1
|
Ireland RA, Tse BCY, Ashhurst AS, Don AS, Byrne SN. Narrowband UVB and Solar-Simulated UV Suppress Systemic Immune Responses through Different Mechanisms. J Invest Dermatol 2025:S0022-202X(25)00087-9. [PMID: 39909112 DOI: 10.1016/j.jid.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 02/07/2025]
Abstract
UV-induced immune suppression contributes to skin carcinogenesis and may also explain how sunlight protects against nonskin autoimmune diseases, particularly multiple sclerosis. Narrowband UVB (NBUVB) phototherapy is an effective treatment for some skin diseases; however, its mechanism of action and its potential for treating diseases away from the skin are not well-understood. Solar-simulated UV modulates immune cells, in part, by altering lipids. However, whether NBUVB has the same effect on these cells and molecules is unknown. Exposure of mice to an immunosuppressive dose of NBUVB did not affect plasma lipid levels, which were altered after solar-simulated UV irradiation. Surprisingly, unlike what occurs after solar-simulated UV irradiation, dermal mast cells and lymphocyte recirculation were unaffected by NBUVB. NBUVB-irradiated skin showed a reduced number of epidermal CD207+ cells and cutaneous CD3+ T cells, and was infiltrated by Ly6G+ neutrophils. There was also an increase in the number of CD4+FoxP3+ T cells in the skin-draining lymph nodes and suppression of antigen-specific CD8+ T-cell activity in vivo. Thus, immunosuppressive NBUVB activates some but not all the pathways responsible for the immunosuppressive effects of solar-simulated UV. Understanding the wavelength-dependent effects of UVR on the immune system is essential to harness its immunomodulatory capacity to treat a wide range of diseases.
Collapse
Affiliation(s)
- Rachael A Ireland
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Benita C Y Tse
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Anneliese S Ashhurst
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Anthony S Don
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
2
|
Uçar N, Holick MF. Illuminating the Connection: Cutaneous Vitamin D 3 Synthesis and Its Role in Skin Cancer Prevention. Nutrients 2025; 17:386. [PMID: 39940244 PMCID: PMC11821240 DOI: 10.3390/nu17030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Sunlight exposure plays an important role in human health, impacting processes such as mood, blood pressure regulation, and vitamin D3 production. Solar ultraviolet B radiation initiates vitamin D3 synthesis in the skin, which is subsequently metabolized into its biologically active form. UVB exposure plays a key role in enabling vitamin D3 synthesis, but it can also contribute to skin carcinogenesis, creating a complex interplay between its beneficial and harmful effects. Vitamin D deficiency, affecting over half the global population, is linked to a range of chronic diseases, including cancers, cardiovascular conditions, and autoimmune disorders. Simultaneously, excessive solar UVB exposure increases the risk of non-melanoma and melanoma skin cancers through mechanisms involving DNA damage and oxidative stress. This review examines the dual role of UVB radiation in health and disease, focusing on the mechanisms of cutaneous vitamin D3 synthesis, the epidemiology of skin cancer, and the protective roles of vitamin D3's photoproducts and its active metabolite, 1,25-dihydroxyvitamin D3. Understanding these interconnections is critical for developing strategies that balance adequate sun-induced vitamin D3 production with skin cancer prevention.
Collapse
Affiliation(s)
- Nazlı Uçar
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Area of Preventive Medicine and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology, and Legal Medicine, School of Pharmacy, University de Valencia, 46100 Burjassot, Spain
| | - Michael F. Holick
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
3
|
Attal ZG, Shalata W, Soklakova A, Tourkey L, Shalata S, Abu Saleh O, Abu Salamah F, Alatawneh I, Yakobson A. Advanced and Metastatic Non-Melanoma Skin Cancer: Epidemiology, Risk Factors, Clinical Features, and Treatment Options. Biomedicines 2024; 12:1448. [PMID: 39062023 PMCID: PMC11274597 DOI: 10.3390/biomedicines12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Non-melanoma skin cancers (NMSC) form the majority of skin cancers, with basal cell carcinoma (BCC) being the most common and cutaneous squamous cell carcinoma (cSCC) being second. Prolonged ultraviolet (UV) exposure, aging, male gender, and immunosuppression represent most of the causes of this category of diseases. BCCs and cSCCs both include different types of skin cancers, such as nodular or morpheaform BCC or flat cSCC. Locally advanced and metastatic NMSCs cannot be treated surgically; thus, systemic therapy (TKI and Immunotherapy) is needed. Interestingly, NMSCs are frequently linked to abnormal Hedgehog (HH) signaling which most systemic immunotherapies for these cancers are based upon. Of note, the first line therapies of BCC, sonidegib and vismodegib, are HH inhibitors. Programmed death receptor 1 antibody (PD-1) inhibitors such as cemiplimab, pembrolizumab, and nivolumab have been approved for the treatment of cSCC. Thus, this paper reviews the epidemiology, risk factors, clinical features, and treatment options for both BCC and cSCC.
Collapse
Affiliation(s)
- Zoe Gabrielle Attal
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Walid Shalata
- The Legacy Heritage Center, Dr Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel
| | - Arina Soklakova
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Lena Tourkey
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Fahed Abu Salamah
- Department of Dermatology, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Ibrahim Alatawneh
- Department of Dermatology, Soroka Medical Center and Ben Gurion University, Beer Sheva 84105, Israel
| | - Alexander Yakobson
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
4
|
Wu J, Olsson T, Alfredsson L, Hedström AK. Association between sun exposure habits and disease progression in multiple sclerosis. Eur J Neurol 2024; 31:e16269. [PMID: 38440929 PMCID: PMC11235876 DOI: 10.1111/ene.16269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/16/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND AND PURPOSE Higher latitude has been associated with increased occurrence of multiple sclerosis (MS) and with more severe disease. The aim was to study the impact of sun exposure habits on MS disease progression and health-related quality of life. METHODS Patients from a population-based case-control study were categorized based on sun exposure habits at diagnosis and were followed up to 15 years post-diagnosis through the Swedish MS registry (n = 3314) with regard to changes in Expanded Disability Status Scale (EDSS). Linear mixed models were used to analyse long-term changes, while Cox regression models, with 95% confidence intervals, were used to investigate outcomes, including 24-week confirmed diasability worsening, EDSS3, EDSS4, and physical worsening as measured by the physical component of the Multiple Sclerosis Impact Scale 29. RESULTS Compared to average sun exposure (median value), low exposure to sunlight was associated with faster EDSS progression, increased risk of confirmed disability worsening (hazard ratio [HR] 1.48, 95% CI 1.21-1.81), increased risk of reaching EDSS 3 (HR 1.35, 95% CI 1.02-1.79), EDSS 4 (HR 1.47, 95% CI 1.01-2.20) and self-reported physical worsening (HR 1.27, 95% CI 1.00-1.62). Significant trends revealed a lower risk of unfavourable outcomes with increasing sun exposure. CONCLUSIONS Very low levels of sun exposure are associated with worse disease progression and health-related quality of life in patients with MS.
Collapse
Affiliation(s)
- Jing Wu
- Department of Neurobiology, Care Sciences and Society, Aging Research CenterKarolinska Institutet and Stockholm UniversityStockholmSweden
| | - Tomas Olsson
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Lars Alfredsson
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Institute of Environmental Medicine, Karolinska InstitutetStockholmSweden
- Centre for Occupational and Environmental Medicine, Region StockholmStockholmSweden
| | | |
Collapse
|
5
|
Hedström AK. Risk factors for multiple sclerosis in the context of Epstein-Barr virus infection. Front Immunol 2023; 14:1212676. [PMID: 37554326 PMCID: PMC10406387 DOI: 10.3389/fimmu.2023.1212676] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Compelling evidence indicates that Epstein Barr virus (EBV) infection is a prerequisite for multiple sclerosis (MS). The disease may arise from a complex interplay between latent EBV infection, genetic predisposition, and various environmental and lifestyle factors that negatively affect immune control of the infection. Evidence of gene-environment interactions and epigenetic modifications triggered by environmental factors in genetically susceptible individuals supports this view. This review gives a short introduction to EBV and host immunity and discusses evidence indicating EBV as a prerequisite for MS. The role of genetic and environmental risk factors, and their interactions, in MS pathogenesis is reviewed and put in the context of EBV infection. Finally, possible preventive measures are discussed based on the findings presented.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Trends in the environmental risks associated with earlier onset in multiple sclerosis. Mult Scler Relat Disord 2022; 68:104250. [PMID: 36544313 DOI: 10.1016/j.msard.2022.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Several environmental and lifestyle factors relating to sunlight/vitamin D, body mass index (BMI), and smoking are associated with the risk of developing multiple sclerosis (MS). However, their relation to disease progression, particularly age at symptomatic onset, remains inconsistent, which may be the result of significant changes in human-environment interactions over the last century. This study investigates historical trends in the association between common MS environmental risk factors and age at disease onset. METHODS Using a narrative approach, we evaluated the current literature for published studies assessing the association between vitamin-D, BMI, and tobacco smoking exposures with the risk of early/pediatric-onset MS and direct correlations with age at MS onset using MEDLINE, EMBASE, and Web of Science. Measures were plotted by the average calendar year of disease onset for each cohort to examine trends over time. In total, 25, 9, and 11 articles were identified for vitamin D, BMI, and smoking-related exposures, respectively. RESULTS Higher sun exposure habits and residential solar radiation were associated with older age at onset. On the contrary, two studies observed a negative correlation between age at onset and serum 25-hydroxyvitamin D (25(OH)D) levels. Higher adolescent BMI was generally associated with younger age at onset, although genetic susceptibility for childhood obesity was not significantly associated. Tobacco smoking was associated with later disease onset, despite being a risk factor for MS. Association with age at onset was inflated for more recent studies relating to smoking, while often weaker for serum vitamin D and BMI. CONCLUSION Current findings indicate a likely association between age at onset and environmental risk factors, such as sun exposure, adolescent BMI, and tobacco smoking, in certain populations. However, findings are often inconsistent and assessment of the relationships and potential changes over time require further investigation.
Collapse
|
7
|
Vitkova M, Diouf I, Malpas C, Horakova D, Havrdova EK, Patti F, Ozakbas S, Izquierdo G, Eichau S, Shaygannejad V, Onofrj M, Lugaresi A, Alroughani R, Prat A, Larochelle C, Girard M, Duquette P, Terzi M, Boz C, Grand'Maison F, Sola P, Ferraro D, Grammond P, Butzkueven H, Buzzard K, Skibina O, Yamout BI, Karabudak R, Gerlach O, Lechner-Scott J, Maimone D, Bergamaschi R, Van Pesch V, Iuliano G, Cartechini E, Josà Sã M, Ampapa R, Barnett M, Hughes SE, Ramo-Tello CM, Hodgkinson S, Spitaleri DLA, Petersen T, Butler EG, Slee M, McGuigan C, McCombe PA, Granella F, Cristiano E, Prevost J, Taylor BV, Sã Nchez-Menoyo JL, Laureys G, Van Hijfte L, Vucic S, Macdonell RA, Gray O, Olascoaga J, Deri N, Fragoso YD, Shaw C, Kalincik T. Association of Latitude and Exposure to Ultraviolet B Radiation With Severity of Multiple Sclerosis: An International Registry Study. Neurology 2022; 98:e2401-e2412. [PMID: 35410900 DOI: 10.1212/wnl.0000000000200545] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The severity of multiple sclerosis (MS) varies widely among individuals. Understanding the determinants of this heterogeneity will help clinicians optimize the management of MS. The aim of this study was to investigate the association between latitude of residence, ultraviolet B radiation exposure (UVB) and the severity of MS. METHODS This observational study used the MSBase registry data. The included patients met the 2005 or 2010 McDonald diagnostic criteria for MS and had a minimum dataset recorded in the registry (date of birth, sex, clinic location, date of MS symptom onset, disease phenotype at baseline and censoring, and ≥1 EDSS [Expanded Disability Status Scale] score recorded). The latitude of each study center and cumulative annualized UVB dose at study center (calculated from NASA's Total Ozone Mapping Spectrometer) at ages 6 and 18 and the year of disability assessment were calculated. Disease severity was quantified with MS Severity Score (MSSS). Quadratic regression was used to model the associations between latitude, UVB and MSSS. RESULTS 46,128 patients contributing 453,208 visits and a cumulative follow-up of 351,196 patient-years (70% women, mean age 39.2±12, resident between latitudes 19°35´ and 56°16´) were included in this study. Latitude showed a non-linear association with MS severity. In latitudes greater than 40°, more severe disease was associated with higher latitudes (β=0.08, 95%CI: 0.04 to 0.12). For example, this translates into a mean difference of 1.3 points of MSSS between patients living in Madrid and Copenhagen. No such association was observed in latitudes <40° (β=-0.02, 95% CI:-0.06 to 0.03). The overall disability accrual was faster in those with a lower level of estimated UVB exposure before the age of 6 (β=- 0.5, 95% CI: -0.6 to 0.4) and 18 years (β=- 0.6, 95%CI:-0.7 to 0.4), as well as with lower life-time UVB exposure at the time of disability assessment (β=-1.0, 95%CI:-1.1 to 0.9). DISCUSSION In temperate zones, MS severity is associated with latitude. This association is mainly, but not exclusively, driven by UVB exposure contributing to both MS susceptibility and severity.
Collapse
Affiliation(s)
- Marianna Vitkova
- CORe, Department of Medicine, University of Melbourne, Melbourne, Australia.,Melbourne MS Centre, Department of Neurology, Faculty of Medicine, P.J. Safarik University, Kosice, Slovakia
| | - Ibrahima Diouf
- CORe, Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Charles Malpas
- CORe, Department of Medicine, University of Melbourne, Melbourne, Australia.,Melbourne MS Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia.,Multiple Sclerosis Center, University of Catania, Italy
| | | | | | - Sara Eichau
- Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center (INRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio, Chieti, Italy
| | - Alessandra Lugaresi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Universita di Bologna, Bologna, Italy
| | - Raed Alroughani
- Division of Neurology, Department of Medicine, Amiri Hospital, Sharq, Kuwait
| | - Alexandre Prat
- CHUM MS Center and Universite de Montreal, Montreal, Canada
| | | | - Marc Girard
- CHUM MS Center and Universite de Montreal, Montreal, Canada
| | | | - Murat Terzi
- Medical Faculty, 19 Mayis University, Samsun, Turkey
| | - Cavit Boz
- KTU Medical Faculty Farabi Hospital, Trabzon, Turkey
| | | | - Patrizia Sola
- Azienda Ospedaliera Universitaria di Modena, OB, Italy
| | - Diana Ferraro
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Helmut Butzkueven
- Central Clinical School, Monash University, Melbourne, Australia.,Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Katherine Buzzard
- Department of Neurology, Box Hill Hospital, Eastern Health, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Olga Skibina
- Department of Neurology, The Alfred Hospital, Melbourne, Australia.,Department of Neurology, Box Hill Hospital, Eastern Health, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Bassem I Yamout
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Oliver Gerlach
- Zuyderland Medical Centre, Department of Neurologie. Dr. H. van der Hoffplein 1, 6162 BG, Sittard-Geleen, the Netherlands
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University Newcastle, Newcastle, Australia.,Department of Neurology, John Hunter Hospital, Hunter New England Health, Newcastle, Australia
| | - Davide Maimone
- MS Center, Neurology Unit, Garibaldi Hospital, Catania, Italy
| | | | - Vincent Van Pesch
- Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Université catholique de Louvain, Belgium
| | | | | | - Maria Josà Sã
- Hospital de Sao Joao, Universidade Fernando Pessoa, Porto, Portugal
| | | | | | | | | | - Suzanne Hodgkinson
- Liverpool Hospital, Sydney, Australia.,Liverpool Hospital and Ingham Institute, Liverpool
| | - Daniele L A Spitaleri
- Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino, Avellino, Italy
| | | | | | - Mark Slee
- Flinders University, Adelaide, Australia
| | - Chris McGuigan
- University College Dublin & St Vincent's University Hospital, Dublin, Ireland
| | - Pamela Ann McCombe
- University of Queensland, Brisbane, Australia.,Royal Brisbane and Women's Hospital
| | - Franco Granella
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Department of Emergency and General Medicine, Parma University Hospital, Parma, Italy
| | | | | | | | | | - Guy Laureys
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10,Ghent, Belgium
| | | | | | | | - Orla Gray
- South East Trust, Belfast, United Kingdom
| | - Javier Olascoaga
- Instituto de Investigación Sanitaria Biodonostia, Hospital Universitario Donostia, San Sebastián, Spain
| | - Norma Deri
- Hospital Fernandez, Capital Federal, Argentina
| | | | | | - Tomas Kalincik
- CORe, Department of Medicine, University of Melbourne, Melbourne, Australia.,Melbourne MS Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia
| | | |
Collapse
|
8
|
Makkawi S, Aljabri A, Bin Lajdam G, Albakistani A, Aljohani A, Labban S, Felemban R. Effect of Seasonal Variation on Relapse Rate in Patients With Relapsing-Remitting Multiple Sclerosis in Saudi Arabia. Front Neurol 2022; 13:862120. [PMID: 35359633 PMCID: PMC8964008 DOI: 10.3389/fneur.2022.862120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is becoming a global subject of study in which some demographic variations are thought to be correlated with its activity. Relapsing-remitting multiple sclerosis (RRMS) is the most common demyelinating disorder, characterized by periods of exacerbating attacks, followed by partial or complete remission. Several factors might play a role in disease progression and relapse frequency, such as vitamin D, ultraviolet B radiation, estrogen levels, smoking, obesity, and unhealthy lifestyles. In this study, we identified the relationship between seasonal variation and relapse rate and correlated the latter with sex, age, and vitamin D levels in patients with RRMS in Jeddah, Saudi Arabia. We retrospectively collected data from 182 RRMS patients between 2016 and 2021. A total of 219 relapses were documented in 106 patients (58.2 %). The relapse per patient ratio showed a sinusoidal pattern, peaking in January at a rate of 0.49 and troughed in June at a rate of 0.18. There was no difference in relapse rates between men and women (p =0.280). There was a significant negative correlation between vitamin D levels and relapse rate (r = −0.312, p =0.024). Therefore, the relapse rate was higher during the winter and was correlated with low vitamin D levels. However, relapses are likely multifactorial, and more population-based studies are needed to understand the role of environmental variables in MS exacerbation. A better understanding of this relationship will allow for improved treatment and possibly better prevention of relapse.
Collapse
Affiliation(s)
- Seraj Makkawi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.,Department of Medicine, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Ammar Aljabri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Ghassan Bin Lajdam
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Ammar Albakistani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman Aljohani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Suhail Labban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Razaz Felemban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Hardy D, Chitnis T, Waubant E, Banwell B. Preventing Multiple Sclerosis: The Pediatric Perspective. Front Neurol 2022; 13:802380. [PMID: 35280298 PMCID: PMC8913516 DOI: 10.3389/fneur.2022.802380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pediatric-onset multiple sclerosis (MS) is a predominantly relapsing-remitting neuroinflammatory disorder characterized by frequent relapses and high magnetic resonance imaging (MRI) lesion burden early in the disease course. Current treatment for pediatric MS relies on early initiation of disease-modifying therapies designed to prevent relapses and slow progression of disability. When considering the concept of MS prevention, one can conceptualize primary prevention (population- or at-risk population interventions that prevent the earliest facet of MS pathobiology and hence reduce disease incidence), or secondary prevention (prevention of disease consequence, such as reducing relapse frequency and lesion accrual, enhancing focal lesion repair, promoting CNS resilience against the more global facets of disease injury, and ultimately, preventing progression of neurological disability). Studying the pediatric MS population provides a unique opportunity to explore early-life exposures that contribute to the development of MS including perinatal and environmental risk determinants. Research is ongoing related to targeting these risk factors for potential MS primary prevention. Here we review these key risk factors, their proposed role in the pathogenesis of MS, and their potential implications for primary MS prevention.
Collapse
Affiliation(s)
- Duriel Hardy
- Dell Children's Medical Center of Central Texas, Austin, TX, United States
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- *Correspondence: Duriel Hardy
| | - Tanuja Chitnis
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Emmanuelle Waubant
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- San Francisco Multiple Sclerosis Center, University of California, San Francisco, San Francisco, CA, United States
| | - Brenda Banwell
- Center for Neuroinflammation and Neurotherapeutics, and Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Child Neurology, Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Tse BCY, Ireland RA, Lee JY, Marsh-Wakefield F, Kok LF, Don AS, Byrne SN. Exposure to Systemic Immunosuppressive Ultraviolet Radiation Alters T Cell Recirculation through Sphingosine-1-Phosphate. THE JOURNAL OF IMMUNOLOGY 2021; 207:2278-2287. [PMID: 34561229 DOI: 10.4049/jimmunol.2001261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/25/2021] [Indexed: 11/19/2022]
Abstract
Systemic suppression of adaptive immune responses is a major way in which UV radiation contributes to skin cancer development. Immune suppression is also likely to explain how UV protects from some autoimmune diseases, such as multiple sclerosis. However, the mechanisms underlying UV-mediated systemic immune suppression are not well understood. Exposure of C57BL/6 mice to doses of UV known to suppress systemic autoimmunity led to the accumulation of cells within the skin-draining lymph nodes and away from non-skin-draining lymph nodes. Transfer of CD45.1+ cells from nonirradiated donors into CD45.2+ UV-irradiated recipients resulted in preferential accumulation of donor naive T cells and a decrease in activated T cells within skin-draining lymph nodes. A single dose of immune-suppressive UV was all that was required to cause a redistribution of naive and central memory T cells from peripheral blood to the skin-draining lymph nodes. Specifically, CD69-independent increases in sphingosine-1-phosphate (S1P) receptor 1-negative naive and central memory T cells occurred in these lymph nodes. Mass spectrometry analysis showed UV-mediated activation of sphingosine kinase 1 activity, resulting in an increase in S1P levels within the lymph nodes. Topical application of a sphingosine kinase inhibitor on the skin prior to UV irradiation eliminated the UV-induced increase in lymph node S1P and T cell numbers. Thus, exposure to immunosuppressive UV disrupts T cell recirculation by manipulating the S1P pathway.
Collapse
Affiliation(s)
- Benita C Y Tse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rachael A Ireland
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, New South Wales, Australia; and
| | - Jun Yup Lee
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Felix Marsh-Wakefield
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Lai Fong Kok
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony S Don
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; .,Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, New South Wales, Australia; and
| |
Collapse
|
11
|
Mehanna S, Mansour N, Daher CF, Elias MG, Dagher C, Khnayzer RS. Drug-free phototherapy of superficial tumors: White light at the end of the tunnel. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112324. [PMID: 34619435 DOI: 10.1016/j.jphotobiol.2021.112324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Visible light has long been recognized as a treatment for many diseases and an essential component of photo-induced chemotherapy. While previous data proved its inherent cytotoxicity, this study is the first to explore the use of a commercially available, high-intensity white LED light (24.5 mW.cm-2) as a treatment for skin tumors. After a 9-h exposure in vitro, the viability of Human Malignant Melanoma cells (A375) decreased by around 70%. Western blot analysis suggested an apoptotic cell death confirmed by the upregulation of Bax, cleaved PARP/caspase-3/8, cytochrome c, and t-bid. Additionally, cellular ROS accumulation and DNA damage were induced upon irradiation with blue light. When tested on a DMBA/TPA skin carcinogenesis model, a 90-min exposure to white light thrice weekly resulted in a significant decrease in tumor volumes/incidence compared to control and cisplatin groups, and restored normal morphological features, as confirmed by histopathology. Toxicological evaluation of ight-treated animals indicated a 100% survival rate, no skin irritation, no signs of discomfort or changes in body weight/behavior, and no toxicities to vital organs. Although these results must be confirmed by further studies, this research showed that short-exposure by commercially available high-intensity white LED light irradiation may be a promising approach for the treatment of superficial malignancies.
Collapse
Affiliation(s)
- Stephanie Mehanna
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Najwa Mansour
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Costantine F Daher
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Maria George Elias
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Carole Dagher
- School of Medicine, Lebanese American University, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon.
| |
Collapse
|
12
|
Stridh P, Huang J, Hedström AK, Alfredsson L, Olsson T, Hillert J, Manouchehrinia A, Kockum I. Season of birth is associated with multiple sclerosis and disease severity. Mult Scler J Exp Transl Clin 2021; 7:20552173211065730. [PMID: 35035988 PMCID: PMC8753082 DOI: 10.1177/20552173211065730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The latitude gradient in multiple sclerosis incidence indicates that low sun exposure and therefore vitamin D deficiency is associated with multiple sclerosis risk. OBJECTIVE Investigation of the effect of month of birth, which influences postnatal vitamin D levels, on multiple sclerosis risk and severity in Sweden. METHODS Patients and population-based controls were included from three nationwide cohorts. Differences in month of birth between cases and controls were analyzed using logistic regression and examined for effect modification by calendar year and geographic region at birth. RESULTS Males had a reduced risk of multiple sclerosis if born in the winter and increased risk if born in the early fall. Individuals born before 1960 had an increased risk if born in summer or fall. Being born in late summer and early fall was associated with more severe disease. CONCLUSIONS We identified a birth cohort effect on the association between the month of birth and multiple sclerosis, with a more significant effects for births before 1960. This coincides with a period of lower breastfeeding rates, recommended intake of vitamin D, and sun exposure, resulting in a lower vitamin D exposure during the fall/winter season for infants born in the summer.
Collapse
Affiliation(s)
- P Stridh
- Pernilla Stridh, Centrum for
Molecular Medicine, Karolinska University Hospital, Solna, L8:05, SE-171 76
Stockholm, Sweden
| | - J Huang
- Center of Molecular Medicine, Karolinska University
Hospital, Solna, Sweden
- Department of Clinical Neuroscience, Karolinska
Institutet, Stockholm, Sweden
| | | | - L Alfredsson
- Department of Clinical Neuroscience, Karolinska
Institutet, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska
Institutet, Stockholm, Sweden
| | | | | | | | - I Kockum
- Center of Molecular Medicine, Karolinska University
Hospital, Solna, Sweden
- Department of Clinical Neuroscience, Karolinska
Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Erem AS, Razzaque MS. Vitamin D-independent benefits of safe sunlight exposure. J Steroid Biochem Mol Biol 2021; 213:105957. [PMID: 34329737 DOI: 10.1016/j.jsbmb.2021.105957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 01/10/2023]
Abstract
This review examines the beneficial effects of ultraviolet radiation on systemic autoimmune diseases, including multiple sclerosis and type I diabetes, where the epidemiological evidence for the vitamin D-independent effects of sunlight is most apparent. Ultraviolet radiation, in addition to its role in the synthesis of vitamin D, stimulates anti-inflammatory pathways, alters the composition of dendritic cells, T cells, and T regulatory cells, and induces nitric oxide synthase and heme oxygenase metabolic pathways, which may directly or indirectly mitigate disease progression and susceptibility. Recent work has also explored how the immune-modulating functions of ultraviolet radiation affect type II diabetes, cancer, and the current global pandemic caused by SARS-CoV-2. These diseases are particularly important amidst global changes in lifestyle that result in unhealthy eating, increased sedentary habits, and alcohol and tobacco consumption. Compelling epidemiological data shows increased ultraviolet radiation associated with reduced rates of certain cancers, such as colorectal cancer, breast cancer, non-Hodgkins lymphoma, and ultraviolet radiation exposure correlated with susceptibility and mortality rates of COVID-19. Therefore, understanding the effects of ultraviolet radiation on both vitamin D-dependent and -independent pathways is necessary to understand how they influence the course of many human diseases.
Collapse
Affiliation(s)
- Anna S Erem
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA.
| |
Collapse
|
14
|
Hedström AK, Huang J, Brenner N, Butt J, Kockum I, Waterboer T, Olsson T, Alfredsson L. Low sun exposure acts synergistically with high Epstein-Barr nuclear antigen 1 (EBNA-1) antibody levels in multiple sclerosis etiology. Eur J Neurol 2021; 28:4146-4152. [PMID: 34435414 DOI: 10.1111/ene.15082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Among multiple sclerosis (MS) patients, an association has been observed between low levels of vitamin D and high Epstein-Barr nuclear antigen 1 (EBNA-1) antibody levels. However, whether sun exposure/vitamin D moderates the role of Epstein-Barr virus (EBV) infection in MS etiology is unclear. We aimed to investigate potential synergistic effects between low sun exposure and elevated EBNA-1 antibody levels regarding MS risk. METHODS We used a population-based case-control study involving 2017 incident cases of MS and 2443 matched controls. We used logistic regression models to calculate the odds ratios of MS with 95% confidence intervals (CIs) in subjects with different sun exposure habits and EBNA-1 status. Potential interaction on the additive scale was evaluated by calculating the attributable proportion due to interaction (AP). RESULTS Low sun exposure acted synergistically with high EBNA-1 antibody levels (AP 0.2, 95% CI 0.03-0.3) in its association to increased MS risk. The interaction was present regardless of HLA-DRB1*15:01 status. CONCLUSIONS Low sun exposure may either directly, or indirectly by affecting vitamin D levels, synergistically reinforce pathogenic mechanisms, such as aspects of the adaptive immune response, related to MS risk conveyed by EBV infection.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Huang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Brenner
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Butt
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tim Waterboer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
15
|
Boltjes R, Knippenberg S, Gerlach O, Hupperts R, Damoiseaux J. Vitamin D supplementation in multiple sclerosis: an expert opinion based on the review of current evidence. Expert Rev Neurother 2021; 21:715-725. [PMID: 34058936 DOI: 10.1080/14737175.2021.1935878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Vitamin D has long been known for its immune-modulating effects, next to its function in calcium metabolism. As a consequence, poor vitamin D status has been associated with many diseases including multiple sclerosis (MS). Epidemiological studies suggest an association between a poor vitamin D status and development of MS and a poor vitamin D status is associated with more relapses and faster progression after patients are diagnosed with MS. AREA’S COVERED The aim of the authors was to review the role of vitamin D supplementation in the treatment of MS. Pubmed was used to review literature with a focus of vitamin D supplementation trials and meta-analyses in MS. EXPERT OPINION There is no solid evidence to support the application of vitamin D therapy, based on current available supplementation trials, although there are some promising results in the clinically isolated syndrome (CIS) patients and young MS patients early after initial diagnosis. The authors recommend further larger clinical trials with selected patient groups, preferable CIS patients and young patients at the time of diagnosis, using vitamin D3 supplements to reach a 100 nmol/l level, to further investigate the effects of vitamin D supplementation in MS.
Collapse
Affiliation(s)
- Robin Boltjes
- Academic MS Center Limburg, Department of Neurology, Zuyderland Medical Center, Sittard, The Netherlands
| | - Stephanie Knippenberg
- Academic MS Center Limburg, Department of Neurology, Zuyderland Medical Center, Sittard, The Netherlands
| | - Oliver Gerlach
- Academic MS Center Limburg, Department of Neurology, Zuyderland Medical Center, Sittard, The Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Raymond Hupperts
- Academic MS Center Limburg, Department of Neurology, Zuyderland Medical Center, Sittard, The Netherlands
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan Damoiseaux
- School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
16
|
Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity. Proc Natl Acad Sci U S A 2021; 118:2018457118. [PMID: 33376202 PMCID: PMC7817192 DOI: 10.1073/pnas.2018457118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) disease risk is associated with reduced sun-exposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (n NationMS = 946, n BIONAT = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-β-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS.
Collapse
|
17
|
Miclea A, Bagnoud M, Chan A, Hoepner R. A Brief Review of the Effects of Vitamin D on Multiple Sclerosis. Front Immunol 2020; 11:781. [PMID: 32435244 PMCID: PMC7218089 DOI: 10.3389/fimmu.2020.00781] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is characterized as an autoimmune disease affecting the central nervous system. It is one of the most common neurological disorders in young adults. Over the past decades, increasing evidence suggested that hypovitaminosis D is a contributing factor to the risk of developing MS. From different risk factors contributing to the development of MS, vitamin D status is of particular interest since it is not only a modifiable risk factor but is also associated with MS disease activity. MS patients with lower serum vitamin D concentrations were shown to have higher disease activity. However, this finding does not demonstrate causality. In this regard, prospective vitamin D supplementation studies missed statistical significance in its primary endpoints but showed promising results in secondary outcome measures or post hoc analyses. An explanation for missed primary endpoints may be underpowered trials. Besides vitamin D supplementation as a potential add-on to long-term immunotherapeutic treatment, a recent laboratory study of our group pointed toward a beneficial effect of vitamin D to improve the efficacy of glucocorticoids in relapse therapy. In the following article, we will briefly review the effects of vitamin D on MS by outlining its effects on the immune and nervous system and by reviewing the association between vitamin D and MS risk as well as MS disease activity. We will also review the effects of vitamin D supplementation on MS risk and MS disease activity.
Collapse
Affiliation(s)
- Andrei Miclea
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Maud Bagnoud
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Andrew Chan
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Magalhaes S, Pugliatti M, Riise T, Myhr KM, Ciampi A, Bjornevik K, Wolfson C. Shedding light on the link between early life sun exposure and risk of multiple sclerosis: results from the EnvIMS Study. Int J Epidemiol 2020; 48:1073-1082. [PMID: 30561654 DOI: 10.1093/ije/dyy269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lower levels of sun exposure in childhood have been suggested to be associated with increased risk of multiple sclerosis (MS). In this paper we extend previous work, using two novel analytical strategies. METHODS Data collected in the Environmental risk factors In MS (EnvIMS) study, a case-control study with MS cases and population-based controls from Canada, Italy and Norway, were used. Participants reported on sun exposure behaviours for 5-year age intervals from birth; we focused on the first three age intervals (≤15 years). We compared two life course epidemiology conceptual models, the critical period and the accumulation model. We also used latent class analysis to estimate MS risk for different latent sun exposure behaviour groups. RESULTS The analyses included 2251 cases and 4028 controls. The accumulation model was found to be the best model, which demonstrated a nearly 50% increased risk of MS comparing lowest reported summer sun exposure with highest [risk ratio (RR) = 1.47 (1.24, 1.74)]. The latent sun exposure behaviour group, characterized by low sun exposure during summer and winter and high sun protection use, had the highest risk of MS; a 76% increased risk as compared with the group with high sun exposure and low sun protection use [RR = 1.76 (1.27, 2.46)]. CONCLUSIONS Our analyses provide novel insights into the link between sun exposure and MS. We demonstrate that more time indoors during childhood and early adolescence is linked with MS risk, and that sun protection behaviours in those who spend most time indoors may play a key role in increasing risk.
Collapse
Affiliation(s)
- Sandra Magalhaes
- Neuroepidemiology Research Unit, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.,Department of Sociology, University of New Brunswick, Fredericton, NB, Canada
| | - Maura Pugliatti
- Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Biomedical and Surgical Sciences, Unit of Clinical Neurology, University of Ferrara, Ferrara, Italy
| | - Trond Riise
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,National Multiple Sclerosis Competence Centre, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- National Multiple Sclerosis Competence Centre, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Antonio Ciampi
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Kjetil Bjornevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christina Wolfson
- Neuroepidemiology Research Unit, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Low sun exposure increases multiple sclerosis risk both directly and indirectly. J Neurol 2019; 267:1045-1052. [PMID: 31844981 PMCID: PMC7109160 DOI: 10.1007/s00415-019-09677-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/11/2023]
Abstract
Objective We aimed to study (1) to what extent the influence of low sun exposure on multiple sclerosis (MS) risk is mediated by low vitamin D levels; (2) whether low sun exposure or vitamin D deficiency act synergistically with HLA-DRB1*15:01 and absence of HLA-A*02:01. Methods We used two population-based case–control studies (7069 cases, 6632 matched controls). Subjects with different HLA alleles, sun exposure habits and vitamin D status were compared regarding MS risk, by calculating odds ratios (OR) with 95% confidence intervals (CI) employing logistic regression. Mediation analysis was used to identify the potential mediation effect of vitamin D on the relationship between low sun exposure and MS risk. Results Low sun exposure increased MS risk directly as well as indirectly, by affecting vitamin D status. The direct effect, expressed as OR, was 1.26 (95% CI 1.04–1.45) and the indirect effect, mediated by vitamin D deficiency, was 1.10 (95% CI 1.02–1.23). Of the total effect, nearly 30% was mediated by vitamin D deficiency. There was a significant interaction between low sun exposure and vitamin D deficiency (attributable proportion due to interaction 0.3, 95% CI 0.04–0.5) accounting for about 12% of the total effect. Further, both factors interacted with HLA-DRB1*15:01 to increase MS risk. Interpretation Our findings indicate that low sun exposure acts both directly on MS risk as well as indirectly, by leading to low vitamin D levels. The protective effect of sun exposure thus seems to involve both vitamin D and non-vitamin D pathways, which is of relevance for prevention, in particular for those with a genetic susceptibility to MS. Electronic supplementary material The online version of this article (10.1007/s00415-019-09677-3) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Zhang D, Wang L, Zhang R, Li S. Association of Vitamin D Receptor Gene Polymorphisms and the Risk of Multiple Sclerosis: A Meta Analysis. Arch Med Res 2019; 50:350-361. [PMID: 31677540 DOI: 10.1016/j.arcmed.2019.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 09/25/2019] [Accepted: 10/18/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Previous studies have reported vitamin D receptor (VDR) polymorphisms in multiple sclerosis (MS); however, the results remain contradictory. This study aimed to investigate the association between VDR polymorphisms and the risk of MS. METHODS PubMed and Embase databases were searched to obtain eligible studies. Data were calculated by odds ratios (OR) with 95% confidence intervals (CI). RESULTS Twenty seven case-control studies with 4879 MS patients and 5402 controls were included. There was no significant association between ApaI polymorphisms and MS in the overall population. In Asians, no association was found between ApaI polymorphism and MS in the recessive, dominant, Codominant (OR1), Codominant (OR2), Codominant (OR3) models and allele contrast. Similar results were obtained between BsmI polymorphisms and MS. The association between TaqI polymorphism and MS showed significance in the recessive, homozygous, codominant (OR3) models in the overall population and Caucasians. The dominant model showed no association of Taq I polymorphism with MS risk in HLA-DRB1*15-positive and HLA-DRB1*15-negative groups. FokI polymorphism with MS was found in Codominant (OR3) model in the overall population. In Asians, FokI polymorphism showed association with MS in recessive, dominant, Codominant (OR1), Codominant (OR3) models and allele contrast. Subgroup analysis of sex showed no associations between TaqI or FokI polymorphism and MS risk in males or females in all models or allele contrast. CONCLUSIONS The VDR TaqI polymorphisms showed association with MS risk, especially in Caucasians. In Asians, ApaI and FokI polymorphisms correlated with MS risk, while BsmI polymorphisms showed no association with MS.
Collapse
Affiliation(s)
- Dongming Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Limei Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
UV light suppression of EAE (a mouse model of multiple sclerosis) is independent of vitamin D and its receptor. Proc Natl Acad Sci U S A 2019; 116:22552-22555. [PMID: 31636184 DOI: 10.1073/pnas.1913294116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vitamin D and sunlight have each been reported to protect against the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). To date, the contribution of each has been unclear as ultra violet (UV) exposure also causes the generation of vitamin D in the skin. To examine whether the UV based suppression of EAE results, at least, in part from the production of vitamin D, we studied the effect of UV light on EAE in mice unable to produce 7-dehydroxycholesterol (7-DHC), the required precursor of vitamin D. Furthermore, we examined UV suppression of EAE in mice devoid of the vitamin D receptor (VDR). Our results demonstrate that UV light suppression of EAE occurs in the absence of vitamin D production and in the absence of VDR. Future investigations will focus on identifying the pathway responsible for the protective action of UV in EAE and presumably human MS.
Collapse
|
22
|
Gallagher LG, Ilango S, Wundes A, Stobbe GA, Turk KW, Franklin GM, Linet MS, Freedman DM, Alexander BH, Checkoway H. Lifetime exposure to ultraviolet radiation and the risk of multiple sclerosis in the US radiologic technologists cohort study. Mult Scler 2019; 25:1162-1169. [PMID: 29932357 PMCID: PMC10561656 DOI: 10.1177/1352458518783343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Low exposure to ultraviolet radiation (UVR) from sunlight may be a risk factor for developing multiple sclerosis (MS). Possible pathways may be related to effects on immune system function or vitamin D insufficiency, as UVR plays a role in the production of the active form of vitamin D in the body. OBJECTIVE This study examined whether lower levels of residential UVR exposure from sunlight were associated with increased MS risk in a cohort of radiologic technologists. METHODS Participants in the third and fourth surveys of the US Radiologic Technologists (USRT) Cohort Study eligible (N = 39,801) for analysis provided complete residential histories and reported MS diagnoses. MS-specialized neurologists conducted medical record reviews and confirmed 148 cases. Residential locations throughout life were matched to satellite data from NASA's Total Ozone Mapping Spectrometer (TOMS) project to estimate UVR dose. RESULTS Findings indicate that MS risk increased as average lifetime levels of UVR exposures in winter decreased. The effects were consistent across age groups <40 years. There was little indication that low exposures during summer or at older ages were related to MS risk. CONCLUSION Our findings are consistent with the hypothesis that UVR exposure reduces MS risk and may ultimately suggest prevention strategies.
Collapse
Affiliation(s)
- Lisa G. Gallagher
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Sindana Ilango
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA
| | - Annette Wundes
- Department of Neurology, University of Washington, Seattle, WA
| | - Gary A. Stobbe
- Department of Neurology, University of Washington, Seattle, WA
| | | | - Gary M. Franklin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Martha S. Linet
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, NIH, DHHS, Bethesda, MD
| | - D. Michal Freedman
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, NIH, DHHS, Bethesda, MD
| | - Bruce H. Alexander
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Harvey Checkoway
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA
- Department of Neurosciences, University of California San Diego, San Diego, CA
| |
Collapse
|
23
|
Memari B, Nguyen-Yamamoto L, Salehi-Tabar R, Zago M, Fritz JH, Baglole CJ, Goltzman D, White JH. Endocrine aryl hydrocarbon receptor signaling is induced by moderate cutaneous exposure to ultraviolet light. Sci Rep 2019; 9:8486. [PMID: 31186463 PMCID: PMC6560103 DOI: 10.1038/s41598-019-44862-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Links between solar UV exposure and immunity date back to the ancient Greeks with the development of heliotherapy. Skin contains several UV-sensitive chromophores and exposure to sunlight can produce molecules, such as vitamin D3, that act in an endocrine manner. We investigated the role of the aryl hydrocarbon receptor (AHR), an environmental sensor and ligand-regulated transcription factor activated by numerous planar compounds of endogenous, dietary or environmental origin. 15- to 30-minute exposure of cells to a minimal erythemal dose of UVB irradiation in vitro induced translocation of the AHR to the nucleus, rapidly inducing site-specific DNA binding and target gene regulation. Importantly, ex vivo studies with Ahr wild-type or null fibroblasts showed that serum from mice whose skin was exposed to a 15 min UVB dose, but not control serum, contained agonist activity within 30 min of UV irradiation, inducing AHR-dependent gene expression. Moreover, a 15-min cutaneous UVB exposure induced AHR site-specific DNA binding and target gene regulation in vivo within 3–6 hr post-irradiation in blood and in peripheral tissues, including intestine. These results show that cutaneous exposure of mice to a single minimal erythemic dose of UVB induces rapid AHR signaling in multiple peripheral organs, providing compelling evidence that moderate sun exposure can exert endocrine control of immunity through the AHR.
Collapse
Affiliation(s)
- Babak Memari
- Departments of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | - Michela Zago
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Jorg H Fritz
- Departments of Physiology, McGill University, Montreal, Quebec, Canada.,Departments of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.,Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Departments of Medicine, McGill University, Montreal, Quebec, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - David Goltzman
- Departments of Physiology, McGill University, Montreal, Quebec, Canada.,Departments of Medicine, McGill University, Montreal, Quebec, Canada
| | - John H White
- Departments of Physiology, McGill University, Montreal, Quebec, Canada. .,Departments of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Lifestyle and Environmental Factors in Multiple Sclerosis. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a028944. [PMID: 29735578 DOI: 10.1101/cshperspect.a028944] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lifestyle and environmental factors potently influence the risk of multiple sclerosis (MS), because genetic predisposition only explains a fraction of the risk increase. There is strong evidence for associations of Epstein-Barr virus (EBV) infection, smoking, sun exposure/vitamin D, and adolescent obesity to risk of MS. There is also circumstantial evidence on organic solvents and shift work, all associate with greater risk, although certain factors like nicotine, alcohol, and a high coffee consumption associate with a reduced risk. Certain factors, smoking, EBV infection, and obesity interact with human leukocyte antigen (HLA) risk genes, arguing for a pathogenic pathway involving adaptive immunity. There is a potential for prevention, in particular for people at greater risk such as relatives of individuals with MS. All of the described factors for MS may influence adaptive and/or innate immunity, as has been argued for MS risk gene variants.
Collapse
|
25
|
Tarlinton RE, Khaibullin T, Granatov E, Martynova E, Rizvanov A, Khaiboullina S. The Interaction between Viral and Environmental Risk Factors in the Pathogenesis of Multiple Sclerosis. Int J Mol Sci 2019; 20:ijms20020303. [PMID: 30646507 PMCID: PMC6359439 DOI: 10.3390/ijms20020303] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease of unknown ethology targeting the central nervous system (CNS). MS has a polysymptomatic onset and is usually first diagnosed between the ages of 20–40 years. The pathology of the disease is characterized by immune mediated demyelination in the CNS. Although there is no clinical finding unique to MS, characteristic symptoms include sensory symptoms visual and motor impairment. No definitive trigger for the development of MS has been identified but large-scale population studies have described several epidemiological risk factors for the disease. This list is a confusing one including latitude, vitamin D (vitD) levels, genetics, infection with Epstein Barr Virus (EBV) and endogenous retrovirus (ERV) reactivation. This review will look at the evidence for each of these and the potential links between these disparate risk factors and the known molecular disease pathogenesis to describe potential hypotheses for the triggering of MS pathology.
Collapse
Affiliation(s)
| | - Timur Khaibullin
- Republican Clinical Neurological Center, Republic of Tatarstan, Kazan 420021, Russia.
| | - Evgenii Granatov
- Republican Clinical Neurological Center, Republic of Tatarstan, Kazan 420021, Russia.
| | - Ekaterina Martynova
- Department of Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Republic of Tatarstan, Kazan 420021, Russia.
| | - Albert Rizvanov
- Department of Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Republic of Tatarstan, Kazan 420021, Russia.
| | - Svetlana Khaiboullina
- Department of Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Republic of Tatarstan, Kazan 420021, Russia.
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
26
|
Häusler D, Weber MS. Vitamin D Supplementation in Central Nervous System Demyelinating Disease-Enough Is Enough. Int J Mol Sci 2019; 20:E218. [PMID: 30626090 PMCID: PMC6337288 DOI: 10.3390/ijms20010218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 01/30/2023] Open
Abstract
The exact cause of multiple sclerosis (MS) remains elusive. Various factors, however, have been identified that increase an individual's risk of developing this central nervous system (CNS) demyelinating disease and are associated with an acceleration in disease severity. Besides genetic determinants, environmental factors are now established that influence MS, which is of enormous interest, as some of these contributing factors are relatively easy to change. In this regard, a low vitamin D status is associated with an elevated relapse frequency and worsened disease course in patients with MS. The most important question, however, is whether this association is causal or related. That supplementing vitamin D in MS is of direct therapeutic benefit, is still a matter of debate. In this manuscript, we first review the potentially immune modulating mechanisms of vitamin D, followed by a summary of current and ongoing clinical trials intended to assess whether vitamin D supplementation positively influences the outcome of MS. Furthermore, we provide emerging evidence that excessive vitamin D treatment via the T cell-stimulating effect of secondary hypercalcemia, could have negative effects in CNS demyelinating disease. This jointly merges into the balancing concept of a therapeutic window of vitamin D in MS.
Collapse
Affiliation(s)
- Darius Häusler
- Institute of Neuropathology, University Medical Center, 37099 Göttingen, Germany.
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, 37099 Göttingen, Germany.
- Department of Neurology, University Medical Center, 37099 Göttingen, Germany.
| |
Collapse
|
27
|
Abstract
Multiple sclerosis (MS), a chronic autoimmune disorder, affects the central nervous system (CNS). It affects the brain, spinal cord, and optic nerve, leading to problems with vision, balance, muscle control, and other basic bodily functions. MS relapse (MSR) involves an acute inflammatory demyelinating reaction within the CNS. This review focuses on the main factors involved in MSR based on a detailed literature search. Evidence suggests that MSR is influenced by age, sex, pregnancy, serum levels of Vitamin D, interactions between genetic and environmental factors, and infectious diseases. Many of these factors are modifiable and require the attention of patients and health-care providers if favorable outcomes are to be realized. Identification of MSR risk factors can help in the development of therapies that could be used to manage MS and MSR.
Collapse
Affiliation(s)
- Fatemah Omar Kamel
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Langer-Gould A, Lucas RM. Vitamin D deficiency is an etiological factor for MS - No. Mult Scler 2018; 25:639-641. [PMID: 30499745 DOI: 10.1177/1352458518808469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Annette Langer-Gould
- Neurology Department, Southern California Permanente Medical Group and Los Angeles Medical Center, Kaiser Permanente, Pasadena, CA, USA
| | - Robyn M Lucas
- National Centre for Epidemiology & Population Health, Research School of Population Health, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
29
|
Hart PH, Norval M, Byrne SN, Rhodes LE. Exposure to Ultraviolet Radiation in the Modulation of Human Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:55-81. [PMID: 30125148 DOI: 10.1146/annurev-pathmechdis-012418-012809] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses primarily on the beneficial effects for human health of exposure to ultraviolet radiation (UVR). UVR stimulates anti-inflammatory and immunosuppressive pathways in skin that modulate psoriasis, atopic dermatitis, and vitiligo; suppresses cutaneous lesions of graft-versus-host disease; and regulates some infection and vaccination outcomes. While polymorphic light eruption and the cutaneous photosensitivity of systemic lupus erythematosus are triggered by UVR, polymorphic light eruption also frequently benefits from UVR-induced immunomodulation. For systemic diseases such as multiple sclerosis, type 1 diabetes, asthma, schizophrenia, autism, and cardiovascular disease, any positive consequences of UVR exposure are more speculative, but could occur through the actions of UVR-induced regulatory cells and mediators, including 1,25-dihydroxy vitamin D3, interleukin-10, and nitric oxide. Reduced UVR exposure is a risk factor for the development of several inflammatory, allergic, and autoimmune conditions, including diseases initiated in early life. This suggests that UVR-induced molecules can regulate cell maturation in developing organs.
Collapse
Affiliation(s)
- Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia 6008, Australia;
| | - Mary Norval
- University of Edinburgh Medical School, Edinburgh EH8 9AG, United Kingdom;
| | - Scott N Byrne
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia; .,Westmead Institute for Medical Research, Westmead, New South Wales 2145, Australia
| | - Lesley E Rhodes
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, and Faculty of Biology, Medicine, and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom;
| |
Collapse
|
30
|
Shaygannejad V, Maljaei MB, Bank SS, Mirmosayyeb O, Maracy MR, Askari G. Association between Sun Exposure, Vitamin D Intake, Serum Vitamin D Level, and Immunoglobulin G Level in Patients with Neuromyelitis Optica Spectrum Disorder. Int J Prev Med 2018; 9:68. [PMID: 30167098 PMCID: PMC6106131 DOI: 10.4103/ijpvm.ijpvm_45_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/05/2017] [Indexed: 11/10/2022] Open
Abstract
Background: Neuromyelitis optica spectrum disorder (NMOSD) is a central nervous system inflammatory disorder in which immunoglobulin G (IgG) autoantibodies possibly play a pathogenic role against the aquaporin-4 water channel protein. Vitamin D may modulate B-cell function and decrease the IgG synthesis and may play a role in NMOSD as a crucial factor. The aim of this study was to investigate the relation between Vitamin D intakes from food, Vitamin D intake from sunlight exposure, blood Vitamin D levels, and IgG-neuromyelitis optica (NMO) level in serum of patients with NMOSD and NMO. Method: In this cross-sectional study, food Frequency Questionnaires (FFQ) and Sun Exposure Questionnaire (SEQ) were completed to evaluate of vitamin D intakes from food and sun light exposure. Moreover, serum levels of 25(OH) vitamin D3 and IgG-NMO were assessed in patients with NMOSD and NMO. Results: We assessed IgG-NMO levels in 29 patients with NMOSD that nine patients (n = 31%) were positive and for the rest it was negative. Sunlight exposure scale (P = 0.01) and 25(OH) D3 (P = 0.04) in IgG-NMO-negative patients were significantly more than patients with positive IgG-NMO. Age, gender, and latitude were not confounder variables. A positive significant correlation was observed between the sun exposure scale and serum levels of 25(OH) D3 in all participants (r = 0.747, P ≤ 0.001). Conclusions: Physiological variation in Vitamin D may apply a significant effect on IgG-NMO synthesis in patients with NMO. Vitamin D may have significant role in pathogenesis of NMOSD and NMO.
Collapse
Affiliation(s)
- Vahid Shaygannejad
- Isfahan Neuroscience Research Center, Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagher Maljaei
- Isfahan Neuroscience Research Center, Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Saraf Bank
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Isfahan Neuroscience Research Center, Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Maracy
- Department of Epidemiology and Biostatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
31
|
Lucas RM, Rodney Harris RM. On the Nature of Evidence and 'Proving' Causality: Smoking and Lung Cancer vs. Sun Exposure, Vitamin D and Multiple Sclerosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081726. [PMID: 30103527 PMCID: PMC6121485 DOI: 10.3390/ijerph15081726] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/20/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022]
Abstract
If environmental exposures are shown to cause an adverse health outcome, reducing exposure should reduce the disease risk. Links between exposures and outcomes are typically based on 'associations' derived from observational studies, and causality may not be clear. Randomized controlled trials to 'prove' causality are often not feasible or ethical. Here the history of evidence that tobacco smoking causes lung cancer-from observational studies-is compared to that of low sun exposure and/or low vitamin D status as causal risk factors for the autoimmune disease, multiple sclerosis (MS). Evidence derives from in vitro and animal studies, as well as ecological, case-control and cohort studies, in order of increasing strength. For smoking and lung cancer, the associations are strong, consistent, and biologically plausible-the evidence is coherent or 'in harmony'. For low sun exposure/vitamin D as risk factors for MS, the evidence is weaker, with smaller effect sizes, but coherent across a range of sources of evidence, and biologically plausible. The association is less direct-smoking is directly toxic and carcinogenic to the lung, but sun exposure/vitamin D modulate the immune system, which in turn may reduce the risk of immune attack on self-proteins in the central nervous system. Opinion about whether there is sufficient evidence to conclude that low sun exposure/vitamin D increase the risk of multiple sclerosis, is divided. General public health advice to receive sufficient sun exposure to avoid vitamin D deficiency (<50 nmol/L) should also ensure any benefits for multiple sclerosis, but must be tempered against the risk of skin cancers.
Collapse
Affiliation(s)
- Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra 2600, Australia.
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth 6009, Australia.
| | - Rachael M Rodney Harris
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra 2600, Australia.
| |
Collapse
|
32
|
Krementsov DN, Asarian L, Fang Q, McGill MM, Teuscher C. Sex-Specific Gene-by-Vitamin D Interactions Regulate Susceptibility to Central Nervous System Autoimmunity. Front Immunol 2018; 9:1622. [PMID: 30065723 PMCID: PMC6056725 DOI: 10.3389/fimmu.2018.01622] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vitamin D3 (VitD) insufficiency is postulated to represent a major modifiable risk factor for multiple sclerosis (MS). While low VitD levels strongly correlate with higher MS risk in white populations, this is not the case for other ethnic groups, suggesting the existence of a genetic component. Moreover, VitD supplementation studies in MS so far have not shown a consistent benefit. We sought to determine whether direct manipulation of VitD levels modulates central nervous system autoimmune disease in a sex-by-genotype-dependent manner. To this end, we used a dietary model of VitD modulation, together with the autoimmune animal model of MS, experimental autoimmune encephalomyelitis (EAE). To assess the impact of genotype-by-VitD interactions on EAE susceptibility, we utilized a chromosome substitution (consomic) mouse model that incorporates the genetic diversity of wild-derived PWD/PhJ mice. High VitD was protective in EAE in female, but not male C57BL/6J (B6) mice, and had no effect in EAE-resistant PWD/PhJ (PWD) mice. EAE protection was accompanied by sex- and genotype-specific suppression of proinflammatory transcriptional programs in CD4 T effector cells, but not CD4 regulatory T cells. Decreased expression of proinflammatory genes was observed with high VitD in female CD4 T effector cells, specifically implicating a key role of MHC class II genes, interferon gamma, and Th1 cell-mediated neuroinflammation. In consomic strains, effects of VitD on EAE were also sex- and genotype dependent, whereby high VitD: (1) was protective, (2) had no effect, and (3) unexpectedly had disease-exacerbating effects. Systemic levels of 25(OH)D differed across consomic strains, with higher levels associated with EAE protection only in females. Analysis of expression of key known VitD metabolism genes between B6 and PWD mice revealed that their expression is genetically determined and sex specific and implicated Cyp27b1 and Vdr as candidate genes responsible for differential EAE responses to VitD modulation. Taken together, our results support the observation that the association between VitD status and MS susceptibility is genotype dependent and suggest that the outcome of VitD status in MS is determined by gene-by-sex interactions.
Collapse
Affiliation(s)
- Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Loredana Asarian
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Qian Fang
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Mahalia M McGill
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT, United States.,Department of Pathology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
33
|
Abhimanyu, Coussens AK. The role of UV radiation and vitamin D in the seasonality and outcomes of infectious disease. Photochem Photobiol Sci 2018; 16:314-338. [PMID: 28078341 DOI: 10.1039/c6pp00355a] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The seasonality of infectious disease outbreaks suggests that environmental conditions have a significant effect on disease risk. One of the major environmental factors that can affect this is solar radiation, primarily acting through ultraviolet radiation (UVR), and its subsequent control of vitamin D production. Here we show how UVR and vitamin D, which are modified by latitude and season, can affect host and pathogen fitness and relate them to the outcomes of bacterial, viral and vector-borne infections. We conducted a thorough comparison of the molecular and cellular mechanisms of action of UVR and vitamin D on pathogen fitness and host immunity and related these to the effects observed in animal models and clinical trials to understand their independent and complementary effects on infectious disease outcome. UVR and vitamin D share common pathways of innate immune activation primarily via antimicrobial peptide production, and adaptive immune suppression. Whilst UVR can induce vitamin D-independent effects in the skin, such as the generation of photoproducts activating interferon signaling, vitamin D has a larger systemic effect due to its autocrine and paracrine modulation of cellular responses in a range of tissues. However, the seasonal patterns in infectious disease prevalence are not solely driven by variation in UVR and vitamin D levels across latitudes. Vector-borne pathogens show a strong seasonality of infection correlated to climatic conditions favoring their replication. Conversely, pathogens, such as influenza A virus, Mycobacterium tuberculosis and human immunodeficiency virus type 1, have strong evidence to support their interaction with vitamin D. Thus, UVR has both vitamin D-dependent and independent effects on infectious diseases; these effects vary depending on the pathogen of interest and the effects can be complementary or antagonistic.
Collapse
Affiliation(s)
- Abhimanyu
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Western Cape, South Africa.
| | - Anna K Coussens
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Western Cape, South Africa. and Division of Medical Microbiology, Department of Pathology, University of Cape Town, Anzio Rd, Observatory, 7925, Western Cape, South Africa
| |
Collapse
|
34
|
Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018; 159:1992-2007. [PMID: 29546369 PMCID: PMC5905393 DOI: 10.1210/en.2017-03230] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
- Correspondence: Andrzej T. Slominski, MD, PhD, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294. E-mail:
| | | | - Przemyslaw M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jerzy P Szaflarski
- Departments of Neurology and Neurobiology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
35
|
Makarova AM, Frascari F, Davari P, Gorouhi F, Dutt P, Wang L, Dhawan A, Wang G, Green JE, Epstein EH. Ultraviolet Radiation Inhibits Mammary Carcinogenesis in an ER-Negative Murine Model by a Mechanism Independent of Vitamin D3. Cancer Prev Res (Phila) 2018; 11:383-392. [DOI: 10.1158/1940-6207.capr-17-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/06/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
|
36
|
Langer-Gould A, Lucas R, Xiang AH, Chen LH, Wu J, Gonzalez E, Haraszti S, Smith JB, Quach H, Barcellos LF. MS Sunshine Study: Sun Exposure But Not Vitamin D Is Associated with Multiple Sclerosis Risk in Blacks and Hispanics. Nutrients 2018; 10:E268. [PMID: 29495467 PMCID: PMC5872686 DOI: 10.3390/nu10030268] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) incidence and serum 25-hydroxyvitamin D (25OHD) levels vary by race/ethnicity. We examined the consistency of beneficial effects of 25OHD and/or sun exposure for MS risk across multiple racial/ethnic groups. We recruited incident MS cases and controls (blacks 116 cases/131 controls; Hispanics 183/197; whites 247/267) from the membership of Kaiser Permanente Southern California into the MS Sunshine Study to simultaneously examine sun exposure and 25OHD, accounting for genetic ancestry and other factors. Higher lifetime ultraviolet radiation exposure (a rigorous measure of sun exposure) was associated with a lower risk of MS independent of serum 25OHD levels in blacks (adjusted OR = 0.53, 95% CI = 0.31-0.83; p = 0.007) and whites (OR = 0.68, 95% CI = 0.48-0.94; p = 0.020) with a similar magnitude of effect that did not reach statistical significance in Hispanics (OR = 0.66, 95% CI = 0.42-1.04; p = 0.071). Higher serum 25OHD levels were associated with a lower risk of MS only in whites. No association was found in Hispanics or blacks regardless of how 25OHD was modeled. Lifetime sun exposure appears to reduce the risk of MS regardless of race/ethnicity. In contrast, serum 25OHD levels are not associated with MS risk in blacks or Hispanics. Our findings challenge the biological plausibility of vitamin D deficiency as causal for MS and call into question the targeting of specific serum 25OHD levels to achieve health benefits, particularly in blacks and Hispanics.
Collapse
Affiliation(s)
- Annette Langer-Gould
- Los Angeles Medical Center, Department of Neurology, Southern California Permanente Medical Group, 100 S Los Robles, Pasadena, CA 91101, USA.
| | - Robyn Lucas
- College of Medicine, Biology & Environment, Australian National University, Canberra, ACT 2000, Australia.
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
| | - Lie H Chen
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
| | - Jun Wu
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
| | - Edlin Gonzalez
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
| | - Samantha Haraszti
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
- Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - Jessica B Smith
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
| | - Hong Quach
- QB3 Genetic Epidemiology and Genomics Lab, School of Public Health, University of California Berkeley, 209 Hildebrand Hall, Berkeley, CA 94720-7356, USA.
| | - Lisa F Barcellos
- QB3 Genetic Epidemiology and Genomics Lab, School of Public Health, University of California Berkeley, 209 Hildebrand Hall, Berkeley, CA 94720-7356, USA.
| |
Collapse
|
37
|
Langer-Gould A, Lucas RM, Xiang AH, Wu J, Chen LH, Gonzales E, Haraszti S, Smith JB, Quach H, Barcellos LF. Vitamin D-Binding Protein Polymorphisms, 25-Hydroxyvitamin D, Sunshine and Multiple Sclerosis. Nutrients 2018; 10:E184. [PMID: 29414925 PMCID: PMC5852760 DOI: 10.3390/nu10020184] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
Blacks have different dominant polymorphisms in the vitamin D-binding protein (DBP) gene that result in higher bioavailable vitamin D than whites. This study tested whether the lack of association between 25-hydroxyvitamin D (25OHD) and multiple sclerosis (MS) risk in blacks and Hispanics is due to differences in these common polymorphisms (rs7041, rs4588). We recruited incident MS cases and controls (blacks 116 cases/131 controls; Hispanics 183/197; whites 247/267) from Kaiser Permanente Southern California. AA is the dominant rs7041 genotype in blacks (70.0%) whereas C is the dominant allele in whites (79.0% AC/CC) and Hispanics (77.1%). Higher 25OHD levels were associated with a lower risk of MS in whites who carried at least one copy of the C allele but not AA carriers. No association was found in Hispanics or blacks regardless of genotype. Higher ultraviolet radiation exposure was associated with a lower risk of MS in blacks (OR = 0.06), Hispanics and whites who carried at least one copy of the C allele but not in others. Racial/ethnic variations in bioavailable vitamin D do not explain the lack of association between 25OHD and MS in blacks and Hispanics. These findings further challenge the biological plausibility of vitamin D deficiency as causal for MS.
Collapse
Affiliation(s)
- Annette Langer-Gould
- Los Angeles Medical Center, Neurology Department, Southern California Permanente Medical Group, 1505 N Edgemont Street, Los Angeles, CA 90027, USA.
| | - Robyn M Lucas
- College of Medicine, Biology & Environment, Australian National University, Canberra, ACT 2000, Australia.
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
| | - Jun Wu
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
| | - Lie H Chen
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
| | - Edlin Gonzales
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
| | - Samantha Haraszti
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
- Philadelphia College of Osteopathic Medicine, 4000 Presidential Blvd., Apt. 819, Philadelphia, PA 19131, USA.
| | - Jessica B Smith
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S. Los Robles Avenue, Pasadena, CA 91101, USA.
| | - Hong Quach
- QB3 Genetic Epidemiology and Genomics Lab, School of Public Health, University of California Berkeley, 209 Hildebrand Hall, Berkeley, CA 94720, USA.
| | - Lisa F Barcellos
- QB3 Genetic Epidemiology and Genomics Lab, School of Public Health, University of California Berkeley, 209 Hildebrand Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Simpson S, van der Mei I, Lucas RM, Ponsonby AL, Broadley S, Blizzard L, Taylor B. Sun Exposure across the Life Course Significantly Modulates Early Multiple Sclerosis Clinical Course. Front Neurol 2018; 9:16. [PMID: 29449827 PMCID: PMC5799286 DOI: 10.3389/fneur.2018.00016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 01/08/2023] Open
Abstract
Background Low vitamin D and/or sun exposure have been associated with increased risk of multiple sclerosis (MS) onset. However, comparatively, few studies have prospectively examined associations between these factors and clinical course. Objectives To evaluate the association of sun exposure parameters and vitamin D levels with conversion to MS and relapse risk in a prospectively monitored cohort of 145 participants followed after a first demyelinating event up to 5-year review (AusLong Study). Methods Sun exposure prior to and after onset measured by annual questionnaire; ultraviolet radiation (UVR) "load" estimated by location of residence over the life course and ambient UVR levels. Serum 25-hydroxyvitamin D [25(OH)D] concentrations measured at baseline, 2/3-year, and 5-year review. MS conversion and relapse assessed by neurologist assessment and medical record review. Results Over two-thirds (69%) of those followed to 5-year review (100/145) converted to MS, with a total of 252 relapses. Higher pre-MS onset sun exposure was associated with reduced risk of MS conversion, with internal consistency between measures and dose-response relationships. Analogous associations were also seen with risk of relapse, albeit less strong. No consistent associations were observed between postonset sun exposure and clinical course, however. Notably, those who increased their sun exposure during follow-up had significantly reduced hazards of MS conversion and relapse. Serum 25(OH)D levels and vitamin D supplementation were not associated with conversion to MS or relapse hazard. Conclusion We found that preonset sun exposure was protective against subsequent conversion to MS and relapses. While consistent associations between postonset sun exposure or serum 25(OH)D level and clinical course were not evident, possibly masked by behavior change, those participants who markedly increased their sun exposure demonstrated a reduced MS conversion and relapse hazard, suggesting beneficial effects of sun exposure on clinical course.
Collapse
Affiliation(s)
- Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, ACT, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Anne-Louise Ponsonby
- National Centre for Epidemiology and Population Health, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, ACT, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Royal Melbourne Hospital, School of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Simon Broadley
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Leigh Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Bruce Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
39
|
Koduah P, Paul F, Dörr JM. Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA J 2017; 8:313-325. [PMID: 29209434 PMCID: PMC5700019 DOI: 10.1007/s13167-017-0120-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022]
Abstract
Vitamin D research has gained increased attention in recent times due to its roles beyond bone health and calcium homeostasis, such as immunomodulation. In some parts of the brain and on immune cells, vitamin D hydroxylating enzymes and its receptors are located. Epidemiological evidence demonstrates that deficiency of Vitamin D is relevant for disease risk and course in multiple sclerosis (MS) and presumably also in neuromyelitis optica spectrum disorders (NMOSD), Parkinson's disease (PD), and Alzheimer's disease (AD). Although the exact mechanism underlying vitamin D effects in these diseases remains widely unexplored, human and animal studies continue to provide some hints. While the majority of vitamin D researchers so far speculate that vitamin D may be involved in disease pathogenesis, others could not show any association although none have reported that sufficient vitamin D worsens disease progression. The studies presented in this review suggest that whether vitamin D may have beneficial effects in disease course or not, may be dependent on factors such as ethnicity, gender, diet, vitamin D receptor (VDR) polymorphisms and sunlight exposure. We here review the possible role of vitamin D in the pathogenesis and disease course of MS, NMOSD, PD, and AD and potential therapeutic effects of vitamin D supplementation which may be relevant for predictive, preventive, and personalized medicine. We suggest areas to consider in vitamin D research for future studies and recommend the need to supplement patients with low vitamin D levels below 30 ng/ml to at least reach sufficient levels.
Collapse
Affiliation(s)
- Priscilla Koduah
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universitäts zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany
| | - Friedemann Paul
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jan-Markus Dörr
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universitäts zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, and Multiple Sclerosis Center Hennigsdorf, Oberhavel Clinics, Berlin, Germany
| |
Collapse
|
40
|
Cappa R, Theroux L, Brenton JN. Pediatric Multiple Sclerosis: Genes, Environment, and a Comprehensive Therapeutic Approach. Pediatr Neurol 2017; 75:17-28. [PMID: 28843454 DOI: 10.1016/j.pediatrneurol.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/03/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pediatric multiple sclerosis is an increasingly recognized and studied disorder that accounts for 3% to 10% of all patients with multiple sclerosis. The risk for pediatric multiple sclerosis is thought to reflect a complex interplay between environmental and genetic risk factors. MAIN FINDINGS Environmental exposures, including sunlight (ultraviolet radiation, vitamin D levels), infections (Epstein-Barr virus), passive smoking, and obesity, have been identified as potential risk factors in youth. Genetic predisposition contributes to the risk of multiple sclerosis, and the major histocompatibility complex on chromosome 6 makes the single largest contribution to susceptibility to multiple sclerosis. With the use of large-scale genome-wide association studies, other non-major histocompatibility complex alleles have been identified as independent risk factors for the disease. The bridge between environment and genes likely lies in the study of epigenetic processes, which are environmentally-influenced mechanisms through which gene expression may be modified. CONCLUSIONS This article will review these topics to provide a framework for discussion of a comprehensive approach to counseling and ultimately treating the pediatric patient with multiple sclerosis.
Collapse
Affiliation(s)
- Ryan Cappa
- Department of Neurology, Division of Pediatric Neurology, University of Virginia, Charlottesville, Virginia
| | - Liana Theroux
- Department of Neurology, Division of Pediatric Neurology, University of Virginia, Charlottesville, Virginia
| | - J Nicholas Brenton
- Department of Neurology, Division of Pediatric Neurology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
41
|
Salate derivatives found in sunscreens block experimental autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 2017; 114:8528-8531. [PMID: 28739922 DOI: 10.1073/pnas.1703995114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UV light suppresses experimental autoimmune encephalomyelitis (EAE), a widely used animal model of MS, in mice and may be responsible for the decreased incidence of MS in equatorial regions. To test this concept further, we applied commercially available sunblock preparations to mice before exposing them to UV radiation. Surprisingly, some of the sunblock preparations blocked EAE without UV radiation. Furthermore, various sunblock preparations had variable ability to suppress EAE. By examining the components of the most effective agents, we identified homosalate and octisalate as the components responsible for suppressing EAE. Thus, salates may be useful in stopping the progression of MS, and may provide new insight into mechanisms of controlling autoimmune disease.
Collapse
|
42
|
Cianferotti L, Bertoldo F, Bischoff-Ferrari HA, Bruyere O, Cooper C, Cutolo M, Kanis JA, Kaufman JM, Reginster JY, Rizzoli R, Brandi ML. Vitamin D supplementation in the prevention and management of major chronic diseases not related to mineral homeostasis in adults: research for evidence and a scientific statement from the European society for clinical and economic aspects of osteoporosis and osteoarthritis (ESCEO). Endocrine 2017; 56:245-261. [PMID: 28390010 PMCID: PMC6776482 DOI: 10.1007/s12020-017-1290-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/21/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Optimal vitamin D status promotes skeletal health and is recommended with specific treatment in individuals at high risk for fragility fractures. A growing body of literature has provided indirect and some direct evidence for possible extraskeletal vitamin D-related effects. PURPOSE AND METHODS Members of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis have reviewed the main evidence for possible proven benefits of vitamin D supplementation in adults at risk of or with overt chronic extra-skeletal diseases, providing recommendations and guidelines for future studies in this field. RESULTS AND CONCLUSIONS Robust mechanistic evidence is available from in vitro studies and in vivo animal studies, usually employing cholecalciferol, calcidiol or calcitriol in pharmacologic rather than physiologic doses. Although many cross-sectional and prospective association studies in humans have shown that low 25-hydroxyvitamin D levels (i.e., <50 nmol/L) are consistently associated with chronic diseases, further strengthened by a dose-response relationship, several meta-analyses of clinical trials have shown contradictory results. Overall, large randomized controlled trials with sufficient doses of vitamin D are missing, and available small to moderate-size trials often included people with baseline levels of serum 25-hydroxyvitamin D levels >50 nmol/L, did not simultaneously assess multiple outcomes, and did not report overall safety (e.g., falls). Thus, no recommendations can be made to date for the use of vitamin D supplementation in general, parental compounds, or non-hypercalcemic vitamin D analogs in the prevention and treatment of extra-skeletal chronic diseases. Moreover, attainment of serum 25-hydroxyvitamin D levels well above the threshold desired for bone health cannot be recommended based on current evidence, since safety has yet to be confirmed. Finally, the promising findings from mechanistic studies, large cohort studies, and small clinical trials obtained for autoimmune diseases (including type 1 diabetes, multiple sclerosis, and systemic lupus erythematosus), cardiovascular disorders, and overall reduction in mortality require further confirmation.
Collapse
Affiliation(s)
- Luisella Cianferotti
- Bone Metabolic Diseases Unit, Department of Surgery and Translational Medicine, University Hospital of Florence and University of Florence, Florence, Italy
| | | | - Heike A Bischoff-Ferrari
- Department of Geriatrics and Aging Research, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Olivier Bruyere
- Epidemiology and Public Health, University of Liege, CHU Sart Tilman, Liege, 4000, Belgium
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, Hants, UK
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genoa, Italy
| | - John A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
- Institute for Health and Aging, Catholic University of Australia, Melbourne, VIC, Australia
| | - Jean-Marc Kaufman
- Department of Endocrinology and Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
| | - Jean-Yves Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - Rene Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Maria Luisa Brandi
- Bone Metabolic Diseases Unit, Department of Surgery and Translational Medicine, University Hospital of Florence and University of Florence, Florence, Italy.
| |
Collapse
|
43
|
Seasonal variations of 25-OH vitamin D serum levels are associated with clinical disease activity in multiple sclerosis patients. J Neurol Sci 2017; 375:160-164. [DOI: 10.1016/j.jns.2017.01.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
|
44
|
Weissert R. Adaptive Immunity Is the Key to the Understanding of Autoimmune and Paraneoplastic Inflammatory Central Nervous System Disorders. Front Immunol 2017; 8:336. [PMID: 28386263 PMCID: PMC5362596 DOI: 10.3389/fimmu.2017.00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/08/2017] [Indexed: 12/25/2022] Open
Abstract
There are common aspects and mechanisms between different types of autoimmune diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSDs), and autoimmune encephalitis (AE) as well as paraneoplastic inflammatory disorders of the central nervous system. To our present knowledge, depending on the disease, T and B cells as well as antibodies contribute to various aspects of the pathogenesis. Possibly the events leading to the breaking of tolerance between the different diseases are of great similarity and so far, only partially understood. Beside endogenous factors (genetics, genomics, epigenetics, malignancy) also exogenous factors (vitamin D, sun light exposure, smoking, gut microbiome, viral infections) contribute to susceptibility in such diseases. What differs between these disorders are the target molecules of the immune attack. For T cells, these target molecules are presented on major histocompatibility complex (MHC) molecules as MHC-bound ligands. B cells have an important role by amplifying the immune response of T cells by capturing antigen with their surface immunoglobulin and presenting it to T cells. Antibodies secreted by plasma cells that have differentiated from B cells are highly structure specific and can have important effector functions leading to functional impairment or/and lesion evolvement. In MS, the target molecules are mainly myelin- and neuron/axon-derived proteins; in NMOSD, mainly aquaporin-4 expressed on astrocytes; and in AE, various proteins that are expressed by neurons and axons.
Collapse
Affiliation(s)
- Robert Weissert
- Department of Neurology, Neuroimmunology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
45
|
Abstract
Light and optical techniques have made profound impacts on modern
medicine, with numerous lasers and optical devices being currently used in
clinical practice to assess health and treat disease. Recent advances in
biomedical optics have enabled increasingly sophisticated technologies —
in particular those that integrate photonics with nanotechnology, biomaterials
and genetic engineering. In this Review, we revisit the fundamentals of
light–matter interactions, describe the applications of light in
imaging, diagnosis, therapy and surgery, overview their clinical use, and
discuss the promise of emerging light-based technologies.
Collapse
Affiliation(s)
- Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA.,Department of Dermatology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115.,Harvard-MIT Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sheldon J J Kwok
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA.,Harvard-MIT Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
46
|
Abstract
Achesonet al.(1960) observed an inverse relationship between sunlight exposure and the incidence of Multiple Sclerosis (MS).
Collapse
Affiliation(s)
- H. F. DeLuca
- Department of Biochemistry
- University of Wisconsin-Madison
- Madison
- USA
| | - L. Plum
- Department of Biochemistry
- University of Wisconsin-Madison
- Madison
- USA
| |
Collapse
|
47
|
Miller KM, Hart PH, de Klerk NH, Davis EA, Lucas RM. Are low sun exposure and/or vitamin D risk factors for type 1 diabetes? Photochem Photobiol Sci 2017; 16:381-398. [DOI: 10.1039/c6pp00294c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ultraviolet radiation and vitamin D, with their known immunosuppressive effects, have the potential to delay or inhibit type 1 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - R. M. Lucas
- National Centre for Epidemiology and Population Health
- The Australian National University
- Canberra 2600
- Australia
| |
Collapse
|
48
|
Phan TX, Jaruga B, Pingle SC, Bandyopadhyay BC, Ahern GP. Intrinsic Photosensitivity Enhances Motility of T Lymphocytes. Sci Rep 2016; 6:39479. [PMID: 27995987 PMCID: PMC5171715 DOI: 10.1038/srep39479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/23/2016] [Indexed: 01/17/2023] Open
Abstract
Sunlight has important biological effects in human skin. Ultraviolet (UV) light striking the epidermis catalyzes the synthesis of Vitamin D and triggers melanin production. Although a causative element in skin cancers, sunlight is also associated with positive health outcomes including reduced incidences of autoimmune diseases and cancers. The mechanisms, however, by which light affects immune function remain unclear. Here we describe direct photon sensing in human and mouse T lymphocytes, a cell-type highly abundant in skin. Blue light irradiation at low doses (<300 mJ cm-2) triggers synthesis of hydrogen peroxide (H2O2) in T cells revealed by the genetically encoded reporter HyPerRed. In turn, H2O2 activates a Src kinase/phospholipase C-γ1 (PLC-γ1) signaling pathway and Ca2+ mobilization. Pharmacologic inhibition or genetic disruption of Lck kinase, PLC-γ1 or the T cell receptor complex inhibits light-evoked Ca2+ transients. Notably, both light and H2O2 enhance T-cell motility in a Lck-dependent manner. Thus, T lymphocytes possess intrinsic photosensitivity and this property may enhance their motility in skin.
Collapse
Affiliation(s)
- Thieu X Phan
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington DC, 20007, USA.,Department of Biology, Vinh University, Vinh City, Vietnam
| | - Barbara Jaruga
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington DC, 20007, USA
| | - Sandeep C Pingle
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington DC, 20007, USA
| | - Bidhan C Bandyopadhyay
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington DC, 20007, USA.,Research Service, Veterans Affairs Medical Center, Washington, DC 20422, USA
| | - Gerard P Ahern
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington DC, 20007, USA
| |
Collapse
|
49
|
Tavakol S, Shakibapour S, Bidgoli SA. The Level of Testosterone, Vitamin D, and Irregular Menstruation More Important than Omega-3 in Non-Symptomatic Women Will Define the Fate of Multiple Scleroses in Future. Mol Neurobiol 2016; 55:462-469. [DOI: 10.1007/s12035-016-0325-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023]
|
50
|
Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol 2016; 13:25-36. [PMID: 27934854 DOI: 10.1038/nrneurol.2016.187] [Citation(s) in RCA: 722] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genetic predisposition to multiple sclerosis (MS) only explains a fraction of the disease risk; lifestyle and environmental factors are key contributors to the risk of MS. Importantly, these nongenetic factors can influence pathogenetic pathways, and some of them can be modified. Besides established MS-associated risk factors - high latitude, female sex, smoking, low vitamin D levels caused by insufficient sun exposure and/or dietary intake, and Epstein-Barr virus (EBV) infection - strong evidence now supports obesity during adolescence as a factor increasing MS risk. Organic solvents and shift work have also been reported to confer increased risk of the disease, whereas factors such as use of nicotine or alcohol, cytomegalovirus infection and a high coffee consumption are associated with a reduced risk. Certain factors - smoking, EBV infection and obesity - interact with HLA risk genes, pointing at a pathogenetic pathway involving adaptive immunity. All of the described risk factors for MS can influence adaptive and/or innate immunity, which is thought to be the main pathway modulated by MS risk alleles. Unlike genetic risk factors, many environmental and lifestyle factors can be modified, with potential for prevention, particularly for people at the greatest risk, such as relatives of individuals with MS. Here, we review recent data on environmental and lifestyle factors, with a focus on gene-environment interactions.
Collapse
|