earth's surface surrounding the GOE.
Collapse
Affiliation(s)
- Benjamin T Uveges
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 190029
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
| | - Gareth Izon
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 190029
| | - Christopher K Junium
- Department of Earth and Environmental Sciences, Syracuse University, Syracuse, NY 14433
| | - Shuhei Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 190029
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 190029
| |
Collapse
|
2
|
Grettenberger CL, Sumner DY. Physiology, Not Nutrient Availability, May Have Limited Primary Productivity After the Emergence of Oxygenic Photosynthesis. GEOBIOLOGY 2024; 22:e12622. [PMID: 39324846 DOI: 10.1111/gbi.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
The evolution of oxygenic photosynthesis in Cyanobacteria was a transformative event in Earth's history. However, the scientific community disagrees over the duration of the delay between the origin of oxygenic photosynthesis and oxygenation of Earth's atmosphere, with estimates ranging from less than a hundred thousand to more than a billion years, depending on assumptions about rates of oxygen production and fluxes of reductants. Here, we propose a novel ecological hypothesis that a geologically significant delay could have been caused by biomolecular inefficiencies within proto-Cyanobacteria-ancestors of modern Cyanobacteria-that limited their maximum rates of oxygen production. Consideration of evolutionary processes and genomic data suggest to us that proto-cyanobacterial primary productivity was initially limited by photosystem instability, oxidative damage, and photoinhibition rather than nutrients or ecological competition. We propose that during the Archean era, cyanobacterial photosystems experienced protracted evolution, with biomolecular inefficiencies initially limiting primary productivity and oxygen production. Natural selection led to increases in efficiency and thus primary productivity through time. Eventually, evolutionary advances produced sufficient biomolecular efficiency that environmental factors, such as nutrient availability, limited primary productivity and shifted controls on oxygen production from physiological to environmental limitations. If correct, our novel hypothesis predicts a geologically significant interval of time between the first local oxygen production and sufficient production for oxygenation of environments. It also predicts that evolutionary rates were likely highly variable due to strong environmental selection pressures and potentially high mutation rates but low competitive interactions.
Collapse
Affiliation(s)
- Christen L Grettenberger
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California, USA
- Department of Environmental Toxicology, University of California Davis, Davis, California, USA
| | - Dawn Y Sumner
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
3
|
Ibarra Y, Marenco PJ, Centlivre JP, Hedlund BP, Rademacher LK, Greene SE, Bottjer DJ, Corsetti FA. A Biofilm Channel Origin for Vermiform Microstructure in Carbonate Microbialites. GEOBIOLOGY 2024; 22:e12623. [PMID: 39420484 DOI: 10.1111/gbi.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
A three-dimensional tubular fabric known as "vermiform microstructure" in Phanerozoic and Neoproterozoic carbonate microbialites has been hypothesized to represent the body fossil of nonspicular keratose demosponges. If correct, this interpretation extends the sponge body fossil record and origin of animals to ~890 Ma. However, the veracity of the keratose sponge interpretation for vermiform microstructure remains in question, and the origin of the tubular fabric is enigmatic. Here we compare exceptionally well-preserved microbialite textures from the Upper Triassic to channel networks created by modern microbial biofilms. We demonstrate that anastomosing channel networks of similar size and geometries are produced by microbial biofilms in the absence of sponges, suggesting the origin for vermiform microstructure in ancient carbonates is not unique to sponges and perhaps best interpreted conservatively as likely microbial in origin. We present a taphonomic model of early biofilm lithification in seawater with anomalously high carbonate saturation necessary to preserve delicate microbial textures. This work has implications for the understanding of three-dimensional biofilm architecture that goes beyond the current micro-scale observations available from living biofilm experiments and suggests that biofilm channel networks have an extensive fossil record.
Collapse
Affiliation(s)
- Yadira Ibarra
- School of the Environment, San Francisco State University, San Francisco, California, USA
| | - Pedro J Marenco
- Department of Geology, Bryn Mawr College, Bryn Mawr, Pennsylvania, USA
| | - Jakob P Centlivre
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Laura K Rademacher
- Geological and Environmental Sciences, University of the Pacific, Stockton, California, USA
| | - Sarah E Greene
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - David J Bottjer
- Department of Earth Science, University of Southern California, Los Angeles, California, USA
| | - Frank A Corsetti
- Department of Earth Science, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Lyons TW, Tino CJ, Fournier GP, Anderson RE, Leavitt WD, Konhauser KO, Stüeken EE. Co-evolution of early Earth environments and microbial life. Nat Rev Microbiol 2024; 22:572-586. [PMID: 38811839 DOI: 10.1038/s41579-024-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/31/2024]
Abstract
Two records of Earth history capture the evolution of life and its co-evolving ecosystems with interpretable fidelity: the geobiological and geochemical traces preserved in rocks and the evolutionary histories captured within genomes. The earliest vestiges of life are recognized mostly in isotopic fingerprints of specific microbial metabolisms, whereas fossils and organic biomarkers become important later. Molecular biology provides lineages that can be overlayed on geologic and geochemical records of evolving life. All these data lie within a framework of biospheric evolution that is primarily characterized by the transition from an oxygen-poor to an oxygen-rich world. In this Review, we explore the history of microbial life on Earth and the degree to which it shaped, and was shaped by, fundamental transitions in the chemical properties of the oceans, continents and atmosphere. We examine the diversity and evolution of early metabolic processes, their couplings with biogeochemical cycles and their links to the oxygenation of the early biosphere. We discuss the distinction between the beginnings of metabolisms and their subsequent proliferation and their capacity to shape surface environments on a planetary scale. The evolution of microbial life and its ecological impacts directly mirror the Earth's chemical and physical evolution through cause-and-effect relationships.
Collapse
Affiliation(s)
- Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA.
| | - Christopher J Tino
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rika E Anderson
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- Biology Department, Carleton College, Northfield, MN, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eva E Stüeken
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
5
|
Rasmussen KL, Thieringer PH, Nevadomski S, Martinez AM, Dawson KS, Corsetti FA, Zheng XY, Lv Y, Chen X, Celestian AJ, Berelson WM, Rollins NE, Spear JR. Living to Lithified: Construction and Preservation of Silicified Biomarkers. GEOBIOLOGY 2024; 22:1-30. [PMID: 39319483 DOI: 10.1111/gbi.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/21/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Whole microorganisms are rarely preserved in the fossil record but actively silicifying environments like hot springs provide an opportunity for microbial preservation, making silicifying environments critical for the study of microbial life through time on Earth and possibly other planetary bodies. Yet, the changes that biosignatures may undergo through lithification and burial remain unconstrained. At Steep Cone Geyser in Yellowstone National Park, we collected microbial material from (1) the living system across the active outflows, (2) the silicified areas adjacent to flows, and (3) lithified and buried material to assess the preservation of biosignatures and their changes across the lithification transect. Five biofabrics, built predominantly by Cyanobacteria Geitlerinema, Pseudanabaenaceae, and Leptolyngbya with some filamentous anoxygenic phototrophs contributions, were identified and tracked from the living system through the process of silicification/lithification. In the living systems, δ30Si values decrease from +0.13‰ in surficial waters to -2‰ in biomat samples, indicating a kinetic isotope effect potentially induced by increased association with actively growing biofabrics. The fatty acids C16:1 and iso-C14:0 and the hydrocarbon C17:0 were disentangled from confounding signals and determined to be reliable lipid biosignatures for living biofabric builders and tenant microorganisms. Builder and tenant microbial biosignatures were linked to specific Cyanobacteria, anoxygenic phototrophs, and heterotrophs, which are prominent members of the living communities. Upon lithification and burial, silicon isotopes of silicified biomass began to re-equilibrate, increasing from δ30Si -2‰ in living biomats to -0.55‰ in lithified samples. Active endolithic microbial communities were identified in lithified samples and were dominated by Cyanobacteria, heterotrophic bacteria, and fungi. Results indicate that distinct microbial communities build and inhabit silicified biofabrics through time and that microbial biosignatures shift over the course of lithification. These findings improve our understanding of how microbial communities silicify, the biomarkers they retain, and transitionary impacts that may occur through lithification and burial.
Collapse
Affiliation(s)
- Kalen L Rasmussen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Patrick H Thieringer
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Sophia Nevadomski
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Aaron M Martinez
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Katherine S Dawson
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Xin-Yuan Zheng
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yiwen Lv
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xinyang Chen
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aaron J Celestian
- Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - William M Berelson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Nick E Rollins
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
- Quantitative Biosciences and Engineering Programs, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
6
|
Lamparter T. Photosystems and photoreceptors in cyanobacterial phototaxis and photophobotaxis. FEBS Lett 2024; 598:1899-1908. [PMID: 38946046 DOI: 10.1002/1873-3468.14968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Cyanobacteria move by gliding motility on surfaces toward the light or away from it. It is as yet unclear how the light direction is sensed on the molecular level. Diverse photoreceptor knockout mutants have a stronger response toward the light than the wild type. Either the light direction is sensed by multiple photoreceptors or by photosystems. In a study on photophobotaxis of the filamentous cyanobacterium Phormidium lacuna, broad spectral sensitivity, inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and a highly sensitive response speaks for photosystems as light direction sensors. Here, it is discussed whether the photosystem theory could hold for phototaxis of other cyanobacteria.
Collapse
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften, Karlsruhe, Germany
| |
Collapse
|
7
|
Huang L, Tang R, Huang S, Tang J, Lin H, Yuan Y, Zhou S. Fate of carbon influenced by the in-situ growth of phototrophic biofilms at the soil-water interface of paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168451. [PMID: 37956834 DOI: 10.1016/j.scitotenv.2023.168451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Phototrophic biofilms (PBs) are commonly found in the sediment/soil-water interface of paddy soils and have a significant impact on carbon cycles. However, the specific carbon fate influenced by the in-situ growth of PBs in paddy soil remains unclear. In this study, we investigated the effect of in situ PBs growth on methane and carbon dioxide emissions, as well as dissolved organic matter (DOM) transformation. Our findings demonstrated a negative correlation between PBs growth and methane and carbon dioxide emissions, while showing a positive correlation with DOM composition. The in-situ growth of PBs reduced methane emissions by approximately 79 % and carbon dioxide emissions by approximately 33 % in the daytime, and also slowed down the degradation rate of dissolved organic matter from over 30.4 % to <16 %. Microsensor measurements revealed that these changes were attributed to the increased concentration and penetration depth of oxygen, as well as variations in pH caused by the growth of in situ PBs. Co-occurrence analysis indicated a robust correlation between DOM transformation and the significantly suppressed methanogenesis by methanogens such as Methanosaeta, Methanomassiliicoccus and Methanosarcina, and also the notably enhanced methane oxidation by methanotrophs including Methylobacterium, Methyloversatilis and Methylomonas, in response to the growth of PBs. These findings shed light on the impact of in situ PBs on methane and carbon dioxide emissions and DOM transformation, providing new insights for understanding carbon cycling in paddy soils.
Collapse
Affiliation(s)
- Lingyan Huang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Shaofu Huang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Lin
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
First Ministry-Academia Collaborative Report on Causes and Remedies of Human-Animal Conflict at Hastinapur Wildlife Sanctuary, Uttar Pradesh, India. INTERNATIONAL JOURNAL OF ECOLOGY 2022. [DOI: 10.1155/2022/3543650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sustainable coexistence of different components of an ecosystem is a fundamental requirement for the overall welfare of the human population worldwide. Despite this fact, continued growth in human population, increasing demand for various available natural resources, and invasion of all inhabitable habitats have led to the destruction of the coexistence of wildlife and human and also caused the fragmentation of natural habitat for the wildlife in India. This in turn may viciously affect the rural population residing in the nearby area of such regions, for example, the area covered for sanctuaries, which are established in consideration to provide protection to the indigenous wildlife. Hence, it becomes essential to mitigate such conflicts to create a healthy environment for cosurvival of all stakeholders. Here, in this study, we have tried to figure out the possible reasons and provide certain cures to avoid the recurring human-wildlife conflicts in one of the largest wildlife sanctuaries, Hastinapur wildlife sanctuary, situated in Uttar Pradesh, India.
Collapse
|
9
|
Enzingmüller-Bleyl TC, Boden JS, Herrmann AJ, Ebel KW, Sánchez-Baracaldo P, Frankenberg-Dinkel N, Gehringer MM. On the trail of iron uptake in ancestral Cyanobacteria on early Earth. GEOBIOLOGY 2022; 20:776-789. [PMID: 35906866 DOI: 10.1111/gbi.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria oxygenated Earth's atmosphere ~2.4 billion years ago, during the Great Oxygenation Event (GOE), through oxygenic photosynthesis. Their high iron requirement was presumably met by high levels of Fe(II) in the anoxic Archean environment. We found that many deeply branching Cyanobacteria, including two Gloeobacter and four Pseudanabaena spp., cannot synthesize the Fe(II) specific transporter, FeoB. Phylogenetic and relaxed molecular clock analyses find evidence that FeoB and the Fe(III) transporters, cFTR1 and FutB, were present in Proterozoic, but not earlier Archaean lineages of Cyanobacteria. Furthermore Pseudanabaena sp. PCC7367, an early diverging marine, benthic strain grown under simulated Archean conditions, constitutively expressed cftr1, even after the addition of Fe(II). Our genetic profiling suggests that, prior to the GOE, ancestral Cyanobacteria may have utilized alternative metal iron transporters such as ZIP, NRAMP, or FicI, and possibly also scavenged exogenous siderophore bound Fe(III), as they only acquired the necessary Fe(II) and Fe(III) transporters during the Proterozoic. Given that Cyanobacteria arose 3.3-3.6 billion years ago, it is possible that limitations in iron uptake may have contributed to the delay in their expansion during the Archean, and hence the oxygenation of the early Earth.
Collapse
Affiliation(s)
| | - Joanne S Boden
- School of Geographical Sciences, Faculty of Science, University of Bristol, Bristol, UK
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, UK
| | - Achim J Herrmann
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Katharina W Ebel
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | - Michelle M Gehringer
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
10
|
Gong J, Munoz-Saez C, Wilmeth DT, Myers KD, Homann M, Arp G, Skok JR, van Zuilen MA. Morphogenesis of digitate structures in hot spring silica sinters of the El Tatio geothermal field, Chile. GEOBIOLOGY 2022. [PMID: 34590770 DOI: 10.6084/m9.figshare.12957797.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In silica-rich hot spring environments, internally laminated, digitate sinter deposits are often interpreted as bio-mediated structures. The organic components of microbial communities (cell surfaces, sheaths and extracellular polymeric substances) can act as templates for silica precipitation, therefore influencing digitate sinter morphogenesis. In addition to biologic surface-templating effects, various microenvironmental factors (hydrodynamics, local pH and fluctuating wind patterns) can also influence silica precipitation, and therefore the morphology of resulting digitate sinters. Digitate sinter morphology thus depends on the dynamic interplay between microenvironmentally driven silica precipitation and microbial growth, but the relative contributions of both factors are a topic of continuing research. Here we present a detailed study of digitate silica sinters in distal, low-temperature regimes of the El Tatio geothermal field, Chile. This high-altitude geothermal field is extremely arid and windy, and has one of the highest silica precipitation rates found in the world. We find that digitate silica sinters at El Tatio always accrete into the prevailing eastward wind direction and exhibit laminar growth patterns coinciding with day-night cycles of wind- and thermally driven evaporation and rewetting. Subaerial parts of digitate sinters lack preserved organics and sinter textures that would indicate past microbial colonization, while filamentous cyanobacteria with resistant, silicified sheaths only inhabit subaqueous cavities that crosscut the primary laminations. We conclude that, although fragile biofilms of extremophile micro-organisms may have initially been present and templated silica precipitation at the tips of these digitate sinters, the saltation of sand grains and precipitation of silica by recurrent wind- and thermally driven environmental forcing at El Tatio are important, if not dominant factors shaping the morphology of these digitate structures. Our study sheds light on the relative contributions of biogenic and abiogenic factors in sinter formation in geothermal systems, with geobiological implications for the cautious interpretation of stromatolite-like features in ancient silica deposits on Earth and Mars.
Collapse
Affiliation(s)
- Jian Gong
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Dylan T Wilmeth
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
- Equipe Géomicrobiologie, Institut Universitaire Européen de la Mer, Plouzané, France
| | - Kimberly D Myers
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | - Martin Homann
- Department of Earth Sciences, University College London, London, UK
| | - Gernot Arp
- Geobiology Division, Geoscience Centre, Georg-August-Universität Göttingen, Göttingen, Germany
| | - John R Skok
- SETI Institute, Mountain View, California, USA
| | - Mark A van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
11
|
Gong J, Munoz‐Saez C, Wilmeth DT, Myers KD, Homann M, Arp G, Skok JR, van Zuilen MA. Morphogenesis of digitate structures in hot spring silica sinters of the El Tatio geothermal field, Chile. GEOBIOLOGY 2022; 20:137-155. [PMID: 34590770 PMCID: PMC9292339 DOI: 10.1111/gbi.12471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 05/19/2023]
Abstract
In silica-rich hot spring environments, internally laminated, digitate sinter deposits are often interpreted as bio-mediated structures. The organic components of microbial communities (cell surfaces, sheaths and extracellular polymeric substances) can act as templates for silica precipitation, therefore influencing digitate sinter morphogenesis. In addition to biologic surface-templating effects, various microenvironmental factors (hydrodynamics, local pH and fluctuating wind patterns) can also influence silica precipitation, and therefore the morphology of resulting digitate sinters. Digitate sinter morphology thus depends on the dynamic interplay between microenvironmentally driven silica precipitation and microbial growth, but the relative contributions of both factors are a topic of continuing research. Here we present a detailed study of digitate silica sinters in distal, low-temperature regimes of the El Tatio geothermal field, Chile. This high-altitude geothermal field is extremely arid and windy, and has one of the highest silica precipitation rates found in the world. We find that digitate silica sinters at El Tatio always accrete into the prevailing eastward wind direction and exhibit laminar growth patterns coinciding with day-night cycles of wind- and thermally driven evaporation and rewetting. Subaerial parts of digitate sinters lack preserved organics and sinter textures that would indicate past microbial colonization, while filamentous cyanobacteria with resistant, silicified sheaths only inhabit subaqueous cavities that crosscut the primary laminations. We conclude that, although fragile biofilms of extremophile micro-organisms may have initially been present and templated silica precipitation at the tips of these digitate sinters, the saltation of sand grains and precipitation of silica by recurrent wind- and thermally driven environmental forcing at El Tatio are important, if not dominant factors shaping the morphology of these digitate structures. Our study sheds light on the relative contributions of biogenic and abiogenic factors in sinter formation in geothermal systems, with geobiological implications for the cautious interpretation of stromatolite-like features in ancient silica deposits on Earth and Mars.
Collapse
Affiliation(s)
- Jian Gong
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Dylan T. Wilmeth
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
- Equipe GéomicrobiologieInstitut Universitaire Européen de la MerPlouzanéFrance
| | - Kimberly D. Myers
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
| | - Martin Homann
- Department of Earth SciencesUniversity College LondonLondonUK
| | - Gernot Arp
- Geobiology DivisionGeoscience CentreGeorg‐August‐Universität GöttingenGöttingenGermany
| | | | - Mark A. van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
| |
Collapse
|
12
|
Abstract
The ancestors of cyanobacteria generated Earth's first biogenic molecular oxygen, but how they dealt with oxidative stress remains unconstrained. Here we investigate when superoxide dismutase enzymes (SODs) capable of removing superoxide free radicals evolved and estimate when Cyanobacteria originated. Our Bayesian molecular clocks, calibrated with microfossils, predict that stem Cyanobacteria arose 3300-3600 million years ago. Shortly afterwards, we find phylogenetic evidence that ancestral cyanobacteria used SODs with copper and zinc cofactors (CuZnSOD) during the Archaean. By the Paleoproterozoic, they became genetically capable of using iron, nickel, and manganese as cofactors (FeSOD, NiSOD, and MnSOD respectively). The evolution of NiSOD is particularly intriguing because it corresponds with cyanobacteria's invasion of the open ocean. Our analyses of metalloenzymes dealing with reactive oxygen species (ROS) now demonstrate that marine geochemical records alone may not predict patterns of metal usage by phototrophs from freshwater and terrestrial habitats.
Collapse
|
13
|
Chraiki I, Bouougri EH, Chi Fru E, Lazreq N, Youbi N, Boumehdi A, Aubineau J, Fontaine C, El Albani A. A 571 million-year-old alkaline volcanic lake photosynthesizing microbial community, the Anti-atlas, Morocco. GEOBIOLOGY 2021; 19:105-124. [PMID: 33369021 DOI: 10.1111/gbi.12425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The Ediacaran period coincides with the emergence of ancestral animal lineages and cyanobacteria capable of thriving in nutrient deficient oceans which together with photosynthetic eukaryotic dominance, culminated in the rapid oxygenation of the Ediacaran atmosphere. However, ecological evidence for the colonization of the Ediacaran terrestrial biosphere by photosynthetic communities and their contribution to the oxygenation of the biosphere at this time is very sparse. Here, we expand the repertoire of Ediacaran habitable environments to a specific microbial community that thrived in an extreme alkaline volcanic lake 571 Myr ago in the Anti-atlas of Morocco. The microbial fabrics preserve evidence of primary growth structures, comprised of two main microbialitic units, with the lower section consisting of irregular and patchy thrombolytic mesoclots associated with composite microbialitic domes. Calcirudite interbeds, dominated by wave-rippled sandy calcarenites and stromatoclasts, fill the interdome troughs and seal the dome tops. A meter-thick epiclastic stromatolite bed grading upwards from a dominantly flat to wavy laminated base, transitions into low convex laminae consisting of decimeter to meter-thick dome-shaped stromatolitic columns, overlies the thrombolitic and composite microbialitic facies. Microbialitic beds constructed during periods of limited clastic input, and underlain by coarse-grained microbialite-derived clasts and by the wave-rippled calcarenites, suggest high-energy events associated with lake expansion. High-resolution microscopy revealed spherulitic aggregates and structures reminiscent of coccoidal microbial cell casts and mineralized extra-polymeric substances (EPS). The primary fabrics and multistage diagenetic features, represented by active carbonate production, photosynthesizing microbial communities, photosynthetic gas bubbles, gas escape structures, and tufted mats, suggest specialized oxygenic photosynthesizers thriving in alkaline volcanic lakes, contributed toward oxygen variability in the Ediacaran terrestrial biosphere.
Collapse
Affiliation(s)
- Ibtissam Chraiki
- Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - El Hafid Bouougri
- Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Ernest Chi Fru
- Centre for Geobiology and Geochemistry, College of Physical and Engineering Sciences, School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
| | - Nezha Lazreq
- Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Nasrrddine Youbi
- Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- Instituto Dom Luiz, University of Lisbon, Lisbon, Portugal
- Faculty of Geology and Geography, Tomsk State University, Tomsk, Russia
| | - Ahmed Boumehdi
- Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- Instituto Dom Luiz, University of Lisbon, Lisbon, Portugal
| | | | - Claude Fontaine
- CNRS IC2MP UMR 7285, University of Poitiers, Poitiers, France
| | | |
Collapse
|
14
|
Greco C, Andersen DT, Hawes I, Bowles AMC, Yallop ML, Barker G, Jungblut AD. Microbial Diversity of Pinnacle and Conical Microbial Mats in the Perennially Ice-Covered Lake Untersee, East Antarctica. Front Microbiol 2020; 11:607251. [PMID: 33362751 PMCID: PMC7759091 DOI: 10.3389/fmicb.2020.607251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023] Open
Abstract
Antarctic perennially ice-covered lakes provide a stable low-disturbance environment where complex microbially mediated structures can grow. Lake Untersee, an ultra-oligotrophic lake in East Antarctica, has the lake floor covered in benthic microbial mat communities, where laminated organo-sedimentary structures form with three distinct, sympatric morphologies: small, elongated cuspate pinnacles, large complex cones and flat mats. We examined the diversity of prokaryotes and eukaryotes in pinnacles, cones and flat microbial mats using high-throughput sequencing of 16S and 18S rRNA genes and assessed how microbial composition may underpin the formation of these distinct macroscopic mat morphologies under the same environmental conditions. Our analysis identified distinct clustering of microbial communities according to mat morphology. The prokaryotic communities were dominated by Cyanobacteria, Proteobacteria, Verrucomicrobia, Planctomycetes, and Actinobacteria. While filamentous Tychonema cyanobacteria were common in all mat types, Leptolyngbya showed an increased relative abundance in the pinnacle structures only. Our study provides the first report of the eukaryotic community structure of Lake Untersee benthic mats, which was dominated by Ciliophora, Chlorophyta, Fungi, Cercozoa, and Discicristata. The eukaryote richness was lower than for prokaryote assemblages and no distinct clustering was observed between mat morphologies. These findings suggest that cyanobacterial assemblages and potentially other bacteria and eukaryotes may influence structure morphogenesis, allowing distinct structures to form across a small spatial scale.
Collapse
Affiliation(s)
- Carla Greco
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Dale T Andersen
- Carl Sagan Center, SETI Institute, Mountain View, CA, United States
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga, New Zealand
| | | | - Marian L Yallop
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Gary Barker
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Anne D Jungblut
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| |
Collapse
|
15
|
Catling DC, Zahnle KJ. The Archean atmosphere. SCIENCE ADVANCES 2020; 6:eaax1420. [PMID: 32133393 PMCID: PMC7043912 DOI: 10.1126/sciadv.aax1420] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/10/2019] [Indexed: 05/05/2023]
Abstract
The atmosphere of the Archean eon-one-third of Earth's history-is important for understanding the evolution of our planet and Earth-like exoplanets. New geological proxies combined with models constrain atmospheric composition. They imply surface O2 levels <10-6 times present, N2 levels that were similar to today or possibly a few times lower, and CO2 and CH4 levels ranging ~10 to 2500 and 102 to 104 times modern amounts, respectively. The greenhouse gas concentrations were sufficient to offset a fainter Sun. Climate moderation by the carbon cycle suggests average surface temperatures between 0° and 40°C, consistent with occasional glaciations. Isotopic mass fractionation of atmospheric xenon through the Archean until atmospheric oxygenation is best explained by drag of xenon ions by hydrogen escaping rapidly into space. These data imply that substantial loss of hydrogen oxidized the Earth. Despite these advances, detailed understanding of the coevolving solid Earth, biosphere, and atmosphere remains elusive, however.
Collapse
Affiliation(s)
- David C. Catling
- Department of Earth and Space Sciences and cross-campus Astrobiology Program, Box 351310, University of Washington, Seattle, WA 98195, USA
| | - Kevin J. Zahnle
- Space Sciences Division, NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035, USA
| |
Collapse
|
16
|
Momper L, Hu E, Moore KR, Skoog EJ, Tyler M, Evans AJ, Bosak T. Metabolic versatility in a modern lineage of cyanobacteria from terrestrial hot springs. Free Radic Biol Med 2019; 140:224-232. [PMID: 31163257 DOI: 10.1016/j.freeradbiomed.2019.05.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 01/23/2023]
Abstract
The extent of oxygenated environments on the early Earth was much lower than today, and cyanobacteria were critical players in Earth's shift from widespread anoxia to oxygenated surface environments. Extant cyanobacteria that aggregate into cones, tufts and ridges are used to understand the long record of photosynthesis and microbe-mineral interactions during times when oxygen was much lower, i.e., the Archean and the Proterozoic. To better understand the metabolic versatility and physiological properties of these organisms, we examined publicly available genomes of cyanobacteria from modern terrestrial hydrothermal systems and a newly sequenced genome of a cyanobacterium isolated from conical and ridged microbialites that grow in occasionally sulfidic hydrothermal springs in Yellowstone National Park, USA. Phylogenomic analyses reveal that cyanobacteria from globally distributed terrestrial and shallow marine hydrothermal systems form a monophyletic clade within the Cyanobacteria phylum. Comparative genomics of this clade reveals the genetic capacity for oxygenic photosynthesis that uses photosystems I and II, and anoxygenic photosynthesis that uses a putative sulfide quinone reductase to oxidize sulfide and bypass photosystem II. Surprisingly large proportions of the newly sequenced genome from Yellowstone National Park are also dedicated to secondary metabolite production (15.1-15.6%), of which ∼6% can be attributed to antibiotic production and resistance genes. All this may be advantageous to benthic, mat-forming photosynthesizers that have to compete for light and nutrients in sporadically or permanently sulfidic environments, and may have also improved the tolerance of ancient counterparts of these cyanobacteria to sulfidic conditions in benthic communities that colonized the coastal margins in the Archean and the Proterozoic.
Collapse
Affiliation(s)
- Lily Momper
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eileen Hu
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kelsey R Moore
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emilie J Skoog
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Madeline Tyler
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Alexander J Evans
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA
| | - Tanja Bosak
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
17
|
Demoulin CF, Lara YJ, Cornet L, François C, Baurain D, Wilmotte A, Javaux EJ. Cyanobacteria evolution: Insight from the fossil record. Free Radic Biol Med 2019; 140:206-223. [PMID: 31078731 PMCID: PMC6880289 DOI: 10.1016/j.freeradbiomed.2019.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/13/2019] [Accepted: 05/05/2019] [Indexed: 11/07/2022]
Abstract
Cyanobacteria played an important role in the evolution of Early Earth and the biosphere. They are responsible for the oxygenation of the atmosphere and oceans since the Great Oxidation Event around 2.4 Ga, debatably earlier. They are also major primary producers in past and present oceans, and the ancestors of the chloroplast. Nevertheless, the identification of cyanobacteria in the early fossil record remains ambiguous because the morphological criteria commonly used are not always reliable for microfossil interpretation. Recently, new biosignatures specific to cyanobacteria were proposed. Here, we review the classic and new cyanobacterial biosignatures. We also assess the reliability of the previously described cyanobacteria fossil record and the challenges of molecular approaches on modern cyanobacteria. Finally, we suggest possible new calibration points for molecular clocks, and strategies to improve our understanding of the timing and pattern of the evolution of cyanobacteria and oxygenic photosynthesis.
Collapse
Affiliation(s)
- Catherine F Demoulin
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium.
| | - Yannick J Lara
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| | - Luc Cornet
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium; Eukaryotic Phylogenomics, InBioS-PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Camille François
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| | - Denis Baurain
- Eukaryotic Phylogenomics, InBioS-PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBioS-CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| |
Collapse
|
18
|
Braakman R. Evolution of cellular metabolism and the rise of a globally productive biosphere. Free Radic Biol Med 2019; 140:172-187. [PMID: 31082508 DOI: 10.1016/j.freeradbiomed.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023]
Abstract
Metabolic processes in cells and chemical processes in the environment are fundamentally intertwined and have evolved in concert for most of Earth's existence. Here I argue that intrinsic properties of cellular metabolism imposed central constraints on the historical trajectories of biopsheric productivity and atmospheric oxygenation. Photosynthesis depends on iron, but iron is highly insoluble under the aerobic conditions produced by oxygenic photosynthesis. These counteracting constraints led to two major stages of Earth oxygenation. After a cyanobacteria-driven biospheric expansion near the Archean-Proterozoic boundary, productivity remained largely restricted to continental boundaries and shallow aquatic environments where weathering inputs made iron more accessible. The anoxic deep open ocean was rich in free iron during the Proterozoic, but this iron was largely inaccessible, partly because an otherwise nutrient-poor ocean was limiting to photosynthesis, but also because a photosynthetic expansion would have quenched its own iron supply. Near the Proterozoic-Phanerozoic boundary, bioenergetics innovations allowed eukaryotic photosynthesis to overcome these interconnected negative feedbacks and begin expanding into the deep open oceans and onto the continents, where nutrients are inherently harder to come by. Key insights into what drove the ecological rise of eukaryotic photosynthesis emerge from analyses of marine Synechococcus and Prochlorococcus, abundant marine picocyanobacteria whose ancestors colonized the oceans in the Neoproterozoic. The reconstructed evolution of this group reveals a sequence of innovations that ultimately produced a form of photosynthesis in Prochlorococcus that is more like that of green plant cells than other cyanobacteria. Innovations increased the energy flux of cells, thereby enhancing their ability to acquire sparse nutrients, and as by-product also increased the production of organic carbon waste. Some of these organic waste products had the ability to chelate iron and make it bioavailable, thereby indirectly pushing the oceans through a transition from an anoxic state rich in free iron to an oxygenated state with organic carbon-bound iron. Resulting conditions (and parallel processes on the continents) in turn led to a series of positive feedbacks that increased the availability of other nutrients, thereby promoting the rise of a globally productive biosphere. In addition to the occurrence of major biospheric expansions, the several hundred million-year periods around the Archean-Proterozoic and Proterozoic-Phanerozoic boundaries share a number of other parallels. Both epochs have also been linked to major carbon cycle perturbations and global glaciations, as well as changes in the nature of plate tectonics and increases in continental exposure and weathering. This suggests the dynamics of life and Earth are intimately intertwined across many levels and that general principles governed transitions in these coupled dynamics at both times in Earth history.
Collapse
Affiliation(s)
- Rogier Braakman
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, USA; Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, USA.
| |
Collapse
|
19
|
Aubineau J, El Albani A, Bekker A, Somogyi A, Bankole OM, Macchiarelli R, Meunier A, Riboulleau A, Reynaud JY, Konhauser KO. Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse weathering on early Earth. Nat Commun 2019; 10:2670. [PMID: 31209248 PMCID: PMC6572813 DOI: 10.1038/s41467-019-10620-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/20/2019] [Indexed: 01/12/2023] Open
Abstract
Illitisation requires potassium incorporation into a smectite precursor, a process akin to reverse weathering. However, it remains unclear whether microbes facilitate K+ uptake to the sediments and whether illitisation was important in the geological past. The 2.1 billion-year-old Francevillian Series of Gabon has been shown to host mat-related structures (MRS) and, in this regard, these rocks offer a unique opportunity to test whether ancient microbes induced illitisation. Here, we show high K content confined to illite particles that are abundant in the facies bearing MRS, but not in the host sandstone and black shale. This observation suggests that microbial biofilms trapped K+ from the seawater and released it into the pore-waters during respiration, resulting in illitisation. The K-rich illite developed exclusively in the fossilized MRS thus provides a new biosignature for metasediments derived from K-feldspar-depleted rocks that were abundant crustal components on ancient Earth.
Collapse
Affiliation(s)
- Jérémie Aubineau
- UMR 7285 CNRS IC2MP, University of Poitiers, Poitiers, 86073, France
| | | | - Andrey Bekker
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA
| | - Andrea Somogyi
- Nanoscopium Beamline Synchrotron Soleil, BP 48, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - Olabode M Bankole
- UMR 7285 CNRS IC2MP, University of Poitiers, Poitiers, 86073, France
| | - Roberto Macchiarelli
- Department of Geosciences, University of Poitiers, Poitiers, 86073, France
- Department of Prehistory, UMR 7194 CNRS, National Museum of Natural History, Paris, 75005, France
| | - Alain Meunier
- UMR 7285 CNRS IC2MP, University of Poitiers, Poitiers, 86073, France
| | - Armelle Riboulleau
- UMR 8187 CNRS LOG, University of Lille, ULCO, Villeneuve d'Ascq, 59655, France
| | - Jean-Yves Reynaud
- UMR 8187 CNRS LOG, University of Lille, ULCO, Villeneuve d'Ascq, 59655, France
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| |
Collapse
|
20
|
Timing the Evolutionary Advent of Cyanobacteria and the Later Great Oxidation Event Using Gene Phylogenies of a Sunscreen. mBio 2019; 10:mBio.00561-19. [PMID: 31113897 PMCID: PMC6529634 DOI: 10.1128/mbio.00561-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The biosynthesis of the unique cyanobacterial (oxyphotobacterial) indole-phenolic UVA sunscreen, scytonemin, is coded for in a conserved operon that contains both core metabolic genes and accessory, aromatic amino acid biosynthesis genes dedicated to supplying scytonemin's precursors. Comparative genomics shows conservation of this operon in many, but not all, cyanobacterial lineages. Phylogenetic analyses of the operon's aromatic amino acid genes indicate that five of them were recruited into the operon after duplication events of their respective housekeeping cyanobacterial cognates. We combined the fossil record of cyanobacteria and relaxed molecular clock models to obtain multiple estimates of these duplication events, setting a minimum age for the evolutionary advent of scytonemin at 2.1 ± 0.3 billion years. The same analyses were used to estimate the advent of cyanobacteria as a group (and thus the appearance of oxygenic photosynthesis), at 3.6 ± 0.2 billion years before present. Post hoc interpretation of 16S rRNA-based Bayesian analyses was consistent with these estimates. Because of physiological constraints on the use of UVA sunscreens in general, and the biochemical constraints of scytonemin in particular, scytonemin's age must postdate the time when Earth's atmosphere turned oxic, known as the Great Oxidation Event (GOE). Indeed, our biological estimate is in agreement with independent geochemical estimates for the GOE. The difference between the estimated ages of oxygenic photosynthesis and the GOE indicates the long span (on the order of a billion years) of the era of "oxygen oases," when oxygen was available locally but not globally.IMPORTANCE The advent of cyanobacteria, with their invention of oxygenic photosynthesis, and the Great Oxidation Event are arguably among the most important events in the evolutionary history of life on Earth. Oxygen is a significant toxicant to all life, but its accumulation in the atmosphere also enabled the successful development and proliferation of many aerobic organisms, especially metazoans. The currently favored dating of the Great Oxidation Event is based on the geochemical rock record. Similarly, the advent of cyanobacteria is also often drawn from the same estimates because in older rocks paleontological evidence is scarce or has been discredited. Efforts to obtain molecular evolutionary alternatives have offered widely divergent estimates. Our analyses provide a novel means to circumvent these limitations and allow us to estimate the large time gap between the two events.
Collapse
|
21
|
Cardona T, Sánchez‐Baracaldo P, Rutherford AW, Larkum AW. Early Archean origin of Photosystem II. GEOBIOLOGY 2019; 17:127-150. [PMID: 30411862 PMCID: PMC6492235 DOI: 10.1111/gbi.12322] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 05/09/2023]
Abstract
Photosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here, we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, we hypothesize that this early Archean photosystem was capable of water oxidation to oxygen and had already evolved protection mechanisms against the formation of reactive oxygen species. This would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life SciencesImperial College LondonLondonUK
| | | | | | | |
Collapse
|
22
|
Pessi IS, Pushkareva E, Lara Y, Borderie F, Wilmotte A, Elster J. Marked Succession of Cyanobacterial Communities Following Glacier Retreat in the High Arctic. MICROBIAL ECOLOGY 2019; 77:136-147. [PMID: 29796758 DOI: 10.1007/s00248-018-1203-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria are important colonizers of recently deglaciated proglacial soil but an in-depth investigation of cyanobacterial succession following glacier retreat has not yet been carried out. Here, we report on the successional trajectories of cyanobacterial communities in biological soil crusts (BSCs) along a 100-year deglaciation gradient in three glacier forefields in central Svalbard, High Arctic. Distance from the glacier terminus was used as a proxy for soil age (years since deglaciation), and cyanobacterial abundance and community composition were evaluated by epifluorescence microscopy and pyrosequencing of partial 16S rRNA gene sequences, respectively. Succession was characterized by a decrease in phylotype richness and a marked shift in community structure, resulting in a clear separation between early (10-20 years since deglaciation), mid (30-50 years), and late (80-100 years) communities. Changes in cyanobacterial community structure were mainly connected with soil age and associated shifts in soil chemical composition (mainly moisture, SOC, SMN, K, and Na concentrations). Phylotypes associated with early communities were related either to potentially novel lineages (< 97.5% similar to sequences currently available in GenBank) or lineages predominantly restricted to polar and alpine biotopes, suggesting that the initial colonization of proglacial soil is accomplished by cyanobacteria transported from nearby glacial environments. Late communities, on the other hand, included more widely distributed genotypes, which appear to establish only after the microenvironment has been modified by the pioneering taxa.
Collapse
Affiliation(s)
- Igor S Pessi
- InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium.
- Department of Microbiology, University of Helsinki, P.O. Box 56 (Viikinkaari 9), 00014, Helsinki, Finland.
| | - Ekaterina Pushkareva
- Centre for Polar Ecology, University of South Bohemia, Na Zlaté Stoce 3, 37005, České Budějovice, Czech Republic
| | - Yannick Lara
- InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
- UR Geology - Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, Allée du Six Août14, B18, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| | - Fabien Borderie
- InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
- Laboratoire Chrono-environnement, UMR 6249 CNRS Université Bourgogne Franche-Comté UsC INRA, Campus La Bouloie, Route de Gray 16, 25030, Besançon, France
| | - Annick Wilmotte
- InBioS - Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000, Liège, Belgium
| | - Josef Elster
- Centre for Polar Ecology, University of South Bohemia, Na Zlaté Stoce 3, 37005, České Budějovice, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 37982, Třeboň, Czech Republic
| |
Collapse
|
23
|
Wilmeth DT, Johnson HA, Stamps BW, Berelson WM, Stevenson BS, Nunn HS, Grim SL, Dillon ML, Paradis O, Corsetti FA, Spear JR. Environmental and Biological Influences on Carbonate Precipitation Within Hot Spring Microbial Mats in Little Hot Creek, CA. Front Microbiol 2018; 9:1464. [PMID: 30057571 PMCID: PMC6053513 DOI: 10.3389/fmicb.2018.01464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/12/2018] [Indexed: 11/18/2022] Open
Abstract
Microbial mats are found in a variety of modern environments, with evidence for their presence as old as the Archean. There is much debate about the rates and conditions of processes that eventually lithify and preserve mats as microbialites. Here, we apply novel tracer experiments to quantify both mat biomass addition and the formation of CaCO3. Microbial mats from Little Hot Creek (LHC), California, contain calcium carbonate that formed within multiple mat layers, and thus constitute a good test case to investigate the relationship between the rate of microbial mat growth and carbonate precipitation. The laminated LHC mats were divided into four layers via color and fabric, and waters within and above the mat were collected to determine their carbonate saturation states. Samples of the microbial mat were also collected for 16S rRNA analysis of microbial communities in each layer. Rates of carbonate precipitation and carbon fixation were measured in the laboratory by incubating homogenized samples from each mat layer with δ13C-labeled HCO3- for 24 h. Comparing these rates with those from experimental controls, poisoned with NaN3 and HgCl2, allowed for differences in biogenic and abiogenic precipitation to be determined. Carbon fixation rates were highest in the top layer of the mat (0.17% new organic carbon/day), which also contained the most phototrophs. Isotope-labeled carbonate was precipitated in all four layers of living and poisoned mat samples. In the top layer, the precipitation rate in living mat samples was negligible although abiotic precipitation occurred. In contrast, the bottom three layers exhibited biologically enhanced carbonate precipitation. The lack of correlation between rates of carbon fixation and biogenic carbonate precipitation suggests that processes other than autotrophy may play more significant roles in the preservation of mats as microbialites.
Collapse
Affiliation(s)
- Dylan T. Wilmeth
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Hope A. Johnson
- Department of Biological Science, California State University, Fullerton, Fullerton, CA, United States
| | - Blake W. Stamps
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - William M. Berelson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Bradley S. Stevenson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Heather S. Nunn
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Sharon L. Grim
- Geomicrobiology Laboratory, Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Megan L. Dillon
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, United States
| | - Olivia Paradis
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Frank A. Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - John R. Spear
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|
24
|
Gérard E, De Goeyse S, Hugoni M, Agogué H, Richard L, Milesi V, Guyot F, Lecourt L, Borensztajn S, Joseph MB, Leclerc T, Sarazin G, Jézéquel D, Leboulanger C, Ader M. Key Role of Alphaproteobacteria and Cyanobacteria in the Formation of Stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Front Microbiol 2018; 9:796. [PMID: 29872424 PMCID: PMC5972316 DOI: 10.3389/fmicb.2018.00796] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
Lake Dziani Dzaha is a thalassohaline tropical crater lake located on the "Petite Terre" Island of Mayotte (Comoros archipelago, Western Indian Ocean). Stromatolites are actively growing in the shallow waters of the lake shores. These stromatolites are mainly composed of aragonite with lesser proportions of hydromagnesite, calcite, dolomite, and phyllosilicates. They are morphologically and texturally diverse ranging from tabular covered by a cauliflower-like crust to columnar ones with a smooth surface. High-throughput sequencing of bacterial and archaeal 16S rRNA genes combined with confocal laser scanning microscopy (CLSM) analysis revealed that the microbial composition of the mats associated with the stromatolites was clearly distinct from that of the Arthrospira-dominated lake water. Unicellular-colonial Cyanobacteria belonging to the Xenococcus genus of the Pleurocapsales order were detected in the cauliflower crust mats, whereas filamentous Cyanobacteria belonging to the Leptolyngbya genus were found in the smooth surface mats. Observations using CLSM, scanning electron microscopy (SEM) and Raman spectroscopy indicated that the cauliflower texture consists of laminations of aragonite, magnesium-silicate phase and hydromagnesite. The associated microbial mat, as confirmed by laser microdissection and whole-genome amplification (WGA), is composed of Pleurocapsales coated by abundant filamentous and coccoid Alphaproteobacteria. These phototrophic Alphaproteobacteria promote the precipitation of aragonite in which they become incrusted. In contrast, the Pleurocapsales are not calcifying but instead accumulate silicon and magnesium in their sheaths, which may be responsible for the formation of the Mg-silicate phase found in the cauliflower crust. We therefore propose that Pleurocapsales and Alphaproteobacteria are involved in the formation of two distinct mineral phases present in the cauliflower texture: Mg-silicate and aragonite, respectively. These results point out the role of phototrophic Alphaproteobacteria in the formation of stromatolites, which may open new perspective for the analysis of the fossil record.
Collapse
Affiliation(s)
- Emmanuelle Gérard
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Siham De Goeyse
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Mylène Hugoni
- Université Lyon 1, UMR CNRS 5557 / INRA 1418, Ecologie Microbienne, Villeurbanne, France
| | - Hélène Agogué
- UMR 7266 CNRS-Université de la Rochelle, LIttoral ENvironnement Et Sociétés, La Rochelle, France
| | - Laurent Richard
- School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan
| | - Vincent Milesi
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - François Guyot
- Museum National d’Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS Sorbonne Universités, Université Pierre et Marie Curie, Institut de Recherche pour le Développement UMR 206, Paris, France
| | - Léna Lecourt
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Stephan Borensztajn
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Béatrice Joseph
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Thomas Leclerc
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Gérard Sarazin
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Didier Jézéquel
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | | | - Magali Ader
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
25
|
McMahon S, Bosak T, Grotzinger JP, Milliken RE, Summons RE, Daye M, Newman SA, Fraeman A, Williford KH, Briggs DEG. A Field Guide to Finding Fossils on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2018; 123:1012-1040. [PMID: 30034979 PMCID: PMC6049883 DOI: 10.1029/2017je005478] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 05/05/2023]
Abstract
The Martian surface is cold, dry, exposed to biologically harmful radiation and apparently barren today. Nevertheless, there is clear geological evidence for warmer, wetter intervals in the past that could have supported life at or near the surface. This evidence has motivated National Aeronautics and Space Administration and European Space Agency to prioritize the search for any remains or traces of organisms from early Mars in forthcoming missions. Informed by (1) stratigraphic, mineralogical and geochemical data collected by previous and current missions, (2) Earth's fossil record, and (3) experimental studies of organic decay and preservation, we here consider whether, how, and where fossils and isotopic biosignatures could have been preserved in the depositional environments and mineralizing media thought to have been present in habitable settings on early Mars. We conclude that Noachian-Hesperian Fe-bearing clay-rich fluvio-lacustrine siliciclastic deposits, especially where enriched in silica, currently represent the most promising and best understood astropaleontological targets. Siliceous sinters would also be an excellent target, but their presence on Mars awaits confirmation. More work is needed to improve our understanding of fossil preservation in the context of other environments specific to Mars, particularly within evaporative salts and pore/fracture-filling subsurface minerals.
Collapse
Affiliation(s)
- S. McMahon
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
- UK Centre for Astrobiology, School of Physics and AstronomyUniversity of EdinburghEdinburghUK
| | - T. Bosak
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - J. P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - R. E. Milliken
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - R. E. Summons
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - M. Daye
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - S. A. Newman
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - K. H. Williford
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - D. E. G. Briggs
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
| |
Collapse
|
26
|
Sallstedt T, Bengtson S, Broman C, Crill PM, Canfield DE. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India. GEOBIOLOGY 2018; 16:139-159. [PMID: 29380943 DOI: 10.1111/gbi.12274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 12/17/2017] [Indexed: 05/24/2023]
Abstract
Fossil microbiotas are rare in the early rock record, limiting the type of ecological information extractable from ancient microbialites. In the absence of body fossils, emphasis may instead be given to microbially derived features, such as microbialite growth patterns, microbial mat morphologies, and the presence of fossilized gas bubbles in lithified mats. The metabolic affinity of micro-organisms associated with phosphatization may reveal important clues to the nature and accretion of apatite-rich microbialites. Stromatolites from the 1.6 Ga Chitrakoot Formation (Semri Group, Vindhyan Supergroup) in central India contain abundant fossilized bubbles interspersed within fine-grained in situ-precipitated apatite mats with average δ13 Corg indicative of carbon fixation by the Calvin cycle. In addition, the mats hold a synsedimentary fossil biota characteristic of cyanobacterial and rhodophyte morphotypes. Phosphatic oncoid cone-like stromatolites from the Paleoproterozoic Aravalli Supergroup (Jhamarkotra Formation) comprise abundant mineralized bubbles enmeshed within tufted filamentous mat fabrics. Construction of these tufts is considered to be the result of filamentous bacteria gliding within microbial mats, and as fossilized bubbles within pristine mat laminae can be used as a proxy for oxygenic phototrophy, this provides a strong indication for cyanobacterial activity in the Aravalli mounds. We suggest that the activity of oxygenic phototrophs may have been significant for the formation of apatite in both Vindhyan and Aravalli stromatolites, mainly by concentrating phosphate and creating steep diurnal redox gradients within mat pore spaces, promoting apatite precipitation. The presence in the Indian stromatolites of alternating apatite-carbonate lamina may result from local variations in pH and oxygen levels caused by photosynthesis-respiration in the mats. Altogether, this study presents new insights into the ecology of ancient phosphatic stromatolites and warrants further exploration into the role of oxygen-producing biotas in the formation of Paleoproterozoic shallow-basin phosphorites.
Collapse
Affiliation(s)
- T Sallstedt
- Department of Paleobiology, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Biology, Nordic Center for Earth Evolution (NordCEE) and University of Southern Denmark, Odense, Denmark
| | - S Bengtson
- Department of Paleobiology, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Biology, Nordic Center for Earth Evolution (NordCEE) and University of Southern Denmark, Odense, Denmark
| | - C Broman
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | - P M Crill
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | - D E Canfield
- Department of Biology, Nordic Center for Earth Evolution (NordCEE) and University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Bradley JA, Daille LK, Trivedi CB, Bojanowski CL, Stamps BW, Stevenson BS, Nunn HS, Johnson HA, Loyd SJ, Berelson WM, Corsetti FA, Spear JR. Carbonate-rich dendrolitic cones: insights into a modern analog for incipient microbialite formation, Little Hot Creek, Long Valley Caldera, California. NPJ Biofilms Microbiomes 2017; 3:32. [PMID: 29177068 PMCID: PMC5698408 DOI: 10.1038/s41522-017-0041-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/24/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ancient putative microbial structures that appear in the rock record commonly serve as evidence of early life on Earth, but the details of their formation remain unclear. The study of modern microbial mat structures can help inform the properties of their ancient counterparts, but modern mineralizing mat systems with morphological similarity to ancient structures are rare. Here, we characterize partially lithified microbial mats containing cm-scale dendrolitic coniform structures from a geothermal pool ("Cone Pool") at Little Hot Creek, California, that if fully lithified, would resemble ancient dendrolitic structures known from the rock record. Light and electron microscopy revealed that the cm-scale 'dendrolitic cones' were comprised of intertwined microbial filaments and grains of calcium carbonate. The degree of mineralization (carbonate content) increased with depth in the dendrolitic cones. Sequencing of 16S rRNA gene libraries revealed that the dendrolitic cone tips were enriched in OTUs most closely related to the genera Phormidium, Leptolyngbya, and Leptospira, whereas mats at the base and adjacent to the dendrolitic cones were enriched in Synechococcus. We hypothesize that the consumption of nutrients during autotrophic and heterotrophic growth may promote movement of microbes along diffusive nutrient gradients, and thus microbialite growth. Hour-glass shaped filamentous structures present in the dendrolitic cones may have formed around photosynthetically-produced oxygen bubbles-suggesting that mineralization occurs rapidly and on timescales of the lifetime of a bubble. The dendrolitic-conical structures in Cone Pool constitute a modern analog of incipient microbialite formation by filamentous microbiota that are morphologically distinct from any structure described previously. Thus, we provide a new model system to address how microbial mats may be preserved over geological timescales.
Collapse
Affiliation(s)
- James A. Bradley
- Department of Earth Sciences, University of Southern California, Los Angeles, CA USA
| | - Leslie K. Daille
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christopher B. Trivedi
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO USA
| | - Caitlin L. Bojanowski
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 USA
| | - Blake W. Stamps
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO USA
| | - Bradley S. Stevenson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK USA
| | - Heather S. Nunn
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK USA
| | - Hope A. Johnson
- Department of Biological Science, California State University, Fullerton, Fullerton, CA USA
| | - Sean J. Loyd
- Department of Geological Sciences, California State University, Fullerton, Fullerton, CA USA
| | - William M. Berelson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA USA
| | - Frank A. Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, CA USA
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO USA
| |
Collapse
|
28
|
Hamilton TL, Welander PV, Albrecht HL, Fulton JM, Schaperdoth I, Bird LR, Summons RE, Freeman KH, Macalady JL. Microbial communities and organic biomarkers in a Proterozoic-analog sinkhole. GEOBIOLOGY 2017; 15:784-797. [PMID: 29035021 DOI: 10.1111/gbi.12252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Little Salt Spring (Sarasota County, FL, USA) is a sinkhole with groundwater vents at ~77 m depth. The entire water column experiences sulfidic (~50 μM) conditions seasonally, resulting in a system poised between oxic and sulfidic conditions. Red pinnacle mats occupy the sediment-water interface in the sunlit upper basin of the sinkhole, and yielded 16S rRNA gene clones affiliated with Cyanobacteria, Chlorobi, and sulfate-reducing clades of Deltaproteobacteria. Nine bacteriochlorophyll e homologues and isorenieratene indicate contributions from Chlorobi, and abundant chlorophyll a and pheophytin a are consistent with the presence of Cyanobacteria. The red pinnacle mat contains hopanoids, including 2-methyl structures that have been interpreted as biomarkers for Cyanobacteria. A single sequence of hpnP, the gene required for methylation of hopanoids at the C-2 position, was recovered in both DNA and cDNA libraries from the red pinnacle mat. The hpnP sequence was most closely related to cyanobacterial hpnP sequences, implying that Cyanobacteria are a source of 2-methyl hopanoids present in the mat. The mats are capable of light-dependent primary productivity as evidenced by 13 C-bicarbonate photoassimilation. We also observed 13 C-bicarbonate photoassimilation in the presence of DCMU, an inhibitor of electron transfer to Photosystem II. Our results indicate that the mats carry out light-driven primary production in the absence of oxygen production-a mechanism that may have delayed the oxygenation of the Earth's oceans and atmosphere during the Proterozoic Eon. Furthermore, our observations of the production of 2-methyl hopanoids by Cyanobacteria under conditions of low oxygen and low light are consistent with the recovery of these structures from ancient black shales as well as their paucity in modern marine environments.
Collapse
Affiliation(s)
- T L Hamilton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - P V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - H L Albrecht
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - J M Fulton
- Department of Geosciences, Baylor University, Waco, TX, USA
| | - I Schaperdoth
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - L R Bird
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - R E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K H Freeman
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - J L Macalady
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
29
|
Judson OP. The energy expansions of evolution. Nat Ecol Evol 2017; 1:138. [DOI: 10.1038/s41559-017-0138] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/15/2017] [Indexed: 11/09/2022]
|
30
|
Allen JF. A Proposal for Formation of Archaean Stromatolites before the Advent of Oxygenic Photosynthesis. Front Microbiol 2016; 7:1784. [PMID: 27895626 PMCID: PMC5108776 DOI: 10.3389/fmicb.2016.01784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/24/2016] [Indexed: 01/31/2023] Open
Abstract
Stromatolites are solid, laminar structures of biological origin. Living examples are sparsely distributed and formed by cyanobacteria, which are oxygenic phototrophs. However, stromatolites were abundant between 3.4 and 2.4 Gyr, prior to the advent of cyanobacteria and oxygenic photosynthesis. Here I propose that many Archaean stromatolites were seeded at points of efflux of hydrogen sulfide from hydrothermal fields into shallow water, while their laminar composition arose from alternating modes of strictly anoxygenic photosynthetic metabolism. These changes were a redox regulatory response of gene expression to changing hydrogen sulfide concentration, which fluctuated with intermittent dilution by tidal action or by rainfall into surface waters. The proposed redox switch between modes of metabolism deposited sequential microbial mats. These mats gave rise to alternating carbonate sediments predicted to retain evidence of their origin in differing ratios of isotopes of carbon and sulfur and in organic content. The mats may have arisen either by replacement of microbial populations or by continuous lineages of protocyanobacteria in which a redox genetic switch selected between Types I and II photosynthetic reaction centers, and thus between photolithoautotrophic and photoorganoheterotrophic metabolism. In the latter case, and by 2.4 Gyr at the latest, a mutation had disabled the redox genetic switch to give simultaneous constitutive expression of both Types I and II reaction centers, and thus to the ability to extract electrons from manganese and then water. By this simple step, the first cyanobacterium had the dramatic advantage of emancipation from limiting supplies of inorganic electron donors, produced free molecular oxygen as a waste product, and initiated the Great Oxidation Event in Earth's history at the transition from the Archaean to the Paleoproterozoic.
Collapse
Affiliation(s)
- John F Allen
- Research Department of Genetics, Evolution and Environment, University College London London, UK
| |
Collapse
|
31
|
Chan CS, Emerson D, Luther GW. The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations. GEOBIOLOGY 2016; 14:509-528. [PMID: 27392195 DOI: 10.1111/gbi.12192] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Despite the historical and economic significance of banded iron formations (BIFs), we have yet to resolve the formation mechanisms. On modern Earth, neutrophilic microaerophilic Fe-oxidizing micro-organisms (FeOM) produce copious amounts of Fe oxyhydroxides, leading us to wonder whether similar organisms played a role in producing BIFs. To evaluate this, we review the current knowledge of modern microaerophilic FeOM in the context of BIF paleoenvironmental studies. In modern environments wherever Fe(II) and O2 co-exist, microaerophilic FeOM proliferate. These organisms grow in a variety of environments, including the marine water column redoxcline, which is where BIF precursor minerals likely formed. FeOM can grow across a range of O2 concentrations, measured as low as 2 μm to date, although lower concentrations have not been tested. While some extant FeOM can tolerate high O2 concentrations, many FeOM appear to prefer and thrive at low O2 concentrations (~3-25 μm). These are similar to the estimated dissolved O2 concentrations in the few hundred million years prior to the 'Great Oxidation Event' (GOE). We compare biotic and abiotic Fe oxidation kinetics in the presence of varying levels of O2 and show that microaerophilic FeOM contribute substantially to Fe oxidation, at rates fast enough to account for BIF deposition. Based on this synthesis, we propose that microaerophilic FeOM were capable of playing a significant role in depositing the largest, most well-known BIFs associated with the GOE, as well as afterward when global O2 levels increased.
Collapse
Affiliation(s)
- C S Chan
- Department of Geological Sciences, University of Delaware, and the Delaware Biotechnology Institute, Newark, DE, USA
- School of Marine Science and Policy, University of Delaware, Newark & Lewes, DE, USA
| | - D Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - G W Luther
- School of Marine Science and Policy, University of Delaware, Newark & Lewes, DE, USA
| |
Collapse
|
32
|
Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res 2016; 186-187:99-118. [PMID: 27242148 DOI: 10.1016/j.micres.2016.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
33
|
Ibarra Y, Corsetti FA. Lateral Comparative Investigation of Stromatolites: Astrobiological Implications and Assessment of Scales of Control. ASTROBIOLOGY 2016; 16:271-281. [PMID: 27058683 DOI: 10.1089/ast.2015.1388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The processes that govern the formation of stromatolites--structures that may represent macroscopic manifestation of microbial processes and a clear target for astrobiological investigation--occur at various scales (local versus regional), yet determining their relative importance remains a challenge, particularly for ancient deposits and/or if similar deposits are discovered elsewhere in the Solar System. We build upon the traditional multiscale level approach of investigation (micro-, meso-, macro-, mega-) by including a lateral comparative investigational component of fine- to large-scale features to determine the relative significance of local and/or nonlocal controls on stromatolite morphology, and in the process, help constrain the dominant influences on microbialite formation. In one example of lateral comparative investigation, lacustrine microbialites from the Miocene Barstow Formation (California) display two main mesofabrics: (1) micritic bands that drastically change in thickness and cannot directly be traced between adjacent decimeter-scale subunits and (2) sparry fibrous layers that are strikingly consistent across subunits, suggesting the formation of sparry fibrous layers was influenced by a process larger than the length scale between the subunits (likely lake chemistry). Microbialites from the uppermost Triassic Cotham Member, United Kingdom, occur as meter-scale mounds and contain a characteristic succession of laminated and dendrolitic mesofabrics. The same succession of laminated/dendrolitic couplets can be traced, not only from mound to mound, but over 100 km, indicating a regional-scale influence on very small structures (microns to centimeters) that would otherwise not be apparent without the lateral comparative approach, and demonstrating that the scale of the feature does not necessarily scale with the scope of the process. Thus, the combination of lateral comparative investigations and multiscale analyses can provide an effective approach for evaluating the dominant controls on stromatolite texture and morphology throughout the rock record and potentially on other planets via rover-scale analyses (e.g., Mars).
Collapse
Affiliation(s)
- Yadira Ibarra
- 1 Stanford University , Department of Earth System Science, Stanford, California
| | - Frank A Corsetti
- 2 Department of Earth Sciences, University of Southern California , Los Angeles, California
| |
Collapse
|
34
|
Abstract
Microfossils, stromatolites, and chemical biosignatures indicate that Earth became a biological planet more than 3.5 billion years ago, making most of life's history microbial. Proterozoic rocks preserve a rich record of cyanobacteria, including derived forms that differentiate multiple cell types. Stromatolites, in turn, show that microbial communities covered the seafloor from tidal flats to the base of the photic zone. The Archean record is more challenging to interpret, particularly on the question of cyanobacterial antiquity, which remains to be resolved. In the late Neoproterozoic Era, increasing oxygen and radiating eukaryotes altered the biosphere, with planktonic algae gaining ecological prominence in the water column, whereas seaweeds and, eventually, animals spread across shallow seafloors. From a microbial perspective, however, animals, algae, and, later, plants simply provided new opportunities for diversification, and, to this day, microbial metabolisms remain the only essential components of biogeochemical cycles.
Collapse
Affiliation(s)
- Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
35
|
Mackey TJ, Sumner DY, Hawes I, Jungblut AD, Andersen DT. Growth of modern branched columnar stromatolites in Lake Joyce, Antarctica. GEOBIOLOGY 2015; 13:373-390. [PMID: 25867791 DOI: 10.1111/gbi.12138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
Modern decimeter-scale columnar stromatolites from Lake Joyce, Antarctica, show a change in branching pattern during a period of lake level rise. Branching patterns correspond to a change in cyanobacterial community composition as preserved in authigenic calcite crystals. The transition in stromatolite morphology is preserved by mineralized layers that contain microfossils and cylindrical molds of cyanobacterial filaments. The molds are composed of two populations with different diameters. Large diameter molds (>2.8 μm) are abundant in calcite forming the oldest stromatolite layers, but are absent from younger layers. In contrast, <2.3 μm diameter molds are common in all stromatolites layers. Loss of large diameter molds corresponds to the transition from smooth-sided stromatolitic columns to branched and irregular columns. Mold diameters are similar to trichome diameters of the four most abundant living cyanobacteria morphotypes in Lake Joyce: Phormidium autumnale morphotypes have trichome diameters >3.5 μm, whereas Leptolyngbya antarctica, L. fragilis, and Pseudanabaena frigida morphotypes have diameters <2.3 μm. P. autumnale morphotypes were only common in mats at <12 m depth. Mats containing abundant P. autumnale morphotypes were smooth, whereas mats with few P. autumnale morphotypes contained small peaks and protruding bundles of filaments, suggesting that the absence of P. autumnale morphotypes allowed small-scale topography to develop on mats. Comparisons of living filaments and mold diameters suggest that P. autumnale morphotypes were present early in stromatolite growth, but disappeared from the community through time. We hypothesize that the mat-smoothing behavior of P. autumnale morphotypes inhibited nucleation of stromatolite branches. When P. autumnale morphotypes were excluded from the community, potentially reflecting a rise in lake level, short-wavelength roughness provided nuclei for stromatolite branches. This growth history provides a conceptual model for initiation of branched stromatolite growth resulting from a change in microbial community composition.
Collapse
Affiliation(s)
- T J Mackey
- Department of Earth and Planetary Sciences, University of California, Davis, CA, USA
| | - D Y Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, CA, USA
| | - I Hawes
- Gateway Antarctica, University of Canterbury, Christchurch, NZ
| | - A D Jungblut
- Department of Life Sciences, The Natural History Museum, London, UK
| | - D T Andersen
- Carl Sagan Center for the Study of Life in the Universe, SETI Institute, Mountain View, CA, USA
| |
Collapse
|
36
|
Pecoits E, Smith ML, Catling DC, Philippot P, Kappler A, Konhauser KO. Atmospheric hydrogen peroxide and Eoarchean iron formations. GEOBIOLOGY 2015; 13:1-14. [PMID: 25324177 DOI: 10.1111/gbi.12116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean-Early Paleoproterozoic (2.7-2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2 O2 ), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF.
Collapse
Affiliation(s)
- E Pecoits
- Equipe Géobiosphère, Institut de Physique du Globe-Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Bartley JK, Kah LC, Frank TD, Lyons TW. Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites. GEOBIOLOGY 2015; 13:15-32. [PMID: 25354129 DOI: 10.1111/gbi.12114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Offshore facies of the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada, preserve microbialites with unusual morphology. These microbialites grew in water depths greater than several tens of meters and correlate with high-relief conical stromatolites of the more proximal September Lake reef complex. The gross morphology of these microbial facies consists of ridge-like vertical supports draped by concave-upward, subhorizontal elements, resulting in tent-shaped cuspate microbialites with substantial primary void space. Morphological and petrographic analyses suggest a model wherein penecontemporaneous upward growth of ridge elements and development of subhorizontal draping elements initially resulted in a buoyantly supported, unlithified microbial form. Lithification began via precipitation within organic elements during microbialite growth. Mineralization either stabilized or facilitated collapse of initially neutrally buoyant microbialite forms. Microbial structures and breccias were then further stabilized by precipitation of marine herringbone cement. During late-stage diagenesis, remaining void space was occluded by ferroan dolomite cement. Cuspate microbialites are most similar to those found in offshore facies of Neoarchean carbonate platforms and to unlithified, buoyantly supported microbial mats in modern ice-covered Antarctic lakes. We suggest that such unusual microbialite morphologies are a product of the interaction between motile and non-motile communities under nutrient-limiting conditions, followed by early lithification, which served to preserve the resultant microbial form. The presence of marine herringbone cement, commonly associated with high dissolved inorganic carbon (DIC), low O2 conditions, also suggests growth in association with reducing environments at or near the seafloor or in conjunction with a geochemical interface. Predominance of coniform stromatolite forms in the Proterozoic--across a variety of depositional environments--may thus reflect a combination of heterogeneous nutrient distribution, potentially driven by variable redox conditions, and an elevated carbonate saturation state, which permits preservation of these unusual microbialite forms.
Collapse
Affiliation(s)
- J K Bartley
- Geology Department, Gustavus Adolphus College, St. Peter, MN, USA
| | | | | | | |
Collapse
|
38
|
Cavalier-Smith T. The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life. Cold Spring Harb Perspect Biol 2014; 6:a016006. [PMID: 25183828 PMCID: PMC4142966 DOI: 10.1101/cshperspect.a016006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three kinds of cells exist with increasingly complex membrane-protein targeting: Unibacteria (Archaebacteria, Posibacteria) with one cytoplasmic membrane (CM); Negibacteria with a two-membrane envelope (inner CM; outer membrane [OM]); eukaryotes with a plasma membrane and topologically distinct endomembranes and peroxisomes. I combine evidence from multigene trees, palaeontology, and cell biology to show that eukaryotes and archaebacteria are sisters, forming the clade neomura that evolved ~1.2 Gy ago from a posibacterium, whose DNA segregation and cell division were destabilized by murein wall loss and rescued by the evolving novel neomuran endoskeleton, histones, cytokinesis, and glycoproteins. Phagotrophy then induced coevolving serial major changes making eukaryote cells, culminating in two dissimilar cilia via a novel gliding-fishing-swimming scenario. I transfer Chloroflexi to Posibacteria, root the universal tree between them and Heliobacteria, and argue that Negibacteria are a clade whose OM, evolving in a green posibacterium, was never lost.
Collapse
|
39
|
Kumar D, Gaur JP. Growth and metal removal potential of a Phormidium bigranulatum-dominated mat following long-term exposure to elevated levels of copper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10279-10285. [PMID: 24793067 DOI: 10.1007/s11356-014-2920-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
The present study explores the tolerance and metal removal response of a well-developed 2-week-old Phormidium mat after long-term exposure to Cu(2+)-enriched medium. Cu(2+) enrichment inhibited increase in mat biomass in a concentration-dependent manner. Mat area and the number of entrapped air bubbles decreased as Cu(2+) concentration increased in the medium. Decrease in number of air bubbles obviously reflects the adverse effect of Cu(2+) on photosynthetic performance of the mat. Metal enrichment did not substantially alter the amount of pigments, such as chlorophyll a, chlorophyll b, carotenoids, and phycocyanin, in the mat. Enhancement of Cu(2+) concentration in the medium led to changes in species composition of the test mat; however, Phormidium bigranulatum always remained the dominant organism. Relative share of green algae and some cyanobacterial taxa, namely, Lyngbya sp. and Oscillatoria tenuis, in the mat were increased by Cu(2+) enrichment. The mat successfully removed 80 to 94 % Cu(2+) from the growth medium containing 10 to 100 μM Cu(2+). Extracellular polysaccharides, whose share increased in the mat community after metal addition, seem to have contributed substantially to metal binding by the mat biomass.
Collapse
Affiliation(s)
- Dhananjay Kumar
- Department of Botany, School of Life Sciences, H.N.B. Garhwal University, Srinagar, Garhwal, 246 174, India,
| | | |
Collapse
|
40
|
Liang B, Wu TD, Sun HJ, Vali H, Guerquin-Kern JL, Wang CH, Bosak T. Cyanophycin mediates the accumulation and storage of fixed carbon in non-heterocystous filamentous cyanobacteria from coniform mats. PLoS One 2014; 9:e88142. [PMID: 24516596 PMCID: PMC3917874 DOI: 10.1371/journal.pone.0088142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Thin, filamentous, non-heterocystous, benthic cyanobacteria (Subsection III) from some marine, lacustrine and thermal environments aggregate into macroscopic cones and conical stromatolites. We investigate the uptake and storage of inorganic carbon by cone-forming cyanobacteria from Yellowstone National Park using high-resolution stable isotope mapping of labeled carbon (H(13)CO3 (-)) and immunoassays. Observations and incubation experiments in actively photosynthesizing enrichment cultures and field samples reveal the presence of abundant cyanophycin granules in the active growth layer of cones. These ultrastructurally heterogeneous granules rapidly accumulate newly fixed carbon and store 18% of the total particulate labeled carbon after 120 mins of incubation. The intracellular distribution of labeled carbon during the incubation experiment demonstrates an unexpectedly large contribution of PEP carboxylase to carbon fixation, and a large flow of carbon and nitrogen toward cyanophycin in thin filamentous, non-heterocystous cyanobacteria. This pattern does not occur in obvious response to a changing N or C status. Instead, it may suggest an unusual interplay between the regulation of carbon concentration mechanisms and accumulation of photorespiratory products that facilitates uptake of inorganic C and reduces photorespiration in the dense, surface-attached communities of cyanobacteria from Subsection III.
Collapse
Affiliation(s)
- Biqing Liang
- Institute of Earth Sciences, Academia Sinica, Nangang, Taipei, Taiwan, ROC
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Earth Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Ting-Di Wu
- INSERM, U759, Orsay, France
- Institut Curie, Laboratoire de Microscopie Ionique, Orsay, France
| | - Hao-Jhe Sun
- Department of Life Sciences, National Central University, Jhongli City, Taiwan, ROC
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Jean-Luc Guerquin-Kern
- INSERM, U759, Orsay, France
- Institut Curie, Laboratoire de Microscopie Ionique, Orsay, France
| | - Chung-Ho Wang
- Institute of Earth Sciences, Academia Sinica, Nangang, Taipei, Taiwan, ROC
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
41
|
Surface orientation affects the direction of cone growth by Leptolyngbya sp. strain C1, a likely architect of coniform structures Octopus Spring (Yellowstone National Park). Appl Environ Microbiol 2012; 79:1302-8. [PMID: 23241986 DOI: 10.1128/aem.03008-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laminated, microbially produced stromatolites within the rock record provide some of the earliest evidence for life on Earth. The chemical, physical, and biological factors that lead to the initiation of these organosedimentary structures and shape their morphology are unclear. Modern coniform structures with morphological features similar to stromatolites are found on the surface of cyanobacterial/microbial mats. They display a vertical element of growth, can have lamination, can be lithified, and observably grow with time. To begin to understand the microbial processes and interactions required for cone formation, we determined the phylogenetic composition of the microbial community of a coniform structure from a cyanobacterial mat at Octopus Spring, Yellowstone National Park, and reconstituted coniform structures in vitro. The 16S rRNA clone library from the coniform structure was dominated by Leptolyngbya sp. Other cyanobacteria and heterotrophic bacteria were present in much lower abundance. The same Leptolyngbya sp. identified in the clone library was also enriched in the laboratory and could produce cones in vitro. When coniform structures were cultivated in the laboratory, the initial incubation conditions were found to influence coniform morphology. In addition, both the angle of illumination and the orientation of the surface affected the angle of cone formation demonstrating how external factors can influence coniform, and likely, stromatolite morphology.
Collapse
|
42
|
Oxygen-Dependent Morphogenesis of Modern Clumped Photosynthetic Mats and Implications for the Archean Stromatolite Record. GEOSCIENCES 2012. [DOI: 10.3390/geosciences2040235] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Bosak T, Liang B, Wu TD, Templer SP, Evans A, Vali H, Guerquin-Kern JL, Klepac-Ceraj V, Sim MS, Mui J. Cyanobacterial diversity and activity in modern conical microbialites. GEOBIOLOGY 2012; 10:384-401. [PMID: 22713108 DOI: 10.1111/j.1472-4669.2012.00334.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/30/2012] [Indexed: 05/12/2023]
Abstract
Modern conical microbialites are similar to some ancient conical stromatolites, but growth, behavior and diversity of cyanobacteria in modern conical microbialites remain poorly characterized. Here, we analyze the diversity of cyanobacterial 16S rRNA gene sequences in conical microbialites from 14 ponds fed by four thermal sources in Yellowstone National Park and compare cyanobacterial activity in the tips of cones and in the surrounding topographic lows (mats), respectively, by high-resolution mapping of labeled carbon. Cones and adjacent mats contain similar 16S rRNA gene sequences from genetically distinct clusters of filamentous, non-heterocystous cyanobacteria from Subsection III and unicellular cyanobacteria from Subsection I. These sequences vary among different ponds and between two sampling years, suggesting that coniform mats through time and space contain a number of cyanobacteria capable of vertical aggregation, filamentous cyanobacteria incapable of initiating cone formation and unicellular cyanobacteria. Unicellular cyanobacteria are more diverse in topographic lows, where some of these organisms respond to nutrient pulses more rapidly than thin filamentous cyanobacteria. The densest active cyanobacteria are found below the upper 50 μm of the cone tip, whereas cyanobacterial cells in mats are less dense, and are more commonly degraded or encrusted by silica. These spatial differences in cellular activity and density within macroscopic coniform mats imply a strong role for diffusion limitation in the development and the persistence of the conical shape. Similar mechanisms may have controlled the growth, morphology and persistence of small coniform stromatolites in shallow, quiet environments throughout geologic history.
Collapse
Affiliation(s)
- T Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cuerno R, Escudero C, García-Ruiz JM, Herrero MA. Pattern formation in stromatolites: insights from mathematical modelling. J R Soc Interface 2011; 9:1051-62. [PMID: 21993008 DOI: 10.1098/rsif.2011.0516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To this day, computer models for stromatolite formation have made substantial use of the Kardar-Parisi-Zhang (KPZ) equation. Oddly enough, these studies yielded mutually exclusive conclusions about the biotic or abiotic origin of such structures. We show in this paper that, at our current state of knowledge, a purely biotic origin for stromatolites can neither be proved nor disproved by means of a KPZ-based model. What can be shown, however, is that whatever their (biotic or abiotic) origin might be, some morphologies found in actual stromatolite structures (e.g. overhangs) cannot be formed as a consequence of a process modelled exclusively in terms of the KPZ equation and acting over sufficiently large times. This suggests the need to search for alternative mathematical approaches to model these structures, some of which are discussed in this paper.
Collapse
Affiliation(s)
- R Cuerno
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
| | | | | | | |
Collapse
|
45
|
Reaction-diffusion model of nutrient uptake in a biofilm: theory and experiment. J Theor Biol 2011; 289:90-5. [PMID: 21840322 DOI: 10.1016/j.jtbi.2011.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/09/2011] [Accepted: 08/02/2011] [Indexed: 11/24/2022]
Abstract
Microbes in natural settings typically live attached to surfaces in complex communities called biofilms. Despite the many advantages of biofilm formation, communal living forces microbes to compete with one another for resources. Here we combine mathematical models with stable isotope techniques to test a reaction-diffusion model of competition in a photosynthetic biofilm. In this model, a nutrient is transported through the mat by diffusion and is consumed at a rate proportional to its local concentration. When the nutrient is supplied from the surface of the biofilm, the balance between diffusion and consumption gives rise to gradients of nutrient availability, resulting in gradients of nutrient uptake. To test this model, a biofilm was incubated for a fixed amount of time with an isotopically labeled nutrient that was incorporated into cellular biomass. Thus, the concentration of labeled nutrient in a cell is a measure of the mean rate of nutrient incorporation over the course of the experiment. Comparison of this measurement to the solution of the reaction-diffusion model in the biofilm confirms the presence of gradients in nutrient uptake with the predicted shape. The excellent agreement between theory and experiment lends strong support to this one-parameter model of reaction and diffusion of nutrients in a biofilm. Having validated this model empirically, we discuss how these dynamics may arise from diffusion through a reactive heterogeneous medium. More generally, this result identifies stable isotope techniques as a powerful tool to test quantitative models of chemical transport through biofilms.
Collapse
|
46
|
|
47
|
Shevela D. Adventures with cyanobacteria: a personal perspective. FRONTIERS IN PLANT SCIENCE 2011; 2:28. [PMID: 22645530 PMCID: PMC3355777 DOI: 10.3389/fpls.2011.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 06/21/2011] [Indexed: 05/08/2023]
Abstract
Cyanobacteria, or the blue-green algae as they used to be called until 1974, are the oldest oxygenic photosynthesizers. We summarize here adventures with them since the early 1960s. This includes studies on light absorption by cyanobacteria, excitation energy transfer at room temperature down to liquid helium temperature, fluorescence (kinetics as well as spectra) and its relationship to photosynthesis, and afterglow (or thermoluminescence) from them. Further, we summarize experiments on their two-light reaction - two-pigment system, as well as the unique role of bicarbonate (hydrogen carbonate) on the electron-acceptor side of their photosystem II, PSII. This review, in addition, includes a discussion on the regulation of changes in phycobilins (mostly in PSII) and chlorophyll a (Chl a; mostly in photosystem I, PSI) under oscillating light, on the relationship of the slow fluorescence increase (the so-called S to M rise, especially in the presence of diuron) in minute time scale with the so-called state-changes, and on the possibility of limited oxygen evolution in mixotrophic PSI (minus) mutants, up to 30 min, in the presence of glucose. We end this review with a brief discussion on the position of cyanobacteria in the evolution of photosynthetic systems.
Collapse
|
48
|
Abstract
Stromatolites may be Earth's oldest macroscopic fossils; however, it remains controversial what, if any, biological processes are recorded in their morphology. Although the biological interpretation of many stromatolite morphologies is confounded by the influence of sedimentation, conical stromatolites form in the absence of sedimentation and are, therefore, considered to be the most robust records of biophysical processes. A qualitative similarity between conical stromatolites and some modern microbial mats suggests a photosynthetic origin for ancient stromatolites. To better understand and interpret ancient fossils, we seek a quantitative relationship between the geometry of conical stromatolites and the biophysical processes that control their growth. We note that all modern conical stromatolites and many that formed in the last 2.8 billion years display a characteristic centimeter-scale spacing between neighboring structures. To understand this prominent-but hitherto uninterpreted-organization, we consider the role of diffusion in mediating competition between stromatolites. Having confirmed this model through laboratory experiments and field observation, we find that organization of a field of stromatolites is set by a diffusive time scale over which individual structures compete for nutrients, thus linking form to physiology. The centimeter-scale spacing between modern and ancient stromatolites corresponds to a rhythmically fluctuating metabolism with a period of approximately 20 hr. The correspondence between the observed spacing and the day length provides quantitative support for the photosynthetic origin of conical stromatolites throughout geologic time.
Collapse
|
49
|
Bosak T, Bush JWM, Flynn MR, Liang B, Ono S, Petroff AP, Sim MS. Formation and stability of oxygen-rich bubbles that shape photosynthetic mats. GEOBIOLOGY 2010; 8:45-53, 53-5. [PMID: 20055899 DOI: 10.1111/j.1472-4669.2009.00227.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Gas release in photic-zone microbialites can lead to preservable morphological biosignatures. Here, we investigate the formation and stability of oxygen-rich bubbles enmeshed by filamentous cyanobacteria. Sub-millimetric and millimetric bubbles can be stable for weeks and even months. During this time, lithifying organic-rich laminae surrounding the bubbles can preserve the shape of bubbles. Cm-scale unstable bubbles support the growth of centimetric tubular towers with distinctly laminated mineralized walls. In environments that enable high photosynthetic rates, only small stable bubbles will be enclosed by a dense microbial mesh, while in deep waters extensive microbial mesh will cover even larger photosynthetic bubbles, increasing their preservation potential. Stable photosynthetic bubbles may be preserved as sub-millimeter and millimeter-diameter features with nearly circular cross-sections in the crests of some Proterozoic conical stromatolites, while centrimetric tubes formed around unstable bubbles provide a model for the formation of tubular carbonate microbialites that are not markedly depleted in (13)C.
Collapse
Affiliation(s)
- T Bosak
- EAPS, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | | | |
Collapse
|