1
|
Liu Y, Gong H, Zhu J, Liu F. Oral Vaccination with Attenuated Salmonella Expressing Viral M25 Protein Effectively Protects Mice Against Murine Cytomegalovirus Infection. Pathogens 2025; 14:314. [PMID: 40333046 PMCID: PMC12030445 DOI: 10.3390/pathogens14040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Attenuated Salmonella strains are promising oral vectors for vaccination against human infectious diseases. Human cytomegalovirus (CMV) is among the most common causes of disability in children, including intellectual disability and sensorineural hearing loss. Developing an anti-CMV vaccine is a major public health priority. We report in this study the construction of a new attenuated Salmonella strain to express murine cytomegalovirus (MCMV) M25 protein and its use for vaccination in mice against MCMV infection. In mice orally vaccinated with the constructed Salmonella vector carrying the M25 expression cassette, we revealed a substantial induction of anti-MCMV serum IgG and mucosal IgA humoral responses and a considerable elicitation of anti-MCMV T cell responses. When the vaccinated mice were challenged intraperitoneally and intranasally with MCMV, we observed a significant inhibition of virus infection and growth in various organs including spleens, livers, lungs, and salivary glands, compared to the non-vaccinated animals or those receiving a control vaccine without M25 protein expression. Moreover, we showed effective protection of these vaccinated mice from MCMV challenge. Our study provides the first direct evidence that an attenuated Salmonella-based vector with the MCMV M25 expression cassette can induce strong humoral and T cell responses and provide effective protection against MCMV infection. These results illustrate the feasibility of engineering Salmonella-based vectors expressing the M25 antigen for anti-CMV oral vaccine development.
Collapse
Affiliation(s)
- Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Hao Gong
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Jiaming Zhu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Liu Y, Gong H, Zhu J, Liu F. Effective Immune Protection of Mice from Murine Cytomegalovirus Infection by Oral Salmonella-Based Vaccine Expressing Viral M78 Antigen. Vaccines (Basel) 2025; 13:137. [PMID: 40006684 PMCID: PMC11861581 DOI: 10.3390/vaccines13020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Human cytomegalovirus (CMV) is the most common cause of viral congenital infections worldwide. The development of effective vaccines against human CMV infection and disease is a high priority. Attenuated Salmonella are attractive oral vaccine vectors against human diseases because they can be administrated orally. Methods: In this study, an attenuated Salmonella strain was generated as an oral vaccine vector for the delivery and expression of the M78 protein of murine cytomegalovirus (MCMV). Using the MCMV infection of mice as the CMV infection model, we characterized the immune responses and protection induced by the constructed Salmonella-based vaccine. Results: The generated Salmonella-based vaccine, v-M78, which contained an M78 expression plasmid construct, carried out gene transfer efficiently for M78 expression and showed little pathogenicity and virulence in mice. In orally vaccinated mice, v-M78 induced anti-MCMV serum IgG and mucosal IgA responses and also elicited anti-MCMV T cell responses. Furthermore, mice immunized with v-M78 were protected from intraperitoneal and intranasal challenges with MCMV. The v-M78 vaccination reduced the titers of the challenged viruses in spleens, livers, lungs, and salivary glands. Conclusions: These results provide the first direct evidence that a Salmonella-based vaccine expressing M78 elicits strong humoral and cellular immune responses and induces immune protection against MCMV infection. Furthermore, our study demonstrates the potential of using Salmonella-based oral vaccines against CMV infection.
Collapse
Affiliation(s)
- Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Hao Gong
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Jiaming Zhu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Edache DO, Beyene TJ, Baruch J, Shi X, Sanderson MW, Nagaraja TG, Smolensky D, Cernicchiaro N. Sample Type and Processing Plant Differences in the Proportion of Enterohemorrhagic Escherichia coli O157 and Non-O157 Serogroups in Feces and on Hides of Cull Dairy Cattle at Slaughter. Foodborne Pathog Dis 2024; 21:698-707. [PMID: 39093865 DOI: 10.1089/fpd.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The study was conducted to determine the proportion and concentration of enterohemorrhagic Escherichia coli (EHEC) O157 and six non-O157 (O26, O45, O103, O111, O121, and O145) serogroups and identify seasonal and processing plant differences in feces and on hides of cull dairy cattle processed in commercial slaughterhouses in the United States. Approximately 60 rectal and 60 hide-on samples from matched carcasses were collected in each of three processing plants, in two periods; summer of 2017 and spring of 2018. Samples before enrichment were spiral plated to quantify EHEC, and postenriched samples underwent culture methods that included immuno-magnetic separation, plating on selective media, and PCR assays for identification and serogroup confirmation of putative isolates. An isolate was considered EHEC O157 positive if it harbored serogroup-specific (rfbE), Shiga toxin (stx1 and/or stx2), and intimin (eae) genes and EHEC non-O157 positive if at least one of the non-O157 serogroup-specific, stx1 and/or stx2, and eae genes was identified. Generalized linear mixed models were fitted to estimate overall proportion of positives for EHEC O157 and non-O157 EHEC serogroups, as well as seasonal and processing plant differences in fecal and hide-on proportion of positives. The fecal EHEC proportion at the sample level was 1.8% (95% CI = 0.0-92.2%) and 4.2% (95% CI = 0.0-100.0%) for EHEC O157 and EHEC non-O157, respectively. Hide sample level proportion of positives was 3.0% (95% CI = 0.0-99.9%) for EHEC O157 and 1.6% (95% CI = 0.0-100.0%) for EHEC non-O157. The proportion of EHEC O157 and non-O157 significantly differed by processing plant and sample type (hide vs. feces), but not by season. The association between proportion of EHEC serogroups in feces with the proportion on hides collected from matched cattle was 7.8% (95% CI = 0.6-53.3%) and 3.8% (95% CI = 0.3-30.8%) for EHEC O157 and non-O157, respectively. Taken together, our findings provide evidence of a low proportion of EHEC serogroups in the feces and on hides of cull dairy cattle and that their proportion varies across processing plants.
Collapse
Affiliation(s)
- David O Edache
- Center for Outcomes Research and Epidemiology, College of Veterinary MediciMine, Kansas State University, Manhattan, Kansas, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Tariku J Beyene
- Center for Outcomes Research and Epidemiology, College of Veterinary MediciMine, Kansas State University, Manhattan, Kansas, USA
- Carelon Research, Wilmington, Delaware, USA
| | - Joaquin Baruch
- Center for Outcomes Research and Epidemiology, College of Veterinary MediciMine, Kansas State University, Manhattan, Kansas, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Michael W Sanderson
- Center for Outcomes Research and Epidemiology, College of Veterinary MediciMine, Kansas State University, Manhattan, Kansas, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Dmitriy Smolensky
- Grain Quality and Structure Research, Center for Grain and Animal health Research, United States Department of Agriculture, Agricultural Research Service, Manhattan, Kansas, USA
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, College of Veterinary MediciMine, Kansas State University, Manhattan, Kansas, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
4
|
Smith A, Zhang I, Trang P, Liu F. Engineering of RNase P Ribozymes for Therapy against Human Cytomegalovirus Infection. Viruses 2024; 16:1196. [PMID: 39205170 PMCID: PMC11360822 DOI: 10.3390/v16081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Nucleic acid-based gene interference and editing strategies, such as antisense oligonucleotides, ribozymes, RNA interference (RNAi), and CRISPR/Cas9 coupled with guide RNAs, are exciting research tools and show great promise for clinical applications in treating various illnesses. RNase P ribozymes have been engineered for therapeutic applications against human viruses such as human cytomegalovirus (HCMV). M1 ribozyme, the catalytic RNA subunit of RNase P from Escherichia coli, can be converted into a sequence-specific endonuclease, M1GS ribozyme, which is capable of hydrolyzing an mRNA target base-pairing with the guide sequence. M1GS RNAs have been shown to hydrolyze essential HCMV mRNAs and block viral progeny production in virus-infected cell cultures. Furthermore, RNase P ribozyme variants with enhanced hydrolyzing activity can be generated by employing in vitro selection procedures and exhibit better ability in suppressing HCMV gene expression and replication in cultured cells. Additional studies have also examined the antiviral activity of RNase P ribozymes in mice in vivo. Using cytomegalovirus infection as an example, this review summarizes the principles underlying RNase P ribozyme-mediated gene inactivation, presents recent progress in engineering RNase P ribozymes for applications in vitro and in mice, and discusses the prospects of using M1GS technology for therapeutic applications against HCMV as well as other pathogenic viruses.
Collapse
Affiliation(s)
- Adam Smith
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Isadora Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Phong Trang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Kirsebom LA, Liu F, McClain WH. The discovery of a catalytic RNA within RNase P and its legacy. J Biol Chem 2024; 300:107318. [PMID: 38677513 PMCID: PMC11143913 DOI: 10.1016/j.jbc.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
Collapse
Affiliation(s)
- Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, California, USA.
| | - William H McClain
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
6
|
Trang P, Zhang I, Liu F. In Vitro Amplification and Selection of Engineered RNase P Ribozyme for Gene Targeting Applications. Methods Mol Biol 2024; 2822:419-429. [PMID: 38907932 DOI: 10.1007/978-1-0716-3918-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Ribozymes engineered from the RNase P catalytic RNA (M1 RNA) represent promising gene-targeting agents for clinical applications. We describe in this report an in vitro amplification and selection procedure for generating active RNase P ribozyme variants with improved catalytic efficiency. Using the amplification and selection procedure, we have previously generated ribozyme variants that were highly active in cleaving a herpes simplex virus 1-encoded mRNA in vitro and inhibiting its expression in virally infected human cells. In this chapter, we use an overlapping region of the mRNAs for the IE1 and IE2 proteins of human cytomegalovirus (HCMV) as a target substrate. We provide detailed protocols and include methods for establishing the procedure for the amplification and selection of active mRNA-cleaving RNase P ribozymes. The in vitro amplification and selection system represents an excellent approach for engineering highly active RNase P ribozymes that can be used in both basic research and clinical applications.
Collapse
Affiliation(s)
- Phong Trang
- School of Public Health, University of California, Berkeley, CA, USA
| | - Isadora Zhang
- Program in Comparative Biochemistry, University of California, Berkeley, CA, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA, USA.
- Program in Comparative Biochemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
7
|
Kotwal SB, Orekondey N, Saradadevi GP, Priyadarshini N, Puppala NV, Bhushan M, Motamarry S, Kumar R, Mohannath G, Dey RJ. Multidimensional futuristic approaches to address the pandemics beyond COVID-19. Heliyon 2023; 9:e17148. [PMID: 37325452 PMCID: PMC10257889 DOI: 10.1016/j.heliyon.2023.e17148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Globally, the impact of the coronavirus disease 2019 (COVID-19) pandemic has been enormous and unrelenting with ∼6.9 million deaths and ∼765 million infections. This review mainly focuses on the recent advances and potentially novel molecular tools for viral diagnostics and therapeutics with far-reaching implications in managing the future pandemics. In addition to briefly highlighting the existing and recent methods of viral diagnostics, we propose a couple of potentially novel non-PCR-based methods for rapid, cost-effective, and single-step detection of nucleic acids of viruses using RNA mimics of green fluorescent protein (GFP) and nuclease-based approaches. We also highlight key innovations in miniaturized Lab-on-Chip (LoC) devices, which in combination with cyber-physical systems, could serve as ideal futuristic platforms for viral diagnosis and disease management. We also discuss underexplored and underutilized antiviral strategies, including ribozyme-mediated RNA-cleaving tools for targeting viral RNA, and recent advances in plant-based platforms for rapid, low-cost, and large-scale production and oral delivery of antiviral agents/vaccines. Lastly, we propose repurposing of the existing vaccines for newer applications with a major emphasis on Bacillus Calmette-Guérin (BCG)-based vaccine engineering.
Collapse
Affiliation(s)
- Shifa Bushra Kotwal
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Nidhi Orekondey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | | | - Neha Priyadarshini
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Navinchandra V Puppala
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Mahak Bhushan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, West Bengal 741246, India
| | - Snehasri Motamarry
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Rahul Kumar
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Gireesha Mohannath
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Ruchi Jain Dey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| |
Collapse
|
8
|
Liu Y, Chen YC, Yan B, Liu F. Suppressing Kaposi's Sarcoma-Associated Herpesvirus Lytic Gene Expression and Replication by RNase P Ribozyme. Molecules 2023; 28:molecules28083619. [PMID: 37110852 PMCID: PMC10142857 DOI: 10.3390/molecules28083619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Kaposi's sarcoma, an AIDS-defining illness, is caused by Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic virus. In this study, we engineered ribozymes derived from ribonuclease P (RNase P) catalytic RNA with targeting against the mRNA encoding KSHV immediate early replication and transcription activator (RTA), which is vital for KSHV gene expression. The functional ribozyme F-RTA efficiently sliced the RTA mRNA sequence in vitro. In cells, KSHV production was suppressed with ribozyme F-RTA expression by 250-fold, and RTA expression was suppressed by 92-94%. In contrast, expression of control ribozymes hardly affected RTA expression or viral production. Further studies revealed both overall KSHV early and late gene expression and viral growth decreased because of F-RTA-facilitated suppression of RTA expression. Our results indicate the first instance of RNase P ribozymes having potential for use in anti-KSHV therapy.
Collapse
Affiliation(s)
- Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Bin Yan
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Jarrous N, Liu F. Human RNase P: overview of a ribonuclease of interrelated molecular networks and gene-targeting systems. RNA (NEW YORK, N.Y.) 2023; 29:300-307. [PMID: 36549864 PMCID: PMC9945436 DOI: 10.1261/rna.079475.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/09/2022] [Indexed: 05/14/2023]
Abstract
The seminal discovery of ribonuclease P (RNase P) and its catalytic RNA by Sidney Altman has not only revolutionized our understanding of life, but also opened new fields for scientific exploration and investigation. This review focuses on human RNase P and its use as a gene-targeting tool, two topics initiated in Altman's laboratory. We outline early works on human RNase P as a tRNA processing enzyme and comment on its expanding nonconventional functions in molecular networks of transcription, chromatin remodeling, homology-directed repair, and innate immunity. The important implications and insights from these discoveries on the potential use of RNase P as a gene-targeting tool are presented. This multifunctionality calls to a modified structure-function partitioning of domains in human RNase P, as well as its relative ribonucleoprotein, RNase MRP. The role of these two catalysts in innate immunity is of particular interest in molecular evolution, as this dynamic molecular network could have originated and evolved from primordial enzymes and sensors of RNA, including predecessors of these two ribonucleoproteins.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 9112010, Israel
| | - Fenyong Liu
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Trang P, Smith A, Liu F. Mapping of RNase P Ribozyme Regions in Proximity with a Human RNase P Subunit Protein Using Fe(II)-EDTA Cleavage and Nuclease Footprint Analyses. Methods Mol Biol 2023; 2666:55-67. [PMID: 37166656 DOI: 10.1007/978-1-0716-3191-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ribonuclease P (RNase P), which may consist of both protein subunits and a catalytic RNA part, is responsible for 5' maturation of tRNA by cleaving the 5'-leader sequence. In Escherichia coli, RNase P contains a catalytic RNA subunit (M1 RNA) and a protein factor (C5 protein). In human cells, RNase P holoenzyme consists of an RNA subunit (H1 RNA) and multiple protein subunits that include human RPP29 protein. M1GS, a sequence specific targeting ribozyme derived from M1 RNA, can be constructed to target a specific mRNA to degrade it in vitro. Recent studies have shown that M1GS ribozymes are efficient in blocking the expression of viral mRNAs in cultured cells and in animals. These results suggest that RNase P ribozymes have the potential to be useful in basic research and in clinical applications. It has been shown that RNase P binding proteins, such as C5 protein and RPP29, can enhance the activities of M1GS RNA in processing a natural tRNA substrate and a target mRNA. Understanding how RPP29 binds to M1GS RNA and enhances the enzyme's catalytic activity will provide great insight into developing more robust gene-targeting ribozymes for in vivo application. In this chapter, we describe the methods of using Fe(II)-ethylenediaminetetraacetic acid (EDTA) cleavage and nuclease footprint analyses to determine the regions of a M1GS ribozyme that are in proximity to RPP29 protein.
Collapse
Affiliation(s)
- Phong Trang
- School of Public Health, University of California, Berkeley, CA, USA.
| | - Adam Smith
- Program in Comparative Biochemistry, University of California, Berkeley, CA, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA, USA.
- Program in Comparative Biochemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
11
|
Deng Q, Liu Y, Li X, Yan B, Sun X, Tang W, Trang P, Yang Z, Gong H, Wang Y, Lu J, Chen J, Xia C, Xing X, Lu S, Liu F. Inhibition of human cytomegalovirus major capsid protein expression and replication by ribonuclease P-associated external guide sequences. RNA (NEW YORK, N.Y.) 2019; 25:645-655. [PMID: 30803999 PMCID: PMC6467005 DOI: 10.1261/rna.069682.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/21/2019] [Indexed: 05/08/2023]
Abstract
External guide sequences (EGSs) signify the short RNAs that induce ribonuclease P (RNase P), an enzyme responsible for processing the 5' termini of tRNA, to specifically cleave a target mRNA by forming a precursor tRNA-like complex. Hence, the EGS technology may serve as a potential strategy for gene-targeting therapy. Our previous studies have revealed that engineered EGS variants induced RNase P to efficiently hydrolyze target mRNAs. In the present research, an EGS variant was designed to be complementary to the mRNA coding for human cytomegalovirus (HCMV) major capsid protein (MCP), which is vital to form the viral capsid. In vitro, the EGS variant was about 80-fold more efficient in inducing human RNase P-mediated cleavage of the target mRNA than a natural tRNA-derived EGS. Moreover, the expressed variant and natural tRNA-originated EGSs led to a decrease of MCP expression by 98% and 73%-74% and a decrease of viral growth by about 10,000- and 200-fold in cells infected with HCMV, respectively. These results reveal direct evidence that the engineered EGS variant has higher efficiency in blocking the expression of HCMV genes and viral growth than the natural tRNA-originated EGS. Therefore, our findings imply that the EGS variant can be a potent candidate agent for the treatment of infections caused by HCMV.
Collapse
MESH Headings
- Base Pairing
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Cell Line, Transformed
- Cell Line, Tumor
- Cytomegalovirus/genetics
- Cytomegalovirus/metabolism
- Fibroblasts/metabolism
- Fibroblasts/virology
- Gene Expression Regulation, Viral
- Gene Targeting/methods
- Genetic Engineering/methods
- Host-Pathogen Interactions/genetics
- Humans
- Molecular Targeted Therapy
- Neuroglia/metabolism
- Neuroglia/virology
- Nucleic Acid Conformation
- Primary Cell Culture
- RNA Cleavage
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease P/chemistry
- Ribonuclease P/genetics
- Ribonuclease P/metabolism
- Virus Replication/physiology
Collapse
Affiliation(s)
- Qiudi Deng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yujun Liu
- School of Public Health, University of California, Berkeley, California 94720, USA
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
| | - Xin Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bin Yan
- School of Public Health, University of California, Berkeley, California 94720, USA
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xu Sun
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
- Guangzhou Qinheli Biotechnolgies Inc, Guangzhou, Guangdong 510600, China
| | - Wei Tang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Phong Trang
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Zhu Yang
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
- Guangzhou Qinheli Biotechnolgies Inc, Guangzhou, Guangdong 510600, China
| | - Hao Gong
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
| | - Yu Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
| | - Jie Lu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jun Chen
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chuan Xia
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Fenyong Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Li W, Liu Y, Wang Y, Li R, Trang P, Tang W, Yang Z, Wang Y, Sun X, Xing X, Lu S, Liu F. Engineered RNase P Ribozymes Effectively Inhibit the Infection of Murine Cytomegalovirus in Animals. Am J Cancer Res 2018; 8:5634-5644. [PMID: 30555569 PMCID: PMC6276291 DOI: 10.7150/thno.27776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/03/2018] [Indexed: 01/30/2023] Open
Abstract
Rationales: Gene-targeting ribozymes represent promising nucleic acid-based gene interference agents for therapeutic application. We previously used an in vitro selection procedure to engineer novel RNase P-based ribozyme variants with enhanced targeting activity. However, it has not been reported whether these ribozyme variants also exhibit improved activity in blocking gene expression in animals. Methods and Results: In this report, R388-AS, a new engineered ribozyme variant, was designed to target the mRNA of assemblin (AS) of murine cytomegalovirus (MCMV), which is essential for viral progeny production. Variant R338-AS cleaved AS mRNA sequence in vitro at least 200 times more efficiently than ribozyme M1-AS, which originated from the wild type RNase P catalytic RNA sequence. In cultured MCMV-infected cells, R338-AS exhibited better antiviral activity than M1-AS and decreased viral AS expression by 98-99% and virus production by 15,000 fold. In MCMV-infected mice, R388-AS was more active in inhibiting AS expression, blocking viral replication, and improving animal survival than M1-AS. Conclusions: Our results provide the first direct evidence that novel engineered RNase P ribozyme variants with more active catalytic activity in vitro are also more effective in inhibiting viral gene expression in animals. Moreover, our studies imply the potential of engineering novel RNase P ribozyme variants with unique mutations to improve ribozyme activity for therapeutic application.
Collapse
|
13
|
Sun X, Chen W, He L, Sheng J, Liu Y, Vu GP, Yang Z, Li W, Trang P, Wang Y, Hai R, Zhu H, Lu S, Liu F. Inhibition of human cytomegalovirus immediate early gene expression and growth by a novel RNase P ribozyme variant. PLoS One 2017; 12:e0186791. [PMID: 29059242 PMCID: PMC5653336 DOI: 10.1371/journal.pone.0186791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022] Open
Abstract
We have previously engineered new RNase P-based ribozyme variants with improved in vitro catalytic activity. In this study, we employed a novel engineered variant to target a shared mRNA region of human cytomegalovirus (HCMV) immediate early proteins 1 (IE1) and 2 (IE2), which are essential for the expression of viral early and late genes as well as viral growth. Ribozyme F-R228-IE represents a novel variant that possesses three unique base substitution point mutations at the catalytic domain of RNase P catalytic RNA. Compared to F-M1-IE that is the ribozyme derived from the wild type RNase P catalytic RNA sequence, the functional variant F-R228-IE cleaved the target mRNA sequence in vitro at least 100 times more efficiently. In cultured cells, expression of F-R228-IE resulted in IE1/IE2 expression reduction by 98–99% and in HCMV production reduction by 50,000 folds. In contrast, expression of F-M1-IE resulted in IE1/IE2 expression reduction by less than 80% and in viral production reduction by 200 folds. Studies of the ribozyme-mediated antiviral effects in cultured cells suggest that overall viral early and late gene expression and viral growth were inhibited due to the ribozyme-mediated reduction of HCMV IE1 and IE2 expression. Our results provide direct evidence that engineered RNase P ribozymes, such as F-R228-IE, can serve as a novel class of inhibitors for the treatment and prevention of HCMV infection. Moreover, these results suggest that F-R228-IE, with novel and unique mutations at the catalytic domain to enhance ribozyme activity, can be a candidate for the construction of effective agents for anti-HCMV therapy.
Collapse
Affiliation(s)
- Xu Sun
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Weijie Chen
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Lingling He
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jingxue Sheng
- School of Public Health, University of California, Berkeley, CA, United States of America
| | - Yujun Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Medicine, St. George’s University, Grenada, West Indies
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, CA, United States of America
| | - Zhu Yang
- Guangzhou Qinheli Biotechnologies, Inc., Guangzhou, Guangdong, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
- Taizhou Institute of Virology, Taizhou, Jiangsu, China
| | - Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Phong Trang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yu Wang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Guangzhou Qinheli Biotechnologies, Inc., Guangzhou, Guangdong, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
| | - Rong Hai
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hua Zhu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, CA, United States of America
- * E-mail: (FL); (SL)
| | - Fenyong Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Public Health, University of California, Berkeley, CA, United States of America
- * E-mail: (FL); (SL)
| |
Collapse
|
14
|
RNase P-Mediated Sequence-Specific Cleavage of RNA by Engineered External Guide Sequences. Biomolecules 2015; 5:3029-50. [PMID: 26569326 PMCID: PMC4693268 DOI: 10.3390/biom5043029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 01/06/2023] Open
Abstract
The RNA cleavage activity of RNase P can be employed to decrease the levels of specific RNAs and to study their function or even to eradicate pathogens. Two different technologies have been developed to use RNase P as a tool for RNA knockdown. In one of these, an external guide sequence, which mimics a tRNA precursor, a well-known natural RNase P substrate, is used to target an RNA molecule for cleavage by endogenous RNase P. Alternatively, a guide sequence can be attached to M1 RNA, the (catalytic) RNase P RNA subunit of Escherichia coli. The guide sequence is specific for an RNA target, which is subsequently cleaved by the bacterial M1 RNA moiety. These approaches are applicable in both bacteria and eukaryotes. In this review, we will discuss the two technologies in which RNase P is used to reduce RNA expression levels.
Collapse
|
15
|
Rouge JL, Sita TL, Hao L, Kouri FM, Briley WE, Stegh AH, Mirkin CA. Ribozyme-Spherical Nucleic Acids. J Am Chem Soc 2015; 137:10528-10531. [PMID: 26271335 DOI: 10.1021/jacs.5b07104] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ribozymes are highly structured RNA sequences that can be tailored to recognize and cleave specific stretches of mRNA. Their current therapeutic efficacy remains low due to their large size and structural instability compared to shorter therapeutically relevant RNA such as small interfering RNA (siRNA) and microRNA (miRNA). Herein, a synthetic strategy that makes use of the spherical nucleic acid (SNA) architecture to stabilize ribozymes and transfect them into live cells is reported. The properties of this novel ribozyme-SNA are characterized in the context of the targeted knockdown of O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein involved in chemotherapeutic resistance of solid tumors, foremost glioblastoma multiforme (GBM). Data showing the direct cleavage of full-length MGMT mRNA, knockdown of MGMT protein, and increased sensitization of GBM cells to therapy-mediated apoptosis, independent of transfection agents, provide compelling evidence for the promising properties of this new chemical architecture.
Collapse
Affiliation(s)
- Jessica L Rouge
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Timothy L Sita
- Interdisciplinary Biological Sciences Graduate Program, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
| | - Liangliang Hao
- Interdisciplinary Biological Sciences Graduate Program, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Fotini M Kouri
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States.,Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - William E Briley
- Interdisciplinary Biological Sciences Graduate Program, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander H Stegh
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States.,Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Pei Z, Jiang X, Yang Z, Ren X, Gong H, Reeves M, Sheng J, Wang Y, Pan Z, Liu F, Wu J, Lu S. Oral Delivery of a Novel Attenuated Salmonella Vaccine Expressing Influenza A Virus Proteins Protects Mice against H5N1 and H1N1 Viral Infection. PLoS One 2015; 10:e0129276. [PMID: 26083421 PMCID: PMC4471199 DOI: 10.1371/journal.pone.0129276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/06/2015] [Indexed: 11/23/2022] Open
Abstract
Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA) and neuraminidase (NA) of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Female
- Gene Transfer Techniques
- Hemagglutinins/genetics
- Hemagglutinins/immunology
- Immunity, Cellular
- Immunity, Humoral
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Mice
- Mice, Inbred BALB C
- Neuraminidase/genetics
- Neuraminidase/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Salmonella Vaccines/administration & dosage
- Salmonella Vaccines/genetics
- Salmonella Vaccines/immunology
- Salmonella Vaccines/therapeutic use
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/therapeutic use
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Zenglin Pei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaohong Jiang
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Zhu Yang
- Taizhou Institute of Virology, Taizhou, Jiangsu, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
| | - Xiaoguang Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hao Gong
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Michael Reeves
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Jingxue Sheng
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Yu Wang
- Taizhou Institute of Virology, Taizhou, Jiangsu, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- School of Public Health, University of California, Berkeley, California, United States of America
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, California, United States of America
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| |
Collapse
|
17
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
18
|
Dickson AM, Wilusz J. Strategies for viral RNA stability: live long and prosper. Trends Genet 2011; 27:286-93. [PMID: 21640425 PMCID: PMC3123725 DOI: 10.1016/j.tig.2011.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 12/23/2022]
Abstract
Eukaryotic cells have a powerful RNA decay machinery that plays an important and diverse role in regulating both the quantity and the quality of gene expression. Viral RNAs need to successfully navigate around this cellular machinery to initiate and maintain a highly productive infection. Recent work has shown that viruses have developed a variety of strategies to accomplish this, including inherent RNA shields, hijacking host RNA stability factors, incapacitating the host decay machinery and changing the entire landscape of RNA stability in cells using virally encoded nucleases. In addition to maintaining the stability of viral transcripts, these strategies can also contribute to the regulation and complexity of viral gene expression as well as to viral RNA evolution.
Collapse
|
19
|
Zhang X, Wanda SY, Brenneman K, Kong W, Zhang X, Roland K, Curtiss R. Improving Salmonella vector with rec mutation to stabilize the DNA cargoes. BMC Microbiol 2011; 11:31. [PMID: 21303535 PMCID: PMC3047425 DOI: 10.1186/1471-2180-11-31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/08/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Salmonella has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in E. coli by mutating several genes including the recA, recE, recF and recJ. However, to our knowledge, there have been no published studies of the effect of these or any other genes that play a role in plasmid recombination in Salmonella enterica. RESULTS The effect of recA, recF and recJ deletions on DNA recombination was examined in three serotypes of Salmonella enterica. We found that (1) intraplasmid recombination between direct duplications was RecF-independent in Typhimurium and Paratyphi A, but could be significantly reduced in Typhi by a ΔrecA or ΔrecF mutation; (2) in all three Salmonella serotypes, both ΔrecA and ΔrecF mutations reduced intraplasmid recombination when a 1041 bp intervening sequence was present between the duplications; (3) ΔrecA and ΔrecF mutations resulted in lower frequencies of interplasmid recombination in Typhimurium and Paratyphi A, but not in Typhi; (4) in some cases, a ΔrecJ mutation could reduce plasmid recombination but was less effective than ΔrecA and ΔrecF mutations. We also examined chromosome-related recombination. The frequencies of intrachromosomal recombination and plasmid integration into the chromosome were 2 and 3 logs lower than plasmid recombination frequencies in Rec+ strains. A ΔrecA mutation reduced both intrachromosomal recombination and plasmid integration frequencies. CONCLUSIONS The ΔrecA and ΔrecF mutations can reduce plasmid recombination frequencies in Salmonella enterica, but the effect can vary between serovars. This information will be useful for developing Salmonella delivery vectors able to stably maintain plasmid cargoes for vaccine development and gene therapy.
Collapse
Affiliation(s)
- Xiangmin Zhang
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Oral delivery of RNase P ribozymes by Salmonella inhibits viral infection in mice. Proc Natl Acad Sci U S A 2011; 108:3222-7. [PMID: 21300908 DOI: 10.1073/pnas.1014975108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Safe, effective, and tissue-specific delivery is a central issue for the therapeutic application of nucleic-acid-based gene interfering agents, such as ribozymes and siRNAs. In this study, we constructed a functional RNase P-based ribozyme (M1GS RNA) that targets the overlapping mRNA region of M80.5 and protease, two murine cytomegalovirus (MCMV) proteins essential for viral replication. In addition, a novel attenuated strain of Salmonella, which exhibited efficient gene transfer activity and little cytotoxicity and pathogenicity in mice, was constructed and used for delivery of anti-MCMV ribozyme. In MCMV-infected macrophages treated with the constructed attenuated Salmonella strain carrying the functional M1GS RNA construct, we observed an 80-85% reduction in the expression of M80.5/protease and a 2,500-fold reduction in viral growth. Oral inoculation of the attenuated Salmonella strain in mice efficiently delivered antiviral M1GS RNA into spleens and livers, leading to substantial expression of the ribozyme without causing significant adverse effects in the animals. Furthermore, the MCMV-infected mice that were treated orally with Salmonella carrying the functional M1GS sequence displayed reduced viral gene expression, decreased viral titers, and improved survival compared to the untreated mice or mice treated with Salmonella containing control ribozyme sequences. Our results provide direct evidence that oral delivery of M1GS RNA by Salmonella-based vectors effectively inhibits viral gene expression and replication in mice. Moreover, this study demonstrates the utility of Salmonella-mediated oral delivery of RNase P ribozyme for gene-targeting applications in vivo.
Collapse
|
21
|
Jiang X, Bai Y, Rider P, Kim K, Zhang CY, Lu S, Liu F. Engineered external guide sequences effectively block viral gene expression and replication in cultured cells. J Biol Chem 2010; 286:322-30. [PMID: 20980254 DOI: 10.1074/jbc.m110.158857] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonuclease P (RNase P) complexed with external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. We have previously used an in vitro selection procedure to generate EGS variants that efficiently direct human RNase P to cleave a target mRNA in vitro. In this study, a variant was used to target the mRNA encoding the protease of human cytomegalovirus (HCMV), which is essential for viral capsid formation and replication. The EGS variant was about 35-fold more active in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Moreover, a reduction of 95% in the expression of the protease and a reduction of 4,000-fold in viral growth were observed in HCMV-infected cells that expressed the EGS variant, whereas a reduction of 80% in the protease expression and an inhibition of 150-fold in viral growth were detected in cells that expressed the EGS derived from a natural tRNA sequence. No significant reduction in viral protease expression or viral growth was observed in cells that either did not express an EGS or produced a "disabled" EGS, which carried nucleotide mutations that precluded RNase P recognition. Our results provide direct evidence that engineered EGS variant is highly effective in blocking HCMV expression and growth by targeting the viral protease. Furthermore, these results demonstrate the utility of engineered EGS RNAs in gene targeting applications, including the inhibition of HCMV infection by blocking the expression of virus-encoded essential proteins.
Collapse
Affiliation(s)
- Xiaohong Jiang
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | | | | | | | | | | | | |
Collapse
|