1
|
Huang Z, Zou J, Guo M, Zhang G, Gao J, Zhao H, Yan F, Niu Y, Wang GL. An aerotaxis receptor influences invasion of Agrobacterium tumefaciens into its host. PeerJ 2024; 12:e16898. [PMID: 38332807 PMCID: PMC10851874 DOI: 10.7717/peerj.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Agrobacterium tumefaciens is a soil-borne pathogenic bacterium that causes crown gall disease in many plants. Chemotaxis offers A. tumefaciens the ability to find its host and establish infection. Being an aerobic bacterium, A. tumefaciens possesses one chemotaxis system with multiple potential chemoreceptors. Chemoreceptors play an important role in perceiving and responding to environmental signals. However, the studies of chemoreceptors in A. tumefaciens remain relatively restricted. Here, we characterized a cytoplasmic chemoreceptor of A. tumefaciens C58 that contains an N-terminal globin domain. The chemoreceptor was designated as Atu1027. The deletion of Atu1027 not only eliminated the aerotactic response of A. tumefaciens to atmospheric air but also resulted in a weakened chemotactic response to multiple carbon sources. Subsequent site-directed mutagenesis and phenotypic analysis showed that the conserved residue His100 in Atu1027 is essential for the globin domain's function in both chemotaxis and aerotaxis. Furthermore, deleting Atu1027 impaired the biofilm formation and pathogenicity of A. tumefaciens. Collectively, our findings demonstrated that Atu1027 functions as an aerotaxis receptor that affects agrobacterial chemotaxis and the invasion of A. tumefaciens into its host.
Collapse
Affiliation(s)
- Zhiwei Huang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Junnan Zou
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Guoliang Zhang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Jun Gao
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Hongliang Zhao
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Feiyu Yan
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Yuan Niu
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Guang-Long Wang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| |
Collapse
|
2
|
Zhou B, Garber JM, Vlach J, Azadi P, Ng KKS, Escalante-Semerena JC, Szymanski CM. Campylobacter jejuni uses energy taxis and a dehydrogenase enzyme for l-fucose chemotaxis. mBio 2023; 14:e0273223. [PMID: 38032212 PMCID: PMC10746189 DOI: 10.1128/mbio.02732-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE In this study, we identify a separate role for the Campylobacter jejuni l-fucose dehydrogenase in l-fucose chemotaxis and demonstrate that this mechanism is not only limited to C. jejuni but is also present in Burkholderia multivorans. We now hypothesize that l-fucose energy taxis may contribute to the reduction of l-fucose-metabolizing strains of C. jejuni from the gastrointestinal tract of breastfed infants, selecting for isolates with increased colonization potential.
Collapse
Affiliation(s)
- Bibi Zhou
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jolene M. Garber
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jiri Vlach
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | | | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Shu R, Yuan C, Liu B, Song Y, Hou L, Ren P, Wang H, Cui C. PAS Domain-Containing Chemoreceptors Influence the Signal Sensing and Intestinal Colonization of Vibrio cholerae. Genes (Basel) 2022; 13:genes13122224. [PMID: 36553491 PMCID: PMC9777591 DOI: 10.3390/genes13122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial chemotaxis is the phenomenon in which bacteria migrate toward a more favorable niche in response to chemical cues in the environment. The methyl-accepting chemotaxis proteins (MCPs) are the principal sensory receptors of the bacterial chemotaxis system. Aerotaxis is a special form of chemotaxis in which oxygen serves as the signaling molecule; the process is dependent on the aerotaxis receptors (Aer) containing the Per-Arnt-Sim (PAS) domain. Over 40 MCPs are annotated on the genome of Vibrio cholerae; however, little is known about their functions. We investigated six MCPs containing the PAS domain in V. cholerae El Tor C6706, namely aer2, aer3, aer4, aer5, aer6, and aer7. Deletion analyses of each aer homolog gene indicated that these Aer receptors are involved in aerotaxis, chemotaxis, biofilm formation, and intestinal colonization. Swarming motility assay indicated that the aer2 gene was responsible for sensing the oxygen gradient independent of the other five homologs. When bile salts and mucin were used as chemoattractants, each Aer receptor influenced the chemotaxis differently. Biofilm formation was enhanced by overexpression of the aer6 and aer7 genes. Moreover, deletion of the aer2 gene resulted in better bacterial colonization of the mutant in adult mice; however, virulence gene expression was unaffected. These data suggest distinct roles for different Aer homologs in V. cholerae physiology.
Collapse
Affiliation(s)
- Rundong Shu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chaoqun Yuan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bojun Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Leqi Hou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Ren
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (H.W.); (C.C.); Tel.: +86-25-84396645 (H.W.)
| | - Chunhong Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (H.W.); (C.C.); Tel.: +86-25-84396645 (H.W.)
| |
Collapse
|
4
|
Maschmann ZA, Chua TK, Chandrasekaran S, Ibáñez H, Crane BR. Redox properties and PAS domain structure of the Escherichia coli energy sensor Aer indicate a multistate sensing mechanism. J Biol Chem 2022; 298:102598. [PMID: 36252616 PMCID: PMC9668731 DOI: 10.1016/j.jbc.2022.102598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
The Per-Arnt-Sim (PAS; named for the representative proteins: Period, Aryl hydrocarbon receptor nuclear translocator protein and Single-minded) domain of the dimeric Escherichia coli aerotaxis receptor Aer monitors cellular respiration through a redox-sensitive flavin adenine dinucleotide (FAD) cofactor. Conformational shifts in the PAS domain instigated by the oxidized FAD (FADOX)/FAD anionic semiquinone (FADASQ) redox couple traverse the HAMP (histidine kinases, adenylate cyclases, methyl-accepting chemotaxis proteins, and phosphatases) and kinase control domains of the Aer dimer to regulate CheA kinase activity. The PAS domain of Aer is unstable and has not been previously purified. Here, residue substitutions that rescue FAD binding in an FAD binding-deficient full-length Aer variant were used in combination to stabilize the Aer PAS domain. We solved the 2.4 Å resolution crystal structure of this variant, Aer-PAS-GVV, and revealed a PAS fold that contains distinct features associated with FAD-based redox sensing, such as a close contact between the Arg115 side chain and N5 of the isoalloxazine ring and interactions of the flavin with the side chains of His53 and Asn85 that are poised to convey conformational signals from the cofactor to the protein surface. In addition, we determined the FADox/FADASQ formal potentials of Aer-PAS-GVV and full-length Aer reconstituted into nanodiscs. The Aer redox couple is remarkably low at -289.6 ± 0.4 mV. In conclusion, we propose a model for Aer energy sensing based on the low potential of Aer-PAS-FADox/FADASQ couple and the inability of Aer-PAS to bind to the fully reduced FAD hydroquinone.
Collapse
Affiliation(s)
- Zachary A Maschmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Teck Khiang Chua
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | | - Héctor Ibáñez
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
5
|
Feng Y, Bian S, Pang Z, Wen Y, Calderone R, Li D, Shi D. Deletion of Non-histidine Domains of Histidine Kinase CHK1 Diminishes the Infectivity of Candida albicans in an Oral Mucosal Model. Front Microbiol 2022; 13:855651. [PMID: 35531278 PMCID: PMC9069115 DOI: 10.3389/fmicb.2022.855651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Objectives The histidine kinase (HK) CHK1 and other protein kinases in Candida albicans are key players in the development of hyphae. This study is designed to determine the functional roles of the S_Tkc domain (protein kinase) and the GAF domain of C. albicans CHK1 in hyphal formation and mucosal invasion. Methods The domain mutants CHK25 (ΔS_TkcCHK1/Δchk1) and CHK26 (ΔS_TkcΔgafCHK1/Δchk1) were first constructed by the his1-URA3-his1 method and confirmed by sequencing and Southern blots. A mouse tongue infection model was used to evaluate the hyphal invasion and fungal loads in each domain mutant, full-gene deletion mutant CHK21 (chk1Δ/chk1Δ), re-constituted strain CHK23 (chk1Δ/CHK1), and wild type (WT) from day 1 to day 5. The degree of invasion and damage to the oral mucosa of mice in each strain-infected group was evaluated in vivo and compared with germ tube rate and hyphal formation in vitro. Result When compared with severe mucosal damage and massive hyphal formation in WT- or CHK23-infected mouse tongues, the deletion of S_Tkc domain (CHK25) caused mild mucosal damage, and fungal invasion was eliminated as we observed in full-gene mutant CHK21. However, the deletion of S_Tkc and GAF (CHK26) partially restored the hyphal invasion and mucosal tissue damage that were exhibited in WT and CHK23. Regardless of the in vivo results, the decreased hyphal formation and germ tube in vitro were less apparent and quite similar between CHK25 and CHK26, especially at the late stage of the log phase where CHK26 was closer to WT and CHK23. However, growth defect and hyphal impairment of both domain mutants were similar to CHK21 in the early stages. Conclusion Our data suggest that both protein kinase (S_Tkc) and GAF domains in C. albicans CHK1 are required for hyphal invasiveness in mucosal tissue. The appropriate initiation of cell growth and hyphal formation at the lag phase is likely mediated by these two functional domains of CHK1 to maintain in vivo infectivity of C. albicans.
Collapse
Affiliation(s)
- Yahui Feng
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Shaodong Bian
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, China
| | - Zhiping Pang
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, China
| | - Yiyang Wen
- Department of Pathology, Jining No. 1 People’s Hospital, Jining, China
| | - Richard Calderone
- Department of Microbiology/Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Dongmei Li
- Department of Microbiology/Immunology, Georgetown University Medical Center, Washington, DC, United States
- *Correspondence: Dongmei Li,
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, China
- Department of Dermatology, Jining No.1 People’s Hospital, Jining, China
- Dongmei Shi,
| |
Collapse
|
6
|
Tumewu SA, Watanabe Y, Matsui H, Yamamoto M, Noutoshi Y, Toyoda K, Ichinose Y. Identification of Aerotaxis Receptor Proteins Involved in Host Plant Infection by Pseudomonas syringae pv. tabaci 6605. Microbes Environ 2022; 37:ME21076. [PMID: 35264479 PMCID: PMC8958299 DOI: 10.1264/jsme2.me21076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/11/2022] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a foliar plant pathogen that causes wildfire disease on tobacco plants. It requires chemotaxis to enter plants and establish infection. While chemotactic signals appear to be the main mechanism by which Pta6605 performs directional movement, the involvement of aerotaxis or energy taxis by this foliar pathogen is currently unknown. Based on domain structures and similarity with more than 50 previously identified putative methyl-accepting chemotaxis proteins (MCPs), the genome of Pta6605 encodes three potential aerotaxis transducers. We identified AerA as the main aerotaxis transducer and found that it possesses a taxis-to-serine-and-repellent (Tsr)-like domain structure that supports a periplasmic 4HB-type ligand-binding domain (LBD). The secondary aerotaxis transducer, AerB, possesses a cytosolic PAS-type LBD, similar to the Aer of Escherichia coli and Pseudomonas aeruginosa. Aerotaxis ability by single and double mutant strains of aerA and aerB was weaker than that by wild-type Pta6605. On the other hand, another cytosolic PAS-type LBD containing MCP did not make a major contribution to Pta6605 aerotaxis in our assay system. Furthermore, mutations in aerotaxis transducer genes did not affect surface motility or chemotactic attraction to yeast extract. Single and double mutant strains of aerA and aerB showed less colonization in the early stage of host plant infection and lower biofilm production than wild-type Pta6605. These results demonstrate the presence of aerotaxis transducers and their contribution to host plant infection by Pta6605.
Collapse
Affiliation(s)
- Stephany Angelia Tumewu
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- The United Graduate School of Agricultural Science, Gifu University, 1–1 Yanagido, Gifu, Gifu 501–1193, Japan
| | - Yuta Watanabe
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
- Faculty of Agriculture, Okayama University, Tsushima-naka 1–1–1, Kita-ku, Okayama 700–8530, Japan
| |
Collapse
|
7
|
Vibrio cholerae's mysterious Seventh Pandemic island (VSP-II) encodes novel Zur-regulated zinc starvation genes involved in chemotaxis and cell congregation. PLoS Genet 2021; 17:e1009624. [PMID: 34153031 PMCID: PMC8248653 DOI: 10.1371/journal.pgen.1009624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/01/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a notorious diarrheal disease that is typically transmitted via contaminated drinking water. The current pandemic agent, the El Tor biotype, has undergone several genetic changes that include horizontal acquisition of two genomic islands (VSP-I and VSP-II). VSP presence strongly correlates with pandemicity; however, the contribution of these islands to V. cholerae's life cycle, particularly the 26-kb VSP-II, remains poorly understood. VSP-II-encoded genes are not expressed under standard laboratory conditions, suggesting that their induction requires an unknown signal from the host or environment. One signal that bacteria encounter under both host and environmental conditions is metal limitation. While studying V. cholerae's zinc-starvation response in vitro, we noticed that a mutant constitutively expressing zinc starvation genes (Δzur) congregates at the bottom of a culture tube when grown in a nutrient-poor medium. Using transposon mutagenesis, we found that flagellar motility, chemotaxis, and VSP-II encoded genes were required for congregation. The VSP-II genes encode an AraC-like transcriptional activator (VerA) and a methyl-accepting chemotaxis protein (AerB). Using RNA-seq and lacZ transcriptional reporters, we show that VerA is a novel Zur target and an activator of the nearby AerB chemoreceptor. AerB interfaces with the chemotaxis system to drive oxygen-dependent congregation and energy taxis. Importantly, this work suggests a functional link between VSP-II, zinc-starved environments, and energy taxis, yielding insights into the role of VSP-II in a metal-limited host or aquatic reservoir.
Collapse
|
8
|
Koeksoy E, Bezuidt OM, Bayer T, Chan CS, Emerson D. Zetaproteobacteria Pan-Genome Reveals Candidate Gene Cluster for Twisted Stalk Biosynthesis and Export. Front Microbiol 2021; 12:679409. [PMID: 34220764 PMCID: PMC8250860 DOI: 10.3389/fmicb.2021.679409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Twisted stalks are morphologically unique bacterial extracellular organo-metallic structures containing Fe(III) oxyhydroxides that are produced by microaerophilic Fe(II)-oxidizers belonging to the Betaproteobacteria and Zetaproteobacteria. Understanding the underlying genetic and physiological mechanisms of stalk formation is of great interest based on their potential as novel biogenic nanomaterials and their relevance as putative biomarkers for microbial Fe(II) oxidation on ancient Earth. Despite the recognition of these special biominerals for over 150 years, the genetic foundation for the stalk phenotype has remained unresolved. Here we present a candidate gene cluster for the biosynthesis and secretion of the stalk organic matrix that we identified with a trait-based analyses of a pan-genome comprising 16 Zetaproteobacteria isolate genomes. The “stalk formation in Zetaproteobacteria” (sfz) cluster comprises six genes (sfz1-sfz6), of which sfz1 and sfz2 were predicted with functions in exopolysaccharide synthesis, regulation, and export, sfz4 and sfz6 with functions in cell wall synthesis manipulation and carbohydrate hydrolysis, and sfz3 and sfz5 with unknown functions. The stalk-forming Betaproteobacteria Ferriphaselus R-1 and OYT-1, as well as dread-forming Zetaproteobacteria Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8 contain distant sfz gene homologs, whereas stalk-less Zetaproteobacteria and Betaproteobacteria lack the entire gene cluster. Our pan-genome analysis further revealed a significant enrichment of clusters of orthologous groups (COGs) across all Zetaproteobacteria isolate genomes that are associated with the regulation of a switch between sessile and motile growth controlled by the intracellular signaling molecule c-di-GMP. Potential interactions between stalk-former unique transcription factor genes, sfz genes, and c-di-GMP point toward a c-di-GMP regulated surface attachment function of stalks during sessile growth.
Collapse
Affiliation(s)
- Elif Koeksoy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States.,Leibniz Institute DSMZ (German Collection of Microorganisms and Cell Cultures), Braunschweig, Germany
| | - Oliver M Bezuidt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Timm Bayer
- Geomicrobiology Group, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States.,School of Marine Sciences and Policy, University of Delaware, Newark, DE, United States
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
9
|
Sun H, Song Y, Chen F, Zhou C, Liu P, Fan Y, Zheng Y, Wan X, Feng L. An ArcA-Modulated Small RNA in Pathogenic Escherichia coli K1. Front Microbiol 2020; 11:574833. [PMID: 33329434 PMCID: PMC7719688 DOI: 10.3389/fmicb.2020.574833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/23/2020] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli K1 is the leading cause of meningitis in newborns. Understanding the molecular basis of E. coli K1 pathogenicity will help develop treatment of meningitis and prevent neurological sequelae. E. coli K1 replicates in host blood and forms a high level of bacteremia to cause meningitis in human. However, the mechanisms that E. coli K1 employs to sense niche signals for survival in host blood are poorly understood. We identified one intergenic region in E. coli K1 genome that encodes a novel small RNA, sRNA-17. The expression of sRNA-17 was downregulated by ArcA in microaerophilic blood. The ΔsRNA-17 strain grew better in blood than did the wild-type strain and enhanced invasion frequency in human brain microvascular endothelial cells. Transcriptome analyses revealed that sRNA-17 regulates tens of differentially expressed genes. These data indicate that ArcA downregulates the sRNA-17 expression to benefit bacterial survival in blood and penetration of the blood-brain barrier. Our findings reveal a signaling mechanism in E. coli K1 for host adaptation.
Collapse
Affiliation(s)
- Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yajun Song
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| | - Changhong Zhou
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| | - Peng Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| | - Yu Fan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| | - Yangyang Zheng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xuehua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| | - Lu Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Arrebola E, Cazorla FM. Aer Receptors Influence the Pseudomonas chlororaphis PCL1606 Lifestyle. Front Microbiol 2020; 11:1560. [PMID: 32754135 PMCID: PMC7367214 DOI: 10.3389/fmicb.2020.01560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas chlororaphis PCL1606 (PcPCL1606) is a rhizobacterium isolated from avocado roots, which is a favorable niche for its development. This strain extensively interacts with plant roots and surrounding microbes and is considered a biocontrol rhizobacterium. Genome sequencing has shown the presence of thirty-one potential methyl-accepting chemotaxis proteins (MCPs). Among these MCPs, two candidates are putative functional aerotaxis receptors, encoded at locus PCL1606_41090 (aer1-1) and locus PLC1606_20530 (aer1-2), that are homologous to the Aer receptor of Pseudomonas aeruginosa strain PaO1. Single- and double-deletion mutants in one or both genes have led to motility deficiencies in oxygen-rich areas, particularly reduced swimming motility compared with that of wildtype PcPCL1606. No differences in swarming tests were detected, and less adhesion by the aer double mutant was observed. However, the single and double mutants on avocado plant roots showed delayed biocontrol ability. During the first days of the biocontrol experiment, the aer-defective mutants also showed delayed root colonization. The current research characterizes the presence of aer transductors on P. chlororaphis. Thus, the functions of the PCL1606_41090 and PCL1606_20530 loci, corresponding to genes aer1-1 and aer1-2, respectively, are elucidated.
Collapse
Affiliation(s)
- Eva Arrebola
- Departamento de Microbiología, Faculta de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Faculta de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| |
Collapse
|
11
|
Cheng L, Min D, Liu DF, Li WW, Yu HQ. Sensing and Approaching Toxic Arsenate by Shewanella putrefaciens CN-32. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14604-14611. [PMID: 31747260 DOI: 10.1021/acs.est.9b05890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although arsenic at a high concentration imposes strong selective pressure on microbes, various microbes have been found to grow in As-rich environments. So far, little is known about how microbes can sense and move toward arsenate in the environment, and the underlying molecular mechanisms have not been revealed. Here, we report the chemotaxis response toward arsenate (As(V)) by Shewanella putrefaciens CN-32, a model dissimilatory metal-reducing bacterium (DMRB), and elucidate the mechanisms. We find that S. putrefaciens CN-32 exhibits a chemotactic behavior toward As(V) and diverse electron acceptors. To sense As(V), S. putrefaciens CN-32 requires functional arsenate respiratory reductase but does not depend on its metal-reducing-like respiratory pathway. We observe that such a sense is governed by an energy taxis mechanism and mediated by several methyl-accepting chemotaxis proteins (MCPs), rather than a specific MCP. Moreover, we reveal that the chemotactic signal transduction pathway is conserved in Shewanella, and histidine kinase and flagella-mediated motility are essential for taxis toward As(V). This work reverses the conventional view about arsenic as a chemotactic inhibitor to microbes by revealing the positive chemotaxis of Shewanella to As(V).
Collapse
|
12
|
O'Neal L, Akhter S, Alexandre G. A PilZ-Containing Chemotaxis Receptor Mediates Oxygen and Wheat Root Sensing in Azospirillum brasilense. Front Microbiol 2019; 10:312. [PMID: 30881352 PMCID: PMC6406031 DOI: 10.3389/fmicb.2019.00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/05/2019] [Indexed: 01/14/2023] Open
Abstract
Chemotactic bacteria sense environmental changes via dedicated receptors that bind to extra- or intracellular cues and relay this signal to ultimately alter direction of movement toward beneficial cues and away from harmful environments. In complex environments, such as the rhizosphere, bacteria must be able to sense and integrate diverse cues. Azospirillum brasilense is a microaerophilic motile bacterium that promotes growth of cereals and grains. Root surface colonization is a prerequisite for the beneficial effects on plant growth but how motile A. brasilense navigates the rhizosphere is poorly studied. Previously only 2 out of 51 A. brasilense chemotaxis receptors have been characterized, AerC and Tlp1, and only Tlp1 was found to be essential for wheat root colonization. Here we describe another chemotaxis receptor, named Aer, that is homologous to the Escherichia coli Aer receptor, likely possesses an FAD cofactor and is involved in aerotaxis (taxis in an air gradient). We also found that the A. brasilense Aer contributes to sensing chemical gradients originating from wheat roots. In addition to A. brasilense Aer having a putative N-terminal FAD-binding PAS domain, it possesses a C-terminal PilZ domain that contains all the conserved residues for binding c-di-GMP. Mutants lacking the PilZ domain of Aer are altered in aerotaxis and are completely null in wheat root colonization and they also fail to sense gradients originating from wheat roots. The PilZ domain of Aer is also vital in integrating Aer signaling with signaling from other chemotaxis receptors to sense gradients from wheat root surfaces and colonizing wheat root surfaces.
Collapse
Affiliation(s)
- Lindsey O'Neal
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shehroze Akhter
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Gladys Alexandre
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
13
|
Liu Y, Munteanu CR, Kong Z, Ran T, Sahagún-Ruiz A, He Z, Zhou C, Tan Z. Identification of coenzyme-binding proteins with machine learning algorithms. Comput Biol Chem 2019; 79:185-192. [PMID: 30851647 DOI: 10.1016/j.compbiolchem.2019.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/11/2018] [Accepted: 01/25/2019] [Indexed: 01/12/2023]
Abstract
The coenzyme-binding proteins play a vital role in the cellular metabolism processes, such as fatty acid biosynthesis, enzyme and gene regulation, lipid synthesis, particular vesicular traffic, and β-oxidation donation of acyl-CoA esters. Based on the theory of Star Graph Topological Indices (SGTIs) of protein primary sequences, we proposed a method to develop a first classification model for predicting protein with coenzyme-binding properties. To simulate the properties of coenzyme-binding proteins, we created a dataset containing 2897 proteins, among 456 proteins functioned as coenzyme-binding activity. The SGTIs of peptide sequence were calculated with Sequence to Star Network (S2SNet) application. We used the SGTIs as inputs to several classification techniques with a machine learning software - Weka. A Random Forest classifier based on 3 features of the embedded and non-embedded graphs was identified as the best predictive model for coenzyme-binding proteins. This model developed was with the true positive (TP) rate of 91.7%, false positive (FP) rate of 7.6%, and Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.971. The prediction of new coenzyme-binding activity proteins using this model could be useful for further drug development or enzyme metabolism researches.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain; Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña, 15006, Spain
| | - Zhiwei Kong
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tao Ran
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada
| | - Alfredo Sahagún-Ruiz
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Animal Science, National Autonomous University of Mexico, Universidad 3000, Copilco Coyoacán, CP 04510, México D.F., Mexico
| | - Zhixiong He
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China.
| | - Chuanshe Zhou
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, 410128, PR China
| |
Collapse
|
14
|
A zipped-helix cap potentiates HAMP domain control of chemoreceptor signaling. Proc Natl Acad Sci U S A 2018; 115:E3519-E3528. [PMID: 29581254 DOI: 10.1073/pnas.1721554115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Environmental awareness is an essential attribute for all organisms. The chemotaxis system of Escherichia coli provides a powerful experimental model for the investigation of stimulus detection and signaling mechanisms at the molecular level. These bacteria sense chemical gradients with transmembrane proteins [methyl-accepting chemotaxis proteins (MCPs)] that have an extracellular ligand-binding domain and intracellular histidine kinases, adenylate cyclases, methyl-accepting proteins, and phosphatases (HAMP) and signaling domains that govern locomotor behavior. HAMP domains are versatile input-output elements that operate in a variety of bacterial signaling proteins, including the sensor kinases of two-component regulatory systems. The MCP HAMP domain receives stimulus information and in turn modulates output signaling activity. This study describes mutants of the Escherichia coli serine chemoreceptor, Tsr, that identify a heptad-repeat structural motif (LLF) at the membrane-proximal end of the receptor signaling domain that is critical for HAMP output control. The homodimeric Tsr signaling domain is an extended, antiparallel, four-helix bundle that controls the activity of an associated kinase. The N terminus of each subunit adjoins the HAMP domain; the LLF residues lie at the C terminus of the methylation-helix bundle. We found, by using in vivo Förster resonance energy transfer kinase assays, that most amino acid replacements at any of the LLF residues abrogate chemotactic responses to serine and lock Tsr output in a kinase-active state, impervious to HAMP-mediated down-regulation. We present evidence that the LLF residues may function like a leucine zipper to promote stable association of the C-terminal signaling helices, thereby creating a metastable helix-packing platform for the N-terminal signaling helices that facilitates conformational control by the HAMP domains in MCP-family chemoreceptors.
Collapse
|
15
|
Huang L, Wang L, Lin X, Su Y, Qin Y, Kong W, Zhao L, Xu X, Yan Q. mcp, aer, cheB, and cheV contribute to the regulation of Vibrio alginolyticus (ND-01) adhesion under gradients of environmental factors. Microbiologyopen 2017; 6:e00517. [PMID: 28744982 PMCID: PMC5727358 DOI: 10.1002/mbo3.517] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/13/2017] [Indexed: 12/25/2022] Open
Abstract
Adhesion is a key virulence factor of pathogens and can be affected by the environment. Our previously research with RNA-seq indicated that mcp, aer, cheB, and cheV might play roles in the regulation of adhesion in Vibrio alginolyticus (ND-01). In order to determine whether and how environmental factors affect adhesion through these genes, gene silencing was performed followed by quantitative real-time PCR (qRT-PCR), RNAi, transmission electron microscopy, and adhesion, capillary, and motility assays to verify how these genes influence adhesion. Silencing these genes led to deficiencies in adhesion, chemotaxis, flagellar assembly, and motility. The expression levels of cheA, cheW, and cheY, which are important genes closely related to the functions of mcp, aer, cheV, and cheB, were significantly downregulated in all of the RNAi groups. The expression of mcp, aer, cheV, and cheB under different gradients of temperature, pH, and salinity and after starvation for various durations was also detected, which showed that these genes were sensitive to certain environmental stresses, particularly pH and starvation. Our results indicated that mcp, aer, cheB, and cheV: (1) are necessary for ND-01 adhesion; (2) play key roles in the bacterial chemotaxis pathway by controlling the expression of downstream genes; (3) might affect adhesion by impacting motility, though motility is not the only route through which adhesion is affected; and (4) contribute to the regulation of ND-01 adhesion in natural environments with different temperatures, pH levels, and salinities as well as after various starvation periods.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Lu Wang
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Xiangzhi Lin
- Third Institute of OceanographyState Oceanic AdministrationXiamenFujianChina
| | - Yongquan Su
- College of Ocean & Earth SciencesXiamen UniversityXiamenFujianChina
| | - Yingxue Qin
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Wendi Kong
- Third Institute of OceanographyState Oceanic AdministrationXiamenFujianChina
| | - Lingmin Zhao
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Xiaojin Xu
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Qingpi Yan
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| |
Collapse
|
16
|
Sporer AJ, Kahl LJ, Price-Whelan A, Dietrich LE. Redox-Based Regulation of Bacterial Development and Behavior. Annu Rev Biochem 2017; 86:777-797. [DOI: 10.1146/annurev-biochem-061516-044453] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abigail J. Sporer
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Lisa J. Kahl
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
17
|
Menolascina F, Rusconi R, Fernandez VI, Smriga S, Aminzare Z, Sontag ED, Stocker R. Logarithmic sensing in Bacillus subtilis aerotaxis. NPJ Syst Biol Appl 2017; 3:16036. [PMID: 28725484 PMCID: PMC5516866 DOI: 10.1038/npjsba.2016.36] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/13/2016] [Accepted: 10/05/2016] [Indexed: 11/09/2022] Open
Abstract
Aerotaxis, the directed migration along oxygen gradients, allows many microorganisms to locate favorable oxygen concentrations. Despite oxygen's fundamental role for life, even key aspects of aerotaxis remain poorly understood. In Bacillus subtilis, for example, there is conflicting evidence of whether migration occurs to the maximal oxygen concentration available or to an optimal intermediate one, and how aerotaxis can be maintained over a broad range of conditions. Using precisely controlled oxygen gradients in a microfluidic device, spanning the full spectrum of conditions from quasi-anoxic to oxic (60 n mol/l-1 m mol/l), we resolved B. subtilis' 'oxygen preference conundrum' by demonstrating consistent migration towards maximum oxygen concentrations ('monotonic aerotaxis'). Surprisingly, the strength of aerotaxis was largely unchanged over three decades in oxygen concentration (131 n mol/l-196 μ mol/l). We discovered that in this range B. subtilis responds to the logarithm of the oxygen concentration gradient, a rescaling strategy called 'log-sensing' that affords organisms high sensitivity over a wide range of conditions. In these experiments, high-throughput single-cell imaging yielded the best signal-to-noise ratio of any microbial taxis study to date, enabling the robust identification of the first mathematical model for aerotaxis among a broad class of alternative models. The model passed the stringent test of predicting the transient aerotactic response despite being developed on steady-state data, and quantitatively captures both monotonic aerotaxis and log-sensing. Taken together, these results shed new light on the oxygen-seeking capabilities of B. subtilis and provide a blueprint for the quantitative investigation of the many other forms of microbial taxis.
Collapse
Affiliation(s)
- Filippo Menolascina
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Scotland, UK.,SynthSys-Centre for Synthetic and Systems Biology, The University of Edinburgh, Scotland, UK
| | - Roberto Rusconi
- Ralph M Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Zurich, Switzerland
| | - Vicente I Fernandez
- Ralph M Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Zurich, Switzerland
| | - Steven Smriga
- Ralph M Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Zurich, Switzerland
| | - Zahra Aminzare
- The Program in Applied and Computational Mathematics, Princeton, NJ, USA
| | - Eduardo D Sontag
- Department of Mathematics, Hill Center Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Roman Stocker
- Ralph M Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Zurich, Switzerland
| |
Collapse
|
18
|
Samanta D, Widom J, Borbat PP, Freed JH, Crane BR. Bacterial Energy Sensor Aer Modulates the Activity of the Chemotaxis Kinase CheA Based on the Redox State of the Flavin Cofactor. J Biol Chem 2016; 291:25809-25814. [PMID: 27803157 DOI: 10.1074/jbc.c116.757492] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
Flagellated bacteria modulate their swimming behavior in response to environmental cues through the CheA/CheY signaling pathway. In addition to responding to external chemicals, bacteria also monitor internal conditions that reflect the availability of oxygen, light, and reducing equivalents, in a process termed "energy taxis." In Escherichia coli, the transmembrane receptor Aer is the primary energy sensor for motility. Genetic and physiological data suggest that Aer monitors the electron transport chain through the redox state of its FAD cofactor. However, direct biochemical data correlating FAD redox chemistry with CheA kinase activity have been lacking. Here, we test this hypothesis via functional reconstitution of Aer into nanodiscs. As purified, Aer contains fully oxidized FAD, which can be chemically reduced to the anionic semiquinone (ASQ). Oxidized Aer activates CheA, whereas ASQ Aer reversibly inhibits CheA. Under these conditions, Aer cannot be further reduced to the hydroquinone, in contrast to the proposed Aer signaling model. Pulse ESR spectroscopy of the ASQ corroborates a potential mechanism for signaling in that the resulting distance between the two flavin-binding PAS (Per-Arnt-Sim) domains implies that they tightly sandwich the signal-transducing HAMP domain in the kinase-off state. Aer appears to follow oligomerization patterns observed for related chemoreceptors, as higher loading of Aer dimers into nanodiscs increases kinase activity. These results provide a new methodological platform to study Aer function along with new mechanistic details into its signal transduction process.
Collapse
Affiliation(s)
- Dipanjan Samanta
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and.,the National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca, New York 14853
| | - Joanne Widom
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and
| | - Peter P Borbat
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and.,the National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca, New York 14853
| | - Jack H Freed
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and.,the National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca, New York 14853
| | - Brian R Crane
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and
| |
Collapse
|
19
|
A Chemotaxis Receptor Modulates Nodulation during the Azorhizobium caulinodans-Sesbania rostrata Symbiosis. Appl Environ Microbiol 2016; 82:3174-84. [PMID: 26994081 DOI: 10.1128/aem.00230-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/14/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Azorhizobium caulinodans ORS571 is a free-living nitrogen-fixing bacterium which can induce nitrogen-fixing nodules both on the root and the stem of its legume host Sesbania rostrata This bacterium, which is an obligate aerobe that moves by means of a polar flagellum, possesses a single chemotaxis signal transduction pathway. The objective of this work was to examine the role that chemotaxis and aerotaxis play in the lifestyle of the bacterium in free-living and symbiotic conditions. In bacterial chemotaxis, chemoreceptors sense environmental changes and transmit this information to the chemotactic machinery to guide motile bacteria to preferred niches. Here, we characterized a chemoreceptor of A. caulinodans containing an N-terminal PAS domain, named IcpB. IcpB is a soluble heme-binding protein that localized at the cell poles. An icpB mutant strain was impaired in sensing oxygen gradients and in chemotaxis response to organic acids. Compared to the wild-type strain, the icpB mutant strain was also affected in the production of extracellular polysaccharides and impaired in flocculation. When inoculated alone, the icpB mutant induced nodules on S. rostrata, but the nodules formed were smaller and had reduced N2-fixing activity. The icpB mutant failed to nodulate its host when inoculated competitively with the wild-type strain. Together, the results identify chemotaxis and sensing of oxygen by IcpB as key regulators of the A. caulinodans-S. rostrata symbiosis. IMPORTANCE Bacterial chemotaxis has been implicated in the establishment of various plant-microbe associations, including that of rhizobial symbionts with their legume host. The exact signal(s) detected by the motile bacteria that guide them to their plant hosts remain poorly characterized. Azorhizobium caulinodans ORS571 is a diazotroph that is a motile and chemotactic rhizobial symbiont of Sesbania rostrata, where it forms nitrogen-fixing nodules on both the roots and the stems of the legume host. We identify here a chemotaxis receptor sensing oxygen in A. caulinodans that is critical for nodulation and nitrogen fixation on the stems and roots of S. rostrata These results identify oxygen sensing and chemotaxis as key regulators of the A. caulinodans-S. rostrata symbiosis.
Collapse
|
20
|
Characterization of PAS domains in Frankia and selected Actinobacteria and their possible interaction with other co-domains for environmental adaptation. Symbiosis 2016. [DOI: 10.1007/s13199-016-0413-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Garcia D, Watts KJ, Johnson MS, Taylor BL. Delineating PAS-HAMP interaction surfaces and signalling-associated changes in the aerotaxis receptor Aer. Mol Microbiol 2016; 100:156-72. [PMID: 26713609 DOI: 10.1111/mmi.13308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2015] [Indexed: 11/27/2022]
Abstract
The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and redox potential via FAD bound to a cytosolic PAS domain. Here, we show that Aer-PAS controls aerotaxis through direct, lateral interactions with a HAMP domain. This contrasts with most chemoreceptors where signals propagate along the protein backbone from an N-terminal sensor to HAMP. We mapped the interaction surfaces of the Aer PAS, HAMP and proximal signalling domains in the kinase-off state by probing the solvent accessibility of 129 cysteine substitutions. Inaccessible PAS-HAMP surfaces overlapped with a cluster of PAS kinase-on lesions and with cysteine substitutions that crosslinked the PAS β-scaffold to the HAMP AS-2 helix. A refined Aer PAS-HAMP interaction model is presented. Compared to the kinase-off state, the kinase-on state increased the accessibility of HAMP residues (apparently relaxing PAS-HAMP interactions), but decreased the accessibility of proximal signalling domain residues. These data are consistent with an alternating static-dynamic model in which oxidized Aer-PAS interacts directly with HAMP AS-2, enforcing a static HAMP domain that in turn promotes a dynamic proximal signalling domain, resulting in a kinase-off output. When PAS-FAD is reduced, PAS interaction with HAMP is relaxed and a dynamic HAMP and static proximal signalling domain convey a kinase-on output.
Collapse
Affiliation(s)
- Darysbel Garcia
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Mark S Johnson
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Barry L Taylor
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| |
Collapse
|
22
|
Huang L, Hu J, Su Y, Qin Y, Kong W, Ma Y, Xu X, Lin M, Yan Q. Identification and characterization of three Vibrio alginolyticus non-coding RNAs involved in adhesion, chemotaxis, and motility processes. Front Cell Infect Microbiol 2015; 5:56. [PMID: 26217589 PMCID: PMC4498440 DOI: 10.3389/fcimb.2015.00056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/26/2015] [Indexed: 11/30/2022] Open
Abstract
The capability of Vibrio alginolyticus to adhere to fish mucus is a key virulence factor of the bacteria. Our previous research showed that stress conditions, such as Cu(2+), Pb(2+), Hg(2+), and low pH, can reduce this adhesion ability. Non-coding (nc) RNAs play a crucial role in regulating bacterial gene expression, affecting the bacteria's pathogenicity. To investigate the mechanism(s) underlying the decline in adhesion ability caused by stressors, we combined high-throughput sequencing with computational techniques to detect stressed ncRNA dynamics. These approaches yielded three commonly altered ncRNAs that are predicted to regulate the bacterial chemotaxis pathway, which plays a key role in the adhesion process of bacteria. We hypothesized they play a key role in the adhesion process of V. alginolyticus. In this study, we validated the effects of these three ncRNAs on their predicted target genes and their role in the V. alginolyticus adhesion process with RNA interference (i), quantitative real-time polymerase chain reaction (qPCR), northern blot, capillary assay, and in vitro adhesion assays. The expression of these ncRNAs and their predicted target genes were confirmed by qPCR and northern blot, which reinforced the reliability of the sequencing data and the target prediction. Overexpression of these ncRNAs was capable of reducing the chemotactic and adhesion ability of V. alginolyticus, and the expression levels of their target genes were also significantly reduced. Our results indicated that these three ncRNAs: (1) are able to regulate the bacterial chemotaxis pathway, and (2) play a key role in the adhesion process of V. alginolyticus.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Jiao Hu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Wendi Kong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Ying Ma
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| |
Collapse
|
23
|
de Azevedo LV, Acosta-Avalos D. Photokinesis is magnetic field dependent in the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis. Antonie van Leeuwenhoek 2015; 108:579-85. [PMID: 26108495 DOI: 10.1007/s10482-015-0513-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/17/2015] [Indexed: 12/01/2022]
Abstract
Candidatus Magnetoglobus multicellularis is a spherical, multicellular, magnetotactic prokaryote (MMP) composed of 10-40 genetically-identical, Gram-negative cells. It is known that monochromatic light of low intensity influences its average swimming velocity, being higher for red light (628 nm) and lower for green light (517 nm). In this study, we determined the effect of light of different wavelengths and intensities on the swimming velocity of Ca. Magnetoglobus multicellularis under different magnetic field intensities. The swimming velocities of several organisms exposed to blue light (469 nm), green light (517 nm) and red light (628 nm) with intensities ranging from 0.36 to 3.68 Wm(-2) were recorded under magnetic field intensities ranging from 0.26 to 1.47 Oe. Our results showed that MMPs exposed to green light display consistently lower average swimming velocities compared to other wavelengths of light. We also show for the first time that photokinesis in Ca. Magnetoglobus multicellularis is dependent on the magnetic field being applied. The relationship between light wavelength and intensity and magnetic field strength and swimming velocity in this MMP is therefore complex. Although the mechanism for the observed behaviour is not completely understood, a flavin-containing chromophore may be involved.
Collapse
Affiliation(s)
- Lyvia Vidinho de Azevedo
- Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Xavier Sigaud 150, Urca, RJ, 22250-180, Brazil
| | | |
Collapse
|
24
|
Metabolism Dependent Chemotaxis of Pseudomonas aeruginosa N1 Towards Anionic Detergent Sodium Dodecyl Sulfate. Indian J Microbiol 2014; 54:134-8. [PMID: 25320412 DOI: 10.1007/s12088-013-0426-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 09/09/2013] [Indexed: 10/26/2022] Open
Abstract
Sodium dodecyl sulfate (SDS) is one of the most commonly used detergent, which exhibits excellent biocidal activity against various bacteria and fungi. It is commonly employed in many detergent formulations and is employed for disinfection purposes. It is shown to be toxic to fishes, aquatic animals and is also inhibitory to microbes and cyanobacteria. We had isolated a strain belonging to Pseudomonas aeruginosa N1, from a detergent contaminated pond situated in Varanasi city India, which was able to degrade and metabolize SDS as a source of carbon. In the present investigation, we have studied chemotactic response of this strain towards SDS. The results clearly indicate that this strain showed chemotactic response towards SDS. The nature of chemotaxis was found to be metabolism dependent as glucose grown cells showed a delayed chemotactic response towards SDS. This is first study that reported chemotaxis response for P. aeruginosa towards anionic detergent SDS.
Collapse
|
25
|
Lacey M, Agasing A, Lowry R, Green J. Identification of the YfgF MASE1 domain as a modulator of bacterial responses to aspartate. Open Biol 2013; 3:130046. [PMID: 23740576 PMCID: PMC3718329 DOI: 10.1098/rsob.130046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Complex 3′-5′-cyclic diguanylic acid (c-di-GMP) responsive regulatory networks that are modulated by the action of multiple diguanylate cyclases (DGC; GGDEF domain proteins) and phosphodiesterases (PDE; EAL domain proteins) have evolved in many bacteria. YfgF proteins possess a membrane-anchoring domain (MASE1), a catalytically inactive GGDEF domain and a catalytically active EAL domain. Here, sustained expression of the Salmonella enterica spp. Enterica ser. Enteritidis YfgF protein is shown to mediate inhibition of the formation of the aspartate chemotactic ring on motility agar under aerobic conditions. This phenomenon was c-di-GMP-independent because it occurred in a Salmonella strain that lacked the ability to synthesize c-di-GMP and also when PDE activity was abolished by site-directed mutagenesis of the EAL domain. YfgF-mediated inhibition of aspartate chemotactic ring formation was impaired in the altered redox environment generated by exogenous p-benzoquinone. This ability of YfgF to inhibit the response to aspartate required a motif, 213Lys-Lys-Glu215, in the predicted cytoplasmic loop between trans-membrane regions 5 and 6 of the MASE1 domain. Thus, for the first time the function of a MASE1 domain as a redox-responsive regulator of bacterial responses to aspartate has been shown.
Collapse
Affiliation(s)
- Melissa Lacey
- Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | |
Collapse
|
26
|
Airola MV, Huh D, Sukomon N, Widom J, Sircar R, Borbat PP, Freed JH, Watts KJ, Crane BR. Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 2013; 425:886-901. [PMID: 23274111 PMCID: PMC3577987 DOI: 10.1016/j.jmb.2012.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/24/2023]
Abstract
Bacterial receptors typically contain modular architectures with distinct functional domains that combine to send signals in response to stimuli. Although the properties of individual components have been investigated in many contexts, there is little information about how diverse sets of modules work together in full-length receptors. Here, we investigate the architecture of Aer2, a soluble gas-sensing receptor that has emerged as a model for PAS (Per-Arnt-Sim) and poly-HAMP (histidine kinase-adenylyl cyclase-methyl-accepting chemotaxis protein-phosphatase) domain signaling. The crystal structure of the heme-binding PAS domain in the ferric, ligand-free form, in comparison to the previously determined cyanide-bound state, identifies conformational changes induced by ligand binding that are likely essential for the signaling mechanism. Heme-pocket alternations share some similarities with the heme-based PAS sensors FixL and EcDOS but propagate to the Iβ strand in a manner predicted to alter PAS-PAS associations and the downstream HAMP junction within full-length Aer2. Small-angle X-ray scattering of PAS and poly-HAMP domain fragments of increasing complexity allow unambiguous domain assignments and reveal a linear quaternary structure. The Aer2 PAS dimeric crystal structure fits well within ab initio small-angle X-ray scattering molecular envelopes, and pulsed dipolar ESR measurements of inter-PAS distances confirm the crystallographic PAS arrangement within Aer2. Spectroscopic and pull-down assays fail to detect direct interactions between the PAS and HAMP domains. Overall, the Aer2 signaling mechanism differs from the Escherichia coli Aer paradigm, where side-on PAS-HAMP contacts are key. We propose an in-line model for Aer2 signaling, where ligand binding induces alterations in PAS domain structure and subunit association that is relayed through the poly-HAMP junction to downstream domains.
Collapse
Affiliation(s)
- Michael V. Airola
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Doowon Huh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nattakan Sukomon
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ria Sircar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Advanced ESR Studies, Cornell University, Ithaca, NY 14853, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Advanced ESR Studies, Cornell University, Ithaca, NY 14853, USA
| | - Kylie J. Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Lassak K, Peeters E, Wróbel S, Albers SV. The one-component system ArnR: a membrane-bound activator of the crenarchaeal archaellum. Mol Microbiol 2013; 88:125-39. [PMID: 23461567 DOI: 10.1111/mmi.12173] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
Abstract
Linking the motility apparatus to signal transduction systems enables microbes to precisely control their swimming behaviour according to environmental conditions. Bacteria have therefore evolved a complex chemotaxis machinery, which has presumably spread through lateral gene transfer into the euryarchaeal subkingdom. By contrast Crenarchaeota encode no chemotaxis-like proteins but are nevertheless able to connect external stimuli to archaellar derived motility. This raises fundamental questions about the underlying regulatory mechanisms. Recently, we reported that the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius becomes motile upon nutrient starvation by promoting transcription of flaB encoding the filament forming subunits. Here we describe two transcriptional activators as paralogous one-component-systems Saci_1180 and Saci_1171 (ArnR and ArnR1). Deletions of arnR and arnR1 resulted in diminished flaB expression and accordingly the deletion mutants revealed impaired swimming motility. We further identified two inverted repeat sequences located upstream of the flaB core promoter of S. acidocaldarius. These cis-regulatory elements were shown to be critical for ArnR and ArnR1 mediated flaB gene expression in vivo. Finally, bioinformatic analysis revealed ArnR to be conserved not only in Sulfolobales but also in the crenarchaeal order of Desulfurococcales and thus might represent a more general control mechanism of archaeal motility.
Collapse
Affiliation(s)
- Kerstin Lassak
- Molecular Biology of Archaea, Max Planck Institute for terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | | | | | | |
Collapse
|
28
|
Foley RC, Gleason CA, Anderson JP, Hamann T, Singh KB. Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases. PLoS One 2013; 8:e56814. [PMID: 23451091 PMCID: PMC3581538 DOI: 10.1371/journal.pone.0056814] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
Rhizoctonia solani is an important soil-borne necrotrophic fungal pathogen, with a broad host range and little effective resistance in crop plants. Arabidopsis is resistant to R. solani AG8 but susceptible to R. solani AG2-1. A screen of 36 Arabidopsis ecotypes and mutants affected in the auxin, camalexin, salicylic acid, abscisic acid and ethylene/jasmonic acid pathways did not reveal any variation in response to R. solani and demonstrated that resistance to AG8 was independent of these defense pathways. The Arabidopsis Affymetrix ATH1 Genome array was used to assess global gene expression changes in plants infected with AG8 and AG2-1 at seven days post-infection. While there was considerable overlap in the response, some gene families were differentially affected by AG8 or AG2-1 and included those involved in oxidative stress, cell wall associated proteins, transcription factors and heat shock protein genes. Since a substantial proportion of the gene expression changes were associated with oxidative stress responses, we analysed the role of NADPH oxidases in resistance. While single NADPH oxidase mutants had no effect, a NADPH oxidase double mutant atrbohf atrbohd resulted in an almost complete loss of resistance to AG8, suggesting that reactive oxidative species play an important role in Arabidopsis's resistance to R. solani.
Collapse
Affiliation(s)
- Rhonda C. Foley
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Perth, Western Australia, Australia
| | - Cynthia A. Gleason
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Perth, Western Australia, Australia
| | - Jonathan P. Anderson
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Perth, Western Australia, Australia
- The University of Western Australia Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - Thorsten Hamann
- Division of Biology, Imperial College London, London, United Kingdom
| | - Karam B. Singh
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Perth, Western Australia, Australia
- The University of Western Australia Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
29
|
Rivera-Chávez F, Winter SE, Lopez CA, Xavier MN, Winter MG, Nuccio SP, Russell JM, Laughlin RC, Lawhon SD, Sterzenbach T, Bevins CL, Tsolis RM, Harshey R, Adams LG, Bäumler AJ. Salmonella uses energy taxis to benefit from intestinal inflammation. PLoS Pathog 2013; 9:e1003267. [PMID: 23637594 PMCID: PMC3630101 DOI: 10.1371/journal.ppat.1003267] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 02/08/2013] [Indexed: 01/18/2023] Open
Abstract
Chemotaxis enhances the fitness of Salmonella enterica serotype Typhimurium (S. Typhimurium) during colitis. However, the chemotaxis receptors conferring this fitness advantage and their cognate signals generated during inflammation remain unknown. Here we identify respiratory electron acceptors that are generated in the intestinal lumen as by-products of the host inflammatory response as in vivo signals for methyl-accepting chemotaxis proteins (MCPs). Three MCPs, including Trg, Tsr and Aer, enhanced the fitness of S. Typhimurium in a mouse colitis model. Aer mediated chemotaxis towards electron acceptors (energy taxis) in vitro and required tetrathionate respiration to confer a fitness advantage in vivo. Tsr mediated energy taxis towards nitrate but not towards tetrathionate in vitro and required nitrate respiration to confer a fitness advantage in vivo. These data suggest that the energy taxis receptors Tsr and Aer respond to distinct in vivo signals to confer a fitness advantage upon S. Typhimurium during inflammation by enabling this facultative anaerobic pathogen to seek out favorable spatial niches containing host-derived electron acceptors that boost its luminal growth.
Collapse
Affiliation(s)
- Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Sebastian E. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Christopher A. Lopez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Mariana N. Xavier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Joseph M. Russell
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Richard C. Laughlin
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Torsten Sterzenbach
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Charles L. Bevins
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Rasika Harshey
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Adler M, Erickstad M, Gutierrez E, Groisman A. Studies of bacterial aerotaxis in a microfluidic device. LAB ON A CHIP 2012; 12:4835-47. [PMID: 23010909 PMCID: PMC3520485 DOI: 10.1039/c2lc21006a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aerotaxis, the directional motion of bacteria in gradients of oxygen, was discovered in the late 19th century and has since been reported in a variety of bacterial species. Nevertheless, quantitative studies of aerotaxis have been complicated by the lack of tools for generation of stable gradients of oxygen concentration, [O(2)]. Here we report a series of experiments on aerotaxis of Escherichia coli in a specially built experimental setup consisting of a computer-controlled gas mixer and a two-layer microfluidic device made of polydimethylsiloxane (PDMS). The setup enables generation of a variety of stable linear profiles of [O(2)] across a long gradient channel, with characteristic [O(2)] ranging from aerobic to microaerobic conditions. A suspension of E. coli cells is perfused through the gradient channel at a low speed, allowing cells enough time to explore the [O(2)] gradient, and the distribution of cells across the gradient channel is analyzed near the channel outlet at a throughput of >10(5) cells per hour. Aerotaxis experiments are performed in [O(2)] gradients with identical logarithmic slopes and varying mean concentrations, as well as in gradients with identical mean concentrations and varying slopes. Experiments in gradients with [O(2)] ranging from 0 to ~11.5% indicate that, in contrast to some previous reports, E. coli cells do not congregate at some intermediate level of [O(2)], but rather prefer the highest accessible [O(2)]. The presented technology can be applied to studies of aerotaxis of other aerobic and microaerobic bacteria.
Collapse
Affiliation(s)
- Micha Adler
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
| | - Michael Erickstad
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
| | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
| | - Alex Groisman
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA, 92093, USA
- Corresponding author,
| |
Collapse
|
31
|
Shewanella oneidensis MR-1 chemotaxis proteins and electron-transport chain components essential for congregation near insoluble electron acceptors. Biochem Soc Trans 2012; 40:1167-77. [DOI: 10.1042/bst20120232] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Shewanella oneidensis MR-1 cells utilize a behaviour response called electrokinesis to increase their speed in the vicinity of IEAs (insoluble electron acceptors), including manganese oxides, iron oxides and poised electrodes [Harris, El-Naggar, Bretschger, Ward, Romine, Obraztsova and Nealson (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 326–331]. However, it is not currently understood how bacteria remain in the vicinity of the IEA and accumulate both on the surface and in the surrounding medium. In the present paper, we provide results indicating that cells that have contacted the IEAs swim faster than those that have not recently made contact. In addition, fast-swimming cells exhibit an enhancement of swimming reversals leading to rapid non-random accumulation of cells on, and adjacent to, mineral particles. We call the observed accumulation near IEAs ‘congregation’. Congregation is eliminated by the loss of a critical gene involved with EET (extracellular electron transport) (cymA, SO_4591) and is altered or eliminated in several deletion mutants of homologues of genes that are involved with chemotaxis or energy taxis in Escherichia coli. These genes include chemotactic signal transduction protein (cheA-3, SO_3207), methyl-accepting chemotaxis proteins with the Cache domain (mcp_cache, SO_2240) or the PAS (Per/Arnt/Sim) domain (mcp_pas, SO_1385). In the present paper, we report studies of S. oneidensis MR-1 that lend some insight into how microbes in this group can ‘sense’ the presence of a solid substrate such as a mineral surface, and maintain themselves in the vicinity of the mineral (i.e. via congregation), which may ultimately lead to attachment and biofilm formation.
Collapse
|
32
|
Sawai H, Sugimoto H, Shiro Y, Ishikawa H, Mizutani Y, Aono S. Structural basis for oxygen sensing and signal transduction of the heme-based sensor protein Aer2 from Pseudomonas aeruginosa. Chem Commun (Camb) 2012; 48:6523-5. [DOI: 10.1039/c2cc32549g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Abstract
Per-Arnt-Sim (PAS) domains occur in proteins from all kingdoms of life. In the bacterial kingdom, PAS domains are commonly positioned at the amino terminus of signaling proteins such as sensor histidine kinases, cyclic-di-GMP synthases/hydrolases, and methyl-accepting chemotaxis proteins. Although these domains are highly divergent at the primary sequence level, the structures of dozens of PAS domains across a broad section of sequence space have been solved, revealing a conserved three-dimensional architecture. An all-versus-all alignment of 63 PAS structures demonstrates that the PAS domain family forms structural clades on the basis of two principal variables: (a) topological location inside or outside the plasma membrane and (b) the class of small molecule that they bind. The binding of a chemically diverse range of small-molecule metabolites is a hallmark of the PAS domain family. PAS ligand binding either functions as a primary cue to initiate a cellular signaling response or provides the domain with the capacity to respond to secondary physical or chemical signals such as gas molecules, redox potential, or photons. This review synthesizes the current state of knowledge of the structural foundations and evolution of ligand recognition and binding by PAS domains.
Collapse
Affiliation(s)
- Jonathan T. Henry
- The Committee on Microbiology, The University of Chicago, Chicago, IL 60637
| | - Sean Crosson
- The Committee on Microbiology, The University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
34
|
Abstract
HAMP domains mediate input-output signaling in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and some phosphatases. HAMP subunits have two 16-residue amphiphilic helices (AS1, AS2) joined by a 14- to 15-residue connector segment. Two alternative HAMP structures in these homodimeric signaling proteins have been described: HAMP(A), a tightly packed, parallel, four-helix bundle; and HAMP(B), a more loosely packed bundle with an altered AS2/AS2' packing arrangement. Stimulus-induced conformational changes probably modulate HAMP signaling by shifting the relative stabilities of these opposing structural states. Changes in AS2/AS2' packing, in turn, modulate output signals by altering structural interactions between output helices through heptad repeat stutters that produce packing phase clashes. Output helices that are too tightly or too loosely packed most likely produce kinase-off output states, whereas kinase-on states require an intermediate range of HAMP stabilities and dynamic behaviors. A three-state, dynamic bundle signaling model best accounts for the signaling properties of chemoreceptor mutants and may apply to other transducers as well.
Collapse
Affiliation(s)
- John S Parkinson
- Biology Department, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
35
|
DifA, a methyl-accepting chemoreceptor protein-like sensory protein, uses a novel signaling mechanism to regulate exopolysaccharide production in Myxococcus xanthus. J Bacteriol 2010; 193:759-67. [PMID: 21131490 DOI: 10.1128/jb.00944-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DifA is a methyl-accepting chemotaxis protein (MCP)-like sensory transducer that regulates exopolysaccharide (EPS) production in Myxococcus xanthus. Here mutational analysis and molecular biology were used to probe the signaling mechanisms of DifA in EPS regulation. We first identified the start codon of DifA experimentally; this identification extended the N terminus of DifA for 45 amino acids (aa) from the previous bioinformatics prediction. This extension helped to address the outstanding question of how DifA receives input signals from type 4 pili without a prominent periplasmic domain. The results suggest that DifA uses its N-terminus extension to sense an upstream signal in EPS regulation. We suggest that the perception of the input signal by DifA is mediated by protein-protein interactions with upstream components. Subsequent signal transmission likely involves transmembrane signaling instead of direct intramolecular interactions between the input and the output modules in the cytoplasm. The basic functional unit of DifA for signal transduction is likely dimeric as mutational alteration of the predicted dimeric interface of DifA significantly affected EPS production. Deletions of 14-aa segments in the C terminus suggest that the newly defined flexible bundle subdomain in MCPs is likely critical for DifA function because shortening of this bundle can lead to constitutively active mutations.
Collapse
|
36
|
Abstract
In Escherichia coli, the aerotaxis receptor Aer is an atypical receptor because it senses intracellular redox potential. The Aer sensor is a cytoplasmic, N-terminal PAS domain that is tethered to the membrane by a 47-residue F1 linker. Here we investigated the function, topology, and orientation of F1 by employing random mutagenesis, cysteine scanning, and disulfide cross-linking. No native residue was obligatory for function, most deleterious substitutions had radically different side chain properties, and all F1 mutants but one were functionally rescued by the chemoreceptor Tar. Cross-linking studies were consistent with the predicted α-helical structure in the N-terminal F1 region and demonstrated trigonal interactions among the F1 linkers from three Aer monomers, presumably within trimer-of-dimer units, as well as binary interactions between subunits. Using heterodimer analyses, we also demonstrated the importance of arginine residues near the membrane interface, which may properly anchor the Aer protein in the membrane. By incorporating these data into a homology model of Aer, we developed a model for the orientation of the Aer F1 and PAS regions in an Aer lattice that is compatible with the known dimensions of the chemoreceptor lattice. We propose that the F1 region facilitates the orientation of PAS and HAMP domains during folding and thereby promotes the stability of the PAS and HAMP domains in Aer.
Collapse
|
37
|
Garcia PP, Bringhurst RM, Arango Pinedo C, Gage DJ. Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti. J Bacteriol 2010; 192:5725-35. [PMID: 20817764 PMCID: PMC2953702 DOI: 10.1128/jb.00629-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/25/2010] [Indexed: 01/13/2023] Open
Abstract
When they are available, Sinorhizobium meliloti utilizes C(4)-dicarboxylic acids as preferred carbon sources for growth while suppressing the utilization of some secondary carbon sources such as α- and β-galactosides. The phenomenon of using succinate as the sole carbon source in the presence of secondary carbon sources is termed succinate-mediated catabolite repression (SMCR). Genetic screening identified the gene sma0113 as needed for strong SMCR when S. meliloti was grown in succinate plus lactose, maltose, or raffinose. sma0113 and the gene immediately downstream, sma0114, encode the proteins Sma0113, an HWE histidine kinase with five PAS domains, and Sma0114, a CheY-like response regulator lacking a DNA-binding domain. sma0113 in-frame deletion mutants show a relief of catabolite repression compared to the wild type. sma0114 in-frame deletion mutants overproduce polyhydroxybutyrate (PHB), and this overproduction requires sma0113. Sma0113 may use its five PAS domains for redox level or energy state monitoring and use that information to regulate catabolite repression and related responses.
Collapse
Affiliation(s)
- Preston P. Garcia
- University of Connecticut, Department of Molecular and Cell Biology, 91 N. Eagleville Rd., U-3125, Storrs, Connecticut 06269-3125
| | - Ryan M. Bringhurst
- University of Connecticut, Department of Molecular and Cell Biology, 91 N. Eagleville Rd., U-3125, Storrs, Connecticut 06269-3125
| | - Catalina Arango Pinedo
- University of Connecticut, Department of Molecular and Cell Biology, 91 N. Eagleville Rd., U-3125, Storrs, Connecticut 06269-3125
| | - Daniel J. Gage
- University of Connecticut, Department of Molecular and Cell Biology, 91 N. Eagleville Rd., U-3125, Storrs, Connecticut 06269-3125
| |
Collapse
|
38
|
Alexandre G. Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. MICROBIOLOGY-SGM 2010; 156:2283-2293. [PMID: 20558508 DOI: 10.1099/mic.0.039214-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacteria have evolved the ability to monitor changes in various physico-chemical parameters and to adapt their physiology and metabolism by implementing appropriate cellular responses to these changes. Energy taxis is a metabolism-dependent form of taxis and is the directed movement of motile bacteria in gradients of physico-chemical parameters that affect metabolism. Energy taxis has been described in diverse bacterial species and several dedicated energy sensors have been identified. The molecular mechanism of energy taxis has not been studied in as much detail as chemotaxis, but experimental evidence indicates that this behaviour differs from metabolism-independent taxis only by the presence of dedicated energy taxis receptors. Energy taxis receptors perceive changes in energy-related parameters, including signals related to the redox and/or intracellular energy status of the cell. The best-characterized energy taxis receptors are those that sense the redox state of the electron transport chain via non-covalently bound FAD cofactors. Other receptors shown to mediate energy taxis lack any recognizable redox cofactor or conserved energy-sensing motif, and some have been suggested to monitor changes in the proton motive force. The exact energy-sensing mechanism(s) involved are yet to be elucidated for most of these energy sensors. By monitoring changes in energy-related parameters, energy taxis receptors allow cells to couple motility behaviour with metabolism under diverse environmental conditions. Energy taxis receptors thus provide fruitful models to decipher how cells integrate sensory behaviours with metabolic activities.
Collapse
Affiliation(s)
- Gladys Alexandre
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, 1414 W. Cumberland Ave, Knoxville, TN 37996, USA
| |
Collapse
|
39
|
Campbell AJ, Watts KJ, Johnson MS, Taylor BL. Gain-of-function mutations cluster in distinct regions associated with the signalling pathway in the PAS domain of the aerotaxis receptor, Aer. Mol Microbiol 2010; 77:575-86. [PMID: 20545849 DOI: 10.1111/j.1365-2958.2010.07231.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Aer receptor monitors internal energy (redox) levels in Escherichia coli with an FAD-containing PAS domain. Here, we randomly mutagenized the region encoding residues 14-119 of the PAS domain and found 72 aerotaxis-defective mutants, 24 of which were gain-of-function, signal-on mutants. The mutations were mapped onto an Aer homology model based on the structure of the PAS-FAD domain in NifL from Azotobacter vinlandii. Signal-on lesions clustered in the FAD binding pocket, the beta-scaffolding and in the N-cap loop. We suggest that the signal-on lesions mimic the 'signal-on' state of the PAS domain, and therefore may be markers for the signal-in and signal-out regions of this domain. We propose that the reduction of FAD rearranges the FAD binding pocket in a way that repositions the beta-scaffolding and the N-cap loop. The resulting conformational changes are likely to be conveyed directly to the HAMP domain, and on to the kinase control module. In support of this hypothesis, we demonstrated disulphide band formation between cysteines substituted at residues N98C or I114C in the PAS beta-scaffold and residue Q248C in the HAMP AS-2 helix.
Collapse
Affiliation(s)
- Asharie J Campbell
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
40
|
Schweinitzer T, Josenhans C. Bacterial energy taxis: a global strategy? Arch Microbiol 2010; 192:507-20. [PMID: 20411245 PMCID: PMC2886117 DOI: 10.1007/s00203-010-0575-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 12/24/2022]
Abstract
A functional energy metabolism is one of the most important requirements for survival of all kinds of organisms including bacteria. Therefore, many bacteria actively seek conditions of optimal metabolic activity, a behaviour which can be termed "energy taxis". Motility, combined with the sensory perception of the internal energetic conditions, is prerequisite for tactic responses to different energy levels and metabolic yields. Diverse mechanisms of energy sensing and tactic response have evolved among various bacteria. Many of the known energy taxis sensors group among the methyl-accepting chemotaxis protein (MCP)-like sensors. This review summarizes recent advances in the field of energy taxis and explores the current concept that energy taxis is an important part of the bacterial behavioural repertoire in order to navigate towards more favourable metabolic niches and to survive in a specific habitat.
Collapse
Affiliation(s)
- Tobias Schweinitzer
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|
41
|
Kinetic characterization of the WalRKSpn (VicRK) two-component system of Streptococcus pneumoniae: dependence of WalKSpn (VicK) phosphatase activity on its PAS domain. J Bacteriol 2010; 192:2346-58. [PMID: 20190050 DOI: 10.1128/jb.01690-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The WalRK two-component system plays important roles in maintaining cell wall homeostasis and responding to antibiotic stress in low-GC Gram-positive bacteria. In the major human pathogen, Streptococcus pneumoniae, phosphorylated WalR(Spn) (VicR) response regulator positively controls the transcription of genes encoding the essential PcsB division protein and surface virulence factors. WalR(Spn) is phosphorylated by the WalK(Spn) (VicK) histidine kinase. Little is known about the signals sensed by WalK histidine kinases. To gain information about WalK(Spn) signal transduction, we performed a kinetic characterization of the WalRK(Spn) autophosphorylation, phosphoryltransferase, and phosphatase reactions. We were unable to purify soluble full-length WalK(Spn). Consequently, these analyses were performed using two truncated versions of WalK(Spn) lacking its single transmembrane domain. The longer version (Delta35 amino acids) contained most of the HAMP domain and the PAS, DHp, and CA domains, whereas the shorter version (Delta195 amino acids) contained only the DHp and CA domains. The autophosphorylation kinetic parameters of Delta35 and Delta195 WalK(Spn) were similar [K(m)(ATP) approximately 37 microM; k(cat) approximately 0.10 min(-1)] and typical of those of other histidine kinases. The catalytic efficiency of the two versions of WalK(Spn) approximately P were also similar in the phosphoryltransfer reaction to full-length WalR(Spn). In contrast, absence of the HAMP-PAS domains significantly diminished the phosphatase activity of WalK(Spn) for WalR(Spn) approximately P. Deletion and point mutations confirmed that optimal WalK(Spn) phosphatase activity depended on the PAS domain as well as residues in the DHp domain. In addition, these WalK(Spn) DHp domain and DeltaPAS mutations led to attenuation of virulence in a murine pneumonia model.
Collapse
|
42
|
PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis. Proc Natl Acad Sci U S A 2010; 107:2235-40. [PMID: 20133866 DOI: 10.1073/pnas.0910055107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemoreceptors provide sensory specificity and sensitivity that enable motile bacteria to seek optimal positions for growth and metabolism in gradients of various physicochemical cues. Despite the abundance of chemoreceptors, little is known regarding the sensory specificity and the exact contribution of individual chemoreceptors to the lifestyle of bacteria. Azospirillum brasilense are motile bacteria that can fix atmospheric nitrogen under microaerophilic conditions. Here, we characterized a chemoreceptor in this organism, named AerC, which functions as a redox sensor that enables the cells to seek microaerophilic conditions that support optimum nitrogen fixation. AerC is a representative of a widespread class of soluble chemoreceptors that monitor changes in the redox status of the electron transport system via the FAD cofactor associated with its PAS domains. In A. brasilense, AerC clusters at the cell poles. Its cellular localization and contribution to the behavioral response correlate with its expression pattern and with changes in the overall cellular FAD content under nitrogen-fixing conditions. AerC-mediated energy taxis in A. brasilense prevails under conditions of nitrogen fixation, illustrating a strategy by which cells optimize chemosensing to signaling cues that directly affect current metabolic activities and thus revealing a mechanism by which chemotaxis is coordinated with dynamic changes in cell physiology.
Collapse
|
43
|
Qi Y, Rao F, Luo Z, Liang ZX. A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in AxDGC2 from Acetobacter xylinum. Biochemistry 2009; 48:10275-85. [PMID: 19785462 DOI: 10.1021/bi901121w] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytoplasmic protein AxDGC2 regulates cellulose synthesis in the obligate aerobe Acetobacter xylinum by controlling the cellular concentration of the cyclic dinucleotide messenger c-di-GMP. AxDGC2 contains a Per-Arnt-Sim (PAS) domain and two putative catalytic domains (GGDEF and EAL) for c-di-GMP metabolism. We found that the PAS domain of AxDGC2 binds a flavin adenine dinucleotide (FAD) cofactor noncovalently. The redox status of the FAD cofactor modulates the catalytic activity of the GGDEF domain for c-di-GMP synthesis, with the oxidized form exhibiting higher catalytic activity and stronger substrate inhibition. The results suggest that AxDGC2 is a signaling protein that regulates the cellular c-di-GMP level in response to the change in cellular redox status or oxygen concentration. Moreover, several residues predicated to be involved in FAD binding and signal transduction were mutated to examine the impact on redox potential and catalytic activity. Despite the minor perturbation of redox potential and unexpected modification of FAD in one of the mutants, none of the single mutations was able to completely disrupt the transmission of the signal to the GGDEF domain, indicating that the change in the FAD redox state can still trigger structural changes in the PAS domain probably by using substituted hydrogen-bonded water networks. Meanwhile, although the EAL domain of AxDGC2 was found to be catalytically inactive toward c-di-GMP, it was capable of hydrolyzing some phosphodiester bond-containing nonphysiological substrates. Together with the previously reported oxygen-dependent activity of the homologous AxPDEA1, the results provided new insight into relationships among oxygen level, c-di-GMP concentration, and cellulose synthesis in A. xylinum.
Collapse
Affiliation(s)
- Yaning Qi
- Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | |
Collapse
|
44
|
Baraquet C, Théraulaz L, Iobbi-Nivol C, Méjean V, Jourlin-Castelli C. Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis. Mol Microbiol 2009; 73:278-90. [PMID: 19555457 DOI: 10.1111/j.1365-2958.2009.06770.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Shewanella oneidensis uses a wide range of terminal electron acceptors for respiration. In this study, we show that the chemotactic response of S. oneidensis to anaerobic electron acceptors requires functional electron transport systems. Deletion of the genes encoding dimethyl sulphoxide and trimethylamine N-oxide reductases, or inactivation of these molybdoenzymes as well as nitrate reductase by addition of tungstate, abolished electron acceptor taxis. Moreover, addition of nigericin prevented taxis towards trimethylamine N-oxide, dimethyl sulphoxide, nitrite, nitrate and fumarate, showing that this process depends on the DeltapH component of the proton motive force. These data, together with those concerning response to metals (Bencharit and Ward, 2005), support the idea that, in S. oneidensis, taxis towards electron acceptors is governed by an energy taxis mechanism. Surprisingly, energy taxis in S. oneidensis is not mediated by the PAS-containing chemoreceptors but rather by a chemoreceptor (SO2240) containing a Cache domain. Four other chemoreceptors also play a minor role in this process. These results indicate that energy taxis can be mediated by new types of chemoreceptors.
Collapse
Affiliation(s)
- Claudine Baraquet
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
45
|
Miller LD, Russell MH, Alexandre G. Diversity in bacterial chemotactic responses and niche adaptation. ADVANCES IN APPLIED MICROBIOLOGY 2009; 66:53-75. [PMID: 19203648 DOI: 10.1016/s0065-2164(08)00803-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of microbes to rapidly sense and adapt to environmental changes plays a major role in structuring microbial communities, in affecting microbial activities, as well as in influencing various microbial interactions with the surroundings. The bacterial chemotaxis signal transduction system is the sensory perception system that allows motile cells to respond optimally to changes in environmental conditions by allowing cells to navigate in gradients of diverse physicochemical parameters that can affect their metabolism. The analysis of complete genome sequences from microorganisms that occupy diverse ecological niches reveal the presence of multiple chemotaxis pathways and a great diversity of chemoreceptors with novel sensory specificities. Owing to its role in mediating rapid responses of bacteria to changes in the surroundings, bacterial chemotaxis is a behavior of interest in applied microbiology as it offers a unique opportunity for understanding the environmental cues that contribute to the survival of bacteria. This chapter explores the diversity of bacterial chemotaxis and suggests how gaining further insights into such diversity may potentially impact future drug and pesticides development and could inform bioremediation strategies.
Collapse
Affiliation(s)
- Lance D Miller
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
46
|
Ukaegbu UE, Rosenzweig AC. Structure of the redox sensor domain of Methylococcus capsulatus (Bath) MmoS. Biochemistry 2009; 48:2207-15. [PMID: 19271777 PMCID: PMC2707821 DOI: 10.1021/bi8019614] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MmoS from Methylococcus capsulatus (Bath) is the multidomain sensor protein of a two-component signaling system proposed to play a role in the copper-mediated regulation of soluble methane monooxygenase (sMMO). MmoS binds an FAD cofactor within its N-terminal tandem Per-Arnt-Sim (PAS) domains, suggesting that it functions as a redox sensor. The crystal structure of the MmoS tandem PAS domains, designated PAS-A and PAS-B, has been determined to 2.34 A resolution. Both domains adopt the typical PAS domain alpha/beta topology and are structurally similar. The two domains are linked by a long alpha helix and do not interact with one another. The FAD cofactor is housed solely within PAS-A and is stabilized by an extended hydrogen bonding network. The overall fold of PAS-A is similar to those of other flavin-containing PAS domains, but homodimeric interactions in other structures are not observed in the MmoS sensor, which crystallized as a monomer. The structure both provides new insight into the architecture of tandem PAS domains and suggests specific residues that may play a role in MmoS FAD redox chemistry and subsequent signal transduction.
Collapse
Affiliation(s)
- Uchechi E. Ukaegbu
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| | - Amy C. Rosenzweig
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| |
Collapse
|
47
|
Horne SM, Mattson KR, Prüß BM. An Escherichia coli aer mutant exhibits a reduced ability to colonize the streptomycin-treated mouse large intestine. Antonie van Leeuwenhoek 2009; 95:149-58. [DOI: 10.1007/s10482-008-9298-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 12/15/2008] [Indexed: 11/28/2022]
|
48
|
Pinelis M, Shamban L, Jovic A, Maharbiz MM. A high-yield method for generating mass-transfer gradients in elastomer microfluidics using impermeable capillaries. Biomed Microdevices 2008; 10:807. [PMID: 18654854 DOI: 10.1007/s10544-008-9195-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We demonstrated a robust, inexpensive method for fabricating high-throughput gas gradient generation devices which combined classic mass-transfer limited techniques with the versatility of elastomer microfluidics. The method allowed for dozens of replicate mass-transfer gradient experiments per day, including fabrication and assembly of devices. We demonstrated how our devices can be interfaced with microfluidics and how gradient parameters can be varied. In this work, we applied the method to characterize gradients of pH and cell viability generated in mass-transfer limited cultures of HeLa cells and observed the morphology of differentiating C2Cl2 myoblasts in an oxygen gradient.
Collapse
Affiliation(s)
- Mike Pinelis
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA.
| | - Leonid Shamban
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Andreja Jovic
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, USA
| |
Collapse
|
49
|
Conserved residues in the HAMP domain define a new family of proposed bipartite energy taxis receptors. J Bacteriol 2008; 191:375-87. [PMID: 18952801 DOI: 10.1128/jb.00578-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HAMP domains, found in many bacterial signal transduction proteins, generally transmit an intramolecular signal between an extracellular sensory domain and an intracellular signaling domain. Studies of HAMP domains in proteins where both the input and output signals occur intracellularly are limited to those of the Aer energy taxis receptor of Escherichia coli, which has both a HAMP domain and a sensory PAS domain. Campylobacter jejuni has an energy taxis system consisting of the domains of Aer divided between two proteins, CetA (HAMP domain containing) and CetB (PAS domain containing). In this study, we found that the CetA HAMP domain differs significantly from that of Aer in the predicted secondary structure. Using similarity searches, we identified 55 pairs of HAMP/PAS proteins encoded by adjacent genes in a diverse group of microorganisms. We propose that these HAMP/PAS pairs form a new family of bipartite energy taxis receptors. Within these proteins, we identified nine residues in the HAMP domain and proximal signaling domain that are highly conserved, at least three of which are required for CetA function. Additionally, we demonstrated that CetA contributes to the invasion of human epithelial cells by C. jejuni, while CetB does not. This finding supports the hypothesis that members of HAMP/PAS pairs possess the capacity to act independently of each other in cellular traits other than energy taxis.
Collapse
|
50
|
Saito JA, Wan X, Lee KS, Hou S, Alam M. Globin-coupled sensors and protoglobins share a common signaling mechanism. FEBS Lett 2008; 582:1840-1846. [PMID: 18486614 DOI: 10.1016/j.febslet.2008.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/28/2008] [Accepted: 05/06/2008] [Indexed: 02/08/2023]
Abstract
The globin-coupled sensors (GCSs) and protoglobins (Pgbs) form one lineage of the globin superfamily. The GCSs are multidomain sensory proteins involved in aerotaxis or gene regulation, while the Pgbs are single-domain globins of yet unknown function. We postulate that the GCSs and Pgbs share a common signaling mechanism to modulate diverse physiological functions. To elucidate the signaling properties of individual globin domains, we constructed and expressed chimeric receptors in Escherichia coli. We demonstrate that all the chimeric receptors reversibly bind oxygen in vitro and trigger aerotactic responses in vivo. Thus, oxygen binding to the globin domains of diverse GCSs and Pgbs form a common signaling state that can trigger aerotactic responses.
Collapse
Affiliation(s)
- Jennifer A Saito
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | | | |
Collapse
|