1
|
Hamoui MZ, Rizvi S, Arnouk H, Roberts CM. Putative Biomarkers for Prognosis, Epithelial-to-Mesenchymal Transition, and Drug Response in Cell Lines Representing Oral Squamous Cell Carcinoma Progression. Genes (Basel) 2025; 16:209. [PMID: 40004538 PMCID: PMC11855662 DOI: 10.3390/genes16020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Oral squamous cell carcinoma (OSCC) is the most common form of head and neck cancer and accounts for over 50,000 new cancer cases annually in the United States. The survival rates are markedly different for localized OSCC versus metastatic disease, for which the five-year survival rate is only 39%. Depending on its pathology and stage at diagnosis, the treatment may involve surgery, radiation, targeted therapy, or conventional chemotherapy. However, there is an unmet need for reliable biomarkers to predict the treatment response or link therapeutic efficacy to tumor progression. We sought to assemble a panel of OSCC tumor progression biomarkers that correlated with the epithelial-to-mesenchymal transition (EMT) and the response to cytotoxic drugs. METHODS We used four cell lines that represented the stepwise progression from normal oral mucosa to dysplastic, invasive, and metastatic OSCC lesions and performed a quantitative analysis via Western blot for putative markers. EMT phenotypes were assessed using wound healing migration assays. Live cell imaging was used to assess drug effectiveness over time. RESULTS The expression of stratifin, a tumor suppressor gene, is inversely correlated with both tumor progression steps and the expression of the EMT marker N-cadherin. Conversely, the E-cadherin and fibronectin expression was markedly decreased in the advanced-stage OSCC lines. In addition, metastatic Detroit 562 cells exhibited resistance to cell death following docetaxel treatment and showed clear migratory behavior. CONCLUSIONS We describe a molecular signature of advanced and drug-resistant OSCC tumors which encompasses multiple markers, warranting further investigation to establish their utility in predicting clinical outcomes and guiding the treatment options for patients afflicted with oral cancer.
Collapse
Affiliation(s)
- Mohamad Z. Hamoui
- Biomedical Sciences Program, Midwestern University, Downers Grove, IL 60515, USA
| | - Shuaa Rizvi
- Biomedical Sciences Program, Midwestern University, Downers Grove, IL 60515, USA
| | - Hilal Arnouk
- Department of Pathology, Midwestern University, Downers Grove, IL 60515, USA
| | - Cai M. Roberts
- Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
2
|
Lonare A, Raychaudhuri K, Shah S, Madhu G, Sachdeva A, Basu S, Thorat R, Gupta S, Dalal SN. 14-3-3σ restricts YY1 to the cytoplasm, promoting therapy resistance, and tumor progression in colorectal cancer. Int J Cancer 2025; 156:623-637. [PMID: 39239852 PMCID: PMC11622004 DOI: 10.1002/ijc.35176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
14-3-3σ functions as an oncogene in colorectal cancer and is associated with therapy resistance. However, the mechanisms underlying these observations are not clear. The results in this report demonstrate that loss of 14-3-3σ in colorectal cancer cells leads to a decrease in tumor formation and increased sensitivity to chemotherapy. The increased sensitivity to chemotherapy is due to a decrease in the expression of UPR pathway genes in the absence of 14-3-3σ. 14-3-3σ promotes expression of the UPR pathway genes by binding to the transcription factor YY1 and preventing the nuclear localization of YY1. YY1, in the absence of 14-3-3σ, shows increased nuclear localization and binds to the promoter of the UPR pathway genes, resulting in decreased gene expression. Similarly, a YY1 mutant that cannot bind to 14-3-3σ also shows increased nuclear localization and is enriched on the promoter of the UPR pathway genes. Finally, inhibition of the UPR pathway with genetic or pharmacological approaches sensitizes colon cancer cells to chemotherapy. Our results identify a novel mechanism by which 14-3-3σ promotes tumor progression and therapy resistance in colorectal cancer by maintaining UPR gene expression.
Collapse
Affiliation(s)
- Amol Lonare
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| | - Kumarkrishna Raychaudhuri
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| | - Sanket Shah
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiIndia
- Present address:
Weill Cornell MedicineNew YorkNew YorkUSA
| | - Gifty Madhu
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
| | - Anoushka Sachdeva
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
| | - Sneha Basu
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
| | - Sanjay Gupta
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial CentreNavi MumbaiIndia
| | - Sorab N. Dalal
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| |
Collapse
|
3
|
Kounatidou NE, Vitkos E, Palioura S. Ocular surface squamous neoplasia: Update on genetics, epigenetics and opportunities for targeted therapy. Ocul Surf 2025; 35:1-14. [PMID: 39608452 DOI: 10.1016/j.jtos.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The purpose of this review is to explore the molecular foundations of ocular surface squamous neoplasia (OSSN), focusing on the genetic and epigenetic aspects. While current management strategies include surgical excision and medical therapies, the understanding of OSSN's molecular basis remains limited, hindering the development of targeted treatments. METHODS A comprehensive MEDLINE search was conducted for literature published between January 1993 and October 2023. Only studies with original data on molecular, genetic, or epigenetic mechanisms, such as mutations, gene expression, and genetic predispositions were included. Articles were excluded if they focused solely on clinical management without addressing these factors, or if they were reviews, editorials, or opinion pieces. RESULTS The search yielded a total of 108 articles, out of which 39 articles met the criteria for further analysis. Investigations into OSSN have identified key DNA mutations in the TP53, HGF, EGFR, TERT, and CDKN2A genes, indicating common oncogenic pathways shared with other squamous cell carcinomas (SCCs). Significant epigenetic changes were identified, including DNA methylation, histone modifications, and altered miRNA expression patterns. Epigenetic dysregulation of critical tumor suppressors and oncoproteins, further highlight the complex genetic landscape of OSSN. CONCLUSION The molecular alterations identified in OSSN not only enhance our understanding of its biology but also have potential as novel biomarkers for early detection, prognostic evaluation, and as therapeutic targets. The identification of genetic and epigenetic markers in OSSN signifies progress towards personalized medicine approaches. Further studies and collaborative efforts are essential to validate these molecular markers and translate them into clinical practice, potentially revolutionizing OSSN management and improving patient outcomes.
Collapse
Affiliation(s)
| | - Evangelos Vitkos
- Department of Oral and Maxillofacial Surgery, Klinikum Dortmund, Dortmund, Germany
| | - Sotiria Palioura
- Department of Ophthalmology, University of Cyprus Medical School, Nicosia, Cyprus.
| |
Collapse
|
4
|
Wang SH, Hsieh YY, Ong KH, Lai HY, Tsai HH, Sun DP, Huang SKH, Tian YF, Wu HC, Chan TC, Joseph K, Chang IW. The clinicopathological significance and prognostic impact of 14-3-3σ/stratifin expression on patients with surgically resectable intrahepatic cholangiocarcinoma. Asian J Surg 2024:S1015-9584(24)01873-6. [PMID: 39232956 DOI: 10.1016/j.asjsur.2024.08.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer after hepatocellular carcinoma. Through data mining of publicly available iCCA transcriptomic datasets from the Gene Expression Omnibus, we identified SFN as the most significantly up-regulated gene in iCCA compared to normal tissue, focusing on the Gene Ontology term "cell proliferation" (GO:0008283). SFN encodes the 14-3-3σ protein, also known as stratifin, which plays crucial roles in various cellular processes. MATERIALS AND METHODS Immunohistochemistry was used to assess stratifin expression in 182 patients with localized iCCAs undergoing surgical resection. Patients were divided into low and high expression groups, and the association between stratifin expression and clinicopathological features was analyzed. Univariate and multivariate survival analyses were performed to assess overall survival (OS), disease-specific survival (DSS), local recurrence-free survival (LRFS), and metastasis-free survival (MeFS). RESULTS Elevated stratifin expression in iCCAs was significantly associated with the absence of hepatitis, positive surgical margins, advanced primary tumor stages, and higher histological grades (all p ≤ 0.011). Survival analyses demonstrated a significant negative association between stratifin expression and all prognostic indicators, including OS, DSS, LRFS, and MeFS (all p ≤ 0.0004). Multivariate analysis revealed that stratifin overexpression was significantly correlated with poorer outcomes in terms of DSS, LRFS, and MeFS (all p < 0.001). CONCLUSIONS These findings suggest that stratifin may play a crucial role in iCCA oncogenesis and tumor progression, serving as a potential novel prognostic biomarker.
Collapse
Affiliation(s)
- Su-Hong Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Khaa Hoo Ong
- Department of Surgery, Division of Gastroenterology and General Surgery, Chi Mei Medical Center, Tainan, Taiwan; Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsin-Hwa Tsai
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ding-Ping Sun
- Department of Surgery, Division of Gastroenterology and General Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Steven Kuan-Hua Huang
- Department of Surgery, Division of Urology, Chi Mei Medical Center, Tainan, Taiwan; Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Feng Tian
- Department of Surgery, Division of Colon and Rectal Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Chang Wu
- Department of Internal Medicine, Division of Hematology and Oncology, Chi Mei Medical Center, Tainan, Taiwan; College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | | | - I-Wei Chang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Clinical Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Aljabal G, Teh AH, Yap BK. In Silico Prediction and Biophysical Validation of Novel 14-3-3σ Homodimer Stabilizers. J Chem Inf Model 2023; 63:5619-5630. [PMID: 37606921 DOI: 10.1021/acs.jcim.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
14-3-3σ plays an important role in controlling tumor metabolic reprogramming and cancer cell growth. However, its function is often compromised in many cancers due to its downregulation. Previous studies found that homodimerization of 14-3-3σ is critical for its activity. However, to date, it is not known if stabilization of 14-3-3σ homodimers can improve its activity or prevent its degradation. In our previous work, we have showed that GCP-Lys-OMe is a potential 14-3-3σ homodimer stabilizer. However, its stabilizing effect was not experimentally validated. Therefore, in this study, we have attempted to predict few potential peptides that can stabilize the dimeric form of 14-3-3σ using similar in silico techniques as described previously for GCP-Lys-OMe. Subsequent [1H]-CPMG NMR experiments confirmed the binding of the peptides (peptides 3, 5, 9, and 16) on 14-3-3σ, with peptide 3 showing the strongest binding. Competitive [1H]-CPMG assays further revealed that while peptide 3 does not compete with a 14-3-3σ binding peptide (ExoS) for the protein's amphipathic groove, it was found to improve ExoS binding on 14-3-3σ. When 14-3-3σ was subjected to dynamic light scattering experiments, the 14-3-3σ homodimer was found to undergo dissociation into monomers prior to aggregation. Intriguingly, the presence of peptide 3 increased 14-3-3σ stability against aggregation. Overall, our findings suggest that (1) docking accompanied by MD simulations can be used to identify potential homodimer stabilizing compounds of 14-3-3σ and (2) peptide 3 can slow down 14-3-3σ aggregation (presumably by preventing its dissociation into monomers), as well as improving the binding of 14-3-3σ to ExoS protein.
Collapse
Affiliation(s)
- Ghazi Aljabal
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang 11900, Malaysia
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| |
Collapse
|
6
|
Shahraki K, Shahraki K, Ghasemi Boroumand P, Sheervalilou R. Promotor methylation in ocular surface squamous neoplasia development: epigenetics implications in molecular diagnosis. Expert Rev Mol Diagn 2023; 23:753-769. [PMID: 37493058 DOI: 10.1080/14737159.2023.2240238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Cancer is heavily influenced by epigenetic mechanisms that include DNA methylation, histone modifications, and non-coding RNA. A considerable proportion of human malignancies are believed to be associated with global DNA hypomethylation, with localized hypermethylation at promoters of certain genes. AREA COVERED The present review aims to emphasize on recent investigations on the epigenetic landscape of ocular surface squamous neoplasia, that could be targeted/explored using novel approaches such as personalized medicine. EXPERT OPINION While the former is thought to contribute to genomic instability, promoter-specific hypermethylation might facilitate tumorigenesis by silencing tumor suppressor genes. Ocular surface squamous neoplasia, the most prevalent type of ocular surface malignancy, is suggested to be affected by epigenetic mechanisms, as well. Although the exact role of epigenetics in ocular surface squamous neoplasia has mostly been unexplored, recent findings have greatly contributed to our understanding regarding this pathology of the eye.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
- Cornea Department, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
7
|
An Optimized CoBRA Method for the Microfluidic Electrophoresis Detection of Breast Cancer Associated RASSF1 Methylation. BIOTECH (BASEL (SWITZERLAND)) 2023; 12:biotech12010007. [PMID: 36648833 PMCID: PMC9844460 DOI: 10.3390/biotech12010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Although breast cancer screening assays exist, many are inaccessible and have high turnaround times, leaving a significant need for better alternatives. Hypermethylation of tumor suppressor genes is a common epigenetic marker of breast cancer. Methylation tends to occur most frequently in the promoter and first exon regions of genes. Preliminary screening tests are crucial for informing patients whether they should pursue more involved testing. We selected RASSF1, previously demonstrated to be aberrantly methylated in liquid biopsies from breast cancer patients, as our gene of interest. Using CoBRA as our method for methylation quantification, we designed unique primer sets that amplify a portion of the CpG island spanning the 5' end of the RASSF1 first exon. We integrated the CoBRA approach with a microfluidics-based electrophoresis quantification system (LabChip) and optimized the assay such that insightful results could be obtained without post-PCR purification or concentration, two steps traditionally included in CoBRA assays. Circumventing these steps resulted in a decreased turnaround time and mitigated the laboratory machinery and reagent requirements. Our streamlined technique has an estimated limit of detection of 9.1 ng/μL of input DNA and was able to quantify methylation with an average error of 4.3%.
Collapse
|
8
|
Nirgude S, Desai S, Choudhary B. Genome-wide differential DNA methylation analysis of MDA-MB-231 breast cancer cells treated with curcumin derivatives, ST08 and ST09. BMC Genomics 2022; 23:807. [PMID: 36474139 PMCID: PMC9727864 DOI: 10.1186/s12864-022-09041-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022] Open
Abstract
ST08 and ST09 are potent curcumin derivatives with antiproliferative, apoptotic, and migrastatic properties. Both ST08 and ST09 exhibit in vitro and in vivo anticancer properties. As reported earlier, these derivatives were highly cytotoxic towards MDA-MB-231 triple-negative breast cancer cells with IC50 values in the nanomolar (40-80nM) range.In this study,we performed whole-genome bisulfite sequencing(WGBS) of untreated (control), ST08 and ST09 (treated) triple-negative breast cancer cell line MDA-MB-231 to unravel epigenetic changes induced by the drug. We identified differentially methylated sites (DMSs) enriched in promoter regions across the genome. Analysis of the CpG island promoter methylation identified 12 genes common to both drugs, and 50% of them are known to be methylated in patient samples that were hypomethylated by drugs belonging to the homeobox family transcription factors.Methylation analysis of the gene body revealed 910 and 952 genes to be hypermethylatedin ST08 and ST09 treated MDA-MB-231 cells respectively. Correlation of the gene body hypermethylation with expression revealed CACNAH1 to be upregulated in ST08 treatment and CDH23 upregulation in ST09.Further, integrated analysis of the WGBS with RNA-seq identified uniquely altered pathways - ST08 altered ECM pathway, and ST09 cell cycle, indicating drug-specific signatures.
Collapse
Affiliation(s)
- Snehal Nirgude
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, 560100 Bangalore, India ,grid.239552.a0000 0001 0680 8770Working at Division of Human Genetics, Children’s Hospital of Philadelphia, 19104 Philadelphia, PA USA
| | - Sagar Desai
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, 560100 Bangalore, India
| | - Bibha Choudhary
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, 560100 Bangalore, India
| |
Collapse
|
9
|
Aljabal G, Yap BK. In Silico Studies on GCP-Lys-OMe as a Potential 14-3-3σ Homodimer Stabilizer. Pharmaceuticals (Basel) 2022; 15:ph15101290. [PMID: 36297403 PMCID: PMC9609495 DOI: 10.3390/ph15101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
14-3-3 sigma is a vital negative cell cycle regulator. Its expression is consistently downregulated in many types of cancer through gene promoter hypermethylation or proteasomal degradation. 14-3-3 sigma needs to form a homodimer to be functional, while dimers are less prone to degradation than monomers. This suggests that a homodimer stabilizer may increase the tumor suppressive activities of 14-3-3 sigma. However, no known homodimer stabilizer of 14-3-3 sigma has been reported to date. Therefore, this study attempts to test the potential capability of GCP-Lys-OMe (previously reported to bind at the dimer interface of 14-3-3 zeta isoform), to bind and stabilize the 14-3-3 sigma homodimer. In silico docking of GCP-Lys-OMe on 14-3-3 sigma showed more favorable interaction energy (−9.63 kcal/mole) to the dimer interface than 14-3-3 zeta (−7.73 kcal/mole). Subsequent 100 ns molecular dynamics simulation of the GCP-Lys-OMe/14-3-3 sigma complex revealed a highly stable interaction with an average root-mean-square deviation of 0.39 nm (protein backbone) and 0.77 nm (ligand atoms). More contacts between residues at the homodimer interface and a smaller coverage of conformational space of protein atoms were detected for the bound form than for the apo form. These results suggest that GCP-Lys-OMe is a potential homodimer stabilizer of 14-3-3 sigma.
Collapse
|
10
|
Obsilova V, Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front Mol Biosci 2022; 9:1016071. [PMID: 36188227 PMCID: PMC9523730 DOI: 10.3389/fmolb.2022.1016071] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Signal transduction cascades efficiently transmit chemical and/or physical signals from the extracellular environment to intracellular compartments, thereby eliciting an appropriate cellular response. Most often, these signaling processes are mediated by specific protein-protein interactions involving hundreds of different receptors, enzymes, transcription factors, and signaling, adaptor and scaffolding proteins. Among them, 14-3-3 proteins are a family of highly conserved scaffolding molecules expressed in all eukaryotes, where they modulate the function of other proteins, primarily in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins participate in key cellular processes, such as cell-cycle control, apoptosis, signal transduction, energy metabolism, and protein trafficking. To date, several hundreds of 14-3-3 binding partners have been identified, including protein kinases, phosphatases, receptors and transcription factors, which have been implicated in the onset of various diseases. As such, 14-3-3 proteins are promising targets for pharmaceutical interventions. However, despite intensive research into their protein-protein interactions, our understanding of the molecular mechanisms whereby 14-3-3 proteins regulate the functions of their binding partners remains insufficient. This review article provides an overview of the current state of the art of the molecular mechanisms whereby 14-3-3 proteins regulate their binding partners, focusing on recent structural studies of 14-3-3 protein complexes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Vestec, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| |
Collapse
|
11
|
ZLM-7 Blocks Breast Cancer Progression by Inhibiting MDM2 via Upregulation of 14-3-3 Sigma. Pharmaceuticals (Basel) 2022; 15:ph15070874. [PMID: 35890172 PMCID: PMC9321038 DOI: 10.3390/ph15070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is one of the most prevalent malignancies with poor prognosis. Inhibition of angiogenesis is becoming a valid and evident therapeutic strategy to treat cancer. Recent studies uncovered the antiangiogenic activity of ZLM-7 (a combretastain A-4 derivative), but the regulatory mechanism is unclear. ZLM-7 treatment was applied in estrogen receptor-positive cell MCF-7, triple-negative breast cancer cell MDA-MB-231 and xenograft models. Transfections were conducted to overexpress or knockdown targeted genes. The gene and protein expressions were measured by qPCR and Western blotting assay, respectively. Cell proliferation and apoptosis were evaluated using the CCK8 method, clone formation assay and flow cytometry. We found that ZLM-7 upregulated 14-3-3 sigma expression but downregulated MDM2 expression in breast cancer cells. ZLM-7 delayed cell proliferation, promoted apoptosis and blocked cell-cycle progression in human breast cancer cells in vitro, while those effects were abolished by 14-3-3 sigma knockdown; overexpression of 14-3-3 sigma reproduced the actions of ZLM-7 on the cell cycle, which could be reversed by MDM2 overexpression. In xenograft models, ZLM-7 treatment significantly inhibited tumor growth while the inhibition was attenuated when 14-3-3 sigma was silenced. Collectively, ZLM-7 could inhibit MDM2 via upregulating 14-3-3 sigma expression, thereby blocking the breast cancer progression.
Collapse
|
12
|
Feng J, Leng J, Zhao C, Guo J, Chen Y, Li H. High expression of 14-3-3ơ indicates poor prognosis and progression of lung adenocarcinoma. Oncol Lett 2022; 24:203. [PMID: 35720477 PMCID: PMC9178702 DOI: 10.3892/ol.2022.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of cancer-related death worldwide. 14-3-3ơ is an intracellular phosphoserine-binding protein that has been proposed to be involved in tumorigenesis. However, the biofunctional role of 14-3-3ơ and its clinicopathological/prognostic significance in LUAD have remained elusive. In the present study, western blot and immunohistochemical analyses of cancer tissues/cells and the corresponding normal controls were performed to verify that 14-3-3ơ was upregulated in LUAD. Univariate and multivariate logistic regression analysis indicated that high expression of 14-3-3ơ predicted poor overall survival and progression-free survival of patients with LUAD. Furthermore, in vivo and in vitro experiments demonstrated that overexpression of 14-3-3ơ markedly promoted cell proliferation, colony formation, anchorage-independent growth and tumor growth, whereas 14-3-3ơ depletion produced the opposite effects. Of note, 14-3-3ơ was identified as an independent prognostic factor for patients with LUAD. Collectively, the present results revealed that high expression of 14-3-3ơ may serve as an independent biomarker, contributing to poor prognosis and progression of LUAD.
Collapse
Affiliation(s)
- Junfei Feng
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Jing Leng
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Changdi Zhao
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Jie Guo
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Yongbing Chen
- Department of Respiratory Medicine, People's Hospital of Beilun District, Ningbo, Zhejiang 315826, P.R. China
| | - Haifeng Li
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| |
Collapse
|
13
|
Chauhan S, Sen S, Chauhan SS, Pushker N, Tandon R, Kashyap S, Vanathi M, Bajaj MS. Stratifin in ocular surface squamous neoplasia and its association with p53. Acta Ophthalmol 2021; 99:e1483-e1491. [PMID: 33769712 DOI: 10.1111/aos.14844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/23/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Sunlight-induced p53 mutations are known to contribute towards increased risk of ocular surface squamous neoplasia (OSSN). Stratifin (14-3-3σ)/HEM (human epithelial marker) is a p53-mediated inhibitor of cell cycle progression and has been shown to be a target of epigenetic deregulation in various carcinomas. In the present study, Stratifin expression, its promoter methylation status as well as expression of mutant p53 in early and advanced AJCC stages (8th edition) of OSSN, was evaluated. METHODS Sixty-four OSSN [20 conjunctival intraepithelial neoplasia (CIN) and 44 squamous cell carcinoma (SCC)] patients were registered for this study, and they were followed up for 36-58 months (mean 48 ± 3.6). Immunoexpression of Stratifin and mutant p53 protein, mRNA expression of Stratifin by reverse transcription polymerase chain reaction (PCR) and methylation status of Stratifin by methylation-specific PCR, was undertaken. RESULTS Hypermethylation of Stratifin promoter in 63% (40/64), loss of Stratifin expression in 75% (48/64) and downregulation of Stratifin mRNA in 61% (39/64) were observed. Stratifin hypermethylation was significantly associated with reduced disease-free survival in both early and advanced T stage SCC cases. Expression of mutant p53 expression was seen in 48% (31/64) OSSN cases. Of the 31 patients with mutant p53 expression, 87% (27/31) also demonstrated loss of Stratifin immunoexpression. A significant association was seen between mutant p53 expression and Stratifin loss (p = 0.01) in advanced T stage SCC cases. CONCLUSIONS Hypermethylation of Stratifin gene and its reduced mRNA expression both are potential biomarkers for identifying high-risk OSSN patients. Aberrant methylation of Stratifin and simultaneous mutant p53 expression implicates involvement of p53-Stratifin mediated signalling pathway in the pathogenesis of OSSN.
Collapse
Affiliation(s)
- Sheetal Chauhan
- Department of Ocular Pathology Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Seema Sen
- Department of Ocular Pathology Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Shyam S. Chauhan
- Department of Biochemistry All India Institute of Medical Sciences New Delhi India
| | - Neelam Pushker
- Ophthalmoplasty Service Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Radhika Tandon
- Cornea and External Disease, Cataract and Refractive Ocular Oncology and Low Vision Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Seema Kashyap
- Department of Ocular Pathology Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Murugesan Vanathi
- Cornea & Ocular Surface Cataract & Refractive Services Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| | - Mandeep S. Bajaj
- Ophthalmoplasty Service Dr. Rajendra Prasad Centre for Ophthalmic Sciences All India Institute of Medical Sciences New Delhi India
| |
Collapse
|
14
|
Sharma BK, Mureb D, Murab S, Rosenfeldt L, Francisco B, Cantrell R, Karns R, Romick-Rosendale L, Watanabe-Chailland M, Mast J, Flick MJ, Whitlock PW, Palumbo JS. Fibrinogen activates focal adhesion kinase (FAK) promoting colorectal adenocarcinoma growth. J Thromb Haemost 2021; 19:2480-2494. [PMID: 34192410 PMCID: PMC8493761 DOI: 10.1111/jth.15440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND We previously showed that fibrinogen is a major determinant of the growth of a murine model of colorectal cancer (CRC). OBJECTIVE Our aim was to define the mechanisms coupling fibrin(ogen) to CRC growth. RESULTS CRC tumors transplanted into the dorsal subcutis of Fib- mice were less proliferative and demonstrated increased senescence relative to those grown in Fib+ mice. RNA-seq analyses of Fib+ and Fib- tumors revealed 213 differentially regulated genes. One gene highly upregulated in tumors from Fib- mice was stratifin, encoding 14-3-3σ, a master regulator of proliferation/senescence. In a separate cohort, we observed significantly increased protein levels of 14-3-3σ and its upstream and downstream targets (i.e., p53 and p21) in tumors from Fib- mice. In vitro analyses demonstrated increased tumor cell proliferation in a fibrin printed three-dimensional environment compared with controls, suggesting that fibrin(ogen) in the tumor microenvironment promotes tumor growth in this context via a tumor cell intrinsic mechanism. In vivo analyses showed diminished activation of focal adhesion kinase (FAK), a key negative regulator of p53, in Fib- tumors. Furthermore, nuclear magnetic resonance-based metabolomics demonstrated significantly reduced metabolic activity in tumors from Fib- relative to Fib+ mice. Together, these findings suggest that fibrin(ogen)-mediated engagement of colon cancer cells activates FAK, which inhibits p53 and its downstream targets including 14-3-3σ and p21, thereby promoting cellular proliferation and preventing senescence. CONCLUSIONS These studies suggest that fibrin(ogen) is an important component of the colon cancer microenvironment and may be exploited as a potential therapeutic target.
Collapse
Affiliation(s)
- Bal Krishan Sharma
- Cancer and Blood Diseases Institute. Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH
| | - Duaa Mureb
- Cancer and Blood Diseases Institute. Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sumit Murab
- Division of Orthopaedics Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Leah Rosenfeldt
- Cancer and Blood Diseases Institute. Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH
| | - Brenton Francisco
- Cancer and Blood Diseases Institute. Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH
| | - Rachel Cantrell
- Cancer and Blood Diseases Institute. Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH
| | - Rebekah Karns
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lindsey Romick-Rosendale
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Miki Watanabe-Chailland
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jacob Mast
- Cancer and Blood Diseases Institute. Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Patrick W. Whitlock
- Division of Orthopaedics Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Joseph S. Palumbo
- Cancer and Blood Diseases Institute. Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
15
|
Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. NPJ Parkinsons Dis 2021; 7:85. [PMID: 34548498 PMCID: PMC8455551 DOI: 10.1038/s41531-021-00230-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
14-3-3s represent a family of highly conserved 30 kDa acidic proteins. 14-3-3s recognize and bind specific phospho-sequences on client partners and operate as molecular hubs to regulate their activity, localization, folding, degradation, and protein-protein interactions. 14-3-3s are also associated with the pathogenesis of several diseases, among which Parkinson's disease (PD). 14-3-3s are found within Lewy bodies (LBs) in PD patients, and their neuroprotective effects have been demonstrated in several animal models of PD. Notably, 14-3-3s interact with some of the major proteins known to be involved in the pathogenesis of PD. Here we first provide a detailed overview of the molecular composition and structural features of 14-3-3s, laying significant emphasis on their peculiar target-binding mechanisms. We then briefly describe the implication of 14-3-3s in the central nervous system and focus on their interaction with LRRK2, α-Synuclein, and Parkin, three of the major players in PD onset and progression. We finally discuss how different types of small molecules may interfere with 14-3-3s interactome, thus representing a valid strategy in the future of drug discovery.
Collapse
|
16
|
Li MX, Sun XM, Cheng WG, Ruan HJ, Liu K, Chen P, Xu HJ, Gao SG, Feng XS, Qi YJ. Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma. BMC Cancer 2021; 21:906. [PMID: 34372798 PMCID: PMC8351329 DOI: 10.1186/s12885-021-08647-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
Background A plethora of prognostic biomarkers for esophageal squamous cell carcinoma (ESCC) that have hitherto been reported are challenged with low reproducibility due to high molecular heterogeneity of ESCC. The purpose of this study was to identify the optimal biomarkers for ESCC using machine learning algorithms. Methods Biomarkers related to clinical survival, recurrence or therapeutic response of patients with ESCC were determined through literature database searching. Forty-eight biomarkers linked to recurrence or prognosis of ESCC were used to construct a molecular interaction network based on NetBox and then to identify the functional modules. Publicably available mRNA transcriptome data of ESCC downloaded from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets included GSE53625 and TCGA-ESCC. Five machine learning algorithms, including logical regression (LR), support vector machine (SVM), artificial neural network (ANN), random forest (RF) and XGBoost, were used to develop classifiers for prognostic classification for feature selection. The area under ROC curve (AUC) was used to evaluate the performance of the prognostic classifiers. The importances of identified molecules were ranked by their occurrence frequencies in the prognostic classifiers. Kaplan-Meier survival analysis and log-rank test were performed to determine the statistical significance of overall survival. Results A total of 48 clinically proven molecules associated with ESCC progression were used to construct a molecular interaction network with 3 functional modules comprising 17 component molecules. The 131,071 prognostic classifiers using these 17 molecules were built for each machine learning algorithm. Using the occurrence frequencies in the prognostic classifiers with AUCs greater than the mean value of all 131,071 AUCs to rank importances of these 17 molecules, stratifin encoded by SFN was identified as the optimal prognostic biomarker for ESCC, whose performance was further validated in another 2 independent cohorts. Conclusion The occurrence frequencies across various feature selection approaches reflect the degree of clinical importance and stratifin is an optimal prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Meng-Xiang Li
- School of Information Engineering of Henan University of Science and Technology, 263 Kaiyuan Road, Luolong Qu, Luoyang, 471023, P. R. China.,Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Xiao-Meng Sun
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China.,The Sixth People's Hospital of Luoyang, Oncology Department, 14 Xiyuan Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Wei-Gang Cheng
- Department of Thyroid and Breast Cancer Surgery, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Hao-Jie Ruan
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Ke Liu
- School of Information Engineering of Henan University of Science and Technology, 263 Kaiyuan Road, Luolong Qu, Luoyang, 471023, P. R. China.,Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Pan Chen
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Hai-Jun Xu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - She-Gan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China
| | - Xiao-Shan Feng
- School of Information Engineering of Henan University of Science and Technology, 263 Kaiyuan Road, Luolong Qu, Luoyang, 471023, P. R. China. .,Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China.
| | - Yi-Jun Qi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471003, P. R. China.
| |
Collapse
|
17
|
Winter M, Rokavec M, Hermeking H. 14-3-3σ Functions as an Intestinal Tumor Suppressor. Cancer Res 2021; 81:3621-3634. [PMID: 34224368 DOI: 10.1158/0008-5472.can-20-4192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 12/09/2022]
Abstract
Although the 14-3-3σ gene was initially identified as a p53 target gene in colorectal cancer cells, its potential role in intestinal tumorigenesis has remained unknown. Here we determined that 14-3-3σ expression is significantly downregulated in primary human colorectal cancer when compared with adjacent normal colonic tissue in patient samples. Downregulation of 14-3-3σ in primary colorectal cancers was significantly associated with p53 mutation, increasing tumor stage, distant metastasis, and poor patient survival. Poor survival was more significantly associated with decreased 14-3-3σ expression in p53 wild-type than in p53-mutant colorectal cancers. 14-3-3σ expression was detected in enterocytes of the transit amplifying zone and gradually increased towards the apical villi in the small intestinal epithelium. In small and large intestinal epithelia and adenomas, 14-3-3σ expression was upregulated in differentiated areas. Deletion of 14-3-3σ in ApcMin mice increased the number and size of adenomas in the small intestine and colon, shortening the median survival by 64 days. 14-3-3σ-deficient adenomas displayed increased proliferation and decreased apoptosis, as well as increased dysplasia. In adenomas, loss of 14-3-3σ promoted acquisition of a mesenchymal-like gene expression signature, which was also found in colorectal cancers from patients with poor relapse-free survival. The transcriptional programs controlled by the 14-3-3σ-interacting factors SNAIL, c-JUN, YAP1, and FOXO1 were activated by deletion of 14-3-3σ, potentially contributing to the enhanced tumor formation and growth. Taken together, these results provide genetic evidence of a tumor-suppressor function of 14-3-3σ in the intestine. SIGNIFICANCE: Downregulation of 14-3-3σ in colorectal cancer is associated with metastasis and poor survival of patients, and its inactivation in a murine tumor model drives intestinal tumor formation and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Markus Winter
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Munich, Germany
| | - Matjaž Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Munich, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Rodrigo AP, Mendes VM, Manadas B, Grosso AR, Alves de Matos AP, Baptista PV, Costa PM, Fernandes AR. Specific Antiproliferative Properties of Proteinaceous Toxin Secretions from the Marine Annelid Eulalia sp. onto Ovarian Cancer Cells. Mar Drugs 2021; 19:31. [PMID: 33445445 PMCID: PMC7827603 DOI: 10.3390/md19010031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
As Yondelis joins the ranks of approved anti-cancer drugs, the benefit from exploring the oceans' biodiversity becomes clear. From marine toxins, relevant bioproducts can be obtained due to their potential to interfere with specific pathways. We explored the cytotoxicity of toxin-bearing secretions of the polychaete Eulalia onto a battery of normal and cancer human cell lines and discovered that the cocktail of proteins is more toxic towards an ovarian cancer cell line (A2780). The secretions' main proteins were identified by proteomics and transcriptomics: 14-3-3 protein, Hsp70, Rab3, Arylsulfatase B and serine protease, the latter two being known toxins. This mixture of toxins induces cell-cycle arrest at G2/M phase after 3h exposure in A2780 cells and extrinsic programmed cell death. These findings indicate that partial re-activation of the G2/M checkpoint, which is inactivated in many cancer cells, can be partly reversed by the toxic mixture. Protein-protein interaction networks partake in two cytotoxic effects: cell-cycle arrest with a link to RAB3C and RAF1; and lytic activity of arylsulfatases. The discovery of both mechanisms indicates that venomous mixtures may affect proliferating cells in a specific manner, highlighting the cocktails' potential in the fine-tuning of anti-cancer therapeutics targeting cell cycle and protein homeostasis.
Collapse
Affiliation(s)
- Ana P. Rodrigo
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - Vera M. Mendes
- CNC–Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Bruno Manadas
- CNC–Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Ana R. Grosso
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - António P. Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte de Caparica, 2829-516 Caparica, Portugal;
| | - Pedro V. Baptista
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - Pedro M. Costa
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - Alexandra R. Fernandes
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| |
Collapse
|
19
|
Aljabal G, Yap BK. 14-3-3σ and Its Modulators in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13120441. [PMID: 33287252 PMCID: PMC7761676 DOI: 10.3390/ph13120441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023] Open
Abstract
14-3-3σ is an acidic homodimer protein with more than one hundred different protein partners associated with oncogenic signaling and cell cycle regulation. This review aims to highlight the crucial role of 14-3-3σ in controlling tumor growth and apoptosis and provide a detailed discussion on the structure-activity relationship and binding interactions of the most recent 14-3-3σ protein-protein interaction (PPI) modulators reported to date, which has not been reviewed previously. This includes the new fusicoccanes stabilizers (FC-NAc, DP-005), fragment stabilizers (TCF521-123, TCF521-129, AZ-003, AZ-008), phosphate-based inhibitors (IMP, PLP), peptide inhibitors (2a-d), as well as inhibitors from natural sources (85531185, 95911592). Additionally, this review will also include the discussions of the recent efforts by a different group of researchers for understanding the binding mechanisms of existing 14-3-3σ PPI modulators. The strategies and state-of-the-art techniques applied by various group of researchers in the discovery of a different chemical class of 14-3-3σ modulators for cancer are also briefly discussed in this review, which can be used as a guide in the development of new 14-3-3σ modulators in the near future.
Collapse
|
20
|
Parajón E, Surcel A, Robinson DN. The mechanobiome: a goldmine for cancer therapeutics. Am J Physiol Cell Physiol 2020; 320:C306-C323. [PMID: 33175572 DOI: 10.1152/ajpcell.00409.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer progression is dependent on heightened mechanical adaptation, both for the cells' ability to change shape and to interact with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is the larger network that constitutes the cell's mechanical systems that are also highly integrated with many other cellular systems, such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here, we review the biochemistry of key mechanoresponsive proteins, specifically nonmuscle myosin II, α-actinins, and filamins, as well as the partnering proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Eleana Parajón
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
22
|
14-3-3 σ: A potential biomolecule for cancer therapy. Clin Chim Acta 2020; 511:50-58. [PMID: 32950519 DOI: 10.1016/j.cca.2020.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
As more studies have focused on the function of 14-3-3 proteins, their role in tumor progression has gradually improved. In the 14-3-3 protein family, 14-3-3σ is the protein that is most associated with tumor occurrence and development. In some malignancies, 14-3-3σ acts as a tumor suppressor via p53 and tumor suppressor genes. In most tumors, 14-3-3σ overexpression increases resistance to chemotherapy and radiotherapy and mediates the G2-M checkpoint after DNA damage. Although 14-3-3σ overexpression has been closely associated with poorer prognosis in pancreatic, gastric and colorectal cancer, its role in gallbladder and nasopharyngeal cancer remains less clear. As such, the function of 14-3-3σ in specific cancer types needs to be further clarified. It has been hypothesized that a role may be related to its molecular chaperone function combined with various protein ligands. In this review, we examine the role of 14-3-3σ in tumor development and drug resistance. We discuss the potential of targeting 14-3-3σ regulators in cancer therapy and treatment.
Collapse
|
23
|
Dysregulation of peripheral expression of the YWHA genes during conversion to psychosis. Sci Rep 2020; 10:9863. [PMID: 32555255 PMCID: PMC7299951 DOI: 10.1038/s41598-020-66901-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/04/2020] [Indexed: 12/01/2022] Open
Abstract
The seven human 14-3-3 proteins are encoded by the YWHA-gene family. They are expressed in the brain where they play multiple roles including the modulation of synaptic plasticity and neuronal development. Previous studies have provided arguments for their involvement in schizophrenia, but their role during disease onset is unknown. We explored the peripheral-blood expression level of the seven YWHA genes in 92 young individuals at ultra-high risk for psychosis (UHR). During the study, 36 participants converted to psychosis (converters) while 56 did not (non-converters). YWHA genes expression was evaluated at baseline and after a mean follow-up of 10.3 months using multiplex quantitative PCR. Compared with non-converters, the converters had a significantly higher baseline expression levels for 5 YWHA family genes, and significantly different longitudinal changes in the expression of YWHAE, YWHAG, YWHAH, YWHAS and YWAHZ. A principal-component analysis also indicated that the YWHA expression was significantly different between converters and non-converters suggesting a dysregulation of the YWHA co-expression network. Although these results were obtained from peripheral blood which indirectly reflects brain chemistry, they indicate that this gene family may play a role in psychosis onset, opening the way to the identification of prognostic biomarkers or new drug targets.
Collapse
|
24
|
Chang HC, Chu CP, Lin SJ, Hsiao CK. Network hub-node prioritization of gene regulation with intra-network association. BMC Bioinformatics 2020; 21:101. [PMID: 32164570 PMCID: PMC7069025 DOI: 10.1186/s12859-020-3444-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background To identify and prioritize the influential hub genes in a gene-set or biological pathway, most analyses rely on calculation of marginal effects or tests of statistical significance. These procedures may be inappropriate since hub nodes are common connection points and therefore may interact with other nodes more often than non-hub nodes do. Such dependence among gene nodes can be conjectured based on the topology of the pathway network or the correlation between them. Results Here we develop a pathway activity score incorporating the marginal (local) effects of gene nodes as well as intra-network affinity measures. This score summarizes the expression levels in a gene-set/pathway for each sample, with weights on local and network information, respectively. The score is next used to examine the impact of each node through a leave-one-out evaluation. To illustrate the procedure, two cancer studies, one involving RNA-Seq from breast cancer patients with high-grade ductal carcinoma in situ and one microarray expression data from ovarian cancer patients, are used to assess the performance of the procedure, and to compare with existing methods, both ones that do and do not take into consideration correlation and network information. The hub nodes identified by the proposed procedure in the two cancer studies are known influential genes; some have been included in standard treatments and some are currently considered in clinical trials for target therapy. The results from simulation studies show that when marginal effects are mild or weak, the proposed procedure can still identify causal nodes, whereas methods relying only on marginal effect size cannot. Conclusions The NetworkHub procedure proposed in this research can effectively utilize the network information in combination with local effects derived from marker values, and provide a useful and complementary list of recommendations for prioritizing causal hubs.
Collapse
Affiliation(s)
- Hung-Ching Chang
- Division of Biostatistics, Institute of Epidemiology and Preventive Medicine, National Taiwan University, No. 17, Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Chiao-Pei Chu
- Division of Biostatistics, Institute of Epidemiology and Preventive Medicine, National Taiwan University, No. 17, Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Shu-Ju Lin
- Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chuhsing Kate Hsiao
- Division of Biostatistics, Institute of Epidemiology and Preventive Medicine, National Taiwan University, No. 17, Xu-Zhou Road, Taipei, 10055, Taiwan. .,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, 10055, Taiwan.
| |
Collapse
|
25
|
Abstract
Dysregulated metabolism is one of the hallmarks of cancer. Under normal physiological conditions, ATP is primarily generated by oxidative phosphorylation. Cancers commonly undergo a dramatic shift toward glycolysis, despite the presence of oxygen. This phenomenon is known as the Warburg effect, and requires the activity of LDHA. LDHA converts pyruvate to lactate in the final step of glycolysis and is often upregulated in cancer. LDHA inhibitors present a promising therapeutic option, as LDHA blockade leads to apoptosis in cancer cells. Despite this, existing LDHA inhibitors have shown limited clinical efficacy. Here, we review recent progress in LDHA structure, function and regulation as well as strategies to target this critical enzyme.
Collapse
|
26
|
Ho T, Tan BX, Lane D. How the Other Half Lives: What p53 Does When It Is Not Being a Transcription Factor. Int J Mol Sci 2019; 21:ijms21010013. [PMID: 31861395 PMCID: PMC6982169 DOI: 10.3390/ijms21010013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
It has been four decades since the discovery of p53, the designated ‘Guardian of the Genome’. P53 is primarily known as a master transcription factor and critical tumor suppressor, with countless studies detailing the mechanisms by which it regulates a host of gene targets and their consequent signaling pathways. However, transcription-independent functions of p53 also strongly define its tumor-suppressive capabilities and recent findings shed light on the molecular mechanisms hinted at by earlier efforts. This review highlights the transcription-independent mechanisms by which p53 influences the cellular response to genomic instability (in the form of replication stress, centrosome homeostasis, and transposition) and cell death. We also pinpoint areas for further investigation in order to better understand the context dependency of p53 transcription-independent functions and how these are perturbed when TP53 is mutated in human cancer.
Collapse
|
27
|
Ge X, Zhao Y, Dong L, Seng J, Zhang X, Dou D. NAMPT regulates PKM2 nuclear location through 14-3-3ζ: Conferring resistance to tamoxifen in breast cancer. J Cell Physiol 2019; 234:23409-23420. [PMID: 31141164 DOI: 10.1002/jcp.28910] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022]
Abstract
The resistance against tamoxifen therapy has become one of the major obstacles in the clinical treatment of breast cancer. Nicotinamide phosphoribosyltransferase (NAMPT) is an essential enzyme catalyzing nicotinamide adenine dinucleotide biosynthesis and is important for tumor metabolism. The study here sought to explore the effect of NAMPT on breast cancer survival with tamoxifen conditioning. We found that NAMPT was highly expressed in breast cancer cells compared with normal mammary epithelial cells. Inhibition of NAMPT by FK866 inhibited cell viability and aggravated apoptosis in cancer cells treated with 4-hydroxytamoxifen. NAMPT overexpression upregulated 14-3-3ζ expression. Knockdown of 14-3-3ζ reduced cell survival and promoted apoptosis. Activation of Akt signaling, rather than ERK1/2 pathway, is responsible for 14-3-3ζ regulation by NAMPT overexpression. Furthermore, NAMPT overexpression led to PKM2 accumulation in the cell nucleus and could be dampened by 14-3-3ζ inhibition. In addition, NAMPT overexpression promoted xenografted tumor growth and apoptosis in nude mice, while 14-3-3ζ inhibition attenuated its effect. Collectively, our data demonstrate that NAMPT contributes to tamoxifen resistance through regulation of 14-3-3ζ expression and PKM2 translocation.
Collapse
Affiliation(s)
- Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingling Dong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Seng
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongwei Dou
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Yu J, Zayas J, Qin B, Wang L. Targeting DNA methylation for treating triple-negative breast cancer. Pharmacogenomics 2019; 20:1151-1157. [PMID: 31755366 PMCID: PMC7026764 DOI: 10.2217/pgs-2019-0078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 15-20% of all invasive breast cancers and tends to have aggressive histological features and poor clinical outcomes. Unlike, estrogen receptor- or HER2-positive diseases, TNBC patients currently lack the US FDA-approved targeted therapies. DNA methylation is a critical mechanism of epigenetic modification. It is well known that aberrant DNA methylation contributes to the malignant transformation of cells by silencing critical tumor suppressor genes. DNA methyltransferase inhibitors reactivate silenced tumor suppressor genes and result in tumor growth arrest, with therapeutic effects observed in patients with hematologic malignancies. The antitumor effect of these DNA methyltransferase inhibitors has also been explored in solid tumors, especially in TNBC that currently lacks targeted therapies.
Collapse
Affiliation(s)
- Jia Yu
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacqueline Zayas
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic School of Medicine & The Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Bo Qin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
29
|
Gu L, Sang M, Li J, Liu F, Wu Y, Liu S, Shan B. Demethylation-mediated upregulation of melanoma-associated antigen-A11 correlates with malignant progression of esophageal squamous cell carcinoma. Dig Liver Dis 2019; 51:1475-1482. [PMID: 31155488 DOI: 10.1016/j.dld.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/27/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The expression and methylation status of oncogenes are closely related to the onset and progression of cancer. AIMS To explore the role and methylation status of melanoma-associated antigen-A11 in the pathogenesis of esophageal squamous cell carcinoma. METHODS 116 esophageal squamous cell carcinoma patients with tumor tissues and corresponding adjacent normal tissues were obtained. The expression level and methylation status of melanoma-associated antigen-A11 in esophageal cancer cell lines and esophageal squamous cell carcinoma tissues were determined respectively. RESULTS Significant up-regulation of melanoma-associated antigen-A11 was detected in esophageal cancer cell lines and esophageal squamous cell carcinoma tissues. Up-regulation of melanoma-associated antigen-A11 contributed to proliferation and invasion in cancer cells. Hypomethylation of the CpG site was associated with pathological differentiation, clinical stage, tumor size, lymph node metastasis and distant metastasis. Esophageal squamous cell carcinoma patients in stage III and IV, with high expression of melanoma-associated antigen-A11 or hypomethylation of the CpG site within the promoter demonstrated poor survival. CONCLUSION Melanoma-associated antigen-A11 is up-regulated in esophageal squamous cell carcinoma at least partly by hypomethylation of the CpG site within the promoter and this hypomethylation may affect the prognosis of esophageal squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Lina Gu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Meixiang Sang
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| | - Juan Li
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Fei Liu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yunyan Wu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Shina Liu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Baoen Shan
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
30
|
Bend EG, Aref-Eshghi E, Everman DB, Rogers RC, Cathey SS, Prijoles EJ, Lyons MJ, Davis H, Clarkson K, Gripp KW, Li D, Bhoj E, Zackai E, Mark P, Hakonarson H, Demmer LA, Levy MA, Kerkhof J, Stuart A, Rodenhiser D, Friez MJ, Stevenson RE, Schwartz CE, Sadikovic B. Gene domain-specific DNA methylation episignatures highlight distinct molecular entities of ADNP syndrome. Clin Epigenetics 2019; 11:64. [PMID: 31029150 PMCID: PMC6487024 DOI: 10.1186/s13148-019-0658-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/27/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND ADNP syndrome is a rare Mendelian disorder characterized by global developmental delay, intellectual disability, and autism. It is caused by truncating mutations in ADNP, which is involved in chromatin regulation. We hypothesized that the disruption of chromatin regulation might result in specific DNA methylation patterns that could be used in the molecular diagnosis of ADNP syndrome. RESULTS We identified two distinct and partially opposing genomic DNA methylation episignatures in the peripheral blood samples from 22 patients with ADNP syndrome. The "epi-ADNP-1" episignature included ~ 6000 mostly hypomethylated CpGs, and the "epi-ADNP-2" episignature included ~ 1000 predominantly hypermethylated CpGs. The two signatures correlated with the locations of the ADNP mutations. Epi-ADNP-1 mutations occupy the N- and C-terminus, and epi-ADNP-2 mutations are centered on the nuclear localization signal. The episignatures were enriched for genes involved in neuronal system development and function. A classifier trained on these profiles yielded full sensitivity and specificity in detecting patients with either of the two episignatures. Applying this model to seven patients with uncertain clinical diagnosis enabled reclassification of genetic variants of uncertain significance and assigned new diagnosis when the primary clinical suspicion was not correct. When applied to a large cohort of unresolved patients with developmental delay (N = 1150), the model predicted three additional previously undiagnosed patients to have ADNP syndrome. DNA sequencing of these subjects, wherever available, identified pathogenic mutations within the gene domains predicted by the model. CONCLUSIONS We describe the first Mendelian condition with two distinct episignatures caused by mutations in a single gene. These highly sensitive and specific DNA methylation episignatures enable diagnosis, screening, and genetic variant classifications in ADNP syndrome.
Collapse
Affiliation(s)
- Eric G. Bend
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646 USA
- PreventionGenetics, Marshfield, WI USA
| | - Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner’s Road E, London, ON N6A 5W9 Canada
- Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON Canada
| | - David B. Everman
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646 USA
| | - R. Curtis Rogers
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646 USA
| | - Sara S. Cathey
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646 USA
| | - Eloise J. Prijoles
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646 USA
| | - Michael J. Lyons
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646 USA
| | - Heather Davis
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646 USA
| | - Katie Clarkson
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646 USA
| | | | - Dong Li
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Elizabeth Bhoj
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Elaine Zackai
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Paul Mark
- Spectrum Health, Grand Rapids, MI USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Laurie A. Demmer
- Levine Children’s Hospital, Carolinas Medical Center, Charlotte, NC USA
| | - Michael A. Levy
- Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner’s Road E, London, ON N6A 5W9 Canada
- Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON Canada
| | - Jennifer Kerkhof
- Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner’s Road E, London, ON N6A 5W9 Canada
- Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON Canada
| | - Alan Stuart
- Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner’s Road E, London, ON N6A 5W9 Canada
- Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON Canada
| | - David Rodenhiser
- Department of Pediatrics, Biochemistry and Oncology, Western University, London, ON Canada
| | - Michael J. Friez
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646 USA
| | - Roger E. Stevenson
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646 USA
| | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, 800 Commissioner’s Road E, London, ON N6A 5W9 Canada
- Molecular Genetics Laboratory, Victoria Hospital, London Health Sciences Centre, London, ON Canada
| |
Collapse
|
31
|
Huang W, Zhao C, Zhong H, Zhang S, Xia Y, Cai Z. Bisphenol S induced epigenetic and transcriptional changes in human breast cancer cell line MCF-7. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:697-703. [PMID: 30616060 DOI: 10.1016/j.envpol.2018.12.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 05/18/2023]
Abstract
In recent years, concerns about using Bisphenol A (BPA) in daily consume products and its effects in many chronic human diseases have prompted the removal of BPA. However, the widely used BPA alternatives, including Bisphenol S (BPS), have a high structural similarity with BPA, suggesting that they may have similar biological effects towards human beings. Indeed, BPS was also found to have endocrine-disrupting effects. Epigenetic mechanism was reported to be involved in BPA-induced biological effects in both in vitro and in vivo models. However, there is no assessment on whether BPS could cause epigenetic changes. In this work, we investigated the possible epigenetic effects of BPS that might induce in human breast cancer cell line MCF-7. We found that BPS could change DNA methylation level of transposons. Besides, methylation status in promoter of breast cancer related genes CDH1, SFN, TNFRSF10C were also changed, which implied that BPS might play a role in the development of breast cancer. Gene expression profiling showed that some genes related to breast cancer progression were upregulated, including THBS4, PPARGC1A, CREB5, COL5A3. Gene ontology (GO) analysis of the differentially expressed genes revealed the significantly changes in PI3K-Akt signaling pathway and extracellular matrix, which were related to the proliferation, migration and invasion of breast cancer cells. These results illustrated that BPS exposure might play roles in the progression of breast cancer.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Huan Zhong
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China.
| |
Collapse
|
32
|
Pennington KL, Chan TY, Torres MP, Andersen JL. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 2018; 37:5587-5604. [PMID: 29915393 PMCID: PMC6193947 DOI: 10.1038/s41388-018-0348-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
14-3-3 proteins are a family of structurally similar phospho-binding proteins that regulate essentially every major cellular function. Decades of research on 14-3-3s have revealed a remarkable network of interacting proteins that demonstrate how 14-3-3s integrate and control multiple signaling pathways. In particular, these interactions place 14-3-3 at the center of the signaling hub that governs critical processes in cancer, including apoptosis, cell cycle progression, autophagy, glucose metabolism, and cell motility. Historically, the majority of 14-3-3 interactions have been identified and studied under nutrient-replete cell culture conditions, which has revealed important nutrient driven interactions. However, this underestimates the reach of 14-3-3s. Indeed, the loss of nutrients, growth factors, or changes in other environmental conditions (e.g., genotoxic stress) will not only lead to the loss of homeostatic 14-3-3 interactions, but also trigger new interactions, many of which are likely stress adaptive. This dynamic nature of the 14-3-3 interactome is beginning to come into focus as advancements in mass spectrometry are helping to probe deeper and identify context-dependent 14-3-3 interactions-providing a window into adaptive phosphorylation-driven cellular mechanisms that orchestrate the tumor cell's response to a variety of environmental conditions including hypoxia and chemotherapy. In this review, we discuss emerging 14-3-3 regulatory mechanisms with a focus on post-translational regulation of 14-3-3 and dynamic protein-protein interactions that illustrate 14-3-3's role as a stress-adaptive signaling hub in cancer.
Collapse
Affiliation(s)
- K L Pennington
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - T Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - M P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
33
|
Li D, Li P, Wu J, Yi J, Dou Y, Guo X, Yin Y, Wang D, Ma C, Qiu L. Methylation of NBPF1 as a novel marker for the detection of plasma cell-free DNA of breast cancer patients. Clin Chim Acta 2018; 484:81-86. [DOI: 10.1016/j.cca.2018.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
|
34
|
Khazayel S, Mokarram P, Mohammadi Z, Ramezani F, Dayong Z. Derivative of Stevioside; CPUK02; Restores ESR1 Gene Methylation in MDA-MB 231. Asian Pac J Cancer Prev 2018; 19:2117-2123. [PMID: 30139210 PMCID: PMC6171390 DOI: 10.22034/apjcp.2018.19.8.2117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: CPUK02 (15-Oxosteviol benzyl ester) is a new ent-kaurenoid derivative of stevioside and exhibits strong anti-cancer activity. Nowadays, the pattern of epigenetic in cancer has been topic of many studies and DNA methylation targeting represents a relevant strategy for cancer treatment. Since, no study conducted to this mechanism, we attempt to evaluate whether CPUK02 induce its anti-cancer effects via alteration the level of mRNA DNMT3B, DNMT3A expression and ESR1 methylation pattern in breast cancer cells line. Methods: MCF-7 (ER +) and MDA-MB231 (ER-) cell lines were treated for 24, 48 hours with 1 µM CPUK02 and 5-AZA-CdR (DNA methyltransferase inhibitor). Quantitative expression of DNMT3B and DNMT3A genes and ESR1 promoter methylation was assessed by Real-Time PCR and MS-PCR, respectively. Results: CPUK02 restored ESR1 promoter unmethylated allele in MDA-MB 231 cells. Also treatment with CPUK02 decreased the expression of both DNMT3A and DNMT3B genes like 5-AZA. The expression of DNMT genes were diminished by half compared with control cells. Conclusions: These results showed that CPUK02 has an anticancer effect on MDA-MB 231 cells which this effect can be done through several pathways.
Collapse
Affiliation(s)
- Saeed Khazayel
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ,
| | | | | | | | | |
Collapse
|
35
|
Ji ZM, Yang LL, Ni J, Xu SP, Yang C, Duan P, Lou LP, Ruan QR. Silencing Filamin A Inhibits the Invasion and Migration of Breast Cancer Cells by Up-regulating 14-3-3σ. Curr Med Sci 2018; 38:461-466. [PMID: 30074213 DOI: 10.1007/s11596-018-1901-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/13/2018] [Indexed: 12/14/2022]
Abstract
Filamin A and 14-3-3-σ are closely associated with the development of breast cancer. However, the exact relationship between them is still unknown. The present study aimed to examine the interaction of filamin A with 14-3-3-σ in the invasion and migration of breast cancer. RNA interference technology was employed to silence filamin A in MDA-MB-231 cells. Real-time PCR and Western blotting were used to detect the expression of filamin A and 14-3-3-σ at mRNA and protein levels, respectively. Double immunofluorescence was applied to show their colocalization morphologically. Wound healing assay and Trans-well assay were used to testify the migration and invasion of MDA-MB-231 cells in filamin A-silenced cells. The results showed that silencing filamin A significantly increased the mRNA and protein levels of 14-3-3σ. In addition, double immunofluorescence displayed that filamin A and 14-3-3σ were predominantly colocalized in the cytoplasm of MDA-MB-231 cells. Silencing filamin A led to the enhanced fluorescence of 14-3-3σ. Furthermore, cell functional experiments showed that silencing filamin A inhibited the migration and invasion of MDA-MB-231 cells in vitro. In conclusion, silencing filamin A may inhibit the invasion and migration of breast cancer cells by upregulating 14-3-3σ.
Collapse
Affiliation(s)
- Zhi-Min Ji
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Li-Li Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Ni
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - San-Peng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Ping Lou
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu-Rong Ruan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
36
|
West-Foyle H, Kothari P, Osborne J, Robinson DN. 14-3-3 proteins tune non-muscle myosin II assembly. J Biol Chem 2018; 293:6751-6761. [PMID: 29549125 DOI: 10.1074/jbc.m117.819391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/12/2018] [Indexed: 11/06/2022] Open
Abstract
The 14-3-3 family comprises a group of small proteins that are essential, ubiquitous, and highly conserved across eukaryotes. Overexpression of the 14-3-3 proteins σ, ϵ, ζ, and η correlates with high metastatic potential in multiple cancer types. In Dictyostelium, 14-3-3 promotes myosin II turnover in the cell cortex and modulates cortical tension, cell shape, and cytokinesis. In light of the important roles of 14-3-3 proteins across a broad range of eukaryotic species, we sought to determine how 14-3-3 proteins interact with myosin II. Here, conducting in vitro and in vivo studies of both Dictyostelium (one 14-3-3 and one myosin II) and human proteins (seven 14-3-3s and three nonmuscle myosin IIs), we investigated the mechanism by which 14-3-3 proteins regulate myosin II assembly. Using in vitro assembly assays with purified myosin II tail fragments and 14-3-3, we demonstrate that this interaction is direct and phosphorylation-independent. All seven human 14-3-3 proteins also altered assembly of at least one paralog of myosin II. Our findings indicate a mechanism of myosin II assembly regulation that is mechanistically conserved across a billion years of evolution from amebas to humans. We predict that altered 14-3-3 expression in humans inhibits the tumor suppressor myosin II, contributing to the changes in cell mechanics observed in many metastatic cancers.
Collapse
Affiliation(s)
| | | | | | - Douglas N Robinson
- From the Departments of Cell Biology, .,Pharmacology and Molecular Sciences, and.,Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
37
|
Li Y, Hu K, Xiao X, Wu W, Yan H, Chen H, Chen Z, Yin D. FBW7 suppresses cell proliferation and G2/M cell cycle transition via promoting γ-catenin K63-linked ubiquitylation. Biochem Biophys Res Commun 2018; 497:473-479. [PMID: 29408378 DOI: 10.1016/j.bbrc.2018.01.192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 11/25/2022]
Abstract
FBW7 is an E3 ubiquitin ligase and frequently mutated in various types of cancer. As a component of SCF ubiquitin ligase complex, FBW7 usually targets the substrates via K11 or K48-linked ubiquitylation and subsequent degradation of target proteins. Nevertheless, the role of FBW7 in mediating non-degradable ubiquitin signaling remains unknown in human cancers. In this study, we identified γ-catenin as a new binding protein of FBW7 by TAP-MS (tandem affinity purification-mass spectrum). Knockdown of FBW7 did not affect the stability of γ-catenin, but significantly reduced the K63-linked ubiquitin of γ-catenin, resulting in decreased expression of γ-catenin downstream gene 14-3-3σ. Rescue experiment revealed that γ-catenin promoted the expression of 14-3-3σ in a K63-linked ubiquitin signaling dependent manner. Furthermore, we showed that FBW7 cooperated with γ-catenin to inhibit G2/M cell cycle transition and cell proliferation. Taken together, our study uncovered a novel mechanism that FBW7 associated with γ-catenin and promoted its K63-linked ubiquitylation, providing new insights in understanding the role of FBW7 in inhibiting G2/M cell cycle transition and tumor cell proliferation.
Collapse
Affiliation(s)
- Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xing Xiao
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haiyan Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
38
|
Ye M, Huang T, Ying Y, Li J, Yang P, Ni C, Zhou C, Chen S. Detection of 14-3-3 sigma (σ) promoter methylation as a noninvasive biomarker using blood samples for breast cancer diagnosis. Oncotarget 2018; 8:9230-9242. [PMID: 27999208 PMCID: PMC5354727 DOI: 10.18632/oncotarget.13992] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
As a tumor suppressor gene, 14-3-3 σ has been reported to be frequently methylated in breast cancer. However, the clinical effect of 14-3-3 σ promoter methylation remains to be verified. This study was performed to assess the clinicopathological significance and diagnostic value of 14-3-3 σ promoter methylation in breast cancer. 14-3-3 σ promoter methylation was found to be notably higher in breast cancer than in benign lesions and normal breast tissue samples. We did not observe that 14-3-3 σ promoter methylation was linked to the age status, tumor grade, clinic stage, lymph node status, histological subtype, ER status, PR status, HER2 status, or overall survival of patients with breast cancer. The combined sensitivity, specificity, AUC (area under the curve), positive likelihood ratios (PLR), negative likelihood ratios (NLR), diagnostic odds ratio (DOR), and post-test probability values (if the pretest probability was 30%) of 14-3-3 σ promoter methylation in blood samples of breast cancer patients vs. healthy subjects were 0.69, 0.99, 0.86, 95, 0.31, 302, and 98%, respectively. Our findings suggest that 14-3-3 σ promoter methylation may be associated with the carcinogenesis of breast cancer and that the use of 14-3-3 σ promoter methylation might represent a useful blood-based biomarker for the clinical diagnosis of breast cancer.
Collapse
Affiliation(s)
- Meng Ye
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| | - Tao Huang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| | - Ying Ying
- Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, People's Republic of China
| | - Jinyun Li
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| | - Ping Yang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Chao Ni
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Chongchang Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Si Chen
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| |
Collapse
|
39
|
Takayama KI, Suzuki T, Tanaka T, Fujimura T, Takahashi S, Urano T, Ikeda K, Inoue S. TRIM25 enhances cell growth and cell survival by modulating p53 signals via interaction with G3BP2 in prostate cancer. Oncogene 2018; 37:2165-2180. [DOI: 10.1038/s41388-017-0095-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 01/16/2023]
|
40
|
Gomes CJ, Centuori SM, Harman MW, Putnam CW, Wolgemuth CW, Martinez JD. The induction of endoreduplication and polyploidy by elevated expression of 14-3-3γ. Genes Cancer 2017; 8:771-783. [PMID: 29321819 PMCID: PMC5755723 DOI: 10.18632/genesandcancer.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Several studies have demonstrated that specific 14-3-3 isoforms are frequently elevated in cancer and that these proteins play a role in human tumorigenesis. 14-3-3γ, an isoform recently demonstrated to function as an oncoprotein, is overexpressed in a variety of human cancers; however, its role in promoting tumorigenesis remains unclear. We previously reported that overexpression of 14-3-3γ caused the appearance of polyploid cells, a phenotype demonstrated to have profound tumor promoting properties. Here we examined the mechanism driving 14-3-3γ-induced polyploidization and the effect this has on genomic stability. Using FUCCI probes we showed that these polyploid cells appeared when diploid cells failed to enter mitosis and subsequently underwent endoreduplication. We then demonstrated that 14-3-3γ-induced polyploid cells experience significant chromosomal segregation errors during mitosis and observed that some of these cells stably propagate as tetraploids when isolated cells were expanded into stable cultures. These data lead us to conclude that overexpression of the 14-3-3γ promotes endoreduplication. We further investigated the role of 14-3-3γ in human NSCLC samples and found that its expression is significantly elevated in polyploid tumors. Collectively, these results suggests that 14-3-3γ may promote tumorigenesis through the production of a genetically unstable polyploid intermediate.
Collapse
Affiliation(s)
- Cecil J Gomes
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Sara M Centuori
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Michael W Harman
- Department of Surgical Research, Rhode Island Hospital, Providence, Rhode Island, USA.,Department of Engineering, Brown University, Providence, Rhode Island, USA
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - Charles W Wolgemuth
- Department of Physics, University of Arizona, Tucson, Arizona, USA.,Department of Molecular & Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Jesse D Martinez
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA.,Department of Cell & Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
41
|
Liu S, Liu F, Huang W, Gu L, Meng L, Ju Y, Wu Y, Li J, Liu L, Sang M. MAGE-A11 is activated through TFCP2/ZEB1 binding sites de-methylation as well as histone modification and facilitates ESCC tumor growth. Oncotarget 2017; 9:3365-3378. [PMID: 29423052 PMCID: PMC5790469 DOI: 10.18632/oncotarget.22973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Recently, we have reported that the product of Melanoma Antigens Genes (MAGE) family member MAGE-A11 is an independent poor prognostic marker for esophageal squamous cell carcinoma (ESCC). However, the reason how MAGE-A11 is activated in ESCC progression still remains unclear. In the current study, we demonstrated that DNA methylation and the subsequent histone posttranslational modifications play crucial roles in the regulation of MAGE-A11 in ESCC progression. We found that the methylation rate of TFCP2/ZEB1 binding site on MAGE-A11 promoter in ESCC tissues and cells is higher than the normal esophageal epithelial tissues and cells. Transcription factors TFCP2 and ZEB1 directly bind MAGE-A11 promoter and regulate the endogenous MAGE-A11 expression in a methylation-dependent manner in ESCC cells. Following MAGE-A11 promoter methylation, the methyl-CpG-binding protein MeCP2 was found to bind the methylated MAGE-A11 promoter to mediate histone deactylation by recruiting HDAC1 and HDAC2. Simultaneously, histone inactivation marks including H3K27me3 as well as H3K9me3 were increased, whereas histone activation mark H3K4me3 was decreased. HDAC inhibitor Trichostatin A (TSA) increased DNA methylase inhibitor Decitabine (DAC)-induced MAGE-A11 expression. siRNA-mediated knockdown of histone methltransferase EZH2 or DZNep (a EZH2 inhibitor) treatment increased DAC-induced MAGE-A11 expression. Our results indicate that MAGE-A11 is activated through DNA demethylation, histone acetylation and histone methylation in ESCC, and its activation promotes ESCC tumor growth.
Collapse
Affiliation(s)
- Shina Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Fei Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Weina Huang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Lina Gu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Lingjiao Meng
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Yingchao Ju
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China.,Animal Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Yunyan Wu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Juan Li
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Lihua Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Meixiang Sang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China.,Tumor Research Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| |
Collapse
|
42
|
Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ 2017; 25:133-143. [PMID: 29125602 PMCID: PMC5729533 DOI: 10.1038/cdd.2017.174] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022] Open
Abstract
p53 is a transcription factor that suppresses tumor growth through regulation of dozens of target genes with diverse biological functions. The activity of this master transcription factor is inactivated in nearly all tumors, either by mutations in the TP53 locus or by oncogenic events that decrease the activity of the wild-type protein, such as overexpression of the p53 repressor MDM2. However, despite decades of intensive research, our collective understanding of the p53 signaling cascade remains incomplete. In this review, we focus on recent advances in our understanding of mechanisms of p53-dependent transcriptional control as they relate to five key areas: (1) the functionally distinct N-terminal transactivation domains, (2) the diverse regulatory roles of its C-terminal domain, (3) evidence that p53 is solely a direct transcriptional activator, not a direct repressor, (4) the ability of p53 to recognize many of its enhancers across diverse chromatin environments, and (5) mechanisms that modify the p53-dependent transcriptional program in a context-dependent manner.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80203, USA
| |
Collapse
|
43
|
Yang J, Joshi S, Wang Q, Li P, Wang H, Xiong Y, Xiao Y, Wang J, Parker-Thornburg J, Behringer RR, Yu D. 14-3-3ζ loss leads to neonatal lethality by microRNA-126 downregulation-mediated developmental defects in lung vasculature. Cell Biosci 2017; 7:58. [PMID: 29118970 PMCID: PMC5667492 DOI: 10.1186/s13578-017-0186-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/23/2017] [Indexed: 12/30/2022] Open
Abstract
Background The 14-3-3 family of proteins have been reported to play an important role in development in various mouse models, but the context specific developmental functions of 14-3-3ζ remain to be determined. In this study, we identified a context specific developmental function of 14-3-3ζ. Results Targeted deletion of 14-3-3ζ in the C57Bl/6J murine genetic background led to neonatal lethality due to respiratory distress and could be rescued by out-breeding to the CD-1 or backcrossing to the FVB/NJ congenic background. Histological analysis of lung sections from 18.5 days post coitum embryos (dpc) showed that 14-3-3ζ−/− lung development is arrested at the pseudoglandular stage and exhibits vascular defects. The expression of miR-126, an endothelial-specific miRNA known to regulate lung vascular integrity was down-regulated in the lungs of the 14-3-3ζ−/− embryos in the C57Bl/6J background as compared to their wild-type counterparts. Loss of 14-3-3ζ in endothelial cells inhibited the angiogenic capability of the endothelial cells as determined by both trans-well migration assays and tube formation assays and these defects could be rescued by re-expressing miR-126. Mechanistically, loss of 14-3-3ζ led to reduced Erk1/2 phosphorylation resulting in attenuated binding of the transcription factor Ets2 on the miR-126 promoter which ultimately reduced expression of miR-126. Conclusion Our data demonstrates that miR-126 is an important angiogenesis regulator that functions downstream of 14-3-3ζ and downregulation of miR-126 plays a critical role in 14-3-3ζ-loss induced defects in lung vasculature in the C57Bl/6J genetic background. Electronic supplementary material The online version of this article (10.1186/s13578-017-0186-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Yang
- Department of Molecular and Cellular Oncology, Unit 108, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA.,University of Texas Health Science Center Graduate School of Biomedical Sciences, Cancer Biology Program, Houston, TX 77030 USA
| | - Sonali Joshi
- Department of Molecular and Cellular Oncology, Unit 108, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Qingfei Wang
- Department of Molecular and Cellular Oncology, Unit 108, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, Unit 108, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Hai Wang
- Department of Molecular and Cellular Oncology, Unit 108, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Yan Xiong
- Department of Molecular and Cellular Oncology, Unit 108, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, Unit 108, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Jinyang Wang
- Department of Molecular and Cellular Oncology, Unit 108, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.,University of Texas Health Science Center Graduate School of Biomedical Sciences, Cancer Biology Program, Houston, TX 77030 USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, Unit 108, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA.,University of Texas Health Science Center Graduate School of Biomedical Sciences, Cancer Biology Program, Houston, TX 77030 USA.,Center for Molecular Medicine, China Medical University, Taichung, 40402 Taiwan
| |
Collapse
|
44
|
Cornell B, Toyo-Oka K. 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis. Front Mol Neurosci 2017; 10:318. [PMID: 29075177 PMCID: PMC5643407 DOI: 10.3389/fnmol.2017.00318] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
The 14-3-3 proteins are a family of highly conserved, multifunctional proteins that are highly expressed in the brain during development. Cumulatively, the seven 14-3-3 isoforms make up approximately 1% of total soluble brain protein. Over the last decade, evidence has accumulated implicating the importance of the 14-3-3 protein family in the development of the nervous system, in particular cortical development, and have more recently been recognized as key regulators in a number of neurodevelopmental processes. In this review we will discuss the known roles of each 14-3-3 isoform in the development of the cortex, their relation to human neurodevelopmental disorders, as well as the challenges and questions that are left to be answered. In particular, we focus on the 14-3-3 isoforms and their involvement in the three key stages of cortical development; neurogenesis and differentiation, neuronal migration and neuromorphogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Brett Cornell
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
45
|
Raungrut P, Petjaroen P, Geater SL, Keeratichananont W, Phukaoloun M, Suwiwat S, Thongsuksai P. Methylation of 14-3-3σ gene and prognostic significance of 14-3-3σ expression in non-small cell lung cancer. Oncol Lett 2017; 14:5257-5264. [PMID: 29113161 PMCID: PMC5662907 DOI: 10.3892/ol.2017.6881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/07/2017] [Indexed: 12/31/2022] Open
Abstract
Loss of 14-3-3σ expression through DNA methylation has been associated with carcinogenesis and the prognosis for various cancer types. Detection of methylation of the gene in serum may be useful for diagnostic utility. The present study aimed to investigate the correlation between 14-3-3σ methylation level in 36 paired tumor tissues of non-small cell lung cancer (NSCLC) and matched serum using methylation-specific polymerase chain reaction. The prognostic significance of 14-3-3σ expression in 167 NSCLC was also evaluated using immunohistochemistry. Methylation of the 14-3-3σ gene was identified in all samples. The methylation level in the serum (mean 87.7%, range 64.6–100%) was higher compared with tumor (mean 46.7%, range 25.3–56.3%). However, no significant correlation between methylation levels in tissues and serums was observed (Spearman's correlation, −0.036; P=0.837). In the 167 tumor tissues, the majority of the cases (83.8%) exhibited negative expression. Adenocarcinoma is more likely to exhibit negative expression (91.4%) compared with squamous cell carcinoma (70.2%). No significant difference was identified in the overall survival according to 14-3-3σ expression status and 14-3-3σ expression did not demonstrated independent prognostic significance. In conclusion, NSCLC harbors certain levels of 14-3-3σ methylation in the tumor and the sera of patients. The clinical value of serum 14-3-3σ methylation should be further elucidated. Immunohistochemical expression 14-3-3σ protein has limited value on prognostic significance.
Collapse
Affiliation(s)
- Pritsana Raungrut
- Department of Biomedical Sciences and The Excellent Research Laboratory of Cancer Molecular Biology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pingpond Petjaroen
- Department of Biomedical Sciences and The Excellent Research Laboratory of Cancer Molecular Biology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarayut Lucien Geater
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Warangkana Keeratichananont
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Monlika Phukaoloun
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Supaporn Suwiwat
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Paramee Thongsuksai
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
46
|
Tang YF, Zhang YB, Feng XD, Lin SH, Qiao N, Sun ZY, Zhou WP. Role of 14-3-3 proteins in human diseases. Shijie Huaren Xiaohua Zazhi 2017; 25:509-520. [DOI: 10.11569/wcjd.v25.i6.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
14-3-3 proteins are a family of highly conserved small proteins. By interacting with target proteins, 14-3-3 proteins are involved in regulating multiple cellular processes, such as signal transduction, cell cycle regulation, apoptosis, cellular metabolism, cytoskeleton organization and malignant transformation. Mounting evidence suggests that 14-3-3 proteins play an important role in a wide variety of human diseases, such as human cancers and nervous system diseases. This review aims to summarize the current knowledge on the expression, regulation and biological function of 14-3-3 to highlight the role of 14-3-3 proteins in human diseases.
Collapse
|
47
|
Semik E, Gurgul A, Ząbek T, Ropka-Molik K, Koch C, Mählmann K, Bugno-Poniewierska M. Transcriptome analysis of equine sarcoids. Vet Comp Oncol 2016; 15:1370-1381. [PMID: 27779365 DOI: 10.1111/vco.12279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 01/28/2023]
Abstract
Equine sarcoids are the most commonly detected skin tumours in Equidae. In the present research, a comparative transcriptomic analysis was performed which aimed at looking inside a tumour biology and identification of the expression profile as a potential source of cancer specific genes useful as biomarkers. We have used Horse Gene Expression Microarray data from matched equine sarcoids and tumour-distant skin samples. In total, 901 significantly differentially expressed genes (DEGs) between lesional and healthy skin samples have been identified (fold change ≥ 2; P < 0.05). The large subset of DEGs, with decreased expression, was associated with a suppression of malignant transformation, whereas several overexpressed genes were involved in the processes associated with growth and progression of a tumour or immune system activity. Our results, as a first to date, showed comprehensive transcriptome analysis of skin tumour in horses and pinpointed significant pathways and genes related with oncogenesis processes.
Collapse
Affiliation(s)
- E Semik
- Department of Genomics and Molecular Biology of Animals, National Research Institute of Animal Production, Balice, Poland
| | - A Gurgul
- Department of Genomics and Molecular Biology of Animals, National Research Institute of Animal Production, Balice, Poland
| | - T Ząbek
- Department of Genomics and Molecular Biology of Animals, National Research Institute of Animal Production, Balice, Poland
| | - K Ropka-Molik
- Department of Genomics and Molecular Biology of Animals, National Research Institute of Animal Production, Balice, Poland
| | - C Koch
- ISME - Equine Clinic Bern, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - K Mählmann
- Equine Clinic, General Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - M Bugno-Poniewierska
- Department of Genomics and Molecular Biology of Animals, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
48
|
Danforth DN. Genomic Changes in Normal Breast Tissue in Women at Normal Risk or at High Risk for Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:109-46. [PMID: 27559297 PMCID: PMC4990153 DOI: 10.4137/bcbcr.s39384] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/12/2022]
Abstract
Sporadic breast cancer develops through the accumulation of molecular abnormalities in normal breast tissue, resulting from exposure to estrogens and other carcinogens beginning at adolescence and continuing throughout life. These molecular changes may take a variety of forms, including numerical and structural chromosomal abnormalities, epigenetic changes, and gene expression alterations. To characterize these abnormalities, a review of the literature has been conducted to define the molecular changes in each of the above major genomic categories in normal breast tissue considered to be either at normal risk or at high risk for sporadic breast cancer. This review indicates that normal risk breast tissues (such as reduction mammoplasty) contain evidence of early breast carcinogenesis including loss of heterozygosity, DNA methylation of tumor suppressor and other genes, and telomere shortening. In normal tissues at high risk for breast cancer (such as normal breast tissue adjacent to breast cancer or the contralateral breast), these changes persist, and are increased and accompanied by aneuploidy, increased genomic instability, a wide range of gene expression differences, development of large cancerized fields, and increased proliferation. These changes are consistent with early and long-standing exposure to carcinogens, especially estrogens. A model for the breast carcinogenic pathway in normal risk and high-risk breast tissues is proposed. These findings should clarify our understanding of breast carcinogenesis in normal breast tissue and promote development of improved methods for risk assessment and breast cancer prevention in women.
Collapse
Affiliation(s)
- David N Danforth
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Deletion of 14-3-3σ sensitizes mice to DMBA/TPA-induced papillomatosis. Oncotarget 2016; 7:46862-46870. [PMID: 27409835 PMCID: PMC5216908 DOI: 10.18632/oncotarget.10478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/25/2016] [Indexed: 11/25/2022] Open
Abstract
The p53-inducible cell cycle regulator 14-3-3σ exhibits tumor suppressive functions and is highly expressed in differentiating layers of the epidermis and hair follicles. 14-3-3σ/SFN/stratifin is frequently silenced in human epithelial cancers, and experimental down-regulation of 14-3-3σ expression immortalizes primary human keratinocytes. In the repeated-epilation (ER) mouse model, a heterozygous nonsense mutation of 14-3-3σ causes repeated hair-loss, hyper-proliferative epidermis, and spontaneous development of papillomas and squamous cell carcinomas in aging mice. Therefore, loss of 14-3-3σ function might contribute to epithelial tumor development. Here, we generated mice with loxP sites surrounding the single 14-3-3σ exon which allowed Cre-mediated deletion of the gene. 14-3-3σ-deficient mice are viable, but demonstrate a permanently disheveled fur. However, histological analyses of the skin did not reveal obvious defects in the hair follicles or the epidermis. Deletion of 14-3-3σ did not enhance spontaneous epidermal tumor development, whereas it increased the frequency and size of DMBA/TPA-induced papillomas. In conclusion, 14-3-3σ is dispensable for normal epidermal homeostasis but critical for suppression of chemically-induced skin carcinogenesis. In addition, these results suggest that the ER mutation of 14-3-3σ is not equivalent to loss of 14-3-3σ, but may represent a gain-of-function variant, which does not reflect the organismal function of wild-type 14-3-3σ.
Collapse
|
50
|
Peng C, Jia X, Xiong Y, Yin J, Li N, Deng Y, Luo K, Zhang Q, Wang C, Zhang Z, Zheng G, He Z. The 14-3-3σ/GSK3β/β-catenin/ZEB1 regulatory loop modulates chemo-sensitivity in human tongue cancer. Oncotarget 2016; 6:20177-89. [PMID: 26036631 PMCID: PMC4652996 DOI: 10.18632/oncotarget.3896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/25/2015] [Indexed: 12/18/2022] Open
Abstract
Here we demonstrated that chemotherapy induced 14-3-3σ expression in tongue cancer (TC) cells and overexpressed 14-3-3σ sensitized TC cells to chemotherapy especially in multidrug resistant TC (MDR-TC) cells. In agreement, 14-3-3σ knockdown enhanced resistance of TC cells to chemotherapy. Mechanically, we found 14-3-3σ physically bound to GSK3β in protein level and the binding inhibited β-catenin signaling. Coincidentally, chemotherapy as well as 14-3-3σ overexpression led to increase of GSK3β protein level. Increased GSK3β protein sensitized TC cells to chemotherapy. Moreover, deregulation of 14-3-3σ/GSK3β/β-catenin axis led to overexpressed ZEB1 in TC cells, especially in MDR-TC cells. As a negative feedback loop, ZEB1 bond to 14-3-3σ promoter to enhance promoter hypermethylation in TC cells. Promoter hypermethylation resulted into the decrease of 14-3-3σ expression. Importantly, a positive correlation was observed between 14-3-3σ and GSK3β protein expression in TC tissues from patients receiving chemotherapy. High levels of 14-3-3σ and GSK3β were associated with better prognosis in TC patients.
Collapse
Affiliation(s)
- Cong Peng
- Cancer Hospital and Cancer Research Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Xiaoting Jia
- Cancer Hospital and Cancer Research Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Yan Xiong
- Department of Pharmacology, Guangzhou Institute of Snake Venom Research, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Jiang Yin
- Cancer Hospital and Cancer Research Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Nan Li
- Cancer Hospital and Cancer Research Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Yingen Deng
- Cancer Hospital and Cancer Research Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Kai Luo
- Cancer Hospital and Cancer Research Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Qiong Zhang
- Cancer Hospital and Cancer Research Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Chengkun Wang
- Cancer Hospital and Cancer Research Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Zhijie Zhang
- Cancer Hospital and Cancer Research Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Guopei Zheng
- Cancer Hospital and Cancer Research Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Zhimin He
- Cancer Hospital and Cancer Research Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| |
Collapse
|