1
|
Weiner JM, Lee WH, Nolan EM, Oglesby AG. Calprotectin elicits aberrant iron starvation responses in Pseudomonas aeruginosa under anaerobic conditions. J Bacteriol 2025; 207:e0002925. [PMID: 40135923 PMCID: PMC12004955 DOI: 10.1128/jb.00029-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 03/27/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that uses several mechanisms to survive in the iron-limiting host environment. The innate immune protein calprotectin (CP) sequesters ferrous iron [Fe(II)], among other divalent transition metal ions, to limit its availability to pathogens. CP levels are increased in individuals with cystic fibrosis (CF), a hereditary disease that leads to chronic pulmonary infection by P. aeruginosa. We previously showed that aerobic CP treatment of P. aeruginosa induces a multi-metal starvation response that alters expression of several virulence properties. However, the CF lung is a hypoxic environment due to the growth of P. aeruginosa in dense biofilms. Here, we report that anaerobic CP treatment of P. aeruginosa induces many processes associated with an aerobic iron starvation response, including decreased phenazine production and increased expression of the PrrF small regulatory RNAs (sRNAs). However, the iron starvation response elicited by CP in anaerobic conditions shows characteristics that are distinct from responses observed in aerobic growth, including a lack of siderophore production and increased induction of genes for the FeoAB Fe(II) and Phu heme uptake systems. Also distinct from aerobic conditions, CP treatment induces expression of genes for predicted manganese transporters MntH1 and MntH2 during anaerobic growth while eliciting a less robust zinc starvation response compared to aerobic conditions. Induction of mntH2 is dependent on the PrrF sRNAs, suggesting a novel example of metal regulatory cross-talk. Thus, anaerobic CP treatment results in a multi-metal starvation response with key distinctions from aerobic conditions, revealing differences in P. aeruginosa metal homeostasis during anaerobic growth.IMPORTANCEIron is critical for most microbial pathogens, and the innate immune system sequesters this metal to limit microbial growth. Pathogens must overcome iron sequestration to survive during infection. For many pathogens, iron homeostasis has primarily been studied in aerobic conditions. Nevertheless, some host environments are hypoxic, including chronic lung infection sites in individuals with cystic fibrosis (CF). Here, we use the innate immune protein calprotectin, which sequesters divalent metal ions including Fe(II), to study the anaerobic iron starvation response of a common CF lung pathogen, Pseudomonas aeruginosa. We report several distinctions of this response during anaerobiosis, highlighting the importance of carefully considering the host environment when investigating the role of nutritional immunity in host-pathogen interactions.
Collapse
Affiliation(s)
- Jacob M. Weiner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Wei Hao Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Salamzade R, Kalan LR. Context matters: assessing the impacts of genomic background and ecology on microbial biosynthetic gene cluster evolution. mSystems 2025; 10:e0153824. [PMID: 39992097 PMCID: PMC11915812 DOI: 10.1128/msystems.01538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Encoded within many microbial genomes, biosynthetic gene clusters (BGCs) underlie the synthesis of various secondary metabolites that often mediate ecologically important functions. Several studies and bioinformatics methods developed over the past decade have advanced our understanding of both microbial pangenomes and BGC evolution. In this minireview, we first highlight challenges in broad evolutionary analysis of BGCs, including delineation of BGC boundaries and clustering of BGCs across genomes. We further summarize key findings from microbial comparative genomics studies on BGC conservation across taxa and habitats and discuss the potential fitness effects of BGCs in different settings. Afterward, recent research showing the importance of genomic context on the production of secondary metabolites and the evolution of BGCs is highlighted. These studies draw parallels to recent, broader, investigations on gene-to-gene associations within microbial pangenomes. Finally, we describe mechanisms by which microbial pangenomes and BGCs evolve, ranging from the acquisition or origination of entire BGCs to micro-evolutionary trends of individual biosynthetic genes. An outlook on how expansions in the biosynthetic capabilities of some taxa might support theories that open pangenomes are the result of adaptive evolution is also discussed. We conclude with remarks about how future work leveraging longitudinal metagenomics across diverse ecosystems is likely to significantly improve our understanding on the evolution of microbial genomes and BGCs.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Bouheraoua S, Cleeves S, Preusse M, Müsken M, Braubach P, Fuchs M, Falk C, Sewald K, Häussler S. Establishment and characterization of persistent Pseudomonas aeruginosa infections in air-liquid interface cultures of human airway epithelial cells. Infect Immun 2025; 93:e0060324. [PMID: 39964154 PMCID: PMC11895474 DOI: 10.1128/iai.00603-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 03/12/2025] Open
Abstract
Bacteria exhibit distinct behaviors in laboratory settings compared to infection environments. The presence of host cells induces changes in bacterial activity, while pathogens trigger immune responses that shape the microenvironment. Studying infection dynamics by microscopy, cytokine screening, and dual RNA sequencing in an air-liquid interface model, we found that prolonged Pseudomonas aeruginosa colonization of airway epithelium led to a pro-inflammatory response, consistent across P. aeruginosa strains, despite differences in the dynamics of this response. Concurrently, P. aeruginosa formed non-attached aggregates on the apical side of the cell layer and upregulated genes involved in biofilm formation and virulence. Notably, there was remarkable resemblance between the P. aeruginosa transcriptional profile in our model and that previously reported upon host cell contact. Developing a platform that replicates host microenvironments is vital not only for gaining deeper insights into the interplay between host and pathogen but also for evaluating therapeutic strategies in conditions that closely mirror clinical environments.
Collapse
Affiliation(s)
- Safaa Bouheraoua
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Sven Cleeves
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Christine Falk
- Institute for Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Michailidu J, Maťátková O, Čejková A, Masák J. Chemical Conversations. Molecules 2025; 30:431. [PMID: 39942538 PMCID: PMC11820530 DOI: 10.3390/molecules30030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Among living organisms, higher animals primarily use a combination of vocal and non-verbal cues for communication. In other species, however, chemical signaling holds a central role. The chemical and biological activity of the molecules produced by the organisms themselves and the existence of receptors/targeting sites that allow recognition of such molecules leads to various forms of responses by the producer and recipient organisms and is a fundamental principle of such communication. Chemical language can be used to coordinate processes within one species or between species. Chemical signals are thus information for other organisms, potentially inducing modification of their behavior. Additionally, this conversation is influenced by the external environment in which organisms are found. This review presents examples of chemical communication among microorganisms, between microorganisms and plants, and between microorganisms and animals. The mechanisms and physiological importance of this communication are described. Chemical interactions can be both cooperative and antagonistic. Microbial chemical signals usually ensure the formation of the most advantageous population phenotype or the disadvantage of a competitive species in the environment. Between microorganisms and plants, we find symbiotic (e.g., in the root system) and parasitic relationships. Similarly, mutually beneficial relationships are established between microorganisms and animals (e.g., gastrointestinal tract), but microorganisms also invade and disrupt the immune and nervous systems of animals.
Collapse
Affiliation(s)
| | | | | | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic; (J.M.); (O.M.); (A.Č.)
| |
Collapse
|
5
|
Vollenweider V, Rehm K, Chepkirui C, Pérez-Berlanga M, Polymenidou M, Piel J, Bigler L, Kümmerli R. Antimicrobial activity of iron-depriving pyoverdines against human opportunistic pathogens. eLife 2024; 13:RP92493. [PMID: 39693130 DOI: 10.7554/elife.92493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
The global rise of antibiotic resistance calls for new drugs against bacterial pathogens. A common approach is to search for natural compounds deployed by microbes to inhibit competitors. Here, we show that the iron-chelating pyoverdines, siderophores produced by environmental Pseudomonas spp., have strong antibacterial properties by inducing iron starvation and growth arrest in pathogens. A screen of 320 natural Pseudomonas isolates used against 12 human pathogens uncovered several pyoverdines with particularly high antibacterial properties and distinct chemical characteristics. The most potent pyoverdine effectively reduced growth of the pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus in a concentration- and iron-dependent manner. Pyoverdine increased survival of infected Galleria mellonella host larvae and showed low toxicity for the host, mammalian cell lines, and erythrocytes. Furthermore, experimental evolution of pathogens combined with whole-genome sequencing revealed limited resistance evolution compared to an antibiotic. Thus, pyoverdines from environmental strains have the potential to become a new class of sustainable antibacterials against specific human pathogens.
Collapse
Affiliation(s)
- Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karoline Rehm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | | | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Joshi H, Khan A. Competition-driven phenotypic plasticity in Iron acquisition and aromatic utilization confers a fitness advantage to Pseudomonas putida in an Iron-limited rhizospheric environment. World J Microbiol Biotechnol 2024; 40:386. [PMID: 39565458 PMCID: PMC11579168 DOI: 10.1007/s11274-024-04192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Iron scarcity poses a critical challenge for rhizospheric bacteria like Pseudomonas putida in the competitive rhizosphere. Despite its dependence on iron for essential functions such as root colonization, motility, and aromatic compound utilization, P. putida exhibits limited capability for heterologous siderophore utilization and primarily relies on the secretion of a single siderophore, pyoverdine. This study investigates the mechanisms by which P. putida acquires iron in an iron-limited, aromatic-rich, rhizosphere-like environment. Our findings demonstrate that P. putida exhibits significant phenotypic plasticity, dynamically modulating pyoverdine secretion in response to competitive pressures and substrate availability. This adaptive strategy optimizes energy expenditure and iron acquisition, providing a competitive advantage. Comparative gene expression analysis supports these observations, revealing the molecular underpinnings of this plasticity. Enhanced pyoverdine production driven by competition compensates for the bacterium's limited siderophore repertoire and facilitates rapid aromatic compound utilization, conferring a distinct fitness advantage in iron-deprived conditions. This study elucidates the complex interplay between competition, iron uptake, and aromatic compound utilization that underpins the rhizospheric success of P. putida.
Collapse
Affiliation(s)
- Hiren Joshi
- Biofouling & Biofilms Processes Section, Water & Steam Chemistry Division, BARC Facilities, IGCAR campus, Kalpakkam, 603 102, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| | - Atif Khan
- Biofouling & Biofilms Processes Section, Water & Steam Chemistry Division, BARC Facilities, IGCAR campus, Kalpakkam, 603 102, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Burch-Konda J, Kayastha BB, Achour M, Kubo A, Hull M, Braga R, Winton L, Rogers RR, Lutter EI, Patrauchan MA. EF-hand calcium sensor, EfhP, controls transcriptional regulation of iron uptake by calcium in Pseudomonas aeruginosa. mBio 2024; 15:e0244724. [PMID: 39436074 PMCID: PMC11559002 DOI: 10.1128/mbio.02447-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The human pathogen Pseudomonas aeruginosa (Pa) poses a major risk for a range of severe infections, particularly lung infections in patients suffering from cystic fibrosis (CF). As previously reported, the virulent behavior of this pathogen is enhanced by elevated levels of Ca2+ that are commonly present in CF nasal and lung fluids. In addition, a Ca2+-binding EF-hand protein, EfhP (PA4107), was partially characterized and shown to be critical for the Ca2+-regulated virulence in P. aeruginosa. Here, we describe the rapid (10 min, 60 min), and adaptive (12 h) transcriptional responses of PAO1 to elevated Ca2+ detected by genome-wide RNA sequencing and show that efhP deletion significantly hindered both rapid and adaptive Ca2+ regulation. The most differentially regulated genes included multiple Fe sequestering mechanisms, a large number of extracytoplasmic function sigma factors (ECFσ), and several virulence factors, such as the production of pyocins. The Ca2+ regulation of Fe uptake was also observed in CF clinical isolates and appeared to involve the global regulator Fur. In addition, we showed that the efhP transcription is controlled by Ca2+ and Fe, and this regulation required a Ca2+-dependent two-component regulatory system CarSR. Furthermore, the efhP expression is significantly increased in CF clinical isolates and upon pathogen internalization into epithelial cells. Overall, the results established for the first time that Ca2+ controls Fe sequestering mechanisms in P. aeruginosa and that EfhP plays a key role in the regulatory interconnectedness between Ca2+ and Fe signaling pathways, the two distinct and important signaling pathways that guide the pathogen's adaptation to the host.IMPORTANCEPseudomonas aeruginosa (Pa) poses a major risk for severe infections, particularly in patients suffering from cystic fibrosis (CF). For the first time, kinetic RNA sequencing analysis identified Pa rapid and adaptive transcriptional responses to Ca2+ levels consistent with those present in CF respiratory fluids. The most highly upregulated processes include iron sequestering, iron starvation sigma factors, and self-lysis factors pyocins. An EF-hand Ca2+ sensor, EfhP, is required for at least 1/3 of the Ca2+ response, including the majority of the iron uptake mechanisms and the production of pyocins. Transcription of efhP itself is regulated by Ca2+ and Fe, and increases during interactions with host epithelial cells, suggesting the protein's important role in Pa infections. The findings establish the regulatory interconnectedness between Ca2+ and iron signaling pathways that shape Pa transcriptional responses. Therefore, understanding Pa's transcriptional response to Ca2+ and associated regulatory mechanisms will serve in the development of future therapeutics targeting Pa's dangerous infections.
Collapse
Affiliation(s)
- Jacob Burch-Konda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Biraj B. Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Myriam Achour
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mackenzie Hull
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reygan Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lorelei Winton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rendi R. Rogers
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Erika I. Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
8
|
Moss CE, Roy CR. InSeq analysis of defined Legionella pneumophila libraries identifies a transporter-encoding gene cluster important for intracellular replication in mammalian hosts. mBio 2024; 15:e0195524. [PMID: 39365064 PMCID: PMC11559062 DOI: 10.1128/mbio.01955-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024] Open
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that replicates inside human alveolar macrophages to cause a severe pneumonia known as Legionnaires' disease. L. pneumophila requires the Dot/Icm Type IV secretion system to deliver hundreds of bacterial proteins to the host cytosol that manipulate cellular processes to establish a protected compartment for bacterial replication known as the Legionella-containing vacuole. To better understand mechanisms apart from the Dot/Icm system that support survival and replication in this vacuole, we used transposon insertion sequencing in combination with defined mutant sublibraries to identify L. pneumophila fitness determinants in primary mouse macrophages and the mouse lung. This approach validated that many previously identified genes important for intracellular replication were critical for infection of a mammalian host. Further, the screens uncovered additional genes contributing to L. pneumophila replication in mammalian infection models. This included a cluster of seven genes in which insertion mutations resulted in L. pneumophila fitness defects in mammalian hosts. Generation of isogenic deletion mutants and genetic complementation studies verified the importance of genes within this locus for infection of mammalian cells. Genes in this cluster are predicted to encode nucleotide-modifying enzymes, a protein of unknown function, and an atypical ATP-binding cassette (ABC) transporter with significant homology to multidrug efflux pumps that has been named Lit, for Legionella infectivity transporter. Overall, these data provide a comprehensive overview of the bacterial processes that support L. pneumophila replication in a mammalian host and offer insight into the unique challenges posed by the intravacuolar environment.IMPORTANCEIntracellular bacteria employ diverse mechanisms to survive and replicate inside the inhospitable environment of host cells. Legionella pneumophila is an opportunistic human pathogen and a model system for studying intracellular host-pathogen interactions. Transposon sequencing is an invaluable tool for identifying bacterial genes contributing to infection, but current animal models for L. pneumophila are suboptimal for conventional screens using saturated mutant libraries. This study employed a series of defined transposon mutant libraries to identify determinants of L. pneumophila fitness in mammalian hosts, which include a newly identified bacterial transporter called Lit. Understanding the requirements for survival and replication inside host cells informs us about the environment bacteria encounter during infection and the mechanisms they employ to make this environment habitable. Such knowledge will be key to addressing future challenges in treating infections caused by intracellular bacteria.
Collapse
Affiliation(s)
- Caitlin E. Moss
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Libisch B. N-Alkane Assimilation by Pseudomonas aeruginosa and Its Interactions with Virulence and Antibiotic Resistance. Antibiotics (Basel) 2024; 13:1028. [PMID: 39596723 PMCID: PMC11591199 DOI: 10.3390/antibiotics13111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa strains with potential for degrading n-alkanes are frequently cultured from hydrocarbon-contaminated sites. The initial hydroxylation step of long-chain n-alkanes is mediated by the chromosomally encoded AlkB1 and AlkB2 alkane hydroxylases. The acquisition of an additional P. putida GPo1-like alkane hydroxylase gene cluster can extend the substrate range assimilated by P. aeruginosa to
Collapse
Affiliation(s)
- Balázs Libisch
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| |
Collapse
|
10
|
Xia Y, Wei X, Gao P, Wang C, de Jong A, Chen JHK, Rodríguez-Sánchez MJ, Rodríguez-Nogales A, Diez-Echave P, Gálvez J, García F, Wu W, Kao RYT, Li H, Cebrián R, Kuipers OP, Sun H. Bismuth-based drugs sensitize Pseudomonas aeruginosa to multiple antibiotics by disrupting iron homeostasis. Nat Microbiol 2024; 9:2600-2613. [PMID: 39294461 DOI: 10.1038/s41564-024-01807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Pseudomonas aeruginosa infections are difficult to treat due to rapid development of antibiotic drug resistance. The synergistic combination of already-in-use drugs is an alternative to developing new antibiotics to combat antibiotic-resistant bacteria. Here we demonstrate that bismuth-based drugs (bismuth subsalicylate, colloidal bismuth subcitrate) in combination with different classes of antibiotics (tetracyclines, macrolides, quinolones, rifamycins and so on) can eliminate multidrug-resistant P. aeruginosa and do not induce development of antibiotic resistance. Bismuth disrupts iron homeostasis by binding to P. aeruginosa siderophores. Inside cells, bismuth inhibits the electron transport chain, dissipates the proton motive force and impairs efflux pump activity by disrupting iron-sulfur cluster-containing enzymes, including respiration complexes. As a result, bismuth facilitates antibiotic accumulation inside bacteria, enhancing their efficacy. The combination therapy shows potent antibacterial efficacy and low toxicity in an ex vivo bacteraemia model and increases the survival rate of mice in in vivo mouse lung-infection models. Our findings highlight the potential of bismuth-based drugs to be repurposed to combat P. aeruginosa infections in combination with clinically used antibiotics.
Collapse
Affiliation(s)
- Yushan Xia
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
| | - Peng Gao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chenyuan Wang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Jonathan Hon Kwan Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - María José Rodríguez-Sánchez
- Department of Digestive system, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Instituto de Investigación Biosanitaria ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Instituto de Investigación Biosanitaria ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Instituto de Investigación Biosanitaria ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Biomedical Research Network Center, Liver and Digestive Diseases (CIBER-EHD), Granada, Spain
| | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital San Cecilio, Granada, Spain
- Biomedicinal Research Network Center, Infectious Diseases (CIBER-INFEC), Granada, Spain
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
| | - Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital San Cecilio, Granada, Spain.
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Arnold E. Non-classical roles of bacterial siderophores in pathogenesis. Front Cell Infect Microbiol 2024; 14:1465719. [PMID: 39372500 PMCID: PMC11449898 DOI: 10.3389/fcimb.2024.1465719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Within host environments, iron availability is limited, which instigates competition for this essential trace element. In response, bacteria produce siderophores, secondary metabolites that scavenge iron and deliver it to bacterial cells via specific receptors. This role in iron acquisition contributes significantly to bacterial pathogenesis, thereby designating siderophores as virulence factors. While prior research has primarily focused on unravelling the molecular mechanisms underlying siderophore biosynthesis, uptake, and iron sequestration, recent investigations have unveiled additional non-iron chelating functions of siderophores. These emerging roles are being consistently shown to support bacterial pathogenesis. In this review, we present the current understanding of siderophores in various roles: acquiring non-iron metal ions, supporting tolerance to metal-induced and reactive oxygen species (ROS)-induced stresses, mediating siderophore signalling, inducing ROS formation, and functioning in class IIb microcins. By integrating recent findings, this review aims to provide an overview of the diverse roles of siderophores in bacterial pathogenesis.
Collapse
|
12
|
Leinweber A, Laffont C, Lardi M, Eberl L, Pessi G, Kümmerli R. RNA-Seq reveals that Pseudomonas aeruginosa mounts growth medium-dependent competitive responses when sensing diffusible cues from Burkholderia cenocepacia. Commun Biol 2024; 7:995. [PMID: 39143311 PMCID: PMC11324955 DOI: 10.1038/s42003-024-06618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Most habitats host diverse bacterial communities, offering opportunities for inter-species interactions. While competition might often dominate such interactions, little is known about whether bacteria can sense competitors and mount adequate responses. The competition sensing hypothesis proposes that bacteria can use cues such as nutrient stress and cell damage to prepare for battle. Here, we tested this hypothesis by measuring transcriptome changes in Pseudomonas aeruginosa exposed to the supernatant of its competitor Burkholderia cenocepacia. We found that P. aeruginosa exhibited significant growth-medium-dependent transcriptome changes in response to competition. In an iron-rich medium, P. aeruginosa upregulated genes encoding the type-VI secretion system and the siderophore pyoverdine, whereas genes encoding phenazine toxins and hydrogen cyanide were upregulated under iron-limited conditions. Moreover, general stress response and quorum sensing regulators were upregulated upon supernatant exposure. Altogether, our results reveal nuanced competitive responses of P. aeruginosa when confronted with B. cenocepacia supernatant, integrating both environmental and social cues.
Collapse
Affiliation(s)
- Anne Leinweber
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Clémentine Laffont
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
13
|
Raviranga NGH, Ramström O. Antimicrobial Delivery Using Metallophore-Responsive Dynamic Nanocarriers. ACS APPLIED BIO MATERIALS 2024; 7:4785-4794. [PMID: 38963757 DOI: 10.1021/acsabm.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The increasing prevalence of multidrug-resistant (MDR) pathogens has promoted the development of innovative approaches, such as drug repurposing, synergy, and efficient delivery, in complement to traditional antibiotics. In this study, we present an approach based on biocompatible nanocarriers containing antimicrobial cations and known antibiotics. The matrices were prepared by coordinating GaIII or InIII to formulations of chitosan/tripolyphosphate or catechol-functionalized chitosan with or without encapsulated antibiotics, yielding particles of 100-200 nm in hydrodynamic diameter. MDR clinical isolates of Pseudomonas aeruginosa were found to be effectively inhibited by the nanocarriers under nutrient-limiting conditions. Fractional inhibitory concentration (FIC) indices revealed that cation- and antibiotic-encapsulated nanomatrices were effective against both Gram-negative and Gram-positive pathogens. Metallophores, such as deferoxamine (DFO), were probed to facilitate the sequestration and transport of the antimicrobial cations GaIII or InIII. Although the antimicrobial activities were less significant with DFO, the eradication of biofilm-associated bacteria showed promising trends against P. aeruginosa and Staphylococcus epidermidis. Interestingly, indium-containing compounds showed enhanced activity on biofilm formation and eradication, neutralizing P. aeruginosa under Fe-limiting conditions. In particular, InIII-cross-linked catechol-modified chitosan matrices were able to inhibit pathogenic growth together with DFO. The nanocarriers showed low cytotoxicity toward A549 cells and improvable CC50 values with NIH/3T3 cells.
Collapse
Affiliation(s)
- N G Hasitha Raviranga
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., 01854 Lowell, Massachusetts, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., 01854 Lowell, Massachusetts, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
14
|
Naknaen A, Surachat K, Manit J, Jetwanna KWN, Thawonsuwan J, Pomwised R. Virulent properties and genomic diversity of Vibrio vulnificus isolated from environment, human, diseased fish. Microbiol Spectr 2024; 12:e0007924. [PMID: 38860819 PMCID: PMC11218479 DOI: 10.1128/spectrum.00079-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
The incidence of Vibrio vulnificus infections, with high mortality rates in humans and aquatic animals, has escalated, highlighting a significant public health challenge. Currently, reliable markers to identify strains with high virulence potential are lacking, and the understanding of evolutionary drivers behind the emergence of pathogenic strains is limited. In this study, we analyzed the distribution of virulent genotypes and phenotypes to discern the infectious potential of V. vulnificus strains isolated from three distinct sources. Most isolates, traditionally classified as biotype 1, possessed the virulence-correlated gene-C type. Environmental isolates predominantly exhibited YJ-like alleles, while clinical and diseased fish isolates were significantly associated with the nanA gene and pathogenicity region XII. Hemolytic activity was primarily observed in the culture supernatants of clinical and diseased fish isolates. Genetic relationships, as determined by multiple-locus variable-number tandem repeat analysis, suggested that strains originating from the same source tended to cluster together. However, multilocus sequence typing revealed considerable genetic diversity across clusters and sources. A phylogenetic analysis using single nucleotide polymorphisms of diseased fish strains alongside publicly available genomes demonstrated a high degree of evolutionary relatedness within and across different isolation sources. Notably, our findings reveal no direct correlation between phylogenetic patterns, isolation sources, and virulence capabilities. This underscores the necessity for proactive risk management strategies to address pathogenic V. vulnificus strains emerging from environmental reservoirs.IMPORTANCEAs the global incidence of Vibrio vulnificus infections rises, impacting human health and marine aquacultures, understanding the pathogenicity of environmental strains remains critical yet underexplored. This study addresses this gap by evaluating the virulence potential and genetic relatedness of V. vulnificus strains, focusing on environmental origins. We conduct an extensive genotypic analysis and phenotypic assessment, including virulence testing in a wax moth model. Our findings aim to uncover genetic and evolutionary factors that drive pathogenic strain emergence in the environment. This research advances our ability to identify reliable virulence markers and understand the distribution of pathogenic strains, offering significant insights for public health and environmental risk management.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jutamas Manit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Jumroensri Thawonsuwan
- Department of Fisheries, Aquatic Animal Health Research and Development Division, Songkhla Aquatic Animal Health Research Center, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
15
|
Laborda P, Molin S, Johansen HK, Martínez JL, Hernando-Amado S. Role of bacterial multidrug efflux pumps during infection. World J Microbiol Biotechnol 2024; 40:226. [PMID: 38822187 DOI: 10.1007/s11274-024-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Multidrug efflux pumps are protein complexes located in the cell envelope that enable bacteria to expel, not only antibiotics, but also a wide array of molecules relevant for infection. Hence, they are important players in microbial pathogenesis. On the one hand, efflux pumps can extrude exogenous compounds, including host-produced antimicrobial molecules. Through this extrusion, pathogens can resist antimicrobial agents and evade host defenses. On the other hand, efflux pumps also have a role in the extrusion of endogenous compounds, such as bacterial intercommunication signaling molecules, virulence factors or metabolites. Therefore, efflux pumps are involved in the modulation of bacterial behavior and virulence, as well as in the maintenance of the bacterial homeostasis under different stresses found within the host. This review delves into the multifaceted roles that efflux pumps have, shedding light on their impact on bacterial virulence and their contribution to bacterial infection. These observations suggest that strategies targeting bacterial efflux pumps could both reinvigorate the efficacy of existing antibiotics and modulate the bacterial pathogenicity to the host. Thus, a comprehensive understanding of bacterial efflux pumps can be pivotal for the development of new effective strategies for the management of infectious diseases.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark.
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
16
|
Mannaa M, Lee D, Lee HH, Han G, Kang M, Kim TJ, Park J, Seo YS. Exploring the comparative genome of rice pathogen Burkholderia plantarii: unveiling virulence, fitness traits, and a potential type III secretion system effector. FRONTIERS IN PLANT SCIENCE 2024; 15:1416253. [PMID: 38845849 PMCID: PMC11153758 DOI: 10.3389/fpls.2024.1416253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
This study presents a comprehensive genomic analysis of Burkholderia plantarii, a rice pathogen that causes blight and grain rot in seedlings. The entire genome of B. plantarii KACC 18964 was sequenced, followed by a comparative genomic analysis with other available genomes to gain insights into its virulence, fitness, and interactions with rice. Multiple secondary metabolite gene clusters were identified. Among these, 12 demonstrated varying similarity levels to known clusters linked to bioactive compounds, whereas eight exhibited no similarity, indicating B. plantarii as a source of potentially novel secondary metabolites. Notably, the genes responsible for tropolone and quorum sensing were conserved across the examined genomes. Additionally, B. plantarii was observed to possess three complete CRISPR systems and a range of secretion systems, exhibiting minor variations among the analyzed genomes. Genomic islands were analyzed across the four genomes, and a detailed study of the B. plantarii KACC 18964 genome revealed 59 unique islands. These islands were thoroughly investigated for their gene contents and potential roles in virulence. Particular attention has been devoted to the Type III secretion system (T3SS), a crucial virulence factor. An in silico analysis of potential T3SS effectors identified a conserved gene, aroA. Further mutational studies, in planta and in vitro analyses validated the association between aroA and virulence in rice. Overall, this study enriches our understanding of the genomic basis of B. plantarii pathogenicity and emphasizes the potential role of aroA in virulence. This understanding may guide the development of effective disease management strategies.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Duyoung Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Minhee Kang
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Jungwook Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
17
|
Terazawa Y, Tsuzuki M, Nakajima H, Inoue K, Tateda S, Kiba A, Ohnishi K, Kai K, Hikichi Y. The Micacocidin Production-Related RSc1806 Deletion Alters the Quorum Sensing-Dependent Gene Regulation of Ralstonia pseudosolanacearum Strain OE1-1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:467-476. [PMID: 38805410 DOI: 10.1094/mpmi-12-23-0203-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The soil-borne phytopathogenic gram-negative bacterium Ralstonia solanacearum species complex (RSSC) produces staphyloferrin B and micacocidin as siderophores that scavenge for trivalent iron (Fe3+) in the environment, depending on the intracellular divalent iron (Fe2+) concentration. The staphyloferrin B-deficient mutant reportedly retains its virulence, but the relationship between micacocidin and virulence remains unconfirmed. To elucidate the effect of micacocidin on RSSC virulence, we generated the micacocidin productivity-deficient mutant (ΔRSc1806) that lacks RSc1806, which encodes a putative polyketide synthase/non-ribosomal peptide synthetase, using the RSSC phylotype I Ralstonia pseudosolanacearum strain OE1-1. When incubated in the condition without Fe2+, ΔRSc1806 showed significantly lower Fe3+-scavenging activity, compared with OE1-1. Until 8 days after inoculation on tomato plants, ΔRSc1806 was not virulent, similar to the mutant (ΔphcA) missing phcA, which encodes the LysR-type transcriptional regulator PhcA that regulates the expression of the genes responsible for quorum sensing (QS)-dependent phenotypes including virulence. The transcriptome analysis revealed that RSc1806 deletion significantly altered the expression of more than 80% of the PhcA-regulated genes in the mutant grown in medium with or without Fe2+. Among the PhcA-regulated genes, the transcript levels of the genes whose expression was affected by the deletion of RSc1806 were strongly and positively correlated between the ΔRSc1806 and the phcA-deletion mutant. Furthermore, the deletion of RSc1806 significantly modified QS-dependent phenotypes, similar to the effects of the deletion of phcA. Collectively, our findings suggest that the deletion of micacocidin production-related RSc1806 alters the regulation of PhcA-regulated genes responsible for QS-dependent phenotypes including virulence as well as Fe3+-scavenging activity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yuki Terazawa
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Hiroto Nakajima
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Sora Tateda
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
18
|
Mridha S, Wechsler T, Kümmerli R. Space and genealogy determine inter-individual differences in siderophore gene expression in bacterial colonies. Cell Rep 2024; 43:114106. [PMID: 38625795 DOI: 10.1016/j.celrep.2024.114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/09/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024] Open
Abstract
Heterogeneity in gene expression is common among clonal cells in bacteria, although the sources and functions of variation often remain unknown. Here, we track cellular heterogeneity in the bacterium Pseudomonas aeruginosa during colony growth by focusing on siderophore gene expression (pyoverdine versus pyochelin) important for iron nutrition. We find that the spatial position of cells within colonies and non-genetic yet heritable differences between cell lineages are significant sources of cellular heterogeneity, while cell pole age and lifespan have no effect. Regarding functions, our results indicate that cells adjust their siderophore investment strategies along a gradient from the colony center to its edge. Moreover, cell lineages with below-average siderophore investment benefit from lineages with above-average siderophore investment, presumably due to siderophore sharing. Our study highlights that single-cell experiments with dual gene expression reporters can identify sources of gene expression variation of interlinked traits and offer explanations for adaptive benefits in bacteria.
Collapse
Affiliation(s)
- Subham Mridha
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tobias Wechsler
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
19
|
Sorlin P, Brivet E, Jean-Pierre V, Aujoulat F, Besse A, Dupont C, Chiron R, Jumas-Bilak E, Menetrey Q, Marchandin H. Prevalence and variability of siderophore production in the Achromobacter genus. Microbiol Spectr 2024; 12:e0295323. [PMID: 38315029 PMCID: PMC10913535 DOI: 10.1128/spectrum.02953-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024] Open
Abstract
Achromobacter spp. are opportunistic pathogens of environmental origin increasingly isolated in patients with underlying conditions like cystic fibrosis (CF). Despite recent advances, their virulence factors remain incompletely studied, and siderophore production has not yet been investigated in this genus. The aim of this study was to evaluate the production of siderophores in a large collection of Achromobacter spp. and evaluate the variability according to the origin of the strain and species. A total of 163 strains were studied, including 128 clinical strains (CF and non-CF patients) and 35 strains of environmental origin. Siderophores were quantified by the liquid chrome azurol-sulphonate assay. Species were identified by nrdA gene-based phylogeny. Strains were assigned to 20 species, with Achromobacter xylosoxidans being the most represented (51.5% of strains). Siderophore production was observed in 72.4% of the strains, with amounts ranging from 10.1% to 90% siderophore units. A significantly higher prevalence of siderophore-producing strains and greater production of siderophores were observed for clinical strains compared with strains of environmental origin. Highly variable observations were made according to species: A. xylosoxidans presented unique characteristics (one of the highest prevalence of producing strains and highest amounts produced, particularly by CF strains). Siderophores are important factors for bacterial growth commonly produced by members of the Achromobacter genus. The significance of the observations made during this study must be further investigated. Indeed, the differences observed according to species and the origin of strains suggest that siderophores may represent important determinants of the pathophysiology of Achromobacter spp. infections and also contribute to the particular epidemiological success of A. xylosoxidans in human infections. IMPORTANCE Achromobacter spp. are recognized as emerging opportunistic pathogens in humans with various underlying diseases, including cystic fibrosis (CF). Although their pathophysiological traits are increasingly studied, their virulence factors remain incompletely described. Particularly, siderophores that represent important factors of bacterial growth have not yet been studied in this genus. A population-based study was performed to explore the ability of members of the Achromobacter genus to produce siderophores, both overall and in relevant subgroups (Achromobacter species; strain origin, either clinical-from CF or non-CF patients-or environmental). This study provides original data showing that siderophore production is a common trait of Achromobacter strains, particularly observed among clinical strains. The major species, Achromobacter xylosoxidans, encompassed both one of the highest prevalence of siderophore-producing strains and strains producing the largest amounts of siderophores, particularly observed for CF strains. These observations may represent additional advantages accounting for the epidemiological success of this species.
Collapse
Affiliation(s)
- P. Sorlin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - E. Brivet
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - V. Jean-Pierre
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| | - F. Aujoulat
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - A. Besse
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - C. Dupont
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire de Bactériologie, CHU de Montpellier, Montpellier, France
| | - R. Chiron
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, Montpellier, France
| | - E. Jumas-Bilak
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire d’Écologie Microbienne Hospitalière, CHU de Montpellier, Montpellier, France
| | - Q. Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, Lille, France
| | - H. Marchandin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| |
Collapse
|
20
|
Kang D, Xu Q, Kirienko NV. In vitro lung epithelial cell model reveals novel roles for Pseudomonas aeruginosa siderophores. Microbiol Spectr 2024; 12:e0369323. [PMID: 38311809 PMCID: PMC10913452 DOI: 10.1128/spectrum.03693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
The multidrug-resistant pathogen Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model that can be used to characterize the impact and molecular mechanisms of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model to use human bronchial epithelial (16HBE) cells. We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipids or genetic disruption of rhamnolipid biosynthesis abrogated the toxicity of the conditioned medium. Furthermore, we also examine the effects of exposure to purified pyoverdine on 16HBE cells. While pyoverdine accumulated within cells, it was largely sequestered within early endosomes, resulting in minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several pro-inflammatory genes. However, pyoverdine potentiated these iron chelators in activating pro-inflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa is a versatile bacterium that frequently causes lung infections. This pathogen is life-threatening to mechanically-ventilated patients in intensive care units and is a debilitating burden for individuals with cystic fibrosis. However, the role of P. aeruginosa virulence factors and their regulation during infection are not fully understood. Previous murine lung infection studies have demonstrated that the production of siderophores (e.g., pyoverdine and pyochelin) is necessary for full P. aeruginosa virulence. In this report, we provide further mechanistic insight into this phenomenon. We characterize distinct and novel ways these siderophores contribute to virulence using an in vitro human lung epithelial cell culture model.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | |
Collapse
|
21
|
Kar A, Mukherjee SK, Barik S, Hossain ST. Antimicrobial Activity of Trigonelline Hydrochloride Against Pseudomonas aeruginosa and Its Quorum-Sensing Regulated Molecular Mechanisms on Biofilm Formation and Virulence. ACS Infect Dis 2024; 10:746-762. [PMID: 38232080 DOI: 10.1021/acsinfecdis.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Pseudomonas aeruginosa, a vivid biofilm-producing bacterium, is considered a dreadful opportunistic pathogen, and thus, management of biofilm-associated infections due to multidrug resistant strains by traditional drugs currently is of great concern. This study was aimed to assess the impact of trigonelline hydrochloride, a pyridine alkaloid, on P. aeruginosa PAO1, in search of an alternative therapeutant. The effect of trigonelline on colony morphology and motility was studied along with its role on biofilm and expression virulence factors. Trigonelline influenced the colony structure, motility, biofilm architecture, and the production of virulence factors in a dose-dependent manner. Alterations in quorum sending (QS)-regulated gene expression after treatment and molecular docking analysis for certain regulator proteins confirmed its effect on the QS-system network by affecting Las, Rhl, and Pqs signaling pathways and as possible molecular targets. Thus, trigonelline might be considered as a potential chemical lead to manage biofilm-associated pathogenesis or to develop other analogues with enhanced pharmacokinetic actions.
Collapse
Affiliation(s)
- Amiya Kar
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | | | - Subhasis Barik
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, West Bengal 700026, India
| | | |
Collapse
|
22
|
Khan MA, Shahid M, Celik I, Khan HM, Shahzad A, Husain FM, Adil M. Attenuation of quorum sensing regulated virulence functions and biofilm of pathogenic bacteria by medicinal plant Artemisia annua and its phytoconstituent 1, 8-cineole. Microsc Res Tech 2024; 87:133-148. [PMID: 37728140 DOI: 10.1002/jemt.24418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/26/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
The emergence of multidrug resistance (MDR) in bacterial pathogens is a serious public health concern. A significant therapeutic target for MDR infections is the quorum sensing-regulated bacterial pathogenicity. Determining the anti-quorum sensing abilities of certain medicinal plants against bacterial pathogens as well as the in-silico interactions of particular bioactive phytocompounds with QS and biofilm-associated proteins were the objectives of the present study. In this study, 6 medicinal plants were selected based on their ethnopharmacological usage, screened for Anti-QS activity and Artemisia annua leaf extract (AALE) demonstrated pigment inhibitory activity against Chromobacterium violaceum CV12472. Further, the methanol active fraction significantly inhibited the virulence factors (pyocyanin, pyoverdine, rhamnolipid and swarming motility) of Pseudomonas aeruginosa PAO1 and Serratia marcescens MTCC 97 at respective sub-MICs. The inhibition of biofilm was determined using a microtiter plate test and scanning electron microscopy. Biofilm formation was impaired by 70%, 72% and 74% in P. aeruginosa, C. violaceum and S. marcescens, respectively at 0.5xMIC of the extract. The phytochemical content of the extract was studied using GC-MS and 1, 8-cineole was identified as major bioactive compound. Furthermore, 1, 8-cineole was docked with quorum sensing (QS) proteins (LasI, LasR, CviR, and rhlR) and biofilm proteins (PilY1 and PilT). In silico docking and dynamics simulations studies suggested interactions with QS-receptors CviR', LasI, LasR, and biofilm proteins PilY1, PilT for anti-QS activity. Further, 1, 8-cineole demonstrated 66% and 51% reduction in violacein production and biofilm formation, respectively to validate the findings of computational analysis. Findings of the present investigation suggests that 1, 8-cineole plays a crucial role in the QS and biofilm inhibitory activity demonstrated by Artemisia annua extract. RESEARCH HIGHLIGHTS: Artemisia annua leaf extract (AALE) methanol fraction demonstrated broad-spectrum QS and biofilm inhibition Scanning electron microscopy (SEM) confirmed biofilm inhibition Molecular docking and simulation studies suggested positive interactions of 1,8-cineol with QS-receptors and biofilm proteins.
Collapse
Affiliation(s)
- Mo Ahamad Khan
- Department of Microbiology, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohammad Shahid
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Science, Arabian Gulf University, Manama, Bahrain
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Haris M Khan
- Department of Microbiology, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Anwar Shahzad
- Department of Botany, Faculty of Life Science, Aligarh Muslim University, Aligarh, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Adil
- Department of Environmental Sciences, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
23
|
Jafra S, Jabłońska M, Maciąg T, Matuszewska M, Borowicz M, Prusiński M, Żmudzińska W, Thiel M, Czaplewska P, Krzyżanowska DM, Czajkowski R. An iron fist in a velvet glove: The cooperation of a novel pyoverdine from Pseudomonas donghuensis P482 with 7-hydroxytropolone is pivotal for its antibacterial activity. Environ Microbiol 2024; 26:e16559. [PMID: 38151794 DOI: 10.1111/1462-2920.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Pseudomonas donghuensis P482 exhibits broad antimicrobial activity against phytopathogens, including the soft rot bacteria of the Dickeya genus. Here, we report that under limited nutrient availability, the antibacterial activity of P. donghuensis P482 against Dickeya solani requires the reciprocal action of two iron scavengers: 7-hydroxytropolone (7-HT) and a newly characterized pyoverdine (PVDP482 ) and is quenched in the iron-augmented environment. Further, we show that the biosynthesis of pyoverdine and 7-HT is metabolically coordinated, and the functional BV82_4709 gene involved in 7-HT synthesis is pivotal for expressing the BV82_3755 gene, essential for pyoverdine biosynthesis and vice versa. The synthesis of both scavengers is under the control of Gac/Rsm, but only PVD is controlled by Fur. The isoelectric focusing profile of the P482 siderophore differs from that of the other Pseudomonas spp. tested. This finding led to the unveiling of the chemical structure of the new pyoverdine PVDP482 . To summarize, the antibacterial activity of P. donghuensis P482 is attributed to 7-HT and PVDP482 varies depending on the nutrient and iron availability, highlighting the importance of these factors in the competition between P482 and D. solani.
Collapse
Affiliation(s)
- Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Jabłońska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marcin Borowicz
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Michał Prusiński
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Wioletta Żmudzińska
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marcel Thiel
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
24
|
De R, Whiteley M, Azad RK. A gene network-driven approach to infer novel pathogenicity-associated genes: application to Pseudomonas aeruginosa PAO1. mSystems 2023; 8:e0047323. [PMID: 37921470 PMCID: PMC10734507 DOI: 10.1128/msystems.00473-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE We present here a new systems-level approach to decipher genetic factors and biological pathways associated with virulence and/or antibiotic treatment of bacterial pathogens. The power of this approach was demonstrated by application to a well-studied pathogen Pseudomonas aeruginosa PAO1. Our gene co-expression network-based approach unraveled known and unknown genes and their networks associated with pathogenicity in P. aeruginosa PAO1. The systems-level investigation of P. aeruginosa PAO1 helped identify putative pathogenicity and resistance-associated genetic factors that could not otherwise be detected by conventional approaches of differential gene expression analysis. The network-based analysis uncovered modules that harbor genes not previously reported by several original studies on P. aeruginosa virulence and resistance. These could potentially act as molecular determinants of P. aeruginosa PAO1 pathogenicity and responses to antibiotics.
Collapse
Affiliation(s)
- Ronika De
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
- BioDiscovery Institute, University of North Texas, Denton, Texas, USA
| | - Marvin Whiteley
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Rajeev K. Azad
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
- BioDiscovery Institute, University of North Texas, Denton, Texas, USA
- Department of Mathematics, University of North Texas, Denton, Texas, USA
| |
Collapse
|
25
|
Thiroux A, Labanowski J, Venisse N, Crapart S, Boisgrollier C, Linares C, Berjeaud J, Villéger R, Crépin A. Exposure to endocrine disruptors promotes biofilm formation and contributes to increased virulence of Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:740-756. [PMID: 37586891 PMCID: PMC10667657 DOI: 10.1111/1758-2229.13190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023]
Abstract
Anthropogenic activities contribute to the spread of chemicals considered as endocrine disruptors (ED) in freshwater ecosystems. While several studies have reported interactions of EDs with organisms in those ecosystems, very few have assessed the effect of these compounds on pathogenic bacteria. Here we have evaluated the impact of five EDs found in aquatic resources on the virulence of human pathogen P. aeruginosa. ED concentrations in French aquatic resources of bisphenol A (BPA), dibutyl phthalate (DBP), ethylparaben (EP), methylparaben (MP) and triclosan (TCS) at mean molar concentration were 1.13, 3.58, 0.53, 0.69, and 0.81 nM respectively. No impact on bacterial growth was observed at EDs highest tested concentration. Swimming motility of P. aeruginosa decreased to 28.4% when exposed to EP at 100 μM. Swarming motility increased, with MP at 1 nM, 10 and 100 μM (1.5-fold); conversely, a decrease of 78.5%, with DBP at 100 μM was observed. Furthermore, exposure to 1 nM BPA, DBP and EP increased biofilm formation. P. aeruginosa adhesion to lung cells was two-fold higher upon exposure to 1 nM EP. We demonstrate that ED exposure may simultaneously decrease mobility and increase cell adhesion and biofilm formation, which may promote colonisation and establishment of the pathogen.
Collapse
Affiliation(s)
- Audrey Thiroux
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jérôme Labanowski
- Université de PoitiersUMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)PoitiersFrance
| | - Nicolas Venisse
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
- Université de Poitiers, CHU de Poitiers, INSERMCentre d'investigation clinique CIC1402PoitiersFrance
| | - Stéphanie Crapart
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Chloé Boisgrollier
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Carlos Linares
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jean‐Marc Berjeaud
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Romain Villéger
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Alexandre Crépin
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| |
Collapse
|
26
|
Warsi OM, Gedda L, Edwards K, Andersson DI. Vesicle-enriched secretomes alter bacterial competitive abilities and are drivers of evolution in microbial communities. FEMS Microbiol Ecol 2023; 99:fiad141. [PMID: 37884450 PMCID: PMC10653989 DOI: 10.1093/femsec/fiad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Microbial membrane vesicles can carry compounds that inhibit bacterial growth, but how they impact the fitness of the vesicle-producing bacterial species and influence community dynamics remain unexplored questions. To address these questions, we examined the effect of vesicle-enriched secretomes (VESs) in different single-species and multi-species systems. Effects of VESs on single-species growth dynamics were determined for nine bacterial species belonging to four genera (Escherichia, Salmonella, Pseudomonas and Bacillus) in nutrient-rich and poor growth media. Results showed both species-specific and nutrient-dependent effects of the VESs on bacterial growth. The strongest antagonistic effects were observed for VES isolated from the natural isolates of E. coli, while those isolated from P. aeruginosa PA14 affected the highest number of species. We further demonstrated that these VESs altered the competitive abilities of the species involved in two-species (S. Typhimurium LT2 and S. arizonae) and three-species systems (E. coli, S. Typhimurium LT2 and B. subtilis). Finally, using experimental evolution we showed that different bacterial species could rapidly acquire mutations that abrogated the antagonistic effects of VESs. This study demonstrates how VESs can contribute in shaping microbial communities, both by increasing the competitive ability of a given bacterial species and as a driver of genetic adaptation.
Collapse
Affiliation(s)
- Omar M Warsi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Lars Gedda
- Department of Chemistry-Ångström, Uppsala University, Uppsala 75237, Sweden
| | - Katarina Edwards
- Department of Chemistry-Ångström, Uppsala University, Uppsala 75237, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
27
|
Liu J, Xiang Y, Zhang Y. Stenotrophomonas maltophilia: An Urgent Threat with Increasing Antibiotic Resistance. Curr Microbiol 2023; 81:6. [PMID: 37955756 DOI: 10.1007/s00284-023-03524-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023]
Abstract
Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can cause many infections, such as chronic pulmonary infections in patients with cystic fibrosis and infections in immunocompromised patients with hematology-oncology diseases. Because of its remarkable and increasing antimicrobial resistance, the treatment of S. maltophilia infections is quite challenging. Meanwhile, the prevalence of S. maltophilia infections is increasing in recent decades. S. maltophilia is usually considered to be of low virulence but has numerous virulence factors involved in the pathogenesis of infections caused by S. maltophilia. By revealing its pathogenesis associated with virulence factors and molecular mechanisms of antimicrobial resistance, many existing or potential therapeutic strategies have been developed. However, because of the limited treatment options, new strategies are urgently needed. Here, we review the recent progresses in research on S. maltophilia which may help to develop more effective treatments against this increasing threat.
Collapse
Affiliation(s)
- Jiaying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
| |
Collapse
|
28
|
Wiesmann CL, Wang NR, Zhang Y, Liu Z, Haney CH. Origins of symbiosis: shared mechanisms underlying microbial pathogenesis, commensalism and mutualism of plants and animals. FEMS Microbiol Rev 2023; 47:fuac048. [PMID: 36521845 PMCID: PMC10719066 DOI: 10.1093/femsre/fuac048] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/17/2023] Open
Abstract
Regardless of the outcome of symbiosis, whether it is pathogenic, mutualistic or commensal, bacteria must first colonize their hosts. Intriguingly, closely related bacteria that colonize diverse hosts with diverse outcomes of symbiosis have conserved host-association and virulence factors. This review describes commonalities in the process of becoming host associated amongst bacteria with diverse lifestyles. Whether a pathogen, commensal or mutualist, bacteria must sense the presence of and migrate towards a host, compete for space and nutrients with other microbes, evade the host immune system, and change their physiology to enable long-term host association. We primarily focus on well-studied taxa, such as Pseudomonas, that associate with diverse model plant and animal hosts, with far-ranging symbiotic outcomes. Given the importance of opportunistic pathogens and chronic infections in both human health and agriculture, understanding the mechanisms that facilitate symbiotic relationships between bacteria and their hosts will help inform the development of disease treatments for both humans, and the plants we eat.
Collapse
Affiliation(s)
- Christina L Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nicole R Wang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yue Zhang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zhexian Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
29
|
Wang W, Xia J, Wang Z, Shao Z. Bacterial cell sensing and signaling pathway for external polycyclic aromatic hydrocarbons (PAHs). iScience 2023; 26:107912. [PMID: 37841585 PMCID: PMC10570129 DOI: 10.1016/j.isci.2023.107912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
The mechanism by which a bacterial cell senses external nutrients remains largely unknown. In this study, we identified a bacterial cell sensing system for polycyclic aromatic hydrocarbons (PAHs) in a common marine PAH-using bacterium, Cycloclasticus. It consists of an outer membrane receptor (PahS) and a periplasmic protein (PahP) in combination with a two-component sensing system (TCS) that ensures a rapid response to PAH occurrence by directly controlling serial reactions including chemotactic sensing and movement, PAH uptake and intracellular PAH metabolism. PahS protrudes from the cell and acts as a PAH sensor, transducing the PAH signal across the outer membrane to its periplasmic partner PahP, which in turn transduces the PAH signal across the periplasm to a specialized TCS. This sensing system plays a critical role in sensing and promoting the metabolism of PAHs, which can be scavenged by various hydrocarbon-degrading bacteria.
Collapse
Affiliation(s)
- Wanpeng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Jingyu Xia
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zining Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| |
Collapse
|
30
|
Kang D, Xu Q, Kirienko NV. In vitro Lung Epithelial Cell Model Reveals Novel Roles for Pseudomonas aeruginosa Siderophores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525796. [PMID: 36747656 PMCID: PMC9901015 DOI: 10.1101/2023.01.26.525796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multidrug-resistant Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model to characterize the impact and molecular mechanism of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model for human bronchial epithelial cells (16HBE). We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipid factors or genetic disruption of rhamnolipid biosynthesis was sufficient to abrogate conditioned medium toxicity. Furthermore, we also examine the effects of purified pyoverdine exposure on 16HBE cells. While pyoverdine accumulated within cells, the siderophore was largely sequestered within early endosomes, showing minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several proinflammatory genes. However, pyoverdine potentiated these iron chelators in activating proinflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | |
Collapse
|
31
|
He X, Han B, Wang R, Guo Y, Kao RYT, Li H, Sun H, Xia W. Dual-action gallium-flavonoid compounds for combating Pseudomonas aeruginosa infection. RSC Chem Biol 2023; 4:774-784. [PMID: 37799578 PMCID: PMC10549236 DOI: 10.1039/d3cb00033h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/10/2023] [Indexed: 10/07/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) causes infections that are difficult to treat, which is due to the bacterial natural resistance to antibiotics. The bacterium is also able to form a biofilm that protects the bacterium from clearance by the human immune system and leads to chronic infection. Herein, we synthesized and characterized a novel gallium compound that interferes with both the iron metabolism and quorum sensing system of P. aeruginosa to achieve a significant bactericidal activity. The compound could substantially reduce the secretion of bacterial virulence factors as well as eliminate biofilm formation. Integrative omics analysis indicates that this compound can significantly disturb the gene transcription and metabolism of P. aeruginosa. The effectiveness of the gallium compound was further validated in mammalian cell and murine skin infection models. Our study offers a new strategy to design new gallium-based antimicrobials to combat P. aeruginosa infection.
Collapse
Affiliation(s)
- Xiaojun He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Bingjie Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Runming Wang
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Department of Microbiology and State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong Hong Kong P. R. China
| | - Yu Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Richard Y T Kao
- Department of Microbiology and State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong Hong Kong P. R. China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
32
|
Wang T, Hua C, Deng X. c-di-GMP signaling in Pseudomonas syringae complex. Microbiol Res 2023; 275:127445. [PMID: 37450986 DOI: 10.1016/j.micres.2023.127445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
The Pseudomonas syringae Complex is one of the model phytopathogenic bacteria for exploring plant-microbe interactions, causing devastating plant diseases and economic losses worldwide. The ubiquitous second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an important role in the 'lifestyle switch' from single motile cells to biofilm formation and modulates bacterial behavior, thus influencing virulence in Pseudomonas and other bacterial species. However, less is known about the role of c-di-GMP in the P. syringae complex, in which c-di-GMP levels are controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), such as Chp8, BifA and WspR. Deletion the chemotaxis receptor PscA also influences c-di-GMP levels, suggesting a cross-talk between chemotaxis and c-di-GMP pathways. Another transcription factor, FleQ, plays a dual role (positive or negative) in regulating cellulose synthesis as a c-di-GMP effector, whereas the transcription factor AmrZ regulates local c-di-GMP levels by inhibiting the DGC enzyme AdcA and the PDE enzyme MorA. Our recent research demonstrated that an increase in the c-di-GMP concentration increased biofilm development, siderophore biosynthesis and oxidative stress tolerance, while it decreased the siderophore content, bacterial motility and type III secretion system activity in P. syringae complex. These findings show that c-di-GMP intricately controls virulence in P. syringae complex, indicating that adjusting c-di-GMP levels may be a valuable tactic for defending plants against pathogens. This review highlights recent research on metabolic enzymes, regulatory mechanisms and the phenotypic consequences of c-di-GMP signaling in the P. syringae.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Canfeng Hua
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Hong Kong SAR, China; Tung Research Centre, City University of Hong Kong, Hong Kong SAR, China; Chengdu Research Institute, City University of Hong Kong, Chengdu, China.
| |
Collapse
|
33
|
O'Brien S, Culbert CT, Barraclough TG. Community composition drives siderophore dynamics in multispecies bacterial communities. BMC Ecol Evol 2023; 23:45. [PMID: 37658316 PMCID: PMC10472669 DOI: 10.1186/s12862-023-02152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Intraspecific public goods are commonly shared within microbial populations, where the benefits of public goods are largely limited to closely related conspecifics. One example is the production of iron-scavenging siderophores that deliver iron to cells via specific cell envelope receptor and transport systems. Intraspecific social exploitation of siderophore producers is common, since non-producers avoid the costs of production but retain the cell envelope machinery for siderophore uptake. However, little is known about how interactions between species (i.e., interspecific interactions) can shape intraspecific public goods exploitation. Here, we predicted that strong competition for iron between species in diverse communities will increase costs of siderophore cooperation, and hence drive intraspecific exploitation. We examined how increasing microbial community species diversity shapes intraspecific social dynamics by monitoring the growth of siderophore producers and non-producers of the plant-growth promoting bacterium Pseudomonas fluorescens, embedded within tree-hole microbial communities ranging from 2 to 15 species. RESULTS We find, contrary to our prediction, that siderophore production is favoured at higher levels of community species richness, driven by increased likelihood of encountering key species that reduce the growth of siderophore non-producing (but not producing) strains of P. fluorescens. CONCLUSIONS Our results suggest that maintaining a diverse soil microbiota could partly contribute to the maintenance of siderophore production in natural communities.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Christopher T Culbert
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Timothy G Barraclough
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
34
|
Sánchez-Jiménez A, Llamas MA, Marcos-Torres FJ. Transcriptional Regulators Controlling Virulence in Pseudomonas aeruginosa. Int J Mol Sci 2023; 24:11895. [PMID: 37569271 PMCID: PMC10418997 DOI: 10.3390/ijms241511895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is a pathogen capable of colonizing virtually every human tissue. The host colonization competence and versatility of this pathogen are powered by a wide array of virulence factors necessary in different steps of the infection process. This includes factors involved in bacterial motility and attachment, biofilm formation, the production and secretion of extracellular invasive enzymes and exotoxins, the production of toxic secondary metabolites, and the acquisition of iron. Expression of these virulence factors during infection is tightly regulated, which allows their production only when they are needed. This process optimizes host colonization and virulence. In this work, we review the intricate network of transcriptional regulators that control the expression of virulence factors in P. aeruginosa, including one- and two-component systems and σ factors. Because inhibition of virulence holds promise as a target for new antimicrobials, blocking the regulators that trigger the production of virulence determinants in P. aeruginosa is a promising strategy to fight this clinically relevant pathogen.
Collapse
Affiliation(s)
| | - María A. Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Francisco Javier Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| |
Collapse
|
35
|
Lear L, Hesse E, Newsome L, Gaze W, Buckling A, Vos M. The effect of metal remediation on the virulence and antimicrobial resistance of the opportunistic pathogen Pseudomonas aeruginosa. Evol Appl 2023; 16:1377-1389. [PMID: 37492145 PMCID: PMC10363854 DOI: 10.1111/eva.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Anthropogenic metal pollution can result in co-selection for antibiotic resistance and potentially select for increased virulence in bacterial pathogens. Metal-polluted environments can select for the increased production of siderophore molecules to detoxify non-ferrous metals. However, these same molecules also aid the uptake of ferric iron, a limiting factor for within-host pathogen growth, and are consequently a virulence factor. Anthropogenic methods to remediate environmental metal contamination commonly involve amendment with lime-containing materials. However, whether this reduces in situ co-selection for antibiotic resistance and siderophore-mediated virulence remains unknown. Here, using microcosms containing non-sterile metal-contaminated river water and sediment, we test whether liming reduces co-selection for these pathogenicity traits in the opportunistic pathogen Pseudomonas aeruginosa. To account for the effect of environmental structure, which is known to impact siderophore production, microcosms were incubated under either static or shaking conditions. Evolved P. aeruginosa populations had greater fitness in the presence of toxic concentrations of copper than the ancestral strain and showed increased resistance to the clinically relevant antibiotics apramycin, cefotaxime and trimethoprim, regardless of lime addition or environmental structure. Although we found virulence to be significantly associated with siderophore production, neither virulence nor siderophore production significantly differed between the four treatments. Furthermore, liming did not mitigate metal-imposed selection for antibiotic resistance or virulence in P. aeruginosa. Consequently, metal-contaminated environments may select for antibiotic resistance and virulence traits even when treated with lime.
Collapse
Affiliation(s)
- Luke Lear
- College of Life and Environmental ScienceUniversity of ExeterPenrynUK
| | - Elze Hesse
- College of Life and Environmental ScienceUniversity of ExeterPenrynUK
| | - Laura Newsome
- College of Engineering, Mathematics and Physical SciencesUniversity of ExeterPenrynUK
| | - William Gaze
- European Centre for Environment and Human HealthUniversity of Exeter Medical SchoolPenrynUK
| | - Angus Buckling
- College of Life and Environmental ScienceUniversity of ExeterPenrynUK
| | - Michiel Vos
- European Centre for Environment and Human HealthUniversity of Exeter Medical SchoolPenrynUK
| |
Collapse
|
36
|
Jiang L, Zhao Y, Yao Y, Lou J, Zhao Y, Hu B. Adding siderophores: A new strategy to reduce greenhouse gas emissions in composting. BIORESOURCE TECHNOLOGY 2023:129319. [PMID: 37315620 DOI: 10.1016/j.biortech.2023.129319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Microbial community is the primary driver causing the greenhouse gas emissions in composting. Thus, regulating the microbial communities is a strategy to reduce them. Here, two different siderophores (enterobactin and putrebactin) were added, which could bind and translocate iron by specific microbes, to regulate the composting communities. The results showed that adding enterobactin enriched Acinetobacter and Bacillus with specific receptors by 6.84-fold and 6.78-fold. It promoted carbohydrate degradation and amino acid metabolism. This resulted in a 1.28-fold increase in humic acid content, as well as a 14.02% and 18.27% decrease in CO2 and CH4 emissions, respectively. Meanwhile, adding putrebactin boosted the microbial diversity by 1.21-fold and enhanced potential microbial interactions by 1.76-fold. The attenuated denitrification process led to a 1.51-fold increase in the total nitrogen content and a 27.47% reduction in N2O emissions. Overall, adding siderophores is an efficient strategy to reduce greenhouse gas emissions and promote the compost quality.
Collapse
Affiliation(s)
- Liyan Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuting Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqing Yao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingxuan Lou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou310058, China.
| |
Collapse
|
37
|
Rayner B, Verderosa AD, Ferro V, Blaskovich MAT. Siderophore conjugates to combat antibiotic-resistant bacteria. RSC Med Chem 2023; 14:800-822. [PMID: 37252105 PMCID: PMC10211321 DOI: 10.1039/d2md00465h] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/21/2023] [Indexed: 10/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to society due to the increasing emergence of multi-drug resistant bacteria that are not susceptible to our last line of defence antibiotics. Exacerbating this issue is a severe gap in antibiotic development, with no new clinically relevant classes of antibiotics developed in the last two decades. The combination of the rapidly increasing emergence of resistance and scarcity of new antibiotics in the clinical pipeline means there is an urgent need for new efficacious treatment strategies. One promising solution, known as the 'Trojan horse' approach, hijacks the iron transport system of bacteria to deliver antibiotics directly into cells - effectively tricking bacteria into killing themselves. This transport system uses natively produced siderophores, which are small molecules with a high affinity for iron. By linking antibiotics to siderophores, to make siderophore antibiotic conjugates, the activity of existing antibiotics can potentially be reinvigorated. The success of this strategy was recently exemplified with the clinical release of cefiderocol, a cephalosporin-siderophore conjugate with potent antibacterial activity against carbapenem-resistant and multi-drug resistant Gram-negative bacilli. This review discusses the recent advancements in siderophore antibiotic conjugates and the challenges associated with the design of these compounds that need to be overcome to deliver more efficacious therapeutics. Potential strategies have also been suggested for new generations of siderophore-antibiotics with enhanced activity.
Collapse
Affiliation(s)
- Beth Rayner
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
| | - Anthony D Verderosa
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
| | - Vito Ferro
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland Australia
| |
Collapse
|
38
|
Underhill SAM, Pan S, Erdmann M, Cabeen MT. PtsN in Pseudomonas aeruginosa Is Phosphorylated by Redundant Upstream Proteins and Impacts Virulence-Related Genes. J Bacteriol 2023; 205:e0045322. [PMID: 37074168 PMCID: PMC10210985 DOI: 10.1128/jb.00453-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
The bacterial nitrogen-related phosphotransfer (PTSNtr; here, Nitro-PTS) system bears homology to well-known PTS systems that facilitate saccharide import and phosphorylation. The Nitro-PTS comprises an enzyme I (EI), PtsP; an intermediate phosphate carrier, PtsO; and a terminal acceptor, PtsN, which is thought to exert regulatory effects that depend on its phosphostate. For instance, biofilm formation by Pseudomonas aeruginosa can be impacted by the Nitro-PTS, as deletion of either ptsP or ptsO suppresses Pel exopolysaccharide production and additional deletion of ptsN elevates Pel production. However, the phosphorylation state of PtsN in the presence and absence of its upstream phosphotransferases has not been directly assessed, and other targets of PtsN have not been well defined in P. aeruginosa. We show that PtsN phosphorylation via PtsP requires the GAF domain of PtsP and that PtsN is phosphorylated on histidine 68, as in Pseudomonas putida. We also find that FruB, the fructose EI, can substitute for PtsP in PtsN phosphorylation but only in the absence of PtsO, implicating PtsO as a specificity factor. Unphosphorylatable PtsN had a minimal effect on biofilm formation, suggesting that it is necessary but not sufficient for the reduction of Pel in a ptsP deletion. Finally, we use transcriptomics to show that the phosphostate and the presence of PtsN do not appear to alter the transcription of biofilm-related genes but do influence genes involved in type III secretion, potassium transport, and pyoverdine biosynthesis. Thus, the Nitro-PTS influences several P. aeruginosa behaviors, including the production of its signature virulence factors. IMPORTANCE The PtsN protein impacts the physiology of a number of bacterial species, and its control over downstream targets can be altered by its phosphorylation state. Neither its upstream phosphotransferases nor its downstream targets are well understood in Pseudomonas aeruginosa. Here, we examine PtsN phosphorylation and find that the immediate upstream phosphotransferase acts as a gatekeeper, allowing phosphorylation by only one of two potential upstream proteins. We use transcriptomics to discover that PtsN regulates the expression of gene families that are implicated in virulence. One emerging pattern is a repression hierarchy by different forms of PtsN: its phosphorylated state is more repressive than its unphosphorylated state, but the expression of its targets is even higher in its complete absence.
Collapse
Affiliation(s)
- Simon A. M. Underhill
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Somalisa Pan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mary Erdmann
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew T. Cabeen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
39
|
Cui F, Fan R, Wang D, Li J, Li T. Research progress on iron uptake pathways and mechanisms of foodborne microorganisms and their application in the food sector. Crit Rev Food Sci Nutr 2023; 64:8892-8910. [PMID: 37099732 DOI: 10.1080/10408398.2023.2204491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Iron is one of the essential nutrients for almost all microorganisms. Under iron-limited conditions, bacteria can secrete siderophores to the outside world to absorb iron for survival. This process requires the coordinated action of energy-transducing proteins, transporters, and receptors. The spoilage factors of some spoilage bacteria and the pathogenic mechanism of pathogenic bacteria are also closely related to siderophores. Meanwhile, some siderophores have also gradually evolved toward beneficial aspects. First, a variety of siderophores are classified into three aspects. In addition, representative iron uptake systems of Gram-negative and Gram-positive bacteria are described in detail to understand the common and specific pathways of iron uptake by various bacteria. In particular, the causes of siderophore-induced bacterial pathogenicity and the methods and mechanisms of inhibiting bacterial iron absorption under the involvement of siderophores are presented. Then, the application of siderophores in the food sector is mainly discussed, such as improving the food quality of dairy products and meat, inhibiting the attack of pathogenic bacteria on food, improving the plant growth environment, and promoting plant growth. Finally, this review highlights the unresolved fate of siderophores in the iron uptake system and emphasizes further development of siderophore-based substitutes for traditional drugs, new antibiotic-resistance drugs, and vaccines in the food and health sectors.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Rongsen Fan
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- College of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, China
| |
Collapse
|
40
|
Chan DCK, Josts I, Koteva K, Wright GD, Tidow H, Burrows LL. Interactions of TonB-dependent transporter FoxA with siderophores and antibiotics that affect binding, uptake, and signal transduction. Proc Natl Acad Sci U S A 2023; 120:e2221253120. [PMID: 37043535 PMCID: PMC10120069 DOI: 10.1073/pnas.2221253120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2023] [Indexed: 04/13/2023] Open
Abstract
The outer membrane of gram-negative bacteria prevents many antibiotics from reaching intracellular targets. However, some antimicrobials can take advantage of iron import transporters to cross this barrier. We showed previously that the thiopeptide antibiotic thiocillin exploits the nocardamine xenosiderophore transporter, FoxA, of the opportunistic pathogen Pseudomonas aeruginosa for uptake. Here, we show that FoxA also transports the xenosiderophore bisucaberin and describe at 2.5 Å resolution the crystal structure of bisucaberin bound to FoxA. Bisucaberin is distinct from other siderophores because it forms a 3:2 rather than 1:1 siderophore-iron complex. Mutations in a single extracellular loop of FoxA differentially affected nocardamine, thiocillin, and bisucaberin binding, uptake, and signal transduction. These results show that in addition to modulating ligand binding, the extracellular loops of siderophore transporters are of fundamental importance for controlling ligand uptake and its regulatory consequences, which have implications for the development of siderophore-antibiotic conjugates to treat difficult infections.
Collapse
Affiliation(s)
- Derek C. K. Chan
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Inokentijs Josts
- The Hamburg Advanced Research Center for Bioorganic Chemistry, Hamburg22761, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg22761, Germany
| | - Kalinka Koteva
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Gerard D. Wright
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry, Hamburg22761, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg22761, Germany
| | - Lori L. Burrows
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
41
|
Stelitano G, Cocorullo M, Mori M, Villa S, Meneghetti F, Chiarelli LR. Iron Acquisition and Metabolism as a Promising Target for Antimicrobials (Bottlenecks and Opportunities): Where Do We Stand? Int J Mol Sci 2023; 24:ijms24076181. [PMID: 37047161 PMCID: PMC10094389 DOI: 10.3390/ijms24076181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections is one of the most crucial challenges currently faced by the scientific community. Developments in the fundamental understanding of their underlying mechanisms may open new perspectives in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering with their function. The mechanism of action of each drug candidate was also reviewed, together with its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able to effectively tackle the antimicrobial resistance issue.
Collapse
|
42
|
Sánchez-Jiménez A, Marcos-Torres FJ, Llamas MA. Mechanisms of iron homeostasis in Pseudomonas aeruginosa and emerging therapeutics directed to disrupt this vital process. Microb Biotechnol 2023. [PMID: 36857468 DOI: 10.1111/1751-7915.14241] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen able to infect any human tissue. One of the reasons for its high adaptability and colonization of host tissues is its capacity of maintaining iron homeostasis through a wide array of iron acquisition and removal mechanisms. Due to their ability to cause life-threatening acute and chronic infections, especially among cystic fibrosis and immunocompromised patients, and their propensity to acquire resistance to many antibiotics, the World Health Organization (WHO) has encouraged the scientific community to find new strategies to eradicate this pathogen. Several recent strategies to battle P. aeruginosa focus on targeting iron homeostasis mechanisms, turning its greatest advantage into an exploitable weak point. In this review, we discuss the different mechanisms used by P. aeruginosa to maintain iron homeostasis and the strategies being developed to fight this pathogen by blocking these mechanisms. Among others, the use of iron chelators and mimics, as well as disruption of siderophore production and uptake, have shown promising results in reducing viability and/or virulence of this pathogen. The so-called 'Trojan-horse' strategy taking advantage of the siderophore uptake systems is emerging as an efficient method to improve delivery of antibiotics into the bacterial cells. Moreover, siderophore transporters are considered promising targets for the developing of P. aeruginosa vaccines.
Collapse
Affiliation(s)
- Ana Sánchez-Jiménez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisco J Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María A Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
43
|
Pseudomonas aeruginosa FpvB Is a High-Affinity Transporter for Xenosiderophores Ferrichrome and Ferrioxamine B. mBio 2023; 14:e0314922. [PMID: 36507834 PMCID: PMC9973354 DOI: 10.1128/mbio.03149-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron is essential for many biological functions in bacteria, but its poor solubility is a limiting factor for growth. Bacteria produce siderophores, soluble natural products that bind iron with high affinity, to overcome this challenge. Siderophore-iron complexes return to the cell through specific outer membrane transporters. The opportunistic pathogen Pseudomonas aeruginosa makes multiple transporters that recognize its own siderophores, pyoverdine and pyochelin, and xenosiderophores produced by other bacteria or fungi, which gives it a competitive advantage. Some antibiotics exploit these transporters to bypass the membrane to reach their intracellular targets-including the thiopeptide antibiotic, thiostrepton (TS), which uses the pyoverdine transporters FpvA and FpvB to cross the outer membrane. Here, we assessed TS susceptibility in the presence of various siderophores and discovered that ferrichrome and ferrioxamine B antagonized TS uptake via FpvB. Unexpectedly, we found that FpvB transports ferrichrome and ferrioxamine B with higher affinity than pyoverdine. Site-directed mutagenesis of FpvB coupled with competitive growth inhibition and affinity label quenching studies suggested that the siderophores and antibiotic share a binding site in an aromatic pocket formed by the plug and barrel domains but have differences in their binding mechanism and molecular determinants for uptake. This work describes an alternative uptake pathway for ferrichrome and ferrioxamine B in P. aeruginosa and emphasizes the promiscuity of siderophore transporters, with implications for Gram-negative antibiotic development via the Trojan horse approach. IMPORTANCE Gram-negative bacteria express a variety of outer membrane transporters to import critical nutrients such as iron. Due to its insolubility, iron is taken up while bound to small-molecule chelators called siderophores. Pseudomonas aeruginosa takes up its own siderophores pyoverdine and pyochelin but can also steal siderophores produced by other bacteria and fungi, giving it a competitive advantage in iron-limited environments. Here, we used whole-cell reporter assays to show that FpvB, originally identified as a secondary transporter for pyoverdine, transports the chemically distinct fungal siderophore ferrichrome and the bacterial siderophore ferrioxamine B with high affinity. FpvB is also used by thiopeptide antibiotic thiostrepton for uptake. We predicted that all of these ligands bind to a common hydrophobic pocket in FpvB and used site-directed mutagenesis coupled with phenotypic assays to identify residues required for uptake. These analyses showed that siderophore and antibiotic uptake could be uncoupled. Our data show that FpvB is a promiscuous transporter of multiple chemically distinct ligands and fills in missing details of ferrichrome transport by P. aeruginosa. A clearer picture of the spectrum of outer membrane transporter substrate specificity is useful for the design of novel siderophore-antibiotic conjugates that can exploit nutrient uptake pathways to kill challenging Gram-negative pathogens.
Collapse
|
44
|
Klyuchnikova D, Zadionchenko E, Zvezdina I. Case of Goldman—Fox syndrome in combination with candidiasis. KLINICHESKAYA DERMATOLOGIYA I VENEROLOGIYA 2023; 22:682. [DOI: 10.17116/klinderma202322061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
45
|
Hamad AS, Edward EA, Sheta E, Aboushleib HM, Bahey-El-Din M. Iron Acquisition Proteins of Pseudomonas aeruginosa as Potential Vaccine Targets: In Silico Analysis and In Vivo Evaluation of Protective Efficacy of the Hemophore HasAp. Vaccines (Basel) 2022; 11:vaccines11010028. [PMID: 36679873 PMCID: PMC9864456 DOI: 10.3390/vaccines11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is a Gram-negative pathogen responsible for fatal nosocomial infections worldwide. Iron is essential for Gram-negative bacteria to establish an infection. Therefore, iron acquisition proteins (IAPs) of bacteria are attractive vaccine targets. METHODOLOGY A "Reverse Vaccinology" approach was employed in the current study. Expression levels of 37 IAPs in various types of PA infections were analyzed in seven previously published studies. The IAP vaccine candidate was selected based on multiple criteria, including a high level of expression, high antigenicity, solubility, and conservation among PA strains, utilizing suitable bioinformatics analysis tools. The selected IAP candidate was recombinantly expressed in Escherichia coli and purified using metal affinity chromatography. It was further evaluated in vivo for protection efficacy. The novel immune adjuvant, naloxone (NAL), was used. RESULTS AND DISCUSSION HasAp antigen met all the in silico selection criteria, being highly antigenic, soluble, and conserved. In addition, it was the most highly expressed IAP in terms of average fold change compared to control. Although HasAp did excel in the in silico evaluation, subcutaneous immunization with recombinant HasAp alone or recombinant HasAp plus NAL (HasAP-NAL) did not provide the expected protection compared to controls. Immunized mice showed a low IgG2a/IgG1 ratio, indicating a T-helper type 2 (Th2)-oriented immune response that is suboptimal for protection against PA infections. Surprisingly, the bacterial count in livers of both NAL- and HasAp-NAL-immunized mice was significantly lower than the count in the HasAp and saline groups. The same trend was observed in kidneys and lungs obtained from these groups, although the difference was not significant. Such protection could be attributed to the enhancement of innate immunity by NAL. CONCLUSIONS We provided a detailed in silico analysis of IAPs of PA followed by in vivo evaluation of the best IAP, HasAp. Despite the promising in silico results, HasAp did not provide the anticipated vaccine efficacy. HasAp should be further evaluated as a vaccine candidate through varying the immunization regimens, models of infection, and immunoadjuvants. Combination with other IAPs might also improve vaccination efficacy. We also shed light on several highly expressed promising IAPs whose efficacy as vaccine candidates is worthy of further investigation.
Collapse
Affiliation(s)
- Abdelrahman S. Hamad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria P.O. Box 25435, Egypt
| | - Eva A. Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria P.O. Box 25435, Egypt
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria P.O. Box 21131, Egypt
| | - Hamida M. Aboushleib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria P.O. Box 25435, Egypt
| | - Mohammed Bahey-El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria P.O. Box 25435, Egypt
- Correspondence:
| |
Collapse
|
46
|
Lear L, Hesse E, Buckling A, Vos M. Copper selects for siderophore-mediated virulence in Pseudomonas aeruginosa. BMC Microbiol 2022; 22:303. [PMID: 36510131 PMCID: PMC9745993 DOI: 10.1186/s12866-022-02720-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Iron is essential for almost all bacterial pathogens and consequently it is actively withheld by their hosts. However, the production of extracellular siderophores enables iron sequestration by pathogens, increasing their virulence. Another function of siderophores is extracellular detoxification of non-ferrous metals. Here, we experimentally link the detoxification and virulence roles of siderophores by testing whether the opportunistic pathogen Pseudomonas aeruginosa displays greater virulence after exposure to copper. To do this, we incubated P. aeruginosa under different environmentally relevant copper regimes for either two or twelve days. Subsequent growth in a copper-free environment removed phenotypic effects, before we quantified pyoverdine production (the primary siderophore produced by P. aeruginosa), and virulence using the Galleria mellonella infection model. RESULTS Copper selected for increased pyoverdine production, which was positively correlated with virulence. This effect increased with time, such that populations incubated with high copper for twelve days were the most virulent. Replication of the experiment with a non-pyoverdine producing strain of P. aeruginosa demonstrated that pyoverdine production was largely responsible for the change in virulence. CONCLUSIONS We here show a direct link between metal stress and bacterial virulence, highlighting another dimension of the detrimental effects of metal pollution on human health.
Collapse
Affiliation(s)
- Luke Lear
- grid.8391.30000 0004 1936 8024European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, Cornwall, TR10 9FE UK
| | - Elze Hesse
- grid.8391.30000 0004 1936 8024College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE UK
| | - Angus Buckling
- grid.8391.30000 0004 1936 8024College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE UK
| | - Michiel Vos
- grid.8391.30000 0004 1936 8024European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, Cornwall, TR10 9FE UK
| |
Collapse
|
47
|
A Review of Pseudomonas aeruginosa Metallophores: Pyoverdine, Pyochelin and Pseudopaline. BIOLOGY 2022; 11:biology11121711. [PMID: 36552220 PMCID: PMC9774294 DOI: 10.3390/biology11121711] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
P. aeruginosa is a common Gram-negative bacterium found in nature that causes severe infections in humans. As a result of its natural resistance to antibiotics and the ability of biofilm formation, the infection with this pathogen can be therapeutic challenging. During infection, P. aeruginosa produces secondary metabolites such as metallophores that play an important role in their virulence. Metallophores are metal ions chelating molecules secreted by bacteria, thus allowing them to survive in the host under metal scarce conditions. Pyoverdine, pyochelin and pseudopaline are the three metallophores secreted by P. aeruginosa. Pyoverdines are the primary siderophores that acquire iron from the surrounding medium. These molecules scavenge and transport iron to the bacterium intracellular compartment. Pyochelin is another siderophore produced by this bacterium, but in lower quantities and its affinity for iron is less than that of pyoverdine. The third metallophore, pseudopaline, is an opine narrow spectrum ion chelator that enables P. aeruginosa to uptake zinc in particular but can transport nickel and cobalt as well. This review describes all the aspects related to these three metallophore, including their main features, biosynthesis process, secretion and uptake when loaded by metals, in addition to the genetic regulation responsible for their synthesis and secretion.
Collapse
|
48
|
Stringent Starvation Protein SspA and Iron Starvation Sigma Factor PvdS Coordinately Regulate Iron Uptake and Prodiginine Biosynthesis in
Pseudoalteromonas
sp. R3. Appl Environ Microbiol 2022; 88:e0116422. [PMID: 36326244 PMCID: PMC9680616 DOI: 10.1128/aem.01164-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Both deficiency and excess of intracellular iron can be harmful, and thus, the iron homeostasis needs to be tightly regulated in organisms. At present, the ferric uptake regulator (Fur) is the best-characterized regulator involved in bacterial iron homeostasis, while other regulators of iron homeostasis remain to be further explored.
Collapse
|
49
|
Dubern JF, Romero M, Mai-Prochnow A, Messina M, Trampari E, Gijzel HNV, Chan KG, Carabelli AM, Barraud N, Lazenby J, Chen Y, Robertson S, Malone JG, Williams P, Heeb S, Cámara M. ToxR is a c-di-GMP binding protein that modulates surface-associated behaviour in Pseudomonas aeruginosa. NPJ Biofilms Microbiomes 2022; 8:64. [PMID: 35982053 PMCID: PMC9388670 DOI: 10.1038/s41522-022-00325-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa uses multiple protein regulators that work in tandem to control the production of a wide range of virulence factors and facilitate rapid adaptation to diverse environmental conditions. In this opportunistic pathogen, ToxR was known to positively regulate the production of the major virulence factor exotoxin A and now, through analysis of genetic changes between two sublines of P. aeruginosa PAO1 and functional complementation of swarming, we have identified a previously unknown role of ToxR in surface-associated motility in P. aeruginosa. Further analysis revealed that ToxR had an impact on swarming motility by regulating the Rhl quorum sensing system and subsequent production of rhamnolipid surfactants. Additionally, ToxR was found to tightly bind cyclic diguanylate (c-di-GMP) and negatively affect traits controlled by this second messenger including reducing biofilm formation and the expression of Psl and Pel exopolysaccharides, necessary for attachment and sessile communities matrix scaffolding, in P. aeruginosa. Moreover, a link between the post-transcriptional regulator RsmA and toxR expression via the alternative sigma factor PvdS, induced under iron-limiting conditions, is established. This study reveals the importance of ToxR in a sophisticated regulation of free-living and biofilm-associated lifestyles, appropriate for establishing acute or chronic P. aeruginosa infections.
Collapse
Affiliation(s)
- Jean-Frédéric Dubern
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Manuel Romero
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Anne Mai-Prochnow
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Marco Messina
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Science, University Roma Tre, Rome, Italy
| | - Eleftheria Trampari
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Hardeep Naghra-van Gijzel
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Genomic Sciences, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Kok-Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Alessandro M Carabelli
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nicolas Barraud
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
- Genetics of Biofilms Unit, Institut Pasteur, Paris, France
| | - James Lazenby
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ye Chen
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Q Squared Solutions, Crystal Plaza, Pudong, Shanghai, China
| | - Shaun Robertson
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
50
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|