1
|
Fuhr D, Johnston J, Brooks EP, Fantauzzo KA. Additive effects on craniofacial development upon conditional ablation of PDGFRα and SHP2 in the mouse neural crest lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638176. [PMID: 39990469 PMCID: PMC11844557 DOI: 10.1101/2025.02.13.638176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Activity of the receptor tyrosine kinase PDGFRα and the tyrosine phosphatase SHP2 are critical for vertebrate craniofacial development. We sought to determine the effect of SHP2 binding to PDGFRα via phenotypic and biochemical analyses of an allelic series of mouse embryos with combined loss of both proteins in the neural crest lineage. Results We demonstrated that SHP2 preferentially binds PDGFRα/α homodimers among the three PDGFR dimers. Analysis of allelic series mutant embryos revealed increased cell death in the lateral nasal and maxillary processes at E10.5, variably penetrant facial blebbing, facial hemorrhaging, midline clefting and loss of the mandibular region at E13.5, and widespread craniofacial bone and cartilage defects at birth. Further, we showed that loss of SHP2 leads to increased phosphorylation of PDGFRα and the downstream effector Erk1/2 in E10.5 allelic series mutant embryo lysates. Conclusions Together, our findings demonstrate additive effects on craniofacial development upon conditional ablation of PDGFRα and SHP2 in the mouse neural crest lineage and indicate that SHP2 may negatively and positively regulate PDGFRα signaling through distinct mechanisms.
Collapse
Affiliation(s)
- Daniel Fuhr
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica Johnston
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elliott P. Brooks
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A. Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Schumacher N, Vandenbosch R, Franzen R. Peripheral myelin: From development to maintenance. J Neurochem 2025; 169:e16268. [PMID: 39655795 DOI: 10.1111/jnc.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Peripheral myelin is synthesized by glial cells called Schwann cells (SCs). SC development and differentiation must be tightly regulated to avoid any pathological consequence affecting peripheral nerve function. Neuropathic symptoms can arise from developmental issues in SCs, as well as in adult life through processes affecting mature SCs. In this review we focus on SC differentiation from the immature towards the myelinating and non-myelinating SC stages, defining molecular mechanisms outlining radial sorting, a multi-stepped event essential for immature SC differentiation and myelination. We also describe mechanisms regulating myelin sheath maintenance and SC homeostasis during aging. Finally, we will conclude with some remaining questions in the field of SC biology.
Collapse
Affiliation(s)
- Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Institute, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
4
|
Norcross RG, Abdelmoti L, Rouchka EC, Andreeva K, Tussey O, Landestoy D, Galperin E. Shoc2 controls ERK1/2-driven neural crest development by balancing components of the extracellular matrix. Dev Biol 2022; 492:156-171. [PMID: 36265687 PMCID: PMC10019579 DOI: 10.1016/j.ydbio.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.
Collapse
Affiliation(s)
- Rebecca G Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA; Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA
| | - Olivia Tussey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daileen Landestoy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
5
|
Ventura PMO, Gakovic M, Fischer BA, Spinelli L, Rota G, Pathak S, Khameneh HJ, Zenobi A, Thomson S, Birchmeier W, Cantrell DA, Guarda G. Concomitant deletion of Ptpn6 and Ptpn11 in T cells fails to improve anticancer responses. EMBO Rep 2022; 23:e55399. [PMID: 36194675 PMCID: PMC9638855 DOI: 10.15252/embr.202255399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 03/10/2024] Open
Abstract
Anticancer T cells acquire a dysfunctional state characterized by poor effector function and expression of inhibitory receptors, such as PD-1. Blockade of PD-1 leads to T cell reinvigoration and is increasingly applied as an effective anticancer treatment. Recent work challenged the commonly held view that the phosphatase PTPN11 (known as SHP-2) is essential for PD-1 signaling in T cells, suggesting functional redundancy with the homologous phosphatase PTPN6 (SHP-1). Therefore, we investigated the effect of concomitant Ptpn6 and Ptpn11 deletion in T cells on their ability to mount antitumour responses. In vivo data show that neither sustained nor acute Ptpn6/11 deletion improves T cell-mediated tumor control. Sustained loss of Ptpn6/11 also impairs the therapeutic effects of anti-PD1 treatment. In vitro results show that Ptpn6/11-deleted CD8+ T cells exhibit impaired expansion due to a survival defect and proteomics analyses reveal substantial alterations, including in apoptosis-related pathways. These data indicate that concomitant ablation of Ptpn6/11 in polyclonal T cells fails to improve their anticancer properties, implying that caution shall be taken when considering their inhibition for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Pedro M O Ventura
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Milica Gakovic
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Berenice A Fischer
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Laura Spinelli
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Shalini Pathak
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Hanif J Khameneh
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alessandro Zenobi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Sarah Thomson
- Biological Services, University of Dundee, Dundee, UK
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Doreen A Cantrell
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Greta Guarda
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
6
|
Coupe D, Bossing T. Insights into nervous system repair from the fruit fly. Neuronal Signal 2022; 6:NS20210051. [PMID: 35474685 PMCID: PMC9008705 DOI: 10.1042/ns20210051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.
Collapse
Affiliation(s)
- David Coupe
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| | - Torsten Bossing
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| |
Collapse
|
7
|
Previtali SC. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics 2021; 18:2156-2168. [PMID: 34244926 PMCID: PMC8804061 DOI: 10.1007/s13311-021-01080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuromuscular Repair Unit, InSpe (Institute of Experimental Neurology) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Abstract
Myelin is a key evolutionary specialization and adaptation of vertebrates formed by the plasma membrane of glial cells, which insulate axons in the nervous system. Myelination not only allows rapid and efficient transmission of electric impulses in the axon by decreasing capacitance and increasing resistance but also influences axonal metabolism and the plasticity of neural circuits. In this review, we will focus on Schwann cells, the glial cells which form myelin in the peripheral nervous system. Here, we will describe the main extrinsic and intrinsic signals inducing Schwann cell differentiation and myelination and how myelin biogenesis is achieved. Finally, we will also discuss how the study of human disorders in which molecules and pathways relevant for myelination are altered has enormously contributed to the current knowledge on myelin biology.
Collapse
Affiliation(s)
- Alessandra Bolino
- Human Inherited Neuropathies Unit, Institute of Experimental Neurology INSPE, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
9
|
Mesenteric Neural Crest Cells Are the Embryological Basis of Skip Segment Hirschsprung's Disease. Cell Mol Gastroenterol Hepatol 2020; 12:1-24. [PMID: 33340715 PMCID: PMC8082118 DOI: 10.1016/j.jcmgh.2020.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Defective rostrocaudal colonization of the gut by vagal neural crest cells (vNCCs) results in Hirschsprung's disease (HSCR), which is characterized by aganglionosis in variable lengths of the distal bowel. Skip segment Hirschsprung's disease (SSHD), referring to a ganglionated segment within an otherwise aganglionic intestine, contradicts HSCR pathogenesis and underscores a significant gap in our understanding of the development of the enteric nervous system. Here, we aimed to identify the embryonic origin of the ganglionic segments in SSHD. METHODS Intestinal biopsy specimens from HSCR patients were prepared via the Swiss-roll technique to search for SSHD cases. NCC migration from the neural tube to the gut was spatiotemporally traced using targeted cell lineages and gene manipulation in mice. RESULTS After invading the mesentery surrounding the foregut, vNCCs separated into 2 populations: mesenteric NCCs (mNCCs) proceeded to migrate along the mesentery, whereas enteric NCCs invaded the foregut to migrate along the gut. mNCCs not only produced neurons and glia within the gut mesentery, but also continuously complemented the enteric NCC pool. Two new cases of SSHD were identified from 183 HSCR patients, and Ednrb-mutant mice, but not Ret-/- mice, showed a high incidence rate of SSHD-like phenotypes. CONCLUSIONS mNCCs, a subset of vNCCs that migrate into the gut via the gut mesentery to give rise to enteric neurons, could provide an embryologic explanation for SSHD. These findings lead to novel insights into the development of the enteric nervous system and the etiology of HSCR.
Collapse
|
10
|
Wang L, Moore DC, Huang J, Wang Y, Zhao H, D-H Yue J, Jackson CL, Quesenberry PJ, Cao W, Yang W. SHP2 regulates the development of intestinal epithelium by modifying OSTERIX + crypt stem cell self-renewal and proliferation. FASEB J 2020; 35:e21106. [PMID: 33165997 DOI: 10.1096/fj.202001091r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023]
Abstract
The protein tyrosine phosphatase SHP2, encoded by PTPN11, is ubiquitously expressed and essential for the development and/or maintenance of multiple tissues and organs. SHP2 is involved in gastrointestinal (GI) epithelium development and homeostasis, but the underlying mechanisms remain elusive. While studying SHP2's role in skeletal development, we made osteoblast-specific SHP2 deficient mice using Osterix (Osx)-Cre as a driver to excise Ptpn11 floxed alleles. Phenotypic characterization of these SHP2 mutants unexpectedly revealed a critical role of SHP2 in GI biology. Mice lacking SHP2 in Osx+ cells developed a fatal GI pathology with dramatic villus hypoplasia. OSTERIX, an OB-specific zinc finger-containing transcription factor is for the first time found to be expressed in GI crypt cells, and SHP2 expression in the crypt Osx+ cells is critical for self-renewal and proliferation. Further, immunostaining revealed the colocalization of OSTERIX with OLFM4 and LGR5, two bona fide GI stem cell markers, at the crypt cells. Furthermore, OSTERIX expression is found to be associated with GI malignancies. Knockdown of SHP2 expression had no apparent influence on the relative numbers of enterocytes, goblet cells or Paneth cells. Given SHP2's key regulatory role in OB differentiation, our studies suggest that OSTERIX and SHP2 are indispensable for gut homeostasis, analogous to SOX9's dual role as a master regulator of cartilage and an important regulator of crypt stem cell biology. Our findings also provide a foundation for new avenues of inquiry into GI stem cell biology and of OSTERIX's therapeutic and diagnostic potential.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Douglas C Moore
- Department of Orthopedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Jiahui Huang
- Department of Orthopedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Yuhong Wang
- Department of Comprehensive Dentistry, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Jerry D-H Yue
- Department of Orthopedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Cynthia L Jackson
- Department of Pathology and Laboratory Medicine, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Peter J Quesenberry
- Department of Hematology and Oncology, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Weibiao Cao
- Department of Pathology and Laboratory Medicine, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Wentian Yang
- Department of Orthopedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
11
|
Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 2020; 77:3977-3989. [PMID: 32277262 PMCID: PMC7532964 DOI: 10.1007/s00018-020-03516-9] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
The great plasticity of Schwann cells (SCs), the myelinating glia of the peripheral nervous system (PNS), is a critical feature in the context of peripheral nerve regeneration following traumatic injuries and peripheral neuropathies. After a nerve damage, SCs are rapidly activated by injury-induced signals and respond by entering the repair program. During the repair program, SCs undergo dynamic cell reprogramming and morphogenic changes aimed at promoting nerve regeneration and functional recovery. SCs convert into a repair phenotype, activate negative regulators of myelination and demyelinate the damaged nerve. Moreover, they express many genes typical of their immature state as well as numerous de-novo genes. These genes modulate and drive the regeneration process by promoting neuronal survival, damaged axon disintegration, myelin clearance, axonal regrowth and guidance to their former target, and by finally remyelinating the regenerated axon. Many signaling pathways, transcriptional regulators and epigenetic mechanisms regulate these events. In this review, we discuss the main steps of the repair program with a particular focus on the molecular mechanisms that regulate SC plasticity following peripheral nerve injury.
Collapse
Affiliation(s)
- Gianluigi Nocera
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
12
|
Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 2020; 69:235-254. [PMID: 32697392 DOI: 10.1002/glia.23892] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Schwann cells within the peripheral nervous system possess a remarkable regenerative potential. Current research shows that peripheral nerve-associated Schwann cells possess the capacity to promote repair of multiple tissues including peripheral nerve gap bridging, skin wound healing, digit tip repair as well as tooth regeneration. One of the key features of the specialized repair Schwann cells is that they become highly motile. They not only migrate into the area of damaged tissue and become a key component of regenerating tissue but also secrete signaling molecules to attract macrophages, support neuronal survival, promote axonal regrowth, activate local mesenchymal stem cells, and interact with other cell types. Currently, the importance of migratory Schwann cells in tissue regeneration is most evident in the case of a peripheral nerve transection injury. Following nerve transection, Schwann cells from both proximal and distal nerve stumps migrate into the nerve bridge and form Schwann cell cords to guide axon regeneration. The formation of Schwann cell cords in the nerve bridge is key to successful peripheral nerve repair following transection injury. In this review, we first examine nerve bridge formation and the behavior of Schwann cell migration in the nerve bridge, and then discuss how migrating Schwann cells direct regenerating axons into the distal nerve. We also review the current understanding of signals that could activate Schwann cell migration and signals that Schwann cells utilize to direct axon regeneration. Understanding the molecular mechanism of Schwann cell migration could potentially offer new therapeutic strategies for peripheral nerve repair.
Collapse
Affiliation(s)
- Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
| | - Xin-Peng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei Province, People's Republic of China
- Peninsula Medical School, Faculty of Health, Plymouth University, Plymouth, Devon, UK
- The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
13
|
Araki T. Regulatory Mechanism of Peripheral Nerve Myelination by Glutamate-Induced Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:23-31. [PMID: 31760635 DOI: 10.1007/978-981-32-9636-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Regulation of differentiation and proliferation of Schwann cells is an essential part of the regulation of peripheral nerve development, degeneration, and regeneration. ZNRF1, a ubiquitin ligase, is expressed in undifferentiated/repair Schwann cells, directs glutamine synthetase to proteasomal degradation, and thereby increase glutamate levels in Schwann cell environment. Glutamate elicits subcellular signaling in Schwann cells via mGluR2 to modulate Neuregulin-1/ErbB2/3 signaling and thereby promote undifferentiated phenotype of Schwann cell.
Collapse
Affiliation(s)
- Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| |
Collapse
|
14
|
Kang M, Lee YS. The impact of RASopathy-associated mutations on CNS development in mice and humans. Mol Brain 2019; 12:96. [PMID: 31752929 PMCID: PMC6873535 DOI: 10.1186/s13041-019-0517-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023] Open
Abstract
The RAS signaling pathway is involved in the regulation of developmental processes, including cell growth, proliferation, and differentiation, in the central nervous system (CNS). Germline mutations in the RAS signaling pathway genes are associated with a group of neurodevelopmental disorders, collectively called RASopathy, which includes neurofibromatosis type 1, Noonan syndrome, cardio-facio-cutaneous syndrome, and Costello syndrome. Most mutations associated with RASopathies increase the activity of the RAS-ERK signaling pathway, and therefore, most individuals with RASopathies share common phenotypes, such as a short stature, heart defects, facial abnormalities, and cognitive impairments, which are often accompanied by abnormal CNS development. Recent studies using mouse models of RASopathies demonstrated that particular mutations associated with each disorder disrupt CNS development in a mutation-specific manner. Here, we reviewed the recent literatures that investigated the developmental role of RASopathy-associated mutations using mutant mice, which provided insights into the specific contribution of RAS-ERK signaling molecules to CNS development and the subsequent impact on cognitive function in adult mice.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.
| |
Collapse
|
15
|
Fledrich R, Kungl T, Nave KA, Stassart RM. Axo-glial interdependence in peripheral nerve development. Development 2019; 146:146/21/dev151704. [PMID: 31719044 DOI: 10.1242/dev.151704] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the development of the peripheral nervous system, axons and myelinating Schwann cells form a unique symbiotic unit, which is realized by a finely tuned network of molecular signals and reciprocal interactions. The importance of this complex interplay becomes evident after injury or in diseases in which aspects of axo-glial interaction are perturbed. This Review focuses on the specific interdependence of axons and Schwann cells in peripheral nerve development that enables axonal outgrowth, Schwann cell lineage progression, radial sorting and, finally, formation and maintenance of the myelin sheath.
Collapse
Affiliation(s)
- Robert Fledrich
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany .,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany.,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ruth M Stassart
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany .,Department of Neuropathology, University Clinic Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Niogret C, Birchmeier W, Guarda G. SHP-2 in Lymphocytes' Cytokine and Inhibitory Receptor Signaling. Front Immunol 2019; 10:2468. [PMID: 31708921 PMCID: PMC6823243 DOI: 10.3389/fimmu.2019.02468] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Somewhat counterintuitively, the tyrosine phosphatase SHP-2 (SH2 domain-containing protein tyrosine phosphatase-2) is crucial for the activation of extracellular signal-regulated kinase (ERK) downstream of various growth factor receptors, thereby exerting essential developmental functions. This phosphatase also deploys proto-oncogenic functions and specific inhibitors have recently been developed. With respect to the immune system, the role of SHP-2 in the signaling of cytokines relevant for myelopoiesis and myeloid malignancies has been intensively studied. The function of this phosphatase downstream of cytokines important for lymphocytes is less understood, though multiple lines of evidence suggest its importance. In addition, SHP-2 has been proposed to mediate the suppressive effects of inhibitory receptors (IRs) that sustain a dysfunctional state in anticancer T cells. Molecules involved in IR signaling are of potential pharmaceutical interest as blockade of these inhibitory circuits leads to remarkable clinical benefit. Here, we discuss the dichotomy in the functions ascribed to SHP-2 downstream of cytokine receptors and IRs, with a focus on T and NK lymphocytes. Further, we highlight the importance of broadening our understanding of SHP-2′s relevance in lymphocytes, an essential step to inform on side effects and unanticipated benefits of its therapeutic blockade.
Collapse
Affiliation(s)
- Charlène Niogret
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Greta Guarda
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
17
|
Rota G, Niogret C, Dang AT, Barros CR, Fonta NP, Alfei F, Morgado L, Zehn D, Birchmeier W, Vivier E, Guarda G. Shp-2 Is Dispensable for Establishing T Cell Exhaustion and for PD-1 Signaling In Vivo. Cell Rep 2019; 23:39-49. [PMID: 29617671 DOI: 10.1016/j.celrep.2018.03.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/15/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022] Open
Abstract
In chronic infection and cancer, T cells acquire a dysfunctional state characterized by the expression of inhibitory receptors. In vitro studies implicated the phosphatase Shp-2 downstream of these receptors, including PD-1. However, whether Shp-2 is responsible in vivo for such dysfunctional responses remains elusive. To address this, we generated T cell-specific Shp-2-deficient mice. These mice did not show differences in controlling chronic viral infections. In this context, Shp-2-deleted CD8+ T lymphocytes expanded moderately better but were less polyfunctional than control cells. Mice with Shp-2-deficient T cells also showed no significant improvement in controlling immunogenic tumors and responded similarly to controls to α-PD-1 treatment. We therefore showed that Shp-2 is dispensable in T cells for globally establishing exhaustion and for PD-1 signaling in vivo. These results reveal the existence of redundant mechanisms downstream of inhibitory receptors and represent the foundation for defining these relevant molecular events.
Collapse
Affiliation(s)
- Giorgia Rota
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Charlène Niogret
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Anh Thu Dang
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | | | - Nicolas Pierre Fonta
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland; Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Francesca Alfei
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Leonor Morgado
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125 Berlin, Germany
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288 Marseille, France; Service d'Immunologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France; Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland; Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.
| |
Collapse
|
18
|
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019; 180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Neuregulin-1 (Nrg-1) is a member of the Neuregulin family of growth factors with essential roles in the developing and adult nervous system. Six different types of Nrg-1 (Nrg-1 type I-VI) and over 30 isoforms have been discovered; however, their specific roles are not fully determined. Nrg-1 signals through a complex network of protein-tyrosine kinase receptors, ErbB2, ErbB3, ErbB4 and multiple intracellular pathways. Genetic and pharmacological studies of Nrg-1 and ErbB receptors have identified a critical role for Nrg-1/ErbB network in neurodevelopment including neuronal migration, neural differentiation, myelination as well as formation of synapses and neuromuscular junctions. Nrg-1 signaling is best known for its characterized role in development and repair of the peripheral nervous system (PNS) due to its essential role in Schwann cell development, survival and myelination. However, our knowledge of the impact of Nrg-1/ErbB on the central nervous system (CNS) has emerged in recent years. Ongoing efforts have uncovered a multi-faceted role for Nrg-1 in regulating CNS injury and repair processes. In this review, we provide a timely overview of the most recent updates on Nrg-1 signaling and its role in nervous system injury and diseases. We will specifically highlight the emerging role of Nrg-1 in modulating the glial and immune responses and its capacity to foster neuroprotection and remyelination in CNS injury. Nrg-1/ErbB network is a key regulatory pathway in the developing nervous system; therefore, unraveling its role in neuropathology and repair can aid in development of new therapeutic approaches for nervous system injuries and associated disorders.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
19
|
Belin S, Ornaghi F, Shackleford G, Wang J, Scapin C, Lopez-Anido C, Silvestri N, Robertson N, Williamson C, Ishii A, Taveggia C, Svaren J, Bansal R, Schwab MH, Nave K, Fratta P, D’Antonio M, Poitelon Y, Feltri ML, Wrabetz L. Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy. Hum Mol Genet 2019; 28:1260-1273. [PMID: 30535360 PMCID: PMC6452193 DOI: 10.1093/hmg/ddy420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/06/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
Myelin sheath thickness is precisely regulated and essential for rapid propagation of action potentials along myelinated axons. In the peripheral nervous system, extrinsic signals from the axonal protein neuregulin 1 (NRG1) type III regulate Schwann cell fate and myelination. Here we ask if modulating NRG1 type III levels in neurons would restore myelination in a model of congenital hypomyelinating neuropathy (CHN). Using a mouse model of CHN, we improved the myelination defects by early overexpression of NRG1 type III. Surprisingly, the improvement was independent from the upregulation of Egr2 or essential myelin genes. Rather, we observed the activation of MAPK/ERK and other myelin genes such as peripheral myelin protein 2 and oligodendrocyte myelin glycoprotein. We also confirmed that the permanent activation of MAPK/ERK in Schwann cells has detrimental effects on myelination. Our findings demonstrate that the modulation of axon-to-glial NRG1 type III signaling has beneficial effects and improves myelination defects during development in a model of CHN.
Collapse
Affiliation(s)
- Sophie Belin
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Francesca Ornaghi
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- SR-TIGET, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ghjuvan’Ghjacumu Shackleford
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Cristina Scapin
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Nicholas Silvestri
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Neil Robertson
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Courtney Williamson
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
| | - Akihiro Ishii
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT, USA
| | - Carla Taveggia
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - John Svaren
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT, USA
| | - Markus H Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Klaus Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Pietro Fratta
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
20
|
Niogret C, Miah SMS, Rota G, Fonta NP, Wang H, Held W, Birchmeier W, Sexl V, Yang W, Vivier E, Ho PC, Brossay L, Guarda G. Shp-2 is critical for ERK and metabolic engagement downstream of IL-15 receptor in NK cells. Nat Commun 2019; 10:1444. [PMID: 30926899 PMCID: PMC6441079 DOI: 10.1038/s41467-019-09431-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
The phosphatase Shp-2 was implicated in NK cell development and functions due to its interaction with NK inhibitory receptors, but its exact role in NK cells is still unclear. Here we show, using mice conditionally deficient for Shp-2 in the NK lineage, that NK cell development and responsiveness are largely unaffected. Instead, we find that Shp-2 serves mainly to enforce NK cell responses to activation by IL-15 and IL-2. Shp-2-deficient NK cells have reduced proliferation and survival when treated with high dose IL-15 or IL-2. Mechanistically, Shp-2 deficiency hampers acute IL-15 stimulation-induced raise in glycolytic and respiration rates, and causes a dramatic defect in ERK activation. Moreover, inhibition of the ERK and mTOR cascades largely phenocopies the defect observed in the absence of Shp-2. Together, our data reveal a critical function of Shp-2 as a molecular nexus bridging acute IL-15 signaling with downstream metabolic burst and NK cell expansion.
Collapse
Affiliation(s)
- Charlène Niogret
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - S M Shahjahan Miah
- Department of Molecular Microbiology and Immunology and Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, 02912, USA
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Nicolas P Fonta
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland.,Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500, Bellinzona, Switzerland
| | - Haiping Wang
- Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Werner Held
- Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany
| | - Veronica Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Wentian Yang
- Department of Orthopaedics, Rhode Island Hospital and Brown University Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Avenue de Luminy, 13288, Marseille, France.,Service d'Immunologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13385, Marseille, France.,Innate Pharma Research Labs., Innate Pharma, 117 Avenue de Luminy, 13276, Marseille, France
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology and Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, 02912, USA.
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland. .,Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500, Bellinzona, Switzerland.
| |
Collapse
|
21
|
Loss of Shp2 Rescues BDNF/TrkB Signaling and Contributes to Improved Retinal Ganglion Cell Neuroprotection. Mol Ther 2018; 27:424-441. [PMID: 30341011 DOI: 10.1016/j.ymthe.2018.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is characterized by the loss of retinal ganglion cells (RGC), and accordingly the preservation of RGCs and their axons has recently attracted significant attention to improve therapeutic outcomes in the disease. Here, we report that Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) undergoes activation in the RGCs, in animal model of glaucoma as well as in the human glaucoma tissues and that Shp2 dephosphorylates tropomyosin receptor kinase B (TrkB) receptor, leading to reduced BDNF/TrkB neuroprotective survival signaling. This was elucidated by specifically modulating Shp2 expression in the RGCs in vivo, using adeno-associated virus serotype 2 (AAV2) constructs. Shp2 upregulation promoted endoplasmic reticulum (ER) stress and apoptosis, along with functional and structural deficits in the inner retina. In contrast, loss of Shp2 decelerated the loss of RGCs, preserved their function, and suppressed ER stress and apoptosis in glaucoma. This report constitutes the first identification of Shp2-mediated TrkB regulatory mechanisms in the RGCs that can become a potential therapeutic target in both glaucoma and other neurodegenerative disorders.
Collapse
|
22
|
Song W, Zhao Y, Wu Y, Li Z, Lv H, Li S, Jiang Y, Song C, Wang F, Huang Y. Fabrication, characterization and biocompatibility of collagen/oxidized regenerated cellulose-Ca composite scaffold for carrying Schwann cells. Int J Biol Macromol 2018; 119:1195-1203. [PMID: 30110602 DOI: 10.1016/j.ijbiomac.2018.08.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/14/2023]
Abstract
Schwann cell (SC) is the primary structural and functional part of the peripheral nervous system, and it plays a key role in the repair and regeneration of peripheral nerve. In order to develop a suitable scaffold for SC nerve tissue engineering, three kinds of scaffolds, including pristine collagen, pure oxidized regenerated cellulose-Ca (ORCCa) and collagen/ORC-Ca composite scaffolds, have been fabricated for carrying SC in this study. SC is then seeded on the scaffolds to form SC-scaffold nerve tissue engineering composites and evaluate their biocompatibility. The chemical and physical structure of the scaffolds are investigated by FTIR, NMR and SEM. The wettability of the collagen/ORC-Ca composite scaffold is close to that of pristine collagen, and the tensile strength of the composite scaffold (0.58 MPa) is better than that of pristine collagen (0.36 MPa). Cytotoxicity, cell proliferation, cell adhesion and western blotting assays are conducted to evaluate the biocompatibility and properties of different scaffolds. The results show that the three scaffolds exhibit no toxicity, and the proliferation rate of SC on the collagen/ORC-Ca composite scaffold is significantly higher than that of the other scaffolds (p < 0.05). The number of the adhesion cells on the composite scaffold (244.67 ± 13.02) is much more than that in the pure ORC-Ca group (p < 0.01). Furthermore, the expression of N-Cadheri and PMP22 proteins in the collagen/ORC-Ca composite scaffold is significantly superior to the other two scaffolds (both p < 0.01). Therefore, it could be concluded that the collagen/ORC-Ca composite is a promising candidate as a scaffold for carrying SC to form nerve tissue engineering composites in order to assist the peripheral nervous in the repair and regeneration.
Collapse
Affiliation(s)
- Wenli Song
- Harbin Sport University, Harbin 150008, China
| | - Yuhua Zhao
- Harbin Sport University, Harbin 150008, China
| | - Yadong Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhipeng Li
- Harbin Sport University, Harbin 150008, China
| | - Hui Lv
- The First Affiliated Hospital of Harbin Medical University, Harbin 150007, China
| | - Siyu Li
- Harbin Medical University (Da Qing), Da Qing 163319, China
| | - Yue Jiang
- Harbin Medical University (Da Qing), Da Qing 163319, China
| | - Chun Song
- The First Affiliated Hospital of Harbin Medical University, Harbin 150007, China
| | - Fang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
23
|
Kim M, Wende H, Walcher J, Kühnemund J, Cheret C, Kempa S, McShane E, Selbach M, Lewin GR, Birchmeier C. Maf links Neuregulin1 signaling to cholesterol synthesis in myelinating Schwann cells. Genes Dev 2018; 32:645-657. [PMID: 29748249 PMCID: PMC6004071 DOI: 10.1101/gad.310490.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Kim et al. define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 in myelinating Schwann cells. Cholesterol is a major constituent of myelin membranes, which insulate axons and allow saltatory conduction. Therefore, Schwann cells, the myelinating glia of the peripheral nervous system, need to produce large amounts of cholesterol. Here, we define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 (Nrg1). Maf expression is induced when Schwann cells begin myelination. Genetic ablation of Maf resulted in hypomyelination that resembled mice with defective Nrg1 signaling. Importantly, loss of Maf or Nrg1 signaling resulted in a down-regulation of the cholesterol synthesis program, and Maf directly binds to enhancers of cholesterol synthesis genes. Furthermore, we identified the molecular mechanisms by which Nrg1 signaling regulates Maf levels. Transcription of Maf depends on calmodulin-dependent kinases downstream from Nrg1, whereas Nrg1–MAPK signaling stabilizes Maf protein. Our results delineate a novel signaling cascade regulating cholesterol synthesis in myelinating Schwann cells.
Collapse
Affiliation(s)
- Minchul Kim
- Department of Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Hagen Wende
- Department of Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jan Walcher
- Department of Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Johannes Kühnemund
- Department of Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Cyril Cheret
- Department of Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Stefan Kempa
- Department of Integrative Proteomics and Metabolomics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Erik McShane
- Department of Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Matthias Selbach
- Department of Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Gary R Lewin
- Department of Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Carmen Birchmeier
- Department of Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
24
|
Chen C, Xue T, Fan P, Meng L, Wei J, Luo D. Cytotoxic activity of Shp2 inhibitor fumosorinone in human cancer cells. Oncol Lett 2018; 15:10055-10062. [PMID: 29928374 DOI: 10.3892/ol.2018.8593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
Fumosorinone (Fumos) isolated from entomogenous fungi Isaria fumosorosea exhibited selective inhibition of Src homology phosphotyrosine phosphatase 2 inhibitor (Shp2) in our previous study. The purpose of the present study was to investigate the effects of Fumos on cell cycle arrest, tumor cell migration and the in vitro antiproliferative activity of Fumos alone or in combination with the commonly used cytotoxic drugs 5-fluoracil (5-FU) and p38 inhibitor SB203580. Fumos exhibited cytotoxicity against selected human cancel lines, including HeLa, MDA-MB-231 and MDA-MB-453 cell lines. Fumos exerted selective cytotoxic effects on the human cell lines. Flow cytometric and DAPI assays showed that Fumos did not induce cell apoptosis, however it induced cell cycle arrest at the G1 phase. Fumos inhibited cell migration though reducing the phosphorylation of focal adhesion kinase (FAK) at tyrosine (Tyr)861 and marginally increasing the phosphorylation of FAK at Tyr397, however, Fumos did not affect the phosphorylation of FAK at Tyr576 or Tyr925. The present study also examined the combination effect of Fumos with other chemical agents, including 5-FU and p38 inhibitor SB203580. Fumos exhibited a marked synergistic effect with these agents, particularly with 5-FU. In conclusion, Fumos showed potential anticancer bioactivity, and the combination effect of Fumos with 5-FU or with p38 inhibitor offers a more effective anticancer strategy for carcinoma treatment.
Collapse
Affiliation(s)
- Chuan Chen
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Tongdan Xue
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Peng Fan
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Linlin Meng
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Jingjing Wei
- College of Pharmaceutical Science, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Duqiang Luo
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China.,College of Pharmaceutical Science, Hebei University, Baoding, Hebei 071002, P.R. China
| |
Collapse
|
25
|
Hsu AY, Gurol T, Sobreira TJP, Zhang S, Moore N, Cai C, Zhang ZY, Deng Q. Development and Characterization of an Endotoxemia Model in Zebra Fish. Front Immunol 2018; 9:607. [PMID: 29651289 PMCID: PMC5884884 DOI: 10.3389/fimmu.2018.00607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
Endotoxemia is a condition in which endotoxins enter the blood stream and cause systemic and sometimes lethal inflammation. Zebra fish provides a genetically tractable model organism for studying innate immunity, with additional advantages in live imaging and drug discovery. However, a bona fide endotoxemia model has not been established in zebra fish. Here, we have developed an acute endotoxemia model in zebra fish by injecting a single dose of LPS directly into the circulation. Hallmarks of human acute endotoxemia, including systemic inflammation, extensive tissue damage, circulation blockade, immune cell mobilization, and emergency hematopoiesis, were recapitulated in this model. Knocking out the adaptor protein Myd88 inhibited systemic inflammation and improved zebra fish survival. In addition, similar alternations of pathways with human acute endotoxemia were detected using global proteomic profiling and MetaCore™ pathway enrichment analysis. Furthermore, treating zebra fish with a protein tyrosine phosphatase nonreceptor type 11 (Shp2) inhibitor decreased systemic inflammation, immune mobilization, tissue damage, and improved survival in the endotoxemia model. Together, we have established and characterized the phenotypic and gene expression changes of a zebra fish endotoxemia model, which is amenable to genetic and pharmacological discoveries that can ultimately lead to a better mechanistic understanding of the dynamics and interplay of the innate immune system.
Collapse
Affiliation(s)
- Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Theodore Gurol
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Sheng Zhang
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Natalie Moore
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Chufan Cai
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Zhong-Yin Zhang
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
26
|
Abbasi M, Gupta V, Chitranshi N, You Y, Dheer Y, Mirzaei M, Graham SL. Regulation of Brain-Derived Neurotrophic Factor and Growth Factor Signaling Pathways by Tyrosine Phosphatase Shp2 in the Retina: A Brief Review. Front Cell Neurosci 2018; 12:85. [PMID: 29636665 PMCID: PMC5880906 DOI: 10.3389/fncel.2018.00085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 01/31/2023] Open
Abstract
SH2 domain-containing tyrosine phosphatase-2 (PTPN11 or Shp2) is a ubiquitously expressed protein that plays a key regulatory role in cell proliferation, differentiation and growth factor (GF) signaling. This enzyme is well expressed in various retinal neurons and has emerged as an important player in regulating survival signaling networks in the neuronal tissues. The non-receptor phosphatase can translocate to lipid rafts in the membrane and has been implicated to regulate several signaling modules including PI3K/Akt, JAK-STAT and Mitogen Activated Protein Kinase (MAPK) pathways in a wide range of biochemical processes in healthy and diseased states. This review focuses on the roles of Shp2 phosphatase in regulating brain-derived neurotrophic factor (BDNF) neurotrophin signaling pathways and discusses its cross-talk with various GF and downstream signaling pathways in the retina.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Grb2-associated binder-1 is required for extrafusal and intrafusal muscle fiber development. Neuroreport 2018; 28:604-609. [PMID: 28542067 DOI: 10.1097/wnr.0000000000000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The neuregulin-1 (NRG1) signaling pathway plays an important role in the development of the peripheral neuromuscular system, including in muscle spindle and postnatal myelination. We previously showed that NRG1 on the axonal membrane regulates peripheral nerve myelination through Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling. Here, we determined the role of Gab1 in the development of muscles and the muscle spindle using muscle-specific conditional Gab1 knockout mice. The mutant mice showed general retardation in muscular growth and hypotrophy of extrafusal muscle fibers. In addition, the muscle-specific Gab1 knockout mutant exhibited significant underdevelopment of muscle spindles, which are normally regulated by NRG1, and abnormal proprioceptive behavior. Furthermore, the selective knockdown of Gab1 in C2C12 muscle cells reduced NRG1-induced expression of Egr3, a critical transcription factor for muscle spindle development. However, Gab2 knockout mice did not show any defects in the development of muscles or muscle spindles. Our findings suggest that Gab1 is an essential signaling molecule in mediating axonal NRG1 signaling for the development of both extrafusal and intrafusal muscle fibers.
Collapse
|
28
|
Magi S, Iwamoto K, Yumoto N, Hiroshima M, Nagashima T, Ohki R, Garcia-Munoz A, Volinsky N, Von Kriegsheim A, Sako Y, Takahashi K, Kimura S, Kholodenko BN, Okada-Hatakeyama M. Transcriptionally inducible Pleckstrin homology-like domain, family A, member 1, attenuates ErbB receptor activity by inhibiting receptor oligomerization. J Biol Chem 2018; 293:2206-2218. [PMID: 29233889 PMCID: PMC5808779 DOI: 10.1074/jbc.m117.778399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 11/16/2017] [Indexed: 12/30/2022] Open
Abstract
Feedback control is a key mechanism in signal transduction, intimately involved in regulating the outcome of the cellular response. Here, we report a novel mechanism by which PHLDA1, Pleckstrin homology-like domain, family A, member 1, negatively regulates ErbB receptor signaling by inhibition of receptor oligomerization. We have found that the ErbB3 ligand, heregulin, induces PHILDA1 expression in MCF-7 cells. Transcriptionally-induced PHLDA1 protein directly binds to ErbB3, whereas knockdown of PHLDA1 increases complex formation between ErbB3 and ErbB2. To provide insight into the mechanism for our time-course and single-cell experimental observations, we performed a systematic computational search of network topologies of the mathematical models based on receptor dimer-tetramer formation in the ErbB activation processes. Our results indicate that only a model in which PHLDA1 inhibits formation of both dimers and tetramer can explain the experimental data. Predictions made from this model were further validated by single-molecule imaging experiments. Our studies suggest a unique regulatory feature of PHLDA1 to inhibit the ErbB receptor oligomerization process and thereby control the activity of receptor signaling network.
Collapse
Affiliation(s)
- Shigeyuki Magi
- From the Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- the Laboratory of Cell Systems, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazunari Iwamoto
- From the Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- the Laboratory of Cell Systems, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- the Laboratory for Biochemical Simulation and
| | - Noriko Yumoto
- From the Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Michio Hiroshima
- the Cellular Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | - Takeshi Nagashima
- the Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Rieko Ohki
- the Division of Rare Cancer Research, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | - Yasushi Sako
- the Cellular Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Shuhei Kimura
- the Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan
| | - Boris N Kholodenko
- Systems Biology Ireland,
- Conway Institute of Biomolecular and Biomedical Research, and
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland, and
| | - Mariko Okada-Hatakeyama
- From the Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan,
- the Laboratory of Cell Systems, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
29
|
The Protein Tyrosine Phosphatase Shp2 Regulates Oligodendrocyte Differentiation and Early Myelination and Contributes to Timely Remyelination. J Neurosci 2017; 38:787-802. [PMID: 29217681 DOI: 10.1523/jneurosci.2864-16.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/01/2017] [Accepted: 11/26/2017] [Indexed: 11/21/2022] Open
Abstract
Shp2 is a nonreceptor protein tyrosine phosphatase that has been shown to influence neurogenesis, oligodendrogenesis, and oligodendrocyte differentiation. Furthermore, Shp2 is a known regulator of the Akt/mammalian target of rapamycin and ERK signaling pathways in multiple cellular contexts, including oligodendrocytes. Its role during later postnatal CNS development or in response to demyelination injury has not been examined. Based on the current studies, we hypothesize that Shp2 is a negative regulator of CNS myelination. Using transgenic mouse technology, we show that Shp2 is involved in oligodendrocyte differentiation and early myelination, but is not necessary for myelin maintenance. We also show that Shp2 regulates the timely differentiation of oligodendrocytes following lysolecithin-induced demyelination, although apparently normal remyelination occurs at a delayed time point. These data suggest that Shp2 is a relevant therapeutic target in demyelinating diseases such as multiple sclerosis.SIGNIFICANCE STATEMENT In the present study, we show that the protein phosphatase Shp2 is an important mediator of oligodendrocyte differentiation and myelination, both during developmental myelination as well as during myelin regeneration. We provide important insight into the signaling mechanisms regulating myelination and propose that Shp2 acts as a transient brake to the developmental myelination process. Furthermore, we show that Shp2 regulates oligodendrocyte differentiation following demyelination and therefore has important therapeutic implications in diseases such as multiple sclerosis.
Collapse
|
30
|
Chitranshi N, Dheer Y, Gupta V, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL, Gupta V. PTPN11 induces endoplasmic stress and apoptosis in SH-SY5Y cells. Neuroscience 2017; 364:175-189. [PMID: 28947394 DOI: 10.1016/j.neuroscience.2017.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/25/2022]
Abstract
PTPN11 is associated with regulation of growth factor signaling pathways in neuronal cells. Using SH-SY5Y neuroblastoma cells, we showed that adeno-associated virus (AAV)-mediated PTPN11 upregulation was associated with TrkB antagonism, reduced neuritogenesis and enhanced endoplasmic reticulum (ER) stress response leading to apoptotic changes. Genetic knock-down of PTPN11 on the other hand leads to increased TrkB phosphorylation in SH-SY5Y cells. ER stress response induced by PTPN11 upregulation was alleviated pharmacologically by a TrkB agonist. Conversely the enhanced ER stress response induced by TrkB receptor antagonism was ameliorated by PTPN11 suppression, providing evidence of cross-talk of PTPN11 effects with TrkB actions. BDNF treatment of neuronal cells with PTPN11 upregulation also resulted in reduced expression of ER stress protein markers. This study provides evidence of molecular interactions between PTPN11 and the TrkB receptor in SH-SY5Y cells. The results reinforce the role played by PTPN11 in regulating neurotrophin protective signaling in neuronal cells and highlight that PTPN11 dysregulation promotes apoptotic activation. Based on these findings we suggest that blocking PTPN11 could have potential beneficial effects to limit the progression of neuronal loss in neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia.
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Veer Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia; Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Roger Chung
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| |
Collapse
|
31
|
Boerboom A, Reusch C, Pieltain A, Chariot A, Franzen R. KIAA1199: A novel regulator of MEK/ERK-induced Schwann cell dedifferentiation. Glia 2017; 65:1682-1696. [PMID: 28699206 DOI: 10.1002/glia.23188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022]
Abstract
The molecular mechanisms that regulate Schwann cell (SC) plasticity and the role of the Nrg1/ErbB-induced MEK1/ERK1/2 signalling pathway in SC dedifferentiation or in myelination remain unclear. It is currently believed that different levels of MEK1/ERK1/2 activation define the state of SC differentiation. Thus, the identification of new regulators of MEK1/ERK1/2 signalling could help to decipher the context-specific aspects driving the effects of this pathway on SC plasticity. In this perspective, we have investigated the potential role of KIAA1199, a protein that promotes ErbB and MEK1/ERK1/2 signalling in cancer cells, in SC plasticity. We depleted KIAA1199 in the SC-derived MSC80 cell line with RNA-interference-based strategy and also generated Tamoxifen-inducible and conditional mouse models in which KIAA1199 is inactivated through homologous recombination, using the Cre-lox technology. We show that the invalidation of KIAA1199 in SC decreases the expression of cJun and other negative regulators of myelination and elevates Krox20, driving them towards a pro-myelinating phenotype. We further show that in dedifferentiation conditions, SC invalidated for KIAA1199 exhibit lower myelin clearance as well as increased myelination capacity. Finally, the Nrg1-induced activation of the MEK/ERK/1/2 pathway is severely reduced when KIAA1199 is absent, indicating that KIAA1199 promotes Nrg1-dependent MEK1 and ERK1/2 activation in SCs. In conclusion, this work identifies KIAA1199 as a novel regulator of MEK/ERK-induced SC dedifferentiation and contributes to a better understanding of the molecular control of SC dedifferentiation.
Collapse
Affiliation(s)
| | - Céline Reusch
- GIGA-Molecular Biology of Diseases, University of Liège, Belgium
| | | | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of Liège, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Wavre, Belgium
| | | |
Collapse
|
32
|
Griger J, Schneider R, Lahmann I, Schöwel V, Keller C, Spuler S, Nazare M, Birchmeier C. Loss of Ptpn11 (Shp2) drives satellite cells into quiescence. eLife 2017; 6:21552. [PMID: 28463680 PMCID: PMC5441871 DOI: 10.7554/elife.21552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/29/2017] [Indexed: 12/20/2022] Open
Abstract
The equilibrium between proliferation and quiescence of myogenic progenitor and stem cells is tightly regulated to ensure appropriate skeletal muscle growth and repair. The non-receptor tyrosine phosphatase Ptpn11 (Shp2) is an important transducer of growth factor and cytokine signals. Here we combined complex genetic analyses, biochemical studies and pharmacological interference to demonstrate a central role of Ptpn11 in postnatal myogenesis of mice. Loss of Ptpn11 drove muscle stem cells out of the proliferative and into a resting state during muscle growth. This Ptpn11 function was observed in postnatal but not fetal myogenic stem cells. Furthermore, muscle repair was severely perturbed when Ptpn11 was ablated in stem cells due to a deficit in stem cell proliferation and survival. Our data demonstrate a molecular difference in the control of cell cycle withdrawal in fetal and postnatal myogenic stem cells, and assign to Ptpn11 signaling a key function in satellite cell activity. DOI:http://dx.doi.org/10.7554/eLife.21552.001
Collapse
Affiliation(s)
- Joscha Griger
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Robin Schneider
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Ines Lahmann
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Verena Schöwel
- Muscle Research Unit, Experimental and Clinical Research Center, Charité Medical Faculty and Max Delbrück Center for Molecular Medicine Berlin, Berlin, Germany
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, United States
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Charité Medical Faculty and Max Delbrück Center for Molecular Medicine Berlin, Berlin, Germany
| | - Marc Nazare
- Medicinal Chemistry, Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| |
Collapse
|
33
|
Miyamoto Y, Torii T, Tanoue A, Kawahara K, Arai M, Tsumura H, Ogata T, Nagao M, Terada N, Yamamoto M, Takashima S, Yamauchi J. Neuregulin-1 type III knockout mice exhibit delayed migration of Schwann cell precursors. Biochem Biophys Res Commun 2017; 486:506-513. [DOI: 10.1016/j.bbrc.2017.03.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/08/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
|
34
|
Axonal Type III Nrg1 Controls Glutamate Synapse Formation and GluA2 Trafficking in Hippocampal-Accumbens Connections. eNeuro 2017; 4:eN-NWR-0232-16. [PMID: 28275713 PMCID: PMC5329619 DOI: 10.1523/eneuro.0232-16.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Altered neuregulin 1 (Nrg1)/ErbB signaling and glutamatergic hypofunction have been implicated in the pathophysiology of schizophrenia. Here, we employed gene chimeric ventral hippocampus (vHipp)-nucleus accumbens (nAcc) coculture from mouse, electrophysiology, immunocytochemistry, FM1-43 vesicle fusion, and electron microscopy techniques to examine the pre- and postsynaptic mechanisms of genetic deficits in Nrg1/ErbB signaling-induced glutamatergic dysfunctions. Reduced presynaptic type III Nrg1 expression along vHipp axons decreases the number of glutamate synapses and impairs GluA2 trafficking in the postsynaptic nAcc neurons, resulting in decreased frequency and amplitude of miniature EPSCs (mEPSCs). Reduced expression of axonal type III Nrg1 along vHipp projections also decreases functional synaptic vesicle (SV) clustering and vesicular trafficking to presynaptic vHipp axonal terminals. These findings suggest that Nrg1/ErbB signaling modulate glutamatergic transmission via both pre- and postsynaptic mechanisms.
Collapse
|
35
|
Boerboom A, Dion V, Chariot A, Franzen R. Molecular Mechanisms Involved in Schwann Cell Plasticity. Front Mol Neurosci 2017; 10:38. [PMID: 28261057 PMCID: PMC5314106 DOI: 10.3389/fnmol.2017.00038] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Schwann cell incredible plasticity is a hallmark of the utmost importance following nerve damage or in demyelinating neuropathies. After injury, Schwann cells undergo dedifferentiation before redifferentiating to promote nerve regeneration and complete functional recovery. This review updates and discusses the molecular mechanisms involved in the negative regulation of myelination as well as in the reprogramming of Schwann cells taking place early following nerve lesion to support repair. Significant advance has been made on signaling pathways and molecular components that regulate SC regenerative properties. These include for instance transcriptional regulators such as c-Jun or Notch, the MAPK and the Nrg1/ErbB2/3 pathways. This comprehensive overview ends with some therapeutical applications targeting factors that control Schwann cell plasticity and highlights the need to carefully modulate and balance this capacity to drive nerve repair.
Collapse
Affiliation(s)
| | - Valérie Dion
- GIGA-Neurosciences, University of Liège Liège, Belgium
| | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO)Wavre, Belgium
| | | |
Collapse
|
36
|
Rodríguez-Molina JF, Lopez-Anido C, Ma KH, Zhang C, Olson T, Muth KN, Weider M, Svaren J. Dual specificity phosphatase 15 regulates Erk activation in Schwann cells. J Neurochem 2017; 140:368-382. [PMID: 27891578 PMCID: PMC5250571 DOI: 10.1111/jnc.13911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Schwann cells and oligodendrocytes are the myelinating cells of the peripheral and central nervous system, respectively. Despite having different myelin components and different transcription factors driving their terminal differentiation there are shared molecular mechanisms between the two. Sox10 is one common transcription factor required for several steps in development of myelinating glia. However, other factors are divergent as Schwann cells need the transcription factor early growth response 2/Krox20 and oligodendrocytes require Myrf. Likewise, some signaling pathways, like the Erk1/2 kinases, are necessary in both cell types for proper myelination. Nonetheless, the molecular mechanisms that control this shared signaling pathway in myelinating cells remain only partially characterized. The hypothesis of this study is that signaling pathways that are similarly regulated in both Schwann cells and oligodendrocytes play central roles in coordinating the differentiation of myelinating glia. To address this hypothesis, we have used genome-wide binding data to identify a relatively small set of genes that are similarly regulated by Sox10 in myelinating glia. We chose one such gene encoding Dual specificity phosphatase 15 (Dusp15) for further analysis in Schwann cell signaling. RNA interference and gene deletion by genome editing in cultured RT4 and primary Schwann cells showed Dusp15 is necessary for full activation of Erk1/2 phosphorylation. In addition, we show that Dusp15 represses expression of several myelin genes, including myelin basic protein. The data shown here support a mechanism by which early growth response 2 activates myelin genes, but also induces a negative feedback loop through Dusp15 to limit over-expression of myelin genes.
Collapse
Affiliation(s)
- José F. Rodríguez-Molina
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Camila Lopez-Anido
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ki H. Ma
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chongyu Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tyler Olson
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katharina N. Muth
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
37
|
Castelnovo LF, Bonalume V, Melfi S, Ballabio M, Colleoni D, Magnaghi V. Schwann cell development, maturation and regeneration: a focus on classic and emerging intracellular signaling pathways. Neural Regen Res 2017; 12:1013-1023. [PMID: 28852375 PMCID: PMC5558472 DOI: 10.4103/1673-5374.211172] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The development, maturation and regeneration of Schwann cells (SCs), the main glial cells of the peripheral nervous system, require the coordinate and complementary interaction among several factors, signals and intracellular pathways. These regulatory molecules consist of integrins, neuregulins, growth factors, hormones, neurotransmitters, as well as entire intracellular pathways including protein-kinase A, C, Akt, Erk/MAPK, Hippo, mTOR, etc. For instance, Hippo pathway is overall involved in proliferation, apoptosis, regeneration and organ size control, being crucial in cancer proliferation process. In SCs, Hippo is linked to merlin and YAP/TAZ signaling and it seems to respond to mechanic/physical challenges. Recently, among factors regulating SCs, also the signaling intermediates Src tyrosine kinase and focal adhesion kinase (FAK) proved relevant for SC fate, participating in the regulation of adhesion, motility, migration and in vitro myelination. In SCs, the factors Src and FAK are regulated by the neuroactive steroid allopregnanolone, thus corroborating the importance of this steroid in the control of SC maturation. In this review, we illustrate some old and novel signaling pathways modulating SC biology and functions during the different developmental, mature and regenerative states.
Collapse
Affiliation(s)
- Luca Franco Castelnovo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Veronica Bonalume
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Melfi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marinella Ballabio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Deborah Colleoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
38
|
Schwann cells–axon interaction in myelination. Curr Opin Neurobiol 2016; 39:24-9. [DOI: 10.1016/j.conb.2016.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023]
|
39
|
Birchmeier C, Bennett DLH. Neuregulin/ErbB Signaling in Developmental Myelin Formation and Nerve Repair. Curr Top Dev Biol 2016; 116:45-64. [PMID: 26970613 DOI: 10.1016/bs.ctdb.2015.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myelin is essential for rapid and accurate conduction of electrical impulses by axons in the central and peripheral nervous system (PNS). Myelin is formed in the early postnatal period, and developmental myelination in the PNS depends on axonal signals provided by Nrg1/ErbB receptors. In addition, Nrg1 is required for effective nerve repair and remyelination in adulthood. We discuss here similarities and differences in Nrg1/ErbB functions in developmental myelination and remyelination after nerve injury.
Collapse
Affiliation(s)
- Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - David L H Bennett
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
40
|
Gab1 and Mapk Signaling Are Essential in the Hair Cycle and Hair Follicle Stem Cell Quiescence. Cell Rep 2015; 13:561-572. [PMID: 26456821 DOI: 10.1016/j.celrep.2015.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/29/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022] Open
Abstract
Gab1 is a scaffold protein that acts downstream of receptor tyrosine kinases. Here, we produced conditional Gab1 mutant mice (by K14- and Krox20-cre) and show that Gab1 mediates crucial signals in the control of both the hair cycle and the self-renewal of hair follicle stem cells. Remarkably, mutant hair follicles do not enter catagen, the destructive phase of the hair cycle. Instead, hair follicle stem cells lose quiescence and become exhausted, and thus no stem cell niches are established in the bulges. Moreover, conditional sustained activation of Mapk signaling by expression of a gain-of-function Mek1(DD) allele (by Krox20-cre) rescues hair cycle deficits and restores quiescence of the stem cells. Our data thus demonstrate an essential role of Gab1 downstream of receptor tyrosine kinases and upstream of Shp2 and Mapk in the regulation of the hair cycle and the self-renewal of hair follicle stem cells.
Collapse
|
41
|
SHP2 sails from physiology to pathology. Eur J Med Genet 2015; 58:509-25. [PMID: 26341048 DOI: 10.1016/j.ejmg.2015.08.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2015] [Accepted: 08/30/2015] [Indexed: 02/08/2023]
Abstract
Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases.
Collapse
|
42
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
43
|
Abstract
Myelination of axons in the nervous system of vertebrates enables fast, saltatory impulse propagation, one of the best-understood concepts in neurophysiology. However, it took a long while to recognize the mechanistic complexity both of myelination by oligodendrocytes and Schwann cells and of their cellular interactions. In this review, we highlight recent advances in our understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath. In the central nervous system, myelination is also stimulated by axonal activity and astrocytes, whereas myelin clearance involves microglia/macrophages. Once myelinated, the long-term integrity of axons depends on glial supply of metabolites and neurotrophic factors. The relevance of this axoglial symbiosis is illustrated in normal brain aging and human myelin diseases, which can be studied in corresponding mouse models. Thus, myelinating cells serve a key role in preserving the connectivity and functions of a healthy nervous system.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| | | |
Collapse
|
44
|
Abstract
Myelinated nerve fibers are essential for the rapid propagation of action potentials by saltatory conduction. They form as the result of reciprocal interactions between axons and Schwann cells. Extrinsic signals from the axon, and the extracellular matrix, drive Schwann cells to adopt a myelinating fate, whereas myelination reorganizes the axon for its role in conduction and is essential for its integrity. Here, we review our current understanding of the development, molecular organization, and function of myelinating Schwann cells. Recent findings into the extrinsic signals that drive Schwann cell myelination, their cognate receptors, and the downstream intracellular signaling pathways they activate will be described. Together, these studies provide important new insights into how these pathways converge to activate the transcriptional cascade of myelination and remodel the actin cytoskeleton that is critical for morphogenesis of the myelin sheath.
Collapse
Affiliation(s)
- James L Salzer
- Department of Neuroscience and Physiology, New York University Neuroscience Institute, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
45
|
Jia S, Ivanov A, Blasevic D, Müller T, Purfürst B, Sun W, Chen W, Poy MN, Rajewsky N, Birchmeier C. Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β-cell function. EMBO J 2015; 34:1417-33. [PMID: 25828096 PMCID: PMC4492000 DOI: 10.15252/embj.201490819] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Key transcription factors control the gene expression program in mature pancreatic β-cells, but their integration into regulatory networks is little understood. Here, we show that Insm1, Neurod1 and Foxa2 directly interact and together bind regulatory sequences in the genome of mature pancreatic β-cells. We used Insm1 ablation in mature β-cells in mice and found pronounced deficits in insulin secretion and gene expression. Insm1-dependent genes identified previously in developing β-cells markedly differ from the ones identified in the adult. In particular, adult mutant β-cells resemble immature β-cells of newborn mice in gene expression and functional properties. We defined Insm1, Neurod1 and Foxa2 binding sites associated with genes deregulated in Insm1 mutant β-cells. Remarkably, combinatorial binding of Insm1, Neurod1 and Foxa2 but not binding of Insm1 alone explained a significant fraction of gene expression changes. Human genomic sequences corresponding to the murine sites occupied by Insm1/Neurod1/Foxa2 were enriched in single nucleotide polymorphisms associated with glycolytic traits. Thus, our data explain part of the mechanisms by which β-cells maintain maturity: Combinatorial Insm1/Neurod1/Foxa2 binding identifies regulatory sequences that maintain the mature gene expression program in β-cells, and disruption of this network results in functional failure.
Collapse
Affiliation(s)
- Shiqi Jia
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Andranik Ivanov
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dinko Blasevic
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Müller
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bettina Purfürst
- Electron Microscopy Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Sun
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Chen
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Matthew N Poy
- Molecular Mechanisms of Metabolic Disease, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
46
|
Lan L, Holland JD, Qi J, Grosskopf S, Rademann J, Vogel R, Györffy B, Wulf-Goldenberg A, Birchmeier W. Shp2 signaling suppresses senescence in PyMT-induced mammary gland cancer in mice. EMBO J 2015; 34:1493-508. [PMID: 25736378 DOI: 10.15252/embj.201489004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 02/04/2015] [Indexed: 12/26/2022] Open
Abstract
In this study, we have used techniques from cell biology, biochemistry, and genetics to investigate the role of the tyrosine phosphatase Shp2 in tumor cells of MMTV-PyMT mouse mammary glands. Genetic ablation or pharmacological inhibition of Shp2 induces senescence, as determined by the activation of senescence-associated β-gal (SA-β-gal), cyclin-dependent kinase inhibitor 1B (p27), p53, and histone 3 trimethylated lysine 9 (H3K9me3). Senescence induction leads to the inhibition of self-renewal of tumor cells and blockage of tumor formation and growth. A signaling cascade was identified that acts downstream of Shp2 to counter senescence: Src, focal adhesion kinase, and Map kinase inhibit senescence by activating the expression of S-phase kinase-associated protein 2 (Skp2), Aurora kinase A (Aurka), and the Notch ligand Delta-like 1 (Dll1), which block p27 and p53. Remarkably, the expression of Shp2 and of selected target genes predicts human breast cancer outcome. We conclude that therapies, which rely on senescence induction by inhibiting Shp2 or controlling its target gene products, may be useful in blocking breast cancer.
Collapse
Affiliation(s)
- Linxiang Lan
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jane D Holland
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jingjing Qi
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Stefanie Grosskopf
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Regina Vogel
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Balázs Györffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Walter Birchmeier
- Cancer Research Program, Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| |
Collapse
|
47
|
Grigoryan T, Birchmeier W. Molecular signaling mechanisms of axon-glia communication in the peripheral nervous system. Bioessays 2015; 37:502-13. [PMID: 25707700 DOI: 10.1002/bies.201400172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this article we discuss the molecular signaling mechanisms that coordinate interactions between Schwann cells and the neurons of the peripheral nervous system. Such interactions take place perpetually during development and in adulthood, and are critical for the homeostasis of the peripheral nervous system (PNS). Neurons provide essential signals to control Schwann cell functions, whereas Schwann cells promote neuronal survival and allow efficient transduction of action potentials. Deregulation of neuron-Schwann cell interactions often results in developmental abnormalities and diseases. Recent investigations have shown that during development, neuronally provided signals, such as Neuregulin, Jagged, and Wnt interact to fine-tune the Schwann cell lineage progression. In adult, the signal exchange between neurons and Schwann cells ensures proper nerve function and regeneration. Identification of the mechanisms of neuron-Schwann cell interactions is therefore essential for our understanding of the development, function and pathology of the peripheral nervous system as a whole.
Collapse
Affiliation(s)
- Tamara Grigoryan
- Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | |
Collapse
|
48
|
Newbern JM. Molecular control of the neural crest and peripheral nervous system development. Curr Top Dev Biol 2015; 111:201-31. [PMID: 25662262 DOI: 10.1016/bs.ctdb.2014.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A transient and unique population of multipotent stem cells, known as neural crest cells (NCCs), generate a bewildering array of cell types during vertebrate development. An attractive model among developmental biologists, the study of NCC biology has provided a wealth of knowledge regarding the cellular and molecular mechanisms important for embryogenesis. Studies in numerous species have defined how distinct phases of NCC specification, proliferation, migration, and survival contribute to the formation of multiple functionally distinct organ systems. NCC contributions to the peripheral nervous system (PNS) are well known. Critical developmental processes have been defined that provide outstanding models for understanding how extracellular stimuli, cell-cell interactions, and transcriptional networks cooperate to direct cellular diversification and PNS morphogenesis. Dissecting the complex extracellular and intracellular mechanisms that mediate the formation of the PNS from NCCs may have important therapeutic implications for neurocristopathies, neuropathies, and certain forms of cancer.
Collapse
Affiliation(s)
- Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
49
|
In vivo knockdown of ErbB3 in mice inhibits Schwann cell precursor migration. Biochem Biophys Res Commun 2014; 452:782-8. [PMID: 25204498 DOI: 10.1016/j.bbrc.2014.08.156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 08/31/2014] [Indexed: 11/23/2022]
Abstract
The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration.
Collapse
|
50
|
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014; 83:27-49. [PMID: 24991953 DOI: 10.1016/j.neuron.2014.06.007] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuregulins (NRGs) comprise a large family of growth factors that stimulate ERBB receptor tyrosine kinases. NRGs and their receptors, ERBBs, have been identified as susceptibility genes for diseases such as schizophrenia (SZ) and bipolar disorder. Recent studies have revealed complex Nrg/Erbb signaling networks that regulate the assembly of neural circuitry, myelination, neurotransmission, and synaptic plasticity. Evidence indicates there is an optimal level of NRG/ERBB signaling in the brain and deviation from it impairs brain functions. NRGs/ERBBs and downstream signaling pathways may provide therapeutic targets for specific neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany.
| |
Collapse
|