1
|
Guo F, Song Y, Dong S, Wei J, Li B, Xu T, Wang H. Characterization and anti-tuberculosis effects of γδ T cells expanded and activated by Mycobacterium tuberculosis heat-resistant antigen. Virulence 2025; 16:2462092. [PMID: 39921673 PMCID: PMC11810100 DOI: 10.1080/21505594.2025.2462092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/01/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb) that poses a severe threat to human health. A variety of highly immunogenic tuberculosis proteins have been used as targets in vaccine development to mitigate the spread of TB. Although Th1-type immunity has long been considered a crucial part of resistance to Mtb, γδ T cells, the predominant source of IL-17, are not negligible in controlling the early stages of TB infection. In addition to classical phosphoantigens, Mycobacterium tuberculosis heat-resistant antigens (HAg), a complex containing 564 proteins obtained from live tuberculosis bacteria after heat treatment at 121 °C for 20 min, have been confirmed to be highly effective γδ T cell stimulators as well. Several studies have demonstrated that HAg-activated γδ T cells can participate in TB immunity by secreting multiple cytokines against Mtb or by interacting with other innate immune cells. In this review, we present a possible mechanism of HAg stimulation of γδ T cells and the role of HAg-activated γδ T cells in anti-TB immunity. We also highlight the limitations of studies on HAg activation of γδ T cells and suggest further research directions on the relationship between HAg and γδ T cells.
Collapse
Affiliation(s)
- Fangzheng Guo
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Yamin Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Sihang Dong
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Jing Wei
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Baiqing Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Tao Xu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
| |
Collapse
|
2
|
Tang L, Zhang J, Shao Y, Wei Y, Li Y, Tian K, Yan X, Feng C, Zhang QC. Joint analysis of chromatin accessibility and gene expression in the same single cells reveals cancer-specific regulatory programs. Cell Syst 2025; 16:101266. [PMID: 40262617 DOI: 10.1016/j.cels.2025.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/19/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Biological analyses conducted at the single-cell scale have revealed profound impacts of heterogeneity and plasticity of chromatin states and gene expression on physiology and cancer. Here, we developed Parallel-seq, a technology for simultaneously measuring chromatin accessibility and gene expression in the same single cells. By combining combinatorial cell indexing and droplet overloading, Parallel-seq generates high-quality data in an ultra-high-throughput fashion and at a cost two orders of magnitude lower than alternative technologies (10× Multiome and ISSAAC-seq). We applied Parallel-seq to 40 lung tumor and tumor-adjacent clinical samples and obtained over 200,000 high-quality joint scATAC-and-scRNA profiles. Leveraging this large dataset, we characterized copy-number variations (CNVs) and extrachromosomal circular DNA (eccDNA) heterogeneity in tumor cells, predicted hundreds of thousands of cell-type-specific regulatory events, and identified enhancer mutations affecting tumor progression. Our analyses highlight Parallel-seq's power in investigating epigenetic and genetic factors driving cancer development at the cell-type-specific level and its utility for revealing vulnerable therapeutic targets.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jinsong Zhang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yanqiu Shao
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yifan Wei
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yuzhe Li
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kang Tian
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiang Yan
- Department of Medical Oncology, the Fifth Medical Center, Beijing 301 Hospital, Beijing 100039, China
| | - Changjiang Feng
- Department of Thoracic Surgery, the First Medical Center, Beijing 301 Hospital, Beijing 100039, China.
| | - Qiangfeng Cliff Zhang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
3
|
Tang S, Che X, Wang J, Li C, He X, Hou K, Zhang X, Guo J, Yang B, Li D, Cao L, Qu X, Wang Z, Liu Y. T-bet +CD8 + T cells govern anti-PD-1 responses in microsatellite-stable gastric cancers. Nat Commun 2025; 16:3905. [PMID: 40280928 PMCID: PMC12032036 DOI: 10.1038/s41467-025-58958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
More than 90% of advanced gastric cancers (GC) are microsatellite-stable (MSS). Compared to the high response rate of immune checkpoint inhibitors (ICI) in microsatellite-instability-high (MSI-H) GCs, only 10% of unstratified MSS GCs respond to ICIs. In this study, we apply semi-supervised learning to stratify potential ICI responders in MSS GCs, achieving high accuracy, quantified by an area under the curve of 0.924. Spatial analysis of the tumor microenvironment of ICI-sensitive GCs reveals a high level of T-bet+ CD8 + T cell infiltration in their tumor compartments. T-bet+ CD8 + T cells exhibit superior anti-tumor activity due to their increased ability to infiltrate tumors and secrete cytotoxic molecules. Adoptive transfer of T-bet+ CD8 + T cells boosts anti-tumor immunity and confers susceptibility to ICIs in immune-ignorant MSS GCs in a humanized mouse model. Spatial RNA sequencing suggests a positive-feedback loop between T-bet+ T cells and PD-L1+ tumor cells, which eventually drives T cell exhaustion and can therefore be leveraged for ICI therapy. In summary, our research provides insights into the underlying mechanism of anti-tumor immunity and deepens our understanding of varied ICI responses in MSS GCs.
Collapse
Affiliation(s)
- Shiying Tang
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China
| | - Jinyan Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No. 77, Puhe Road, Shenyang, Liaoning, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China
| | - Xin He
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China
| | - Xiaojie Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China
| | - Jia Guo
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China
| | - Bowen Yang
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China
| | - Lili Cao
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China.
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, No.155, Nanjing Street, Shenyang, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, Shenyang, Liaoning, China.
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, Nanjing Street, Shenyang, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China.
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Lim YJ, Duckworth AD, Clarke K, Kennedy P, Karpha I, Oates M, Gornall M, Kalakonda N, Slupsky JR, Pettitt AR. Influence of polyfunctional Tbet + T cells on specific clinical events in chronic lymphocytic leukaemia. Front Immunol 2025; 16:1528405. [PMID: 40313965 PMCID: PMC12043603 DOI: 10.3389/fimmu.2025.1528405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/18/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction T-cell dysfunction is a hallmark of chronic lymphocytic leukemia (CLL), but the extent to which individual CD4+ or CD8+ T-cell subpopulations influence specific clinical events remains unclear. To address this knowledge gap, we utilised high-dimensional mass cytometry to profile circulating CD4+ and CD8+ T-cells in pre-treatment samples from a well-defined cohort of CLL patients undergoing initial therapy as part of a clinical trial. Methods Pre-treatment blood samples from 138 CLL patients receiving initial chemoimmunotherapy containing bendamustine or chlorambucil in the NCRI RIAltO trial (NCT01678430; EudraCT 2011-000919-22) were subjected to deep immunophenotyping by mass cytometry using a bespoke panel of 37 antibodies. T-cell clusters were identified through unsupervised clustering and related to treatment outcomes. Additionally, a randomly selected cohort of 30 CLL patients underwent T-cell stimulation with anti-CD3/CD28 microbeads, followed by cytokine analysis using a separate 36-antibody panel, which included seven cytokines. Results Seventeen CD4+ and 22 CD8+ T-cell clusters were identified in a discovery cohort of 79 patients. Three of these clusters, measured as a proportion of their parental CD4+ or CD8+ populations, correlated with a reduced risk of grade ≥3 infection, grade ≥3 second primary malignancy (SPM) and death, respectively. Three corresponding T-cell subpopulations prospectively defined by non-redundant markers and Boolean gating (ICOS+HLA-DR+PD1+TIGIT+Tbet+CD4+ T-helper cells; CD27+CD28-PD1+Tbet+Eomes+CD8+ cells; and CD27+CD28-GrymB+Tbet+Eomes+CD8+ terminal effector cells) showed the same clinical correlations as the clusters on which they were based. With the exception of SPM for which there were insufficient events, these correlations were confirmed in a separate validation cohort of 59 patients. In-vitro stimulation of a subset of CLL patients in the discovery cohort showed an enrichment of primed and polyfunctional cells in all three Tbet+ T-cell subpopulations of interest. Conclusion Our study provides new insights into the potential for Tbet+ T-cell subpopulations to influence and predict specific clinical events in CLL. This, in turn, raises the possibility that these respective subpopulations could play an important role in controlling infection, solid tumours and CLL itself. Clinical Trial Registration https://www.clinicaltrials.gov/, identifier NCT01678430; https://www.isrctn.com/ISRCTN09988575, identifier EudraCT 2011-000919-22.
Collapse
Affiliation(s)
- Yeong Jer Lim
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Andrew D. Duckworth
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kim Clarke
- Computational Biology Facility, University of Liverpool, Liverpool, United Kingdom
| | - Paul Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Indrani Karpha
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Melanie Oates
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Matthew Gornall
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, United Kingdom
| | - Nagesh Kalakonda
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Joseph R. Slupsky
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrew R. Pettitt
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
5
|
Piao W, Lee ZL, Zapas G, Wu L, Jewell CM, Abdi R, Bromberg JS. Regulatory T cell and endothelial cell crosstalk. Nat Rev Immunol 2025:10.1038/s41577-025-01149-2. [PMID: 40169744 DOI: 10.1038/s41577-025-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Regulatory T (Treg) cells have a central role in the maintenance of immune surveillance and tolerance. They can migrate from lymphoid organs to blood and then into tissues and egress from tissues into draining lymph nodes. Specialized endothelial cells of blood and lymphatic vessels are the key gatekeepers for these processes. Treg cells that transmigrate across single-cell layers of endothelial cells engage in bidirectional crosstalk with these cells and regulate vascular permeability by promoting structural modifications of blood and lymphatic endothelial cells. In turn, blood and lymphatic endothelial cells can modulate Treg cell recirculation and residency. Here, we discuss recent insights into the cellular and molecular mechanisms of the crosstalk between Treg cells and endothelial cells and explore potential therapeutic strategies to target these interactions in autoimmunity, transplantation and cancer.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory Zapas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Long Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Jewell
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Jablonka-Shariff A, Broberg C, Snyder-Warwick AK. Absence of T-box transcription factor 21 limits neuromuscular junction recovery after nerve injury in T-bet-knockout mice. Front Cell Dev Biol 2025; 13:1535323. [PMID: 40162097 PMCID: PMC11949913 DOI: 10.3389/fcell.2025.1535323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Terminal Schwann cells (tSCs), at the neuromuscular junction (NMJ), play critical roles in the repair of motor axon terminals at muscle, and rebuild neuronal signaling following nerve injury. Knowledge of mediators impacting tSCs post-nerve injury and in disease may guide beneficial therapies to improve motor outcomes. We previously found T-box transcription factor 21 (TBX21/TBET), classically associated with T-helper1 cells and immune cell recruitment, is expressed in tSCs at the mouse NMJ. The purpose of this study was to examine effects of Tbx21 absence during NMJ regeneration following peripheral nerve injury. Methods Wildtype (WT) and Tbet-knockout (Tbet-KO) mice underwent sciatic nerve transection and immediate repair. Functional muscle recovery assessment was performed with muscle force testing on mice at 2-, 3-, 4-, and 6-week (wks) and 6 months after nerve injury repair. Morphometric analyses of NMJ reinnervation, tSC number, and tSC processes were evaluated. Full NMJ reinnervation was defined as ≥75% coverage of endplates by axons. A minimum of three mice were evaluated in each group, and 50-100 NMJs were evaluated per mouse. Results Tbet-KO mice had significantly diminished muscle function compared to WT mice at every time point beyond 3 weeks. Tbet-KO mice showed just over half of the muscle force generated by WT mice at 4 weeks and 6 weeks post-injury and repair. By 6 months, Tbet-KO mice generated only 84.1% the muscle force of WT mice. Tbet-KO mice showed significantly decreased levels of fully reinnervated NMJs compared to WT mice at each time point tested. Tbet-KO mice also showed a lower number of tSCs with reduced cytoplasmic processes beyond NMJ area and lower number of immune cells during process of NMJ regeneration. Discussion Our findings show that the Tbx21 transcription factor promotes NMJ reinnervation to regain muscle function following nerve injury.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Research Scientist, Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Curtis Broberg
- Research Student, Washington University School of Medicine, St. Louis, MO, United States
| | - Alison K. Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Wu Y, Han X, Zhou L, Liu X, Zhang D, Sun G. The T-box transcription factor plays an important role in regulating the immunoregulatory function of double-negative T cells. Biochem Biophys Res Commun 2025; 752:151492. [PMID: 39955950 DOI: 10.1016/j.bbrc.2025.151492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Double-negative T (DNT) cells are important immunoregulatory cells that play a key role in maintaining immune homeostasis. However, the specific immune molecular mechanisms regulating DNT cell function have yet to be studied in depth. This study revealed that compared with conventional T cells, natural DNT cells and CD4+ T cell-converted DNT (cDNT) cells can secrete high levels of IFN-γ. Further analysis revealed that DNT cells highly expressed Th1-related genes and the T-box transcription factor (T-bet). Knocking out T-bet significantly reduced the level of IFN-γ secretion by DNT cells, indicating that T-bet is involved in the regulation of IFN-γ. Knocking out T-bet did not affect the conversion, survival or proliferation of cDNT cells but weakened the ability of cDNT cells to kill monocytes and inhibit monocytes TNF-α secretion. Transcriptome sequencing analysis confirmed that T-bet knockout in cDNT cells significantly reduced the immune-killing ability and activation level of cDNT cells. The ChIP-seq analysis revealed that T-bet directly transcriptionally regulated genes associated with cytotoxicity and activation, such as Gzma, Gzmb, Prf1, and Cd28. After T-bet knockout, the expression levels of these genes in cDNT cells were significantly reduced. In summary, this study revealed the key role of T-bet in regulating the immunoregulatory function of DNT cells, expanded knowledge on the mechanisms of action by which DNT cells exert immunoregulatory effects and provided a theoretical basis for the application of DNT cells in immune cell therapy.
Collapse
Affiliation(s)
- Yongle Wu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Xiaotong Han
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Longyang Zhou
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Dong Zhang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China.
| | - Guangyong Sun
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China.
| |
Collapse
|
8
|
Van Roy Z, Kak G, Fallet RW, Kielian T. Interferon-gamma receptor signaling regulates innate immunity during Staphylococcus aureus craniotomy infection. J Neuroinflammation 2025; 22:46. [PMID: 39987156 PMCID: PMC11847343 DOI: 10.1186/s12974-025-03376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025] Open
Abstract
A craniotomy is a neurosurgical procedure performed to access the intracranial space. In 3-5% of cases, infections can develop, most caused by Staphylococcus aureus biofilm formation on the skull surface. Medical management of this infection is difficult, as biofilm properties confer immune and antimicrobial recalcitrance to the infection and necessitate additional surgical procedures. Furthermore, treatment failure rates can be appreciably high. These factors, compounded with rapidly expanding rates of antimicrobial resistance, highlight the need to develop alternative treatment strategies to target and reverse the immune dysfunction that occurs during biofilm infection. Our recent work has identified CD4+ Th1 and Th17 cells as potent regulators of innate immune cell activation during craniotomy infection. Here, we report the role of IFN-γ, versus other Th1- and Th17-derived cytokines, in programing the immune response to biofilm infection using both global and cell type-specific IFN-γR1-deficient (Ifngr1-/-) mice. Bacterial burdens were significantly higher in Ifngr1-/- relative to WT animals despite few changes in immune cell abundance. Single-cell transcriptomics identified candidate explanations for this phenotype as alterations in cell death pathways, innate immune cell activation, MHC-II expression, and T cell responses were significantly reduced in Ifngr1-/- mice. While caspase-1 activation in PMNs and macrophage/microglial MHC-II expression were regulated by IFN-γ signaling, no phenotypes were observed with either granulocyte- or macrophage/microglia Ifngr1-/- conditional knockout mice, suggestive of redundancy. Instead, a decreased Th1/Th17 ratio was identified in Ifngr1-/- animals that was corroborated by elevated IL-17 levels and correlated with dysfunctional T cell-innate immune communication. Further, Th17 cells were less effective than Th1 cells in promoting S. aureus bactericidal activity in microglia and macrophages. Collectively, this work identifies a key protective role for IFN-γ during craniotomy infection by enhancing macrophage and microglial antibacterial activity. Therefore, controlled programming of IFN-γ responses may represent a novel therapeutic strategy for chronic craniotomy infections.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Gunjan Kak
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Rachel W Fallet
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA.
| |
Collapse
|
9
|
Taner HF, Gong W, Fitzsimonds ZR, Li Z, Wu Y, He Y, Okuyama K, Cheng W, Kuczura J, Rajesh S, Manousidaki A, Feng S, Lee M, Nör F, Lanzel E, Demehri S, Polverini PJ, Nör JE, Wang TD, Que J, Wen H, Xie Y, Moon JJ, Lei YL. SOX2-induced IL1α-mediated immune suppression drives epithelial dysplasia malignant transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.626475. [PMID: 39713429 PMCID: PMC11661103 DOI: 10.1101/2024.12.06.626475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Squamous cell carcinomas (SCC) are often preceded by potentially malignant precursor lesions, most of which remain benign. The terminal exhaustion phenotypes of effector T-cells and the accumulation of myeloid-derived suppressor cells (MDSC) have been thoroughly characterized in established SCC. However, it is unclear what precancerous lesions harbor a bona fide high risk for malignant transformation and how precancerous epithelial dysplasia drives the immune system to the point of no return. Here we show that expression of SRY-box transcription factor 2 (SOX2) in precancerous lesions imparts an irreversible risk that recruits suppressive myeloid cells by promoting the release of CCL2. We developed a unique genetically engineered mouse model (GEMM) to recapitulate the malignant transformation of epithelial dysplasia to SCC in the oral mucosa with high histologic and phenotypic fidelity. Using a combination of longitudinal human specimens and the Sox2-GEMM, we found that the myeloid cells in precancerous epithelial dysplasia exhibit a distinctive dichotomous profile featuring high levels of IL-1α-SLC2A1 and low levels of type-I interferon (IFN-I) signatures, which occurs before SCC emerges histologically. Brief priming of myeloid cells with IL-1α desensitizes them to IFN-I agonists and makes myeloid-derived suppressor cells (MDSC) even more suppressive of T-cell activation. Mechanistically, IL-1 activation represses the expression of DHHC3/7 enzymes, which are responsible for the palmitoylation of stimulator of interferon genes (STING). Early blockade of IL1 signaling using pharmacologic and genetic approaches similarly reduces MDSC and SLC2A1high myeloid cells, suppresses epithelial dysplasia transformation, and extends survival. This work establishes a previously unrecognized SOX2-CCL2-IL1 pathway that leads to irreversible immune escape when precancerous epithelial lesions transform.
Collapse
Affiliation(s)
- Hülya F. Taner
- Oral Health Sciences DDS/PhD Program, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
| | - Wang Gong
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Zackary R. Fitzsimonds
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Zaiye Li
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yuesong Wu
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Yumin He
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kohei Okuyama
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Wanqing Cheng
- Graduate School of Biomedical Sciences, the University of Texas M.D. Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Jung Kuczura
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Sashider Rajesh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andriana Manousidaki
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Shuo Feng
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Miki Lee
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Felipe Nör
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
| | - Emily Lanzel
- Department of Oral Pathology, Radiology, and Medicine, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Shadmehr Demehri
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Peter J. Polverini
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
| | - Jacques E. Nör
- Oral Health Sciences DDS/PhD Program, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Cariology, Restorative Science and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
| | - Thomas D. Wang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yuying Xie
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
- Department of Computational Mathematics Science and Engineering, Michigan State University, East Lansing, MI 48864, USA
| | - James J. Moon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI 48105, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Oral Health Sciences DDS/PhD Program, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Graduate School of Biomedical Sciences, the University of Texas M.D. Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
10
|
Arkee T, Hornick EL, Bishop GA. TRAF3 regulates STAT6 activation and T-helper cell differentiation by modulating the phosphatase PTP1B. J Biol Chem 2024; 300:107737. [PMID: 39233229 PMCID: PMC11462019 DOI: 10.1016/j.jbc.2024.107737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
The adaptor protein tumor necrosis factor receptor-associated factor 3 (TRAF3) is a multifaceted regulator of lymphocyte biology that plays key roles in modulation of the molecular signals required for T-cell activation and function. TRAF3 regulates signals mediated by the T-cell receptor (TCR), costimulatory molecules, and cytokine receptors, which each drive activation of the serine/threonine kinase Akt. The impact of TRAF3 upon TCR-CD28-mediated activation of Akt, and thus on the diverse cellular processes regulated by Akt, including CD4 T-cell fate decisions, remains poorly understood. We show here that TRAF3 deficiency led to impaired Akt activation and thus to impaired in vitro skewing of CD4 T cells into the TH1 and TH2 fates. We investigated the role of TRAF3 in regulation of signaling pathways that drive TH1 and TH2 differentiation and found that TRAF3 enhanced activation of signal transducer and activator of transcription 6 (STAT6), thus promoting skewing toward the TH2 fate. TRAF3 promoted STAT6 activation by regulating recruitment of the inhibitory molecule protein tyrosine phosphatase 1B to the IL-4R signaling complex, in a manner that required integration of TCR-CD28- and IL-4R-mediated signals. This work reveals a new mechanism for TRAF3-mediated regulation of STAT6 activation in CD4 T cells and adds to our understanding of the diverse roles played by TRAF3 as an important regulator of T-cell biology.
Collapse
Affiliation(s)
- Tina Arkee
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Emma L Hornick
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Gail A Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA; Office of Research and Development, Iowa City VA Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
11
|
Hadifar S, Masoudzadeh N, Heydari H, Mashayekhi Goyonlo V, Kerachian M, Daneshpazhooh M, Sadeghnia A, Tootoonchi N, Erfanian Salim R, Rafati S, Harandi AM. Intralesional gene expression profile of JAK-STAT signaling pathway and associated cytokines in Leishmania tropica-infected patients. Front Immunol 2024; 15:1436029. [PMID: 39364404 PMCID: PMC11446769 DOI: 10.3389/fimmu.2024.1436029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Background The JAK-STAT signaling pathway is a central cascade of signal transduction for the myriad of cytokines in which dysregulation has been implicated in progression of inflammatory and infectious diseases. However, the involvement of this pathway in human cutaneous leishmaniasis (CL) due to Leishmania (L.) tropica warrants further investigation. Methods This study sought to investigate differential gene expression of several cytokines and their associated jak-stat genes in the lesions of L. tropica-infected patients byquantitative Real-Time PCR. Further, the expression of five inhibitory immune checkpoint genes was evaluated. Results Results showed that the gene expression levelsof both Th1 (ifng, il12, il23) and Th2 (il4, il10) types cytokines were increased in the lesion of studied patients. Further, elevated expression levels of il35, il21, il27 and il24 genes were detected in the lesions of CL patients. Notably, the expression of the majority of genes involved in JAK/STAT signaling pathway as well as checkpoint genes including pdl1, ctla4 and their corresponding receptors was increased. Conclusion Our finding revealed dysregulation of cytokines and related jak-stat genes in the lesion of CL patients. These results highlight the need for further exploration of the functional importance of these genes in the pathogenesis of, and immunity to, CL.
Collapse
Affiliation(s)
- Shima Hadifar
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Heydari
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohammadali Kerachian
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Das A, Wang X, Devonshire K, Lyons EJ, Popescu I, Zhou Z, Li J, Sembrat J, Pilewski J, Zou C, Alder JK, Chen BB, Snyder ME, McDyer JF. IL-10 Is Critical for Regulation of Cytotoxic CD4+NKG7+ T Cells in Lung Allograft Rejection but Is Not Required for Allograft Acceptance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:898-905. [PMID: 39072690 DOI: 10.4049/jimmunol.2400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Lung transplant remains the primary therapeutic option for patients with end-stage lung disease, but long-term survival rates remain suboptimal compared with other solid organ transplants. Acute cellular rejection (ACR) is a significant challenge in lung transplant recipients, with T cell-mediated mechanisms playing a major role. IL-10 is known for its immunoregulatory function, although its specific role in lung allograft rejection remains unclear. Using the mouse orthotopic lung transplant model, we investigated the role of IL-10 in regulating alloeffector T cell responses. Unexpectedly, we found that IL-10 was not required for early costimulation blockade-induced allograft acceptance. However, IL-10 deficiency or blockade resulted in increased CD4+ T cell numbers, proliferation, graft infiltration, and alloeffector responses. In the absence of IL-10, CD4+ T cell responses predominated over CD8 responses during ACR in contrast to wild-type mice. Type 1 immunity (IFN-γ) responses along with elevated CD4+NKG7+ and CD4+CD107a+ responses predominated during ACR, highlighting a critical regulatory role for IL-10 in modulating CD4+ T cell alloimmune responses. We further demonstrated increased colocalization of NKG7 and CD107a in CD4+ T cells from IL-10-deficient allografts, suggesting coordination in cytotoxic activity. Together, our findings highlight a critical role for IL-10 in regulation of cytotoxic CD4+NKG7+ T cells, an effector population that needs further investigation to elucidate their role in lung allograft rejection.
Collapse
Affiliation(s)
- Antu Das
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Xingan Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kaitlyn Devonshire
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Emily J Lyons
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Iulia Popescu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Zihe Zhou
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jingmei Li
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Joseph Pilewski
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chunbin Zou
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jonathan K Alder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Bill B Chen
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Aging Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mark E Snyder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - John F McDyer
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
13
|
Hegazy AN, Peine C, Niesen D, Panse I, Vainshtein Y, Kommer C, Zhang Q, Brunner TM, Peine M, Fröhlich A, Ishaque N, Marek RM, Zhu J, Höfer T, Löhning M. Plasticity and lineage commitment of individual T H1 cells are determined by stable T-bet expression quantities. SCIENCE ADVANCES 2024; 10:eadk2693. [PMID: 38838155 PMCID: PMC11152138 DOI: 10.1126/sciadv.adk2693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.
Collapse
Affiliation(s)
- Ahmed N. Hegazy
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medical Department of Gastroenterology, Infectious Diseases and Rheumatology, 12203 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Inflammatory Mechanisms, 10117 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Caroline Peine
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Dominik Niesen
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Isabel Panse
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Yevhen Vainshtein
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, 69120 Heidelberg, Germany
- University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany
| | - Christoph Kommer
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, 69120 Heidelberg, Germany
- University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany
| | - Qin Zhang
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, 69120 Heidelberg, Germany
- University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany
| | - Tobias M. Brunner
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Michael Peine
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Anja Fröhlich
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Naveed Ishaque
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, 69120 Heidelberg, Germany
- University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany
| | - Roman M. Marek
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| | - Jinfang Zhu
- National Institute of Allergy and Infectious Diseases, Laboratory of Immune System Biology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Höfer
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, 69120 Heidelberg, Germany
- University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany
| | - Max Löhning
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, 10117 Berlin, Germany
| |
Collapse
|
14
|
Na J, Engwerda C. The role of CD4 + T cells in visceral leishmaniasis; new and emerging roles for NKG7 and TGFβ. Front Cell Infect Microbiol 2024; 14:1414493. [PMID: 38881737 PMCID: PMC11176485 DOI: 10.3389/fcimb.2024.1414493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Visceral leishmaniasis is a potentially devastating neglected tropical disease caused by the protozoan parasites Leishmania donovani and L. infantum (chagasi). These parasites reside in tissue macrophages and survive by deploying a number of mechanisms aimed at subverting the host immune response. CD4+ T cells play an important role in controlling Leishmania parasites by providing help in the form of pro-inflammatory cytokines to activate microbiocidal pathways in infected macrophages. However, because these cytokines can also cause tissue damage if over-produced, regulatory immune responses develop, and the balance between pro-inflammatory and regulatory CD4+ T cells responses determines the outcomes of infection. Past studies have identified important roles for pro-inflammatory cytokines such as IFNγ and TNF, as well as regulatory co-inhibitory receptors and the potent anti-inflammatory cytokine IL-10. More recently, other immunoregulatory molecules have been identified that play important roles in CD4+ T cell responses during VL. In this review, we will discuss recent findings about two of these molecules; the NK cell granule protein Nkg7 and the anti-inflammatory cytokine TGFβ, and describe how they impact CD4+ T cell functions and immune responses during visceral leishmaniasis.
Collapse
Affiliation(s)
- Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
15
|
Kandel A, Li L, Wang Y, Tuo W, Xiao Z. Differentiation and Regulation of Bovine Th2 Cells In Vitro. Cells 2024; 13:738. [PMID: 38727273 PMCID: PMC11083891 DOI: 10.3390/cells13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.
Collapse
Affiliation(s)
- Anmol Kandel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| |
Collapse
|
16
|
Patel E, Malkova NV, Crowe D, Pederzoli-Ribeil M, Fantini D, Fanny M, Madala HR, Jenkins KA, Yerov O, Greene J, Guzman W, O'Toole C, Taylor J, O'Donnell RK, Johnson P, Lanter BB, Ames B, Chen J, Vu S, Wu HJ, Cantin S, McLaughlin M, Hsiao YSS, Tomar DS, Rozenfeld R, Thiruneelakantapillai L, O'Hagan RC, Nicholson B, O'Neil J, Bialucha CU. XTX301, a Tumor-Activated Interleukin-12 Has the Potential to Widen the Therapeutic Index of IL12 Treatment for Solid Tumors as Evidenced by Preclinical Studies. Mol Cancer Ther 2024; 23:421-435. [PMID: 38030380 PMCID: PMC10993987 DOI: 10.1158/1535-7163.mct-23-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
IL12 is a proinflammatory cytokine, that has shown promising antitumor activity in humans by promoting the recruitment and activation of immune cells in tumors. However, the systemic administration of IL12 has been accompanied by considerable toxicity, prompting interest in researching alternatives to drive preferential IL12 bioactivity in the tumor. Here, we have generated XTX301, a tumor-activated IL12 linked to the human Fc protein via a protease cleavable linker that is pharmacologically inactivated by an IL12 receptor subunit beta 2 masking domain. In vitro characterization demonstrates multiple matrix metalloproteases, as well as human primary tumors cultured as cell suspensions, can effectively activate XTX301. Intravenous administration of a mouse surrogate mXTX301 demonstrated significant tumor growth inhibition (TGI) in inflamed and non-inflamed mouse models without causing systemic toxicities. The superiority of mXTX301 in mediating TGI compared with non-activatable control molecules and the greater percentage of active mXTX301 in tumors versus other organs further confirms activation by the tumor microenvironment-associated proteases in vivo. Pharmacodynamic characterization shows tumor selective increases in inflammation and upregulation of immune-related genes involved in IFNγ cell signaling, antigen processing, presentation, and adaptive immune response. XTX301 was tolerated following four repeat doses up to 2.0 mg/kg in a nonhuman primate study; XTX301 exposures were substantially higher than those at the minimally efficacious dose in mice. Thus, XTX301 has the potential to achieve potent antitumor activity while widening the therapeutic index of IL12 treatment and is currently being evaluated in a phase I clinical trial.
Collapse
Affiliation(s)
- Ekta Patel
- Xilio Therapeutics, Inc., Waltham, Massachusetts
| | | | - David Crowe
- Xilio Therapeutics, Inc., Waltham, Massachusetts
| | | | | | | | | | | | - Oleg Yerov
- Xilio Therapeutics, Inc., Waltham, Massachusetts
| | | | | | | | - Jacob Taylor
- Xilio Therapeutics, Inc., Waltham, Massachusetts
| | | | | | | | - Brian Ames
- Werfen Therapeutics, Bedford, Massachusetts
| | - Jia Chen
- Alnylam Pharmaceuticals, Cambridge, Massachusetts
| | - Sallyann Vu
- Xilio Therapeutics, Inc., Waltham, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hokello J, Tyagi K, Owor RO, Sharma AL, Bhushan A, Daniel R, Tyagi M. New Insights into HIV Life Cycle, Th1/Th2 Shift during HIV Infection and Preferential Virus Infection of Th2 Cells: Implications of Early HIV Treatment Initiation and Care. Life (Basel) 2024; 14:104. [PMID: 38255719 PMCID: PMC10817636 DOI: 10.3390/life14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
The theory of immune regulation involves a homeostatic balance between T-helper 1 (Th1) and T-helper 2 (Th2) responses. The Th1 and Th2 theories were introduced in 1986 as a result of studies in mice, whereby T-helper cell subsets were found to direct different immune response pathways. Subsequently, this hypothesis was extended to human immunity, with Th1 cells mediating cellular immunity to fight intracellular pathogens, while Th2 cells mediated humoral immunity to fight extracellular pathogens. Several disease conditions were later found to tilt the balance between Th1 and Th2 immune response pathways, including HIV infection, but the exact mechanism for the shift from Th1 to Th2 cells was poorly understood. This review provides new insights into the molecular biology of HIV, wherein the HIV life cycle is discussed in detail. Insights into the possible mechanism for the Th1 to Th2 shift during HIV infection and the preferential infection of Th2 cells during the late symptomatic stage of HIV disease are also discussed.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Kratika Tyagi
- Department of Biotechnology, Banasthali Vidyapith, Jaipur 304022, India
| | - Richard Oriko Owor
- Department of Chemistry, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | | | - Alok Bhushan
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rene Daniel
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
18
|
Zaini A, Dalit L, Sheikh AA, Zhang Y, Thiele D, Runting J, Rodrigues G, Ng J, Bramhall M, Scheer S, Hailes L, Groom JR, Good-Jacobson KL, Zaph C. Heterogeneous Tfh cell populations that develop during enteric helminth infection predict the quality of type 2 protective response. Mucosal Immunol 2023; 16:642-657. [PMID: 37392971 DOI: 10.1016/j.mucimm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
T follicular helper (Tfh) cells are an important component of germinal center (GC)-mediated humoral immunity. Yet, how a chronic type 1 versus protective type 2 helminth infection modulates Tfh-GC responses remains poorly understood. Here, we employ the helminth Trichuris muris model and demonstrate that Tfh cell phenotypes and GC are differentially regulated in acute versus chronic infection. The latter failed to induce Tfh-GC B cell responses, with Tfh cells expressing Τ-bet and interferon-γ. In contrast, interleukin-4-producing Tfh cells dominate responses to an acute, resolving infection. Heightened expression and increased chromatin accessibility of T helper (Th)1- and Th2 cell-associated genes are observed in chronic and acute induced Tfh cells, respectively. Blockade of the Th1 cell response by T-cell-intrinsic T-bet deletion promoted Tfh cell expansion during chronic infection, pointing to a correlation between a robust Tfh cell response and protective immunity to parasites. Finally, blockade of Tfh-GC interactions impaired type 2 immunity, revealing the critical protective role of GC-dependent Th2-like Tfh cell responses during acute infection. Collectively, these results provide new insights into the protective roles of Tfh-GC responses and identify distinct transcriptional and epigenetic features of Tfh cells that emerge during resolving or chronic T. muris infection.
Collapse
Affiliation(s)
- Aidil Zaini
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, Australia
| | - Lennard Dalit
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Amania A Sheikh
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Yan Zhang
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Daniel Thiele
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Microbiology, Monash University, Clayton, Australia
| | - Jessica Runting
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Grace Rodrigues
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Judy Ng
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Michael Bramhall
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Sebastian Scheer
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Lauren Hailes
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Kim L Good-Jacobson
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia.
| | - Colby Zaph
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia.
| |
Collapse
|
19
|
Yadav S, Dalai P, Gowda S, Nivsarkar M, Agrawal-Rajput R. Azithromycin alters Colony Stimulating Factor-1R (CSF-1R) expression and functional output of murine bone marrow-derived macrophages: A novel report. Int Immunopharmacol 2023; 123:110688. [PMID: 37499396 DOI: 10.1016/j.intimp.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Antibiotic treatment may lead to side effects that require mechanistic explanation. We investigated the effect of azithromycin (AZM) treatment on bone marrow-derived macrophage (Mφ) generation, their functional output, and the subsequent effect on bacterial clearance in a mouse model of S. flexneri infection. To our fascination, AZM increased PU.1, C/EBPβ, CSF-1R/pCSF-1R expressions leading to M2-skewed in vitro BMDM generation. Altered Mφ-functions like- phagocytosis, oxidative stress generation, inflammasome-activation, cytokine release, and phenotype (pro-inflammatory-M1, anti-inflammatory-M2) even in the presence of infection were observed with AZM treatment. AZM increased CD206, egr2, arg1 (M2-marker) expression and activity while reducing CD68, inducible nitric oxide (iNOS) expression, and activity (M1-marker) in Mφs during infection. Pro-inflammatory cytokines (TNF-α, IL-12, IL-1β) were reduced and anti-inflammatory IL-10 release was augmented by AZM-treated-iMφs (aiMφs) along with decreased asc, nlrp3, aim2, nlrp1a, caspase1 expressions, and caspase3 activity signifying that aMφs/aiMφs were primed towards an anti-inflammatory phenotype. Interestingly, CSF-1R blockade increased NO, IL-12, TNF-α, IL-1β, decreased TGF-β release, and CD206 expression in aiMφs. T-cell co-stimulatory molecule cd40, cd86, and cd80 expressions were decreased in ai/aM1-Mφs and co-cultured CD8+, CD4+ T-cells had decreased proliferation, t-bet, IFN-γ, IL-17, IL-2 but increased foxp3, TGF-β, IL-4 which were rescued with CSF-1R blockade. Thus AZM affected Mφ-functions and subsequent T-cell responses independent of its antibacterial actions. This was validated in the balb/c model of S. flexneri infection. We conclude that AZM skewed BMDM generation to anti-inflammatory M2-like via increased CSF-1R expression. This warrants further investigation of AZM-induced altered-Mφ-generation during intracellular infections.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Sharath Gowda
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | | | - Reena Agrawal-Rajput
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
20
|
Salehi N, Nourbakhsh M, Noori S, Rezaeizadeh H, Zarghi A. Tehranolid and Artemisinin Effects on Ameliorating Experimental Autoimmune Encephalomyelitis by Modulating Inflammation and Remyelination. Mol Neurobiol 2023; 60:5975-5986. [PMID: 37391648 DOI: 10.1007/s12035-023-03449-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system. Artemisinin (ART) is a natural sesquiterpene lactone with an endoperoxide bond that is well-known for its anti-inflammatory effects in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. Tehranolide (TEH) is a novel compound with structural similarity to ART. In this study, we aimed to investigate the ameliorating effect of TEH on EAE development by targeting proteins and genes involved in this process and compare its effects with ART. Female C57BL/6 mice were immunized with MOG35-55. Twelve days post-immunization, mice were treated with 0.28 mg/kg/day TEH and 2.8 mg/kg/day ART for 18 consecutive days, and the clinical score was measured daily. The levels of pro-inflammatory and anti-inflammatory cytokines were assessed in mice serum and splenocytes by ELISA. We also evaluated the mRNA expression level of cytokines, as well as genes involved in T cell differentiation and myelination in the spinal cord tissue by qRT-PCR. Administration of TEH and ART significantly alleviated EAE signs. A significant reduction in IL-6 and IL-17 secretion and IL-17 and IL-1 gene expression in spinal cord were observed in the TEH-treated group. ART had similar or less significant effects. Moreover, TGF-β, IL-4, and IL-10 genes were stimulated by ART and TEH in the spinal cord, while the treatments did not affect IFN-γ expression. Both treatments dramatically increased the expression of FOXP3, GATA3, MBP, and AXL. Additionally, the T-bet gene was reduced after TEH administration. The compounds made no changes in RORγt, nestin, Gas6, Tyro3, and Mertk mRNA expression levels in the spinal cord. The study revealed that both TEH and ART can effectively modulate the genes responsible for inflammation and myelination that play a crucial role in EAE. Interestingly, TEH demonstrated a greater potency compared to ART and hence may have the potential to be evaluated in interventions for the management of MS.
Collapse
Affiliation(s)
- Niloufar Salehi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Rezaeizadeh
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Li G, Liao G, Xie J, Liu B, Li X, Qiu M. Overexpression of SMAD7 improves the function of EGFR-targeted human CAR-T cells against non-small-cell lung cancer. Respirology 2023; 28:869-880. [PMID: 37376985 DOI: 10.1111/resp.14541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Recent advancements in immunotherapy led to the development of Chimeric antigen receptor (CAR) T-cell therapy. CAR-T cell therapy in non-small cell lung cancer (NSCLC) is hindered by overexpression of transforming growth factor (TGFβ) in the cancer cells that have a negative regulatory role on T-cells activity. This study characterized CAR-T with overexpression of mothers against decapentaplegic homologue 7 (SMAD), a negative regulator of TGFβ downstream signalling. METHODS We have generated three types of CAR-T: epidermal growth factor receptor (EGFR)-CAR-T, EGFR-dominant-negative TGFbeta receptor 2 (DNR)-CAR-T, and EGFR-SMAD7-CAR-T by transducing human T-cells with the lentivirus constructs. We characterized the proliferation, expression of proinflammatory cytokines, activation profile, and lysis capacity in co-cultures with A549 lung carcinoma cells with and without TGFβ neutralizing antibodies. We also tested the therapeutic potential of EGFR-SMAD7-CAR-T in the A549 cells tumour-bearing mice model. RESULTS Both EGFR-DNR-CAR-T and EGFR-SMAD7-CAR-T demonstrated a higher proliferation rate and lysis capacity to A549 than traditional EGFR-CAR-T. Neutralization of TGFβ by the antibodies resulted in increased performance of EGFR-CAR-T. In vivo, both EGFR-DNR-CAR-T and EGFR-SMAD7-CAR-T resulted in complete tumour resorption by day 20, whereas conventional CAR-T only has a partial effect. CONCLUSION We demonstrated the high efficacy and resistance to negative TGFβ regulation of EGFR-SMAD7-CAR-T comparable with EGFR-DNR-CAR-T and without the systemic effect of TGFβ inhibition.
Collapse
Affiliation(s)
- Guoping Li
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guoliang Liao
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jinbao Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xu Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Minglian Qiu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
22
|
Han SJ, Jain P, Gilad Y, Xia Y, Sung N, Park MJ, Dean AM, Lanz RB, Xu J, Dacso CC, Lonard DM, O'Malley BW. Steroid receptor coactivator 3 is a key modulator of regulatory T cell-mediated tumor evasion. Proc Natl Acad Sci U S A 2023; 120:e2221707120. [PMID: 37253006 PMCID: PMC10266015 DOI: 10.1073/pnas.2221707120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/01/2023] [Indexed: 06/01/2023] Open
Abstract
Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were "permanently eradicated" in a genetically engineered tamoxifen-inducible Treg-cell-specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the chemokine (C-C motif) ligand (Ccl) 19/Ccl21/chemokine (C-C motif) receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C motif chemokine ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and natural killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish preestablished breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3-deleted Tregs represents an approach to completely block tumor growth and recurrence without the autoimmune side effects that typically accompany immune checkpoint modulators.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Prashi Jain
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Yosef Gilad
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Yan Xia
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Nuri Sung
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Mi Jin Park
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Adam M. Dean
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Rainer B. Lanz
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Jianming Xu
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Clifford C. Dacso
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
- Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - David M. Lonard
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Bert W. O'Malley
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
23
|
Toth KA, Schmitt EG, Cooper MA. Deficiencies and Dysregulation of STAT Pathways That Drive Inborn Errors of Immunity: Lessons from Patients and Mouse Models of Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1463-1472. [PMID: 37126806 PMCID: PMC10151837 DOI: 10.4049/jimmunol.2200905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023]
Abstract
The STAT family proteins provide critical signals for immune cell development, differentiation, and proinflammatory and anti-inflammatory responses. Inborn errors of immunity (IEIs) are caused by single gene defects leading to immune deficiency and/or dysregulation, and they have provided opportunities to identify genes important for regulating the human immune response. Studies of patients with IEIs due to altered STAT signaling, and mouse models of these diseases, have helped to shape current understanding of the mechanisms whereby STAT signaling and protein interactions regulate immunity. Although many STAT signaling pathways are shared, clinical and immune phenotypes in patients with monogenic defects of STAT signaling highlight both redundant and nonredundant pathways. In this review, we provide an overview of the shared and unique signaling pathways used by STATs, phenotypes of IEIs with altered STAT signaling, and recent discoveries that have provided insight into the human immune response and treatment of disease.
Collapse
Affiliation(s)
- Kelsey A. Toth
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Erica G. Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
24
|
Cui K, Chen Z, Cao Y, Liu S, Ren G, Hu G, Fang D, Wei D, Liu C, Zhu J, Wu C, Zhao K. Restraint of IFN-γ expression through a distal silencer CNS-28 for tissue homeostasis. Immunity 2023; 56:944-958.e6. [PMID: 37040761 PMCID: PMC10175192 DOI: 10.1016/j.immuni.2023.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.
Collapse
Affiliation(s)
- Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, DIR, NHLBI, NIH, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
25
|
Mammadli M, Suo L, Sen JM, Karimi M. TCF-1 negatively regulates the suppressive ability of canonical and noncanonical Tregs. J Leukoc Biol 2023; 113:489-503. [PMID: 36806938 PMCID: PMC11651127 DOI: 10.1093/jleuko/qiad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Regulatory T cells are suppressive immune cells used in various clinical and therapeutic applications. Canonical regulatory T cells express CD4, FOXP3, and CD25, which are considered definitive markers of their regulatory T-cell status when expressed together. However, a subset of noncanonical regulatory T cells expressing only CD4 and FOXP3 have recently been described in some infection contexts. Using a unique mouse model for the first time demonstrated that the TCF-1 regulation of regulatory T-cell suppressive function is not limited to the thymus during development. Our data showed that TCF-1 also regulated regulatory T cells' suppressive ability in secondary organs and graft-vs-host disease target organs as well as upregulating noncanonical regulatory T cells. Our data demonstrated that TCF-1 regulates the suppressive function of regulatory T cells through critical molecules like GITR and PD-1, specifically by means of noncanonical regulatory T cells. Our in vitro approaches show that TCF-1 regulates the regulatory T-cell effector-phenotype and the molecules critical for regulatory T-cell migration to the site of inflammation. Using in vivo models, we show that both canonical and noncanonical regulatory T cells from TCF-1 cKO mice have a superior suppressive function, as shown by their ability to control conventional T-cell proliferation, avert acute graft-vs-host disease, and limit tissue damage. Thus, for the first time, we provide evidence that TCF-1 negatively regulates the suppressive ability of canonical and noncanonical regulatory T cells. These findings provide evidence that TCF-1 is a novel target for developing strategies to treat alloimmune disorders.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Liye Suo
- Department of Pathology, SUNY Upstate Medical University, 766 Irving Ave, Weiskotten Hall Suite 2141, Syracuse, NY 13210, USA
| | - Jyoti Misra Sen
- National Institute on Aging-National Institutes of Health, BRC Building, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
- Center of Aging and Immune Remodeling and Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, 2024 E, Monument Street Suite 2-700, Baltimore, MD 21224, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| |
Collapse
|
26
|
Han SJ, Jain P, Gilad Y, Xia Y, Sung N, Park MJ, Dean AM, Lanz RB, Xu J, Dacso CC, Lonard DM, O'Malley BW. Steroid Receptor Coactivator-3 is a Key Modulator of Regulatory T Cell-Mediated Tumor Evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534575. [PMID: 37034717 PMCID: PMC10081245 DOI: 10.1101/2023.03.28.534575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were 'permanently eradicated' in a genetically engineered tamoxifen-inducible Treg-cell specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the Chemokine (C-C motif) ligand (Ccl) 19/Ccl21/ Chemokine (C-C motif) Receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C Motif Chemokine Ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and Natural Killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish pre-established breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3 deleted Tregs represents a novel approach to completely block tumor growth and recurrence without the autoimmune side-effects that typically accompany immune checkpoint modulators. Significance statement Tregs are essential in restraining immune responses for immune homeostasis. SRC-3 is a pleiotropic coactivator, the second-most highly expressed transcriptional coactivator in Tregs, and a suspect in Treg function. The disruption of SRC-3 expression in Tregs leads to a 'complete lifetime eradication' of tumors in aggressive syngeneic breast cancer mouse models because deletion of SRC-3 alters the expression of a wide range of key genes involved in efferent and afferent Treg signaling. SRC-3KO Tregs confer this long-lasting protection against cancer recurrence in mice without an apparent systemic autoimmune pathological phenotype. Therefore, treatment with SRC-3 deleted Tregs could represent a novel and efficient future target for eliminating tumor growth and recurrence without the autoimmune side-effects that typically accompany immune checkpoint modulators.
Collapse
|
27
|
Lv Y, Ricard L, Gaugler B, Huang H, Ye Y. Biology and clinical relevance of follicular cytotoxic T cells. Front Immunol 2022; 13:1036616. [PMID: 36591286 PMCID: PMC9794565 DOI: 10.3389/fimmu.2022.1036616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Follicular cytotoxic T (Tfc) cells are a newly identified subset of CD8+ T cells enriched in B cell follicles and their surroundings, which integrate multiple functions such as killing, memory, supporting and regulation. Tfc cells share similarities with follicular helper T (Tfh) cells, conventional cytotoxic CD8+ T (Tc cells)cells and follicular regulatory T (Tfr) cells, while they express distinct transcription factors, phenotype, and perform different functions. With the participation of cytokines and cell-cell interactions, Tfc cells modulate Tfh cells and B cells and play an essential role in regulating the humoral immunity. Furthermore, Tfc cells have been found to change in their frequencies and functions during the occurrence and progression of chronic infections, immune-mediated diseases and cancers. Strategies targeting Tfc cells are under investigations, bringing novel insights into control of these diseases. We summarize the characteristics of Tfc cells, and introduce the roles and potential targeting modalities of Tfc cells in different diseases.
Collapse
Affiliation(s)
- Yuqi Lv
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China
| | - Laure Ricard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| |
Collapse
|
28
|
Gauthier T, Chen W. IFN-γ and TGF-β, Crucial Players in Immune Responses: A Tribute to Howard Young. J Interferon Cytokine Res 2022; 42:643-654. [PMID: 36516375 PMCID: PMC9917322 DOI: 10.1089/jir.2022.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 12/15/2022] Open
Abstract
Interferon gamma (IFN-γ) and transforming growth factor beta (TGF-β), both pleiotropic cytokines, have been long studied and described as critical mediators of the immune response, notably in T cells. One of the investigators who made seminal and critical discoveries in the field of IFN-γ biology is Dr. Howard Young. In this review, we provide an overview of the biology of IFN-γ as well as its role in cancer and autoimmunity with an emphasis on Dr. Young's critical work in the field. We also describe how Dr. Young's work influenced our own research studying the role of TGF-β in the modulation of immune responses.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Zhang Y, Jiang W, Luo X. Remifentanil combined with dexmedetomidine on the analgesic effect of breast cancer patients undergoing modified radical mastectomy and the influence of perioperative T lymphocyte subsets. Front Surg 2022; 9:1016690. [PMID: 36425893 PMCID: PMC9680973 DOI: 10.3389/fsurg.2022.1016690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/13/2022] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE To study the analgesic effect of breast cancer patients undergoing modified radical mastectomy (MRM) and the influence of perioperative T lymphocyte subsets by remifentanil combined with dexmedetomidine. METHODS 80 breast patients were divided into control group and research group based on the anesthesia protocol. Patients in control group was given remifentanil for anesthesia induction and maintenance, and patients in research group was given remifentanil and dexmedetomidine for anesthesia induction and maintenance. We compared the anesthesia time, operation time, surgical blood loss, postoperative wake-up time, extubation time, incidence of adverse reactions, VAS score and T lymphocyte subsets in peripheral blood in the two groups of patients. RESULTS The baseline data including age, height, weight and BMI, ASA classification, stage of breast cancer, frequency of neoadjuvant therapy, and surgical characteristics including anesthesia time, operation time and bleeding volume all have no significant difference between two groups (P > 0.05). Compared to control group, the time of wake up and extubation in patients of research group were all significantly decreased (P < 0.05), and significantly decreased MBP and HR after loading dose of dexmedetomidine in research group (P < 0.05). The VAS scores of patients at 4, 8, 12, 16, 20 and 24 h after surgery in the research group are all significantly lower than those in the control group (P < 0.05). Before induction of anesthesia, there was no significant difference in the ratio of CD4+, CD8+ and CD4+/CD8+ T lymphocytes in peripheral blood between the two groups (P > 0.05). At 1 h during operation and 24 h after operation, the ratio of CD4+ and CD4+/CD8+ cells in the research group was significantly higher than these of the control group (P < 0.05), while the ratio of CD8+ cells was lower than that of the control group (P < 0.05). CONCLUSION For breast cancer patients undergoing MRM, the use of remifentanil combined with dexmedetomidine can enhance postoperative analgesia and reduce postoperative immunosuppression.
Collapse
Affiliation(s)
- Yanjun Zhang
- Department of Breast Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Department of Anesthesiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Luo
- Department of Anesthesiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Geng X, Wang C, Gao X, Chowdhury P, Weiss J, Villegas JA, Saed B, Perera T, Hu Y, Reneau J, Sverdlov M, Wolfe A, Brown N, Harms P, Bailey NG, Inamdar K, Hristov AC, Tejasvi T, Montes J, Barrionuevo C, Taxa L, Casavilca S, de Pádua Covas Lage JLA, Culler HF, Pereira J, Runge JS, Qin T, Tsoi LC, Hong HS, Zhang L, Lyssiotis CA, Ohe R, Toubai T, Zevallos-Morales A, Murga-Zamalloa C, Wilcox RA. GATA-3 is a proto-oncogene in T-cell lymphoproliferative neoplasms. Blood Cancer J 2022; 12:149. [PMID: 36329027 PMCID: PMC9633835 DOI: 10.1038/s41408-022-00745-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Neoplasms originating from thymic T-cell progenitors and post-thymic mature T-cell subsets account for a minority of lymphoproliferative neoplasms. These T-cell derived neoplasms, while molecularly and genetically heterogeneous, exploit transcription factors and signaling pathways that are critically important in normal T-cell biology, including those implicated in antigen-, costimulatory-, and cytokine-receptor signaling. The transcription factor GATA-3 regulates the growth and proliferation of both immature and mature T cells and has recently been implicated in T-cell neoplasms, including the most common mature T-cell lymphoma observed in much of the Western world. Here we show that GATA-3 is a proto-oncogene across the spectrum of T-cell neoplasms, including those derived from T-cell progenitors and their mature progeny, and further define the transcriptional programs that are GATA-3 dependent, which include therapeutically targetable gene products. The discovery that p300-dependent acetylation regulates GATA-3 mediated transcription by attenuating DNA binding has novel therapeutic implications. As most patients afflicted with GATA-3 driven T-cell neoplasms will succumb to their disease within a few years of diagnosis, these findings suggest opportunities to improve outcomes for these patients.
Collapse
Affiliation(s)
- Xiangrong Geng
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Chenguang Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Xin Gao
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Pinki Chowdhury
- Department of Pediatrics, Dayton Children's Hospital, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Jonathan Weiss
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - José A Villegas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Ying Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maria Sverdlov
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Paul Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Nathanael G Bailey
- Division of Hematopathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Alexandra C Hristov
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jaime Montes
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - Luis Taxa
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - Sandro Casavilca
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - J Luís Alberto de Pádua Covas Lage
- Department of Hematology, Hemotherapy and Cell Therapy, Faculty of Medicine, Sao Paulo University, Laboratory of Medical Investigation 31 in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology, Sao Paulo, Brazil
| | - Hebert Fabrício Culler
- Department of Hematology, Hemotherapy and Cell Therapy, Faculty of Medicine, Sao Paulo University, Laboratory of Medical Investigation 31 in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology, Sao Paulo, Brazil
| | - Juliana Pereira
- Department of Hematology, Hemotherapy and Cell Therapy, Faculty of Medicine, Sao Paulo University, Non-Hodgkin's Lymphomas and Histiocytic Disorders, Sao Paulo, Brazil
| | - John S Runge
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hanna S Hong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Rintaro Ohe
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tomomi Toubai
- Department of Internal Medicine III, Division of Hematology and Cell Therapy, Yamagata University of Medicine, Yamagata, Japan
| | | | | | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Xia Y, Sandor K, Pai JA, Daniel B, Raju S, Wu R, Hsiung S, Qi Y, Yangdon T, Okamoto M, Chou C, Hiam-Galvez KJ, Schreiber RD, Murphy KM, Satpathy AT, Egawa T. BCL6-dependent TCF-1 + progenitor cells maintain effector and helper CD4 + T cell responses to persistent antigen. Immunity 2022; 55:1200-1215.e6. [PMID: 35637103 PMCID: PMC10034764 DOI: 10.1016/j.immuni.2022.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/04/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Soon after activation, CD4+ T cells are segregated into BCL6+ follicular helper (Tfh) and BCL6- effector (Teff) T cells. Here, we explored how these subsets are maintained during chronic antigen stimulation using the mouse chronic LCMV infection model. Using single cell-transcriptomic and epigenomic analyses, we identified a population of PD-1+ TCF-1+ CD4+ T cells with memory-like features. TCR clonal tracing and adoptive transfer experiments demonstrated that these cells have self-renewal capacity and continue to give rise to both Teff and Tfh cells, thus functioning as progenitor cells. Conditional deletion experiments showed Bcl6-dependent development of these progenitors, which were essential for sustaining antigen-specific CD4+ T cell responses to chronic infection. An analogous CD4+ T cell population developed in draining lymph nodes in response to tumors. Our study reveals the heterogeneity and plasticity of CD4+ T cells during persistent antigen exposure and highlights their population dynamics through a stable, bipotent intermediate state.
Collapse
Affiliation(s)
- Yu Xia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Joy A Pai
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Renee Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sunnie Hsiung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Tenzin Yangdon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mariko Okamoto
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chun Chou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Omer OS, Hertweck A, Roberts LB, Lo JW, Clough JN, Jackson I, Pantazi ED, Irving PM, MacDonald TT, Pavlidis P, Jenner RG, Lord GM. Cyclin-dependent Kinase 9 as a Potential Target for Anti-TNF-resistant Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2022; 14:625-641. [PMID: 35660024 PMCID: PMC9356186 DOI: 10.1016/j.jcmgh.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Resistance to single cytokine blockade, namely anti-tumor necrosis factor (TNF) therapy, is a growing concern for patients with inflammatory bowel disease (IBD). The transcription factor T-bet is a critical regulator of intestinal homeostasis, is genetically linked to mucosal inflammation and controls the expression of multiples genes such as the pro-inflammatory cytokines interferon (IFN)-γ and TNF. Inhibiting T-bet may therefore offer a more attractive prospect for treating IBD but remains challenging to target therapeutically. In this study, we evaluate the effect of targeting the transactivation function of T-bet using inhibitors of P-TEFb (CDK9-cyclin T), a transcriptional elongation factor downstream of T-bet. METHODS Using an adaptive immune-mediated colitis model, human colonic lymphocytes from patients with IBD and multiple large clinical datasets, we investigate the effect of cyclin-dependent kinase 9 (CDK9) inhibitors on cytokine production and gene expression in colonic CD4+ T cells and link these genetic modules to clinical response in patients with IBD. RESULTS Systemic CDK9 inhibition led to histological improvement of immune-mediated colitis and was associated with targeted suppression of colonic CD4+ T cell-derived IFN-γ and IL-17A. In colonic lymphocytes from patients with IBD, CDK9 inhibition potently repressed genes responsible for pro-inflammatory signalling, and in particular genes regulated by T-bet. Remarkably, CDK9 inhibition targeted genes that were highly expressed in anti-TNF resistant IBD and that predicted non-response to anti-TNF therapy. CONCLUSION Collectively, our findings reveal CDK9 as a potential target for anti-TNF-resistant IBD, which has the potential for rapid translation to the clinic.
Collapse
Affiliation(s)
- Omer S. Omer
- School of Immunology and Microbial Sciences, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College, London, UK
| | - Arnulf Hertweck
- UCL Cancer Institute and CRUK City of London Centre, University College London, London, UK
| | - Luke B. Roberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jonathan W. Lo
- School of Immunology and Microbial Sciences, King's College London, London, UK,Division of Digestive Diseases, Faculty of Medicine, Imperial College, London, UK
| | - Jennie N. Clough
- National Institute for Health Research Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College, London, UK
| | - Ian Jackson
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Eirini D. Pantazi
- School of Immunology and Microbial Sciences, King's College London, London, UK,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Peter M. Irving
- School of Immunology and Microbial Sciences, King's College London, London, UK,Inflammatory Bowel Disease Unit, Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Tom T. MacDonald
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Richard G. Jenner
- UCL Cancer Institute and CRUK City of London Centre, University College London, London, UK,Correspondence Address correspondence to: Professor Richard G. Jenner, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| | - Graham M. Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK,Professor Graham M. Lord, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
33
|
Hertweck A, Vila de Mucha M, Barber PR, Dagil R, Porter H, Ramos A, Lord GM, Jenner RG. The TH1 cell lineage-determining transcription factor T-bet suppresses TH2 gene expression by redistributing GATA3 away from TH2 genes. Nucleic Acids Res 2022; 50:4557-4573. [PMID: 35438764 PMCID: PMC9071441 DOI: 10.1093/nar/gkac258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Lineage-determining transcription factors (LD-TFs) drive the differentiation of progenitor cells into a specific lineage. In CD4+ T cells, T-bet dictates differentiation of the TH1 lineage, whereas GATA3 drives differentiation of the alternative TH2 lineage. However, LD-TFs, including T-bet and GATA3, are frequently co-expressed but how this affects LD-TF function is not known. By expressing T-bet and GATA3 separately or together in mouse T cells, we show that T-bet sequesters GATA3 at its target sites, thereby removing GATA3 from TH2 genes. This redistribution of GATA3 is independent of GATA3 DNA binding activity and is instead mediated by the T-bet DNA binding domain, which interacts with the GATA3 DNA binding domain and changes GATA3's sequence binding preference. This mechanism allows T-bet to drive the TH1 gene expression program in the presence of GATA3. We propose that redistribution of one LD-TF by another may be a common mechanism that could explain how specific cell fate choices can be made even in the presence of other transcription factors driving alternative differentiation pathways.
Collapse
Affiliation(s)
- Arnulf Hertweck
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Maria Vila de Mucha
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Paul R Barber
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK.,Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Robert Dagil
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
| | - Hayley Porter
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
| | - Graham M Lord
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| |
Collapse
|
34
|
Inferring transcription factor regulatory networks from single-cell ATAC-seq data based on graph neural networks. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00469-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Lo JW, de Mucha MV, Henderson S, Roberts LB, Constable LE, Garrido‐Mesa N, Hertweck A, Stolarczyk E, Houlder EL, Jackson I, MacDonald AS, Powell N, Neves JF, Howard JK, Jenner RG, Lord GM. A population of naive-like CD4 + T cells stably polarized to the T H 1 lineage. Eur J Immunol 2022; 52:566-581. [PMID: 35092032 PMCID: PMC9304323 DOI: 10.1002/eji.202149228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
T-bet is the lineage-specifying transcription factor for CD4+ TH 1 cells. T-bet has also been found in other CD4+ T cell subsets, including TH 17 cells and Treg, where it modulates their functional characteristics. However, we lack information on when and where T-bet is expressed during T cell differentiation and how this impacts T cell differentiation and function. To address this, we traced the ontogeny of T-bet-expressing cells using a fluorescent fate-mapping mouse line. We demonstrate that T-bet is expressed in a subset of CD4+ T cells that have naïve cell surface markers and transcriptional profile and that this novel cell population is phenotypically and functionally distinct from previously described populations of naïve and memory CD4+ T cells. Naïve-like T-bet-experienced cells are polarized to the TH 1 lineage, predisposed to produce IFN-γ upon cell activation, and resist repolarization to other lineages in vitro and in vivo. These results demonstrate that lineage-specifying factors can polarize T cells in the absence of canonical markers of T cell activation and that this has an impact on the subsequent T-helper response.
Collapse
Affiliation(s)
- Jonathan W. Lo
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Maria Vila de Mucha
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Stephen Henderson
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Luke B. Roberts
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Laura E. Constable
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Natividad Garrido‐Mesa
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- School of Life Sciences, Pharmacy and ChemistryKingston UniversityLondonUK
| | - Arnulf Hertweck
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Emilie Stolarczyk
- Abcam Plc.Cambridge Biomedical CampusCambridgeUK
- School of Cardiovascular Medicine and SciencesGuy's Campus, King's College LondonLondonUK
| | - Emma L. Houlder
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Ian Jackson
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Nick Powell
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Joana F. Neves
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Centre for Host‐Microbiome InteractionsKing's College LondonLondonUK
| | - Jane K. Howard
- School of Cardiovascular Medicine and SciencesGuy's Campus, King's College LondonLondonUK
| | - Richard G. Jenner
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Graham M. Lord
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
36
|
Zhao XF, Huffman LD, Hafner H, Athaiya M, Finneran MC, Kalinski AL, Kohen R, Flynn C, Passino R, Johnson CN, Kohrman D, Kawaguchi R, Yang LJS, Twiss JL, Geschwind DH, Corfas G, Giger RJ. The injured sciatic nerve atlas (iSNAT), insights into the cellular and molecular basis of neural tissue degeneration and regeneration. eLife 2022; 11:80881. [PMID: 36515985 PMCID: PMC9829412 DOI: 10.7554/elife.80881] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Upon trauma, the adult murine peripheral nervous system (PNS) displays a remarkable degree of spontaneous anatomical and functional regeneration. To explore extrinsic mechanisms of neural repair, we carried out single-cell analysis of naïve mouse sciatic nerve, peripheral blood mononuclear cells, and crushed sciatic nerves at 1 day, 3 days, and 7 days following injury. During the first week, monocytes and macrophages (Mo/Mac) rapidly accumulate in the injured nerve and undergo extensive metabolic reprogramming. Proinflammatory Mo/Mac with a high glycolytic flux dominate the early injury response and rapidly give way to inflammation resolving Mac, programmed toward oxidative phosphorylation. Nerve crush injury causes partial leakiness of the blood-nerve barrier, proliferation of endoneurial and perineurial stromal cells, and entry of opsonizing serum proteins. Micro-dissection of the nerve injury site and distal nerve, followed by single-cell RNA-sequencing, identified distinct immune compartments, triggered by mechanical nerve wounding and Wallerian degeneration, respectively. This finding was independently confirmed with Sarm1-/- mice, in which Wallerian degeneration is greatly delayed. Experiments with chimeric mice showed that wildtype immune cells readily enter the injury site in Sarm1-/- mice, but are sparse in the distal nerve, except for Mo. We used CellChat to explore intercellular communications in the naïve and injured PNS and report on hundreds of ligand-receptor interactions. Our longitudinal analysis represents a new resource for neural tissue regeneration, reveals location- specific immune microenvironments, and reports on large intercellular communication networks. To facilitate mining of scRNAseq datasets, we generated the injured sciatic nerve atlas (iSNAT): https://cdb-rshiny.med.umich.edu/Giger_iSNAT/.
Collapse
Affiliation(s)
- Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Mitre Athaiya
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Matthew C Finneran
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Ashley L Kalinski
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Corey Flynn
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - David Kohrman
- Kresge Hearing Institute, University of Michigan–Ann ArborAnn ArborUnited States
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California, Los AngelesLos AngelesUnited States
| | - Lynda JS Yang
- Department of Neurosurgery, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South CarolinaColumbiaUnited States
| | - Daniel H Geschwind
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States,Department of Human Genetics,David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States,Institute of Precision Health, University of California, Los AngelesLos AngelesUnited States
| | - Gabriel Corfas
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States,Kresge Hearing Institute, University of Michigan–Ann ArborAnn ArborUnited States,Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States,Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
37
|
Cameron B, Zaheer SA, Dominguez-Villar M. Control of CD4+ T Cell Differentiation and Function by PI3K Isoforms. Curr Top Microbiol Immunol 2022; 436:197-216. [DOI: 10.1007/978-3-031-06566-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Lewis BW, Jackson D, Amici SA, Walum J, Guessas M, Guessas S, Coneglio E, Boda AV, Guerau-de-Arellano M, Grayson MH, Britt RD. Corticosteroid insensitivity persists in the absence of STAT1 signaling in severe allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1194-L1205. [PMID: 34755542 PMCID: PMC8715027 DOI: 10.1152/ajplung.00244.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticosteroid insensitivity in asthma limits the ability to effectively manage severe asthma, which is characterized by persistent airway inflammation, airway hyperresponsiveness (AHR), and airflow obstruction despite corticosteroid treatment. Recent reports indicate that corticosteroid insensitivity is associated with increased interferon-γ (IFN-γ) levels and T-helper (Th) 1 lymphocyte infiltration in severe asthma. Signal transducer and activator of transcription 1 (STAT1) activation by IFN-γ is a key signaling pathway in Th1 inflammation; however, its role in the context of severe allergic airway inflammation and corticosteroid sensitivity remains unclear. In this study, we challenged wild-type (WT) and Stat1-/- mice with mixed allergens (MA) augmented with c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate], an inducer of Th1 cell infiltration with increased eosinophils, neutrophils, Th1, Th2, and Th17 cells. Compared with WT mice, Stat1-/- had reduced neutrophils, Th1, and Th17 cell infiltration. To evaluate corticosteroid sensitivity, mice were treated with either vehicle, 1 or 3 mg/kg fluticasone propionate (FP). Corticosteroids significantly reduced eosinophil infiltration and cytokine levels in both c-di-GMP + MA-challenged WT and Stat1-/- mice. However, histological and functional analyses show that corticosteroids did not reduce airway inflammation, epithelial mucous cell abundance, airway smooth muscle mass, and AHR in c-di-GMP + MA-challenged WT or Stat1-/- mice. Collectively, our data suggest that increased Th1 inflammation is associated with a decrease in corticosteroid sensitivity. However, increased airway pathology and AHR persist in the absence of STAT1 indicate corticosteroid insensitivity in structural airway cells is a STAT1 independent process.
Collapse
Affiliation(s)
- Brandon W. Lewis
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Devine Jackson
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Stephanie A. Amici
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio
| | - Joshua Walum
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Manel Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Sonia Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Elise Coneglio
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Akhila V. Boda
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Mireia Guerau-de-Arellano
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio,6Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio,7Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio,8Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Mitchell H. Grayson
- 2Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,3Division of Allergy and Immunology, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Rodney D. Britt
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
39
|
Neshan M, Malakouti SK, Kamalzadeh L, Makvand M, Campbell A, Ahangari G. Alterations in T-Cell Transcription Factors and Cytokine Gene Expression in Late-Onset Alzheimer's Disease. J Alzheimers Dis 2021; 85:645-665. [PMID: 34864659 DOI: 10.3233/jad-210480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Late-onset Alzheimer's disease (LOAD) is associated with many environmental and genetic factors. The effect of systemic inflammation on the pathogenesis of neurodegenerative diseases such as AD has been strongly suggested. T helper cells (Th) are one of the important components of the immune system and can easily infiltrate the brain in pathological conditions. The development of each Th-subset depends on the production of unique cytokines and their main regulator. OBJECTIVE This study aimed to compare the mRNA levels of Th-related genes derived from peripheral blood mononuclear cells of LOAD patients with control. Also, the identification of the most important Th1/Th2 genes and downstream pathways that may be involved in the pathogenesis of AD was followed by computational approaches. METHODS This study invloved 30 patients with LOAD and 30 non-demented controls. The relative expression of T-cell cytokines (IFN-γ, TNF-α, IL-4, and IL-5) and transcription factors (T-bet and GATA-3) were assessed using real-time PCR. Additionally, protein-protein interaction (PPI) was investigated by gene network construction. RESULTS A significant decrease at T-bet, IFN-γ, TNF-α, and GATA-3 mRNA levels was detected in the LOAD group, compared to the controls. However, there was no significant difference in IL-4 or IL-5 mRNA levels. Network analysis revealed a list of the highly connected protein (hubs) related to mitogen-activated protein kinase (MAPK) signaling and Th17 cell differentiation pathways. CONCLUSION The findings point to a molecular dysregulation in Th-related genes, which can promising in the early diagnosis or targeted interventions of AD. Furthermore, the PPI analysis showed that upstream off-target stimulation may involve MAPK cascade activation and Th17 axis induction.
Collapse
Affiliation(s)
- Masoud Neshan
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Kazem Malakouti
- Mental Health Research Center, Tehran Institute of Psychiatry-School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Kamalzadeh
- Mental Health Research Center, Tehran Institute of Psychiatry-School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Makvand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Ghasem Ahangari
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
40
|
Henderson S, Pullabhatla V, Hertweck A, de Rinaldis E, Herrero J, Lord GM, Jenner RG. The Th1 cell regulatory circuitry is largely conserved between human and mouse. Life Sci Alliance 2021; 4:e202101075. [PMID: 34531288 PMCID: PMC8960437 DOI: 10.26508/lsa.202101075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Gene expression programs controlled by lineage-determining transcription factors are often conserved between species. However, infectious diseases have exerted profound evolutionary pressure, and therefore the genes regulated by immune-specific transcription factors might be expected to exhibit greater divergence. T-bet (Tbx21) is the immune-specific, lineage-specifying transcription factor for T helper type I (Th1) immunity, which is fundamental for the immune response to intracellular pathogens but also underlies inflammatory diseases. We compared T-bet genomic targets between mouse and human CD4+ T cells and correlated T-bet binding patterns with species-specific gene expression. Remarkably, we found that the majority of T-bet target genes are conserved between mouse and human, either via preservation of binding sites or via alternative binding sites associated with transposon-linked insertion. Species-specific T-bet binding was associated with differences in transcription factor-binding motifs and species-specific expression of associated genes. These results provide a genome-wide cross-species comparison of Th1 gene regulation that will enable more accurate translation of genetic targets and therapeutics from pre-clinical models of inflammatory and infectious diseases and cancer into human clinical trials.
Collapse
Affiliation(s)
- Stephen Henderson
- Bill Lyons Informatics Centre, UCL Cancer Institute and CRUK UCL Centre, University College London, London, UK
| | - Venu Pullabhatla
- NIHR Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Arnulf Hertweck
- Regulatory Genomics Group, UCL Cancer Institute and CRUK UCL Centre, University College London, London, UK
| | - Emanuele de Rinaldis
- NIHR Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute and CRUK UCL Centre, University College London, London, UK
| | - Graham M Lord
- NIHR Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard G Jenner
- Regulatory Genomics Group, UCL Cancer Institute and CRUK UCL Centre, University College London, London, UK
| |
Collapse
|
41
|
Geier C, Perl A. Therapeutic mTOR blockade in systemic autoimmunity: Implications for antiviral immunity and extension of lifespan. Autoimmun Rev 2021; 20:102984. [PMID: 34718162 PMCID: PMC8550885 DOI: 10.1016/j.autrev.2021.102984] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway integrates metabolic cues into cell fate decisions. A particularly fateful event during the adaptive immune response is the engagement of a T cell receptor by its cognate antigen presented by an antigen-presenting cell (APC). Here, the induction of adequate T cell activation and lineage specification is critical to mount protective immunity; at the same time, inadequate activation, which could lead to autoimmunity, must be avoided. mTOR forms highly conserved protein complexes 1 and 2 that shape lineage specification by integrating signals originating from TCR engagement, co-stimulatory or co-inhibitory receptors and cytokines and availability of nutrients. If one considers autoimmunity as the result of aberrant lineage specification in response to such signals, the importance of this pathway becomes evident; this provides the conceptual basis for mTOR inhibition in the treatment of systemic autoimmunity, such as systemic lupus erythematosus (SLE). Clinical trials in SLE patients have provided preliminary evidence that mTOR blockade by sirolimus (rapamycin) can reverse pro-inflammatory lineage skewing, including the expansion of Th17 and double-negative T cells and plasma cells and the contraction of regulatory T cells. Moreover, sirolimus has shown promising efficacy in the treatment of refractory idiopathic multicentric Castleman disease, newly characterized by systemic autoimmunity due to mTOR overactivation. Alternatively, mTOR blockade enhances responsiveness to vaccination and reduces infections by influenza virus in healthy elderly subjects. Such seemingly contradictory findings highlight the importance to further evaluate the clinical effects of mTOR manipulation, including its potential role in treatment of COVID-19 infection. mTOR blockade may extend healthy lifespan by abrogating inflammation induced by viral infections and autoimmunity. This review provides a mechanistic assessment of mTOR pathway activation in lineage specification within the adaptive and innate immune systems and its role in health and autoimmunity. We then discuss some of the recent experimental and clinical discoveries implicating mTOR in viral pathogensis and aging.
Collapse
Affiliation(s)
- Christian Geier
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York, Syracuse, NY, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York, Syracuse, NY, USA; Department of Microbiology and Immunology, College of Medicine, State University of New York, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York, Syracuse, NY, USA.
| |
Collapse
|
42
|
Synergistic anti-allergy activity using a combination of Enterococcus faecalis IC-1 and luteolin. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Kim HK, Jeong MG, Hwang ES. Post-Translational Modifications in Transcription Factors that Determine T Helper Cell Differentiation. Mol Cells 2021; 44:318-327. [PMID: 33972470 PMCID: PMC8175150 DOI: 10.14348/molcells.2021.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of naïve Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein arginine-modifying enzymes in effector Th cells.
Collapse
Affiliation(s)
- Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
44
|
Abstract
For over 35 years since Mosmann and Coffman proposed the seminal “type 1 T helper (Th1)/type 2 T helper (Th2)” hypothesis in 1986, the immunological community has appreciated that naïve CD4 T cells need to make important decisions upon their activation, namely to differentiate towards a Th1, Th2, Th17 (interleukin-17-producing T helper), follicular T helper (Tfh), or regulatory T cell (Treg) fate to orchestrate a variety of adaptive immune responses. The major molecular underpinnings of the Th1/Th2 effector fate choice had been initially characterized using excellent reductionist in vitro culture systems, through which the transcription factors T-bet and GATA3 were identified as the master regulators for the differentiation of Th1 and Th2 cells, respectively. However, Th1/Th2 cell differentiation and their cellular heterogeneity are usually determined by a combinatorial expression of multiple transcription factors, particularly in vivo, where dendritic cell (DC) and innate lymphoid cell (ILC) subsets can also influence T helper lineage choices. In addition, inflammatory cytokines that are capable of inducing Th17 cell differentiation are also found to be induced during typical Th1- or Th2-related immune responses, resulting in an alternative differentiation pathway, transiting from a Th17 cell phenotype towards Th1 or Th2 cells. In this review, we will discuss the recent advances in the field, focusing on some new players in the transcriptional network, contributions of DCs and ILCs, and alternative differentiation pathways towards understanding the Th1/Th2 effector choice in vivo.
Collapse
Affiliation(s)
- Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Schroeder JH, Meissl K, Hromadová D, Lo JW, Neves JF, Howard JK, Helmby H, Powell N, Strobl B, Lord GM. T-Bet Controls Cellularity of Intestinal Group 3 Innate Lymphoid Cells. Front Immunol 2021; 11:623324. [PMID: 33603753 PMCID: PMC7884460 DOI: 10.3389/fimmu.2020.623324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
Innate lymphoid cells (ILC) play a significant immunological role at mucosal surfaces such as the intestine. T-bet-expressing group 1 innate lymphoid cells (ILC1) are believed to play a substantial role in inflammatory bowel disease (IBD). However, a role of T-bet-negative ILC3 in driving colitis has also been suggested in mouse models questioning T-bet as a critical factor for IBD. We report here that T-bet deficient mice had a greater cellularity of NKp46-negative ILC3 correlating with enhanced expression of RORγt and IL-7R, but independent of signaling through STAT1 or STAT4. We observed enhanced neutrophilia in the colonic lamina propria (cLP) of these animals, however, we did not detect a greater risk of T-bet-deficient mice to develop spontaneous colitis. Furthermore, by utilizing an in vivo fate-mapping approach, we identified a population of T-bet-positive precursors in NKp46-negative ILC3s. These data suggest that T-bet controls ILC3 cellularity, but does do not drive a pathogenic role of ILC3 in mice with a conventional specific pathogen-free microbiota.
Collapse
Affiliation(s)
- Jan-Hendrik Schroeder
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Katrin Meissl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dominika Hromadová
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jonathan W. Lo
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Joana F. Neves
- Centre for Host-Microbiome Interactions, King’s College London, London, United Kingdom
| | - Jane K. Howard
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College, London, United Kingdom
| | - Helena Helmby
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nick Powell
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Graham M. Lord
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
46
|
Mirlekar B, Pylayeva-Gupta Y. IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers (Basel) 2021; 13:E167. [PMID: 33418929 PMCID: PMC7825035 DOI: 10.3390/cancers13020167] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The IL-12 family cytokines are a group of unique heterodimeric cytokines that include IL-12, IL-23, IL-27, IL-35 and, most recently, IL-39. Recent studies have solidified the importance of IL-12 cytokines in shaping innate and adaptive immune responses in cancer and identified multipronged roles for distinct IL-12 family members, ranging from effector to regulatory immune functions. These cytokines could serve as promising candidates for the development of immunomodulatory therapeutic approaches. Overall, IL-12 can be considered an effector cytokine and has been found to engage anti-tumor immunity by activating the effector Th1 response, which is required for the activation of cytotoxic T and NK cells and tumor clearance. IL-23 and IL-27 play dual roles in tumor immunity, as they can both activate effector immune responses and promote tumor growth by favoring immune suppression. IL-35 is a potent regulatory cytokine and plays a largely pro-tumorigenic role by inhibiting effector T cells. In this review, we summarize the recent findings on IL-12 family cytokines in the control of tumor growth with an emphasis primarily on immune regulation. We underscore the clinical implications for the use of these cytokines either in the setting of monotherapy or in combination with other conventional therapies for the more effective treatment of malignancies.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
47
|
Yang R, Mele F, Worley L, Langlais D, Rosain J, Benhsaien I, Elarabi H, Croft CA, Doisne JM, Zhang P, Weisshaar M, Jarrossay D, Latorre D, Shen Y, Han J, Ogishi M, Gruber C, Markle J, Al Ali F, Rahman M, Khan T, Seeleuthner Y, Kerner G, Husquin LT, Maclsaac JL, Jeljeli M, Errami A, Ailal F, Kobor MS, Oleaga-Quintas C, Roynard M, Bourgey M, El Baghdadi J, Boisson-Dupuis S, Puel A, Batteux F, Rozenberg F, Marr N, Pan-Hammarström Q, Bogunovic D, Quintana-Murci L, Carroll T, Ma CS, Abel L, Bousfiha A, Di Santo JP, Glimcher LH, Gros P, Tangye SG, Sallusto F, Bustamante J, Casanova JL. Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria. Cell 2020; 183:1826-1847.e31. [PMID: 33296702 PMCID: PMC7770098 DOI: 10.1016/j.cell.2020.10.046] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αβ T and non-classic CD4+ αβ TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αβ T, and CD4+ αβ TH1∗ cells unable to compensate for this deficit.
Collapse
Affiliation(s)
- Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.
| | - Federico Mele
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland
| | - Lisa Worley
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - David Langlais
- Department of Human Genetics, Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Ibithal Benhsaien
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Houda Elarabi
- Pediatrics Department, Hassan II Hospital, 80030 Dakhla, Morocco
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France; University of Paris, 75006 Paris, France
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Marc Weisshaar
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - David Jarrossay
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland
| | - Daniela Latorre
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Yichao Shen
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jing Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Janet Markle
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar
| | | | - Taushif Khan
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Lucas T Husquin
- Human Evolutionary Genetics Unit, CNRS UMR2000, Institut Pasteur, 75015 Paris, France
| | - Julia L Maclsaac
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Mohamed Jeljeli
- University of Paris, 75006 Paris, France; Immunology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Abderrahmane Errami
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Michael S Kobor
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Manon Roynard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Mathieu Bourgey
- McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics, Montreal, QC H3A 0G1, Canada
| | | | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Fréderic Batteux
- University of Paris, 75006 Paris, France; Immunology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Flore Rozenberg
- University of Paris, 75006 Paris, France; Virology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, PO 34110, Qatar
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, CNRS UMR2000, Institut Pasteur, 75015 Paris, France; Chair of Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Philippe Gros
- McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - Federica Sallusto
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland; Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France; Study Center for Primary Immunodeficiencies, Necker Children Hospital, AP-HP, 75015 Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
48
|
Zhang Y, Guan XY, Jiang P. Cytokine and Chemokine Signals of T-Cell Exclusion in Tumors. Front Immunol 2020; 11:594609. [PMID: 33381115 PMCID: PMC7768018 DOI: 10.3389/fimmu.2020.594609] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The success of cancer immunotherapy in solid tumors depends on a sufficient distribution of effector T cells into malignant lesions. However, immune-cold tumors utilize many T-cell exclusion mechanisms to resist immunotherapy. T cells have to go through three steps to fight against tumors: trafficking to the tumor core, surviving and expanding, and maintaining the memory phenotype for long-lasting responses. Cytokines and chemokines play critical roles in modulating the recruitment of T cells and the overall cellular compositions of the tumor microenvironment. Manipulating the cytokine or chemokine environment has brought success in preclinical models and early-stage clinical trials. However, depending on the immune context, the same cytokine or chemokine signals may exhibit either antitumor or protumor activities and induce unwanted side effects. Therefore, a comprehensive understanding of the cytokine and chemokine signals is the premise of overcoming T-cell exclusion for effective and innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| | - Xin-yuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| | - Peng Jiang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
49
|
Radens CM, Blake D, Jewell P, Barash Y, Lynch KW. Meta-analysis of transcriptomic variation in T-cell populations reveals both variable and consistent signatures of gene expression and splicing. RNA (NEW YORK, N.Y.) 2020; 26:1320-1333. [PMID: 32554554 PMCID: PMC7491319 DOI: 10.1261/rna.075929.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Human CD4+ T cells are often subdivided into distinct subtypes, including Th1, Th2, Th17, and Treg cells, that are thought to carry out distinct functions in the body. Typically, these T-cell subpopulations are defined by the expression of distinct gene repertoires; however, there is variability between studies regarding the methods used for isolation and the markers used to define each T-cell subtype. Therefore, how reliably studies can be compared to one another remains an open question. Moreover, previous analysis of gene expression in CD4+ T-cell subsets has largely focused on gene expression rather than alternative splicing. Here we take a meta-analysis approach, comparing eleven independent RNA-seq studies of human Th1, Th2, Th17, and/or Treg cells to determine the consistency in gene expression and splicing within each subtype across studies. We find that known master-regulators are consistently enriched in the appropriate subtype; however, cytokines and other genes often used as markers are more variable. Importantly, we also identify previously unknown transcriptomic markers that appear to consistently differentiate between subsets, including a few Treg-specific splicing patterns. Together this work highlights the heterogeneity in gene expression between samples designated as the same subtype, but also suggests additional markers that can be used to define functional groupings.
Collapse
Affiliation(s)
- Caleb M Radens
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Davia Blake
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul Jewell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Computer Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yoseph Barash
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Computer Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
50
|
Ng SS, De Labastida Rivera F, Yan J, Corvino D, Das I, Zhang P, Kuns R, Chauhan SB, Hou J, Li XY, Frame TCM, McEnroe BA, Moore E, Na J, Engel JA, Soon MSF, Singh B, Kueh AJ, Herold MJ, Montes de Oca M, Singh SS, Bunn PT, Aguilera AR, Casey M, Braun M, Ghazanfari N, Wani S, Wang Y, Amante FH, Edwards CL, Haque A, Dougall WC, Singh OP, Baxter AG, Teng MWL, Loukas A, Daly NL, Cloonan N, Degli-Esposti MA, Uzonna J, Heath WR, Bald T, Tey SK, Nakamura K, Hill GR, Kumar R, Sundar S, Smyth MJ, Engwerda CR. The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nat Immunol 2020; 21:1205-1218. [PMID: 32839608 PMCID: PMC7965849 DOI: 10.1038/s41590-020-0758-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.
Collapse
Affiliation(s)
- Susanna S Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | - Juming Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Indrajit Das
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jiajie Hou
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Xian-Yang Li
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Teija C M Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin A McEnroe
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eilish Moore
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jessica A Engel
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Andrew J Kueh
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marco J Herold
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Siddharth Sankar Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute of Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Amy Roman Aguilera
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mika Casey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthias Braun
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nazanin Ghazanfari
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Shivangi Wani
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute of Molecular Biology, University of Queensland, Brisbane, Queensland, Australia
| | - Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - William C Dougall
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alan G Baxter
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Norelle L Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Nicole Cloonan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- The Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Jude Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kyohei Nakamura
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rajiv Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | |
Collapse
|