1
|
Ashi A, Awaji AA, Bond J, Johnson CA, Shaaban AM, Bell SM. Threonine and tyrosine kinase (TTK) mRNA and protein expression in breast cancer; prognostic significance in the neoadjuvant setting. Histopathology 2025; 86:916-932. [PMID: 39775836 PMCID: PMC11964583 DOI: 10.1111/his.15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
AIMS Threonine and tyrosine kinase (TTK) is up-regulated in triple-negative breast cancer (TNBC), yet its expression in patients undergoing neoadjuvant chemotherapy (NACT) remains unexplored. This investigation aims to assess TTK protein expression in treatment-naïve pre-treatment cores and paired pre- and post-NACT breast cancer (BC) cohorts, as well as its correlation with microcephaly 1 (MCPH1) protein expression. METHODS AND RESULTS Transcriptomic data were sourced from the Gene Expression Omnibus microarray database for mRNA expression analysis. TTK protein expression was evaluated using immunohistochemistry staining, employing receiver operating characteristic curve analysis to determine an optimal TTK expression cut-off point. The association between TTK expression, clinicopathological parameters and survival outcomes was examined. Additionally, MCPH1 protein expression was assessed in a pilot study. Analysis revealed a significantly elevated TTK mRNA expression in BC tissue compared to normal breast tissue, with high TTK mRNA levels predicting reduced overall survival. Notably, TTK protein expression increased significantly post-NACT in a paired cohort. Conversely, decreased TTK protein expression pre-NACT was correlated with improved overall survival. CONCLUSIONS High TTK and low MCPH1 protein expression was significantly correlated, highlighting TTK's potential as a biomarker for BC and a therapeutic target for MCPH1-deficient cancer cells.
Collapse
Affiliation(s)
- Abrar Ashi
- Division of Molecular Medicine, Leeds Institute of Medical Research, St James's University HospitalUniversity of LeedsLeedsUK
| | - Aeshah A Awaji
- Division of Molecular Medicine, Leeds Institute of Medical Research, St James's University HospitalUniversity of LeedsLeedsUK
| | - Jacquelyn Bond
- Division of Molecular Medicine, Leeds Institute of Medical Research, St James's University HospitalUniversity of LeedsLeedsUK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, St James's University HospitalUniversity of LeedsLeedsUK
| | - Abeer M Shaaban
- Histopathology, St James's Institute for OncologySt James's University HospitalLeedsUK
- Histopathology and Cancer SciencesQueen Elizabeth Hospital Birmingham and University of BirminghamBirminghamUK
| | - Sandra M Bell
- Division of Molecular Medicine, Leeds Institute of Medical Research, St James's University HospitalUniversity of LeedsLeedsUK
| |
Collapse
|
2
|
Bolanos-Garcia VM. Mps1 kinase functions in mitotic spindle assembly and error correction. Trends Biochem Sci 2025; 50:438-453. [PMID: 40082122 DOI: 10.1016/j.tibs.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
The protein kinase Mps1 (also known as TTK) is a central component of the mitotic spindle assembly checkpoint (SAC), an essential self-monitoring system of the eukaryotic cell cycle that ensures accurate chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bioriented on the mitotic spindle. Mps1 kinase is an important upstream regulator of the SAC and its recruitment to kinetochores critical for initiating SAC signaling. This review discusses the current understanding of Mps1 essential functions in the SAC, the emerging details of Mps1 role in error correction to safeguard genome stability, and the therapeutic potential of Mps1 inhibition for the treatment of cancer types associated with aberrant SAC signaling and chromosome segregation defects.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| |
Collapse
|
3
|
Rebhan L, Fürst R, Schollmeyer D, Serafim RAM, Gehringer M. Go for Gold: Development of a Scalable Synthesis of [1-(Ethoxycarbonyl)cyclopropyl] Triphenylphosphonium Tetrafluoroborate, a Key Reagent to Explore Covalent Monopolar Spindle 1 Inhibitors. ChemistryOpen 2025:e2500106. [PMID: 40237105 DOI: 10.1002/open.202500106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/29/2025] [Indexed: 04/17/2025] Open
Abstract
Covalent approaches have resurged in drug discovery and chemical biology during the last decade. So-called targeted covalent inhibitors typically show a strong and persistent drug-target interaction as well as a high degree of selectivity. In our research group, RMS-07 (8), a First-in-Class covalent inhibitor of the protein kinase threonine tyrosine kinase (TTK)/monopolar spindle 1, which shows promising results in a variety of different solid cancer cell types and will be further optimized in terms of covalent binding kinetics, has recently been developed. However, synthetic accessibility is restricted by a high price and limited availability of [1-(ethoxycarbonyl)cyclopropyl] triphenylphosphonium tetrafluoroborate (10), a key reagent required to assemble the tricyclic core scaffold in a Wittig-type cyclization reaction. This reagent is also described as a valuable synthon for the synthesis of a range of ring systems with interesting applications in medicinal chemistry. However, reliable procedures for its large-scale synthesis are scarce. Only one prior report describes the synthesis of reagent 10, and it contains limited experimental details, making it challenging to reproduce and scale up. Herein, a concise and reproducible decigram-scale synthetic protocol for accessing key reagent 10 is described.
Collapse
Affiliation(s)
- Leon Rebhan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Department of Chemistry, Biochemistry and Pharmacy, University of Bern, 3012, Bern, Switzerland
| | - Rebekka Fürst
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Department for Medicinal Chemistry, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076, Tübingen, Germany
| | - Dieter Schollmeyer
- Department Chemie, Zentrale Analytik, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076, Tübingen, Germany
- Department of Organic and Pharmaceutical Chemistry, School of Engineering, Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Vía Augusta 390, 08017, Barcelona, Spain
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Department for Medicinal Chemistry, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Zhu X, Feng Z, Peng X, Di T, Li Y, Bai J, Ma T, Li L, Zhang L. Threonine and tyrosine kinase promotes multiple myeloma progression by regulating regucalcin expression. Exp Cell Res 2025; 446:114454. [PMID: 39961467 DOI: 10.1016/j.yexcr.2025.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/17/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Multiple myeloma (MM) is a malignant proliferative disorder of plasma cells and remains an incurable disease. Threonine and tyrosine kinase (TTK) is a dual-specific protein kinase that targets serine/threonine and tyrosine residues for phosphorylation. Its elevated expression has been linked to unfavorable outcomes in several types of cancer. Although the role of TTK in MM are still incompletely understood. In this research, we assessed TTK mRNA and protein expression levels in 51 MM patients and 30 healthy donors using qRT-PCR and western blotting. The impact of TTK expression on MM cell apoptosis, proliferation, and the cell cycle were assessed through CCK-8 assay, flow cytometry, and western blotting. Our findings revealed a significant overexpression of TTK in multiple myeloma patients and cell lines. TTK knockdown promoted apoptosis and G0/G1 phase arrest while inhibiting proliferation in MM cells, whereas TTK overexpression reduced apoptosis and G0/G1 phase arrest, enhancing proliferation in MM cells. Next, we identified regucalcin (RGN) as a downstream target of TTK through proteomic analysis. In NDMM, the expression of RGN was decreased. Cell function experiments showed that RGN knockdown significantly promoted MM cell proliferation, inhibited apoptosis and reduced cell cycle arrest, and reversed the increased apoptosis, weakened proliferation, and enhanced cell cycle arrest caused by TTK knockdown. Finally, a xenograft mouse model showed that TTK significantly promotes MM development. In summary, we demonstrated that the TTK-RGN axis regulates cell apoptosis, G0/G1 phase arrest, and proliferation in MM, highlighting TTK as a potential target for therapeutic intervention in this cancer.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Zuxi Feng
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - Xiaohuan Peng
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - Tianning Di
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - YanHong Li
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Clinical Medical Research Center of Hematology (National Sub-Center), The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - Jun Bai
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Clinical Medical Research Center of Hematology (National Sub-Center), The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Lijuan Li
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Clinical Medical Research Center of Hematology (National Sub-Center), The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - Liansheng Zhang
- Department of Hematology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of the Hematology of Gansu Province, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China; Gansu Clinical Medical Research Center of Hematology (National Sub-Center), The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
5
|
Ishikawa Y, Fukue H, Iwakami R, Ikeda M, Iemura K, Tanaka K. Fibrous corona is reduced in cancer cell lines that attenuate microtubule nucleation from kinetochores. Cancer Sci 2025; 116:420-431. [PMID: 39604214 PMCID: PMC11786318 DOI: 10.1111/cas.16406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Most cancer cells show increased chromosome missegregation, known as chromosomal instability (CIN), which promotes cancer progression and drug resistance. The underlying causes of CIN in cancer cells are not fully understood. Here we found that breast cancer cell lines show a reduced kinetochore localization of ROD, ZW10, and Zwilch, components of the fibrous corona, compared with non-transformed breast epithelial cell lines. The fibrous corona is a structure formed on kinetochores before their end-on attachment to microtubules and plays a role in efficient kinetochore capture and the spindle assembly checkpoint. The reduction in the fibrous corona was not due to reduced expression levels of the fibrous corona components or to a reduction in outer kinetochore components. Kinetochore localization of Bub1 and CENP-E, which play a role in the recruitment of the fibrous corona to kinetochores, was reduced in cancer cell lines, presumably due to reduced activity of Mps1, which is required for their recruitment to kinetochores through phosphorylating KNL1. Increasing kinetochore localization of Bub1 and CENP-E in cancer cells restored the level of the fibrous corona. Cancer cell lines showed a reduced capacity to nucleate microtubules from kinetochores, which was recently shown to be dependent on the fibrous corona, and increasing kinetochore localization of Bub1 and CENP-E restored the microtubule nucleation capacity on kinetochores. Our study revealed a distinct feature of cancer cell lines that may be related to CIN.
Collapse
Grants
- 18H04896 Ministry of Education, Culture, Sports, Science and Technology
- 21H05738 Ministry of Education, Culture, Sports, Science and Technology
- 23H04272 Ministry of Education, Culture, Sports, Science and Technology
- Yamaguchi Educational and Scholarship Foundation
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- JPMJAX2112 Japan Science and Technology Agency
- Takeda Science Foundation
- The Pharmacological Research Foundation. Tokyo
- 15H04368 Japan Society for the Promotion of Science
- 16H06635 Japan Society for the Promotion of Science
- 16K14604 Japan Society for the Promotion of Science
- 18H02434 Japan Society for the Promotion of Science
- 18K15234 Japan Society for the Promotion of Science
- 22H02614 Japan Society for the Promotion of Science
- 23K05629 Japan Society for the Promotion of Science
- Ministry of Education, Culture, Sports, Science and Technology
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- Japan Science and Technology Agency
- Takeda Science Foundation
- Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Yudai Ishikawa
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Hirotaka Fukue
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Runa Iwakami
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of MedicineTohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
6
|
Wu J, Liu Y, Zong J, Qiu M, Zhou Y, Li Y, Aili T, Zhao X, Hu B. TTK Inhibition Alleviates Postinjury Neointimal Formation and Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409250. [PMID: 39716891 PMCID: PMC11809377 DOI: 10.1002/advs.202409250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/19/2024] [Indexed: 12/25/2024]
Abstract
Atherosclerosis and its associated cardio-cerebrovascular complications remain the leading causes of mortality worldwide. Current lipid-lowering therapies reduce only approximately one-third of the cardiovascular risk. Furthermore, vascular restenosis and thrombotic events following surgical interventions for severe vascular stenosis significantly contribute to treatment failure. This highlights the urgent need for novel therapeutic targets to manage atherosclerosis and prevent restenosis and thrombosis after vascular injury. This study identifies TTK protein kinase (TTK) as a key regulator of vascular smooth muscle cell (VSMC) phenotypic switching in the context of postinjury neointimal formation and atherosclerosis. Mechanistically, TTK upregulation in VSMCs phosphorylates p120-catenin, leading to β-catenin nuclear accumulation and dissociation of the myocardin (MYOCD)/serum response factor (SRF) complex. Deletion of TTK specifically in VSMCs reduces postinjury neointimal formation in vascular injury models and attenuates atherosclerotic lesions in ApoE-/- mice. Notably, oral administration of the TTK inhibitor CFI-402257 mitigated neointimal formation without impairing reendothelialization and reduced atherosclerotic lesions in ApoE-/- mice without altering lipid levels. These findings suggest that targeting TTK, through inhibitors or alternative strategies, represents a promising approach to simultaneously prevent postinjury restenosis and treat atherosclerosis.
Collapse
Affiliation(s)
- Jie‐Hong Wu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yu‐Xiao Liu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jia‐Bin Zong
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Min Qiu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yi‐Fan Zhou
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ya‐Nan Li
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tuersun Aili
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xin‐Ran Zhao
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bo Hu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
7
|
Zhang S, Ding H, Deng Y, Ren Y, Zhou F, Zhang Q, Liu S. TTK promotes HER2 + breast cancer cell migration, apoptosis, and resistance to targeted therapy by modulating the Akt/mTOR axis. J Cancer Res Clin Oncol 2024; 150:512. [PMID: 39589549 PMCID: PMC11599621 DOI: 10.1007/s00432-024-06021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/27/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND HER2 + breast cancer is a malignant neoplasm with a high degree of aggressiveness and therapeutic challenge. In recent years, studies have indicated a strong correlation between TTK and various tumors, though its role in HER2 + BRCA remains unclear. OBJECTIVES Studying the biological function of the TTK gene in HER2 + BRCA and its resistance to targeted therapy it provides new ideas for targeted drug research. METHODS TTK was knocked down by small interfering RNA transfection, and its biological function in HER2 + BRCA cells was verified, and its mechanism of action was verified by RT-PCR and Western blot. RESULTS The study demonstrated that TTK promoted cell proliferation and migration by activating the Akt/mTOR pathway in HER2 + breast cancer and enhanced the drug sensitivity of BRCA cell lines SKBR3 and BT474 to pyrotinib, in addition, knockdown of TTK induced apoptosis and arrested cells in G1 phase. CONCLUSION Which implies that TTK is an oncogene in HER2 + BRCA and is a valuable research target.
Collapse
Affiliation(s)
- Shaolin Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of General Surgery, Dejiang County People's Hospital, Tongren, Guizhou, China
| | - Hua Ding
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yongfen Deng
- Department of Cardiology, Dejiang County People's Hospital, Tongren, Guizhou, China
| | - Yu Ren
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fulin Zhou
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Breast Surgery, GuiYang Maternal and Child Health Care Hospital, Guiyang, China
| | - Qian Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Shu Liu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China.
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
8
|
Sflakidou E, Adhikari B, Siokatas C, Wolf E, Sarli V. Development of 2-Aminoadenine-Based Proteolysis-Targeting Chimeras (PROTACs) as Novel Potent Degraders of Monopolar Spindle 1 and Aurora Kinases. ACS Pharmacol Transl Sci 2024; 7:3488-3501. [PMID: 39539259 PMCID: PMC11555526 DOI: 10.1021/acsptsci.4c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Monopolar spindle 1 (Mps1, also known as TTK) and Aurora kinase (AURK) A and B are critical regulators of mitosis and have been linked to the progression of various cancers. Here, we report the design, synthesis, and biological evaluation of a series of PROTACs (proteolysis-targeting chimeras) targeting TTK and AURKs. We synthesized various degrader molecules based on four different 2-aminoadenine-based ligands, recruiting either cereblon or VHL as the E3-ligase. Our research showed that the nature of the linker and modification of the ligand significantly influence the target specificity and degradation efficacy. Notably, compound 19, among the most potent degraders, demonstrated robust proteasome-mediated degradation of TTK with D max of 66.5% and DC50 value (6 h) of 17.7 nM as compared to its structurally akin inhibitor control, 23. The cytotoxicity of most of the synthesized chimeras against acute myeloid leukemia cell line MV4-11 was lower than that of the corresponding parent inhibitors. However, we could also identify degraders such as 15 and 26 that induce potent AURKA degradation and display comparable antiproliferative activities to their parent compound SF1. Compound 15 degrades AURKA with low DC50 value of 2.05 nM, which is 77-fold and 21-fold more selective toward AURKB and TTK and has an EC50 value of 39 nM against cancer MV4-11 cells. Overall, the observations we made with the degrader molecules we developed can further aid in the design and development of optimized TTK or AURK degraders for cancer therapy.
Collapse
Affiliation(s)
- Eleni Sflakidou
- Department
of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Bikash Adhikari
- Cancer
Systems Biology Group, Chair of Biochemistry and Molecular Biology,
Theodor Boveri Institute, University of
Würzburg, 97074 Würzburg, Germany
- Institute
of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Christos Siokatas
- Department
of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Elmar Wolf
- Cancer
Systems Biology Group, Chair of Biochemistry and Molecular Biology,
Theodor Boveri Institute, University of
Würzburg, 97074 Würzburg, Germany
- Institute
of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Vasiliki Sarli
- Department
of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Zanini E, Forster-Gross N, Bachmann F, Brüngger A, McSheehy P, Litherland K, Burger K, Groner AC, Roceri M, Bury L, Stieger M, Willemsen-Seegers N, de Man J, Vu-Pham D, van Riel HWE, Zaman GJR, Buijsman RC, Kellenberger L, Lane HA. Dual TTK/PLK1 inhibition has potent anticancer activity in TNBC as monotherapy and in combination. Front Oncol 2024; 14:1447807. [PMID: 39184047 PMCID: PMC11341980 DOI: 10.3389/fonc.2024.1447807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Background Threonine tyrosine kinase (TTK) and polo-like kinase 1 (PLK1) are common essential kinases that collaborate in activating the spindle assembly checkpoint (SAC) at the kinetochore, ensuring appropriate chromosome alignment and segregation prior to mitotic exit. Targeting of either TTK or PLK1 has been clinically evaluated in cancer patients; however, dual inhibitors have not yet been pursued. Here we present the in vitro and in vivo characterization of a first in class, dual TTK/PLK1 inhibitor (BAL0891). Methods Mechanism of action studies utilized biochemical kinase and proteomics-based target-engagement assays. Cellular end-point assays included immunoblot- and flow cytometry-based cell cycle analyses and SAC integrity evaluation using immunoprecipitation and immunofluorescence approaches. Anticancer activity was assessed in vitro using cell growth assays and efficacy was evaluated, alone and in combination with paclitaxel and carboplatin, using mouse models of triple negative breast cancer (TNBC). Results BAL0891 elicits a prolonged effect on TTK, with a transient activity on PLK1. This unique profile potentiates SAC disruption, forcing tumor cells to aberrantly exit mitosis with faster kinetics than observed with a TTK-specific inhibitor. Broad anti-proliferative activity was demonstrated across solid tumor cell lines in vitro. Moreover, intermittent intravenous single-agent BAL0891 treatment of the MDA-MB-231 mouse model of TNBC induced profound tumor regressions associated with prolonged TTK and transient PLK1 in-tumor target occupancy. Furthermore, differential tumor responses across a panel of thirteen TNBC patient-derived xenograft models indicated profound anticancer activity in a subset (~40%). Using a flexible dosing approach, pathologically confirmed cures were observed in combination with paclitaxel, whereas synergy with carboplatin was schedule dependent. Conclusions Dual TTK/PLK1 inhibition represents a novel approach for the treatment of human cancer, including TNBC patients, with a potential for potent anticancer activity and a favorable therapeutic index. Moreover, combination approaches may provide an avenue to expand responsive patient populations.
Collapse
Affiliation(s)
- Elisa Zanini
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Felix Bachmann
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Adrian Brüngger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Paul McSheehy
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Karin Burger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Anna C. Groner
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Mila Roceri
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Luc Bury
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Martin Stieger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Jos de Man
- Crossfire Oncology B.V., Oss, Netherlands
| | | | | | | | | | | | - Heidi A. Lane
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| |
Collapse
|
10
|
Liang C, Zhou Y, Xin L, Kang K, Tian L, Zhang D, Li H, Zhao Q, Gao H, Shi Z. Hijacking monopolar spindle 1 (MPS1) for various cancer types by small molecular inhibitors: Deep insights from a decade of research and patents. Eur J Med Chem 2024; 273:116504. [PMID: 38795520 DOI: 10.1016/j.ejmech.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Monopolar spindle 1 (MPS1) has garnered significant attention due to its pivotal role in regulating the cell cycle. Anomalous expression and hyperactivation of MPS1 have been associated with the onset and advancement of diverse cancers, positioning it as a promising target for therapeutic interventions. This review focuses on MPS1 small molecule inhibitors from the past decade, exploring design strategies, structure-activity relationships (SAR), safety considerations, and clinical performance. Notably, we propose prospects for MPS1 degraders based on proteolysis targeting chimeras (PROTACs), as well as reversible covalent bonding as innovative MPS1 inhibitor design strategies. The objective is to provide valuable information for future development and novel perspectives on potential MPS1 inhibitors.
Collapse
Affiliation(s)
- Chengyuan Liang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China.
| | - Ying Zhou
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Liang Xin
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Kairui Kang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Lei Tian
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science& Technology, Xi'an, 710021, China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, China
| | - Han Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Qianqian Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830002, China
| |
Collapse
|
11
|
Carceles-Cordon M, Orme JJ, Domingo-Domenech J, Rodriguez-Bravo V. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol 2024; 21:357-372. [PMID: 38307951 PMCID: PMC11156566 DOI: 10.1038/s41585-023-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Fuentes‐Antrás J, Bedard PL, Cescon DW. Seize the engine: Emerging cell cycle targets in breast cancer. Clin Transl Med 2024; 14:e1544. [PMID: 38264947 PMCID: PMC10807317 DOI: 10.1002/ctm2.1544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/10/2023] [Accepted: 12/31/2023] [Indexed: 01/25/2024] Open
Abstract
Breast cancer arises from a series of molecular alterations that disrupt cell cycle checkpoints, leading to aberrant cell proliferation and genomic instability. Targeted pharmacological inhibition of cell cycle regulators has long been considered a promising anti-cancer strategy. Initial attempts to drug critical cell cycle drivers were hampered by poor selectivity, modest efficacy and haematological toxicity. Advances in our understanding of the molecular basis of cell cycle disruption and the mechanisms of resistance to CDK4/6 inhibitors have reignited interest in blocking specific components of the cell cycle machinery, such as CDK2, CDK4, CDK7, PLK4, WEE1, PKMYT1, AURKA and TTK. These targets play critical roles in regulating quiescence, DNA replication and chromosome segregation. Extensive preclinical data support their potential to overcome CDK4/6 inhibitor resistance, induce synthetic lethality or sensitise tumours to immune checkpoint inhibitors. This review provides a biological and drug development perspective on emerging cell cycle targets and novel inhibitors, many of which exhibit favourable safety profiles and promising activity in clinical trials.
Collapse
Affiliation(s)
- Jesús Fuentes‐Antrás
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
- NEXT OncologyHospital Universitario QuironSalud MadridMadridSpain
| | - Philippe L. Bedard
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
| | - David W. Cescon
- Division of Medical Oncology and HematologyDepartment of MedicinePrincess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
13
|
Zhang X, Huang L, Sun J, Liu J, Zong Y, Wan L, Yang X, Yan X, Zhang Y, Zhao R, Liu J, Zhong H, Wei C, Yang X, Tai Y, Han Y, Wang Y. Monopolar spindle 1 contributes to tamoxifen resistance in breast cancer through phosphorylation of estrogen receptor α. Breast Cancer Res Treat 2023; 202:595-606. [PMID: 37695401 DOI: 10.1007/s10549-023-07098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE The overexpression of mitotic kinase monopolar spindle 1 (Mps1) has been identified in many tumor types, and targeting Mps1 for tumor therapy has shown great promise in multiple preclinical cancer models. However, the role played by Mps1 in tamoxifen (TAM) resistance in breast cancer has never been reported. METHODS The sensitivity of breast cancer cells to tamoxifen was analysed in colony formation assays and wound healing assays. Enhanced transactivational activity of estrogen receptor α (ERα) led by Mps1 overexpression was determined by luciferase assays. The interaction between Mps1 and ERα was verified by co-immunoprecipitation and proximity ligation assay. Phosphorylation of ERα by Mps1 was detected by in vitro kinase assay and such phosphorylation process in vivo was proven by co-immunoprecipitation. The potential phosphorylation site(s) of ERα were analyzed by mass spectrometry. RESULTS Mps1 determines the sensitivity of breast cancer cells to tamoxifen treatment. Mps1 overexpression rendered breast cancer cells more resistant to tamoxifen, while an Mps1 inhibitor or siMps1 oligos enabled cancer cells to overcome tamoxifen resistance. Mechanistically, Mps1 interacted with estrogen receptor α and stimulated its transactivational activity in a kinase activity-dependent manner. Mps1 was critical for ERα phosphorylation at Thr224 amino acid site. Importantly, Mps1 failed to enhance the transactivational activity of the ERα-T224A mutant. CONCLUSION Mps1 contributes to tamoxifen resistance in breast cancer and is a potential therapeutic that can overcome tamoxifen resistance in breast cancer.
Collapse
Affiliation(s)
- Xuemiao Zhang
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, The Training Site for Postgraduates of Jinzhou Medical University, Jinzhou, 121001, China
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jing Sun
- China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Jialong Liu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yulong Zong
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xue Yan
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanhong Zhang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Ruzhou Zhao
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jing Liu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaoli Yang
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, The Training Site for Postgraduates of Jinzhou Medical University, Jinzhou, 121001, China
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Clinical School of the Third Medical Center of Chinese PLA General Hospital, Anhui Medical University, Hefei, 230032, China
| | - Yanhong Tai
- Department of Pathology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100166, China
| | - Yue Han
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanhai Wang
- Department of Clinical Laboratory, Huhhot First Hospital, Huhhot, 010030, China.
| |
Collapse
|
14
|
Li D, Neo SP, Gunaratne J, Sabapathy K. EPLIN-β is a novel substrate of ornithine decarboxylase antizyme 1 and mediates cellular migration. J Cell Sci 2023; 136:jcs260427. [PMID: 37325974 PMCID: PMC10281260 DOI: 10.1242/jcs.260427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
Polyamines promote cellular proliferation. Their levels are controlled by ornithine decarboxylase antizyme 1 (Az1, encoded by OAZ1), through the proteasome-mediated, ubiquitin-independent degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis. Az1-mediated degradation of other substrates such as cyclin D1 (CCND1), DNp73 (TP73) or Mps1 regulates cell growth and centrosome amplification, and the currently known six Az1 substrates are all linked with tumorigenesis. To understand whether Az1-mediated protein degradation might play a role in regulating other cellular processes associated with tumorigenesis, we employed quantitative proteomics to identify novel Az1 substrates. Here, we describe the identification of LIM domain and actin-binding protein 1 (LIMA1), also known as epithelial protein lost in neoplasm (EPLIN), as a new Az1 target. Interestingly, between the two EPLIN isoforms (α and β), only EPLIN-β is a substrate of Az1. The interaction between EPLIN-β and Az1 appears to be indirect, and EPLIN-β is degraded by Az1 in a ubiquitination-independent manner. Az1 absence leads to elevated EPLIN-β levels, causing enhanced cellular migration. Consistently, higher LIMA1 levels correlate with poorer overall survival of colorectal cancer patients. Overall, this study identifies EPLIN-β as a novel Az1 substrate regulating cellular migration.
Collapse
Affiliation(s)
- Dan Li
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Suat Peng Neo
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
15
|
Hu S, Jiang C, Gao M, Zhang D, Yao N, Zhang J, Jin Q. Discovery of pyrazolo[3,4-b]pyridine derivatives as novel and potent Mps1 inhibitors for the treatment of cancer. Eur J Med Chem 2023; 253:115334. [PMID: 37037136 DOI: 10.1016/j.ejmech.2023.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Monopolar spindle kinase 1 (Mps1) is a key element of the mitotic checkpoint and clinically evaluated as a target in the treatment of aggressive tumors. With this aim, a set of pyrazolo[3,4-b]pyridine-based compounds as new Mps1 inhibitors was investigated through a multidisciplinary approach, based on virtual screening, chemical synthesis and biological evaluation. One of the representative compounds, 31, exhibited strong kinase inhibitory potency against Mps1 with an IC50 value of 2.596 nM and significantly inhibited proliferation of cancer cells, especially MDA-MB-468 and MV4-11 cells. Compound 31 also displayed reasonable kinome selectivity against a panel of 606 wild-type kinases at 1 μM. Moreover, compound 31 exhibited suitable preclinical pharmacokinetic parameters and a promising pharmacodynamic profile. Further, compound 31 showed good antitumor efficacy in MDA-MB-468 xenograft model with no obvious toxicity. Overall, compound 31 was identified as a potential Mps1 inhibitor for cancer therapy and deserve further research.
Collapse
Affiliation(s)
- Shihe Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China; SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing, 210046, PR China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Nan Yao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| |
Collapse
|
16
|
Nin DS, Deng LW. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023; 12:cells12060926. [PMID: 36980267 PMCID: PMC10047177 DOI: 10.3390/cells12060926] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Tumour-specific antigens have been an area of interest in cancer therapy since their discovery in the middle of the 20th century. In the era of immune-based cancer therapeutics, redirecting our immune cells to target these tumour-specific antigens has become even more relevant. Cancer-testis antigens (CTAs) are a class of antigens with an expression specific to the testis and cancer cells. CTAs have also been demonstrated to be expressed in a wide variety of cancers. Due to their frequency and specificity of expression in a multitude of cancers, CTAs have been particularly attractive as cancer-specific therapeutic targets. There is now a rapid expansion of CTAs being identified and many studies have been conducted to correlate CTA expression with cancer and therapy-resistant phenotypes. Furthermore, there is an increasing number of clinical trials involving using some of these CTAs as molecular targets in pharmacological and immune-targeted therapeutics for various cancers. This review will summarise the current knowledge of the biology of known CTAs in tumorigenesis and the regulation of CTA genes. CTAs as molecular targets and the therapeutic implications of these CTA-targeted anticancer strategies will also be discussed.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
17
|
Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed Pharmacother 2023; 158:114126. [PMID: 36521246 DOI: 10.1016/j.biopha.2022.114126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is a standard cytotoxic therapy against solid cancers. It uses ionizing radiation to kill tumor cells through damage to DNA, either directly or indirectly. Radioresistance is often associated with dysregulated DNA damage repair processes. Most radiosensitizers enhance radiation-mediated DNA damage and reduce the rate of DNA repair ultimately leading to accumulation of DNA damages, cell-cycle arrest, and cell death. Recently, agents targeting key signals in DNA damage response such as DNA repair pathways and cell-cycle have been developed. This new class of molecularly targeted radiosensitizing agents is being evaluated in preclinical and clinical studies to monitor their activity in potentiating radiation cytotoxicity of tumors and reducing normal tissue toxicity. The molecular pathways of DNA damage response are reviewed with a focus on the repair mechanisms, therapeutic targets under current clinical evaluation including ATM, ATR, CDK1, CDK4/6, CHK1, DNA-PKcs, PARP-1, Wee1, & MPS1/TTK and potential new targets (BUB1, and DNA LIG4) for radiation sensitization.
Collapse
|
18
|
Meyer RE, Sartin A, Gish M, Harsha J, Wilkie E, Haworth D, LaVictoire R, Alberola I, Chuong HH, Gorbsky GJ, Dawson DS. Polyploid yeast are dependent on elevated levels of Mps1 for successful chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523325. [PMID: 36712123 PMCID: PMC9882063 DOI: 10.1101/2023.01.09.523325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tumor cell lines with elevated chromosome numbers frequently have correlated elevations of Mps1 expression and these tumors are more dependent on Mps1 activity for their survival than control cell lines. Mps1 is a conserved kinase involved in controlling aspects of chromosome segregation in mitosis and meiosis. The mechanistic explanation for the Mps1-addiction of aneuploid cells is unknown. To address this question, we explored Mps1-dependence in yeast cells with increased sets of chromosomes. These experiments revealed that in yeast, increasing ploidy leads to delays and failures in orienting chromosomes on the mitotic spindle. Yeast cells with elevated numbers of chromosomes proved vulnerable to reductions of Mps1 activity. Cells with reduced Mps1 activity exhibit an extended prometaphase with longer spindles and delays in orienting the chromosomes. One known role of Mps1 is in recruiting Bub1 to the kinetochore in meiosis. We found that the Mps1-addiction of polyploid yeast cells is due in part to its role in Bub1 recruitment. Together, the experiments presented here demonstrate that increased ploidy renders cells more dependent on Mps1 for orienting chromosomes on the spindle. The phenomenon described here may be relevant in understanding why hyper-diploid cancer cells exhibit elevated reliance on Mps1 expression for successful chromosome segregation.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Ashlea Sartin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Madeline Gish
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Jillian Harsha
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Emily Wilkie
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Dawson Haworth
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Rebecca LaVictoire
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Isabel Alberola
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Hoa H Chuong
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Gary J Gorbsky
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| |
Collapse
|
19
|
Castellanos G, Valbuena DS, Pérez E, Villegas VE, Rondón-Lagos M. Chromosomal Instability as Enabling Feature and Central Hallmark of Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:189-211. [PMID: 36923397 PMCID: PMC10010144 DOI: 10.2147/bctt.s383759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 03/11/2023]
Abstract
Chromosomal instability (CIN) has become a topic of great interest in recent years, not only for its implications in cancer diagnosis and prognosis but also for its role as an enabling feature and central hallmark of cancer. CIN describes cell-to-cell variation in the number or structure of chromosomes in a tumor population. Although extensive research in recent decades has identified some associations between CIN with response to therapy, specific associations with other hallmarks of cancer have not been fully evidenced. Such associations place CIN as an enabling feature of the other hallmarks of cancer and highlight the importance of deepening its knowledge to improve the outcome in cancer. In addition, studies conducted to date have shown paradoxical findings about the implications of CIN for therapeutic response, with some studies showing associations between high CIN and better therapeutic response, and others showing the opposite: associations between high CIN and therapeutic resistance. This evidences the complex relationships between CIN with the prognosis and response to treatment in cancer. Considering the above, this review focuses on recent studies on the role of CIN in cancer, the cellular mechanisms leading to CIN, its relationship with other hallmarks of cancer, and the emerging therapeutic approaches that are being developed to target such instability, with a primary focus on breast cancer. Further understanding of the complexity of CIN and its association with other hallmarks of cancer could provide a better understanding of the cellular and molecular mechanisms involved in prognosis and response to treatment in cancer and potentially lead to new drug targets.
Collapse
Affiliation(s)
- Giovanny Castellanos
- Maestría en Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.,School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Erika Pérez
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Victoria E Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
20
|
Sharma V, Gupta M. Designing of kinase hinge binders: A medicinal chemistry perspective. Chem Biol Drug Des 2022; 100:968-980. [PMID: 35112799 DOI: 10.1111/cbdd.14024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 01/25/2023]
Abstract
Protein kinases are key regulators of cellular signaling and play a critical role in oncogenesis. Inhibitors of protein kinases are pursued by both industry and academia as a promising target for cancer therapy. Within the protein kinases, the ATP site has produced more than 40 FDA-approved drugs. The ATP site is broadly composed of a hinge region, gatekeeper residues, DFG-loop, ribose pocket, and other hydrophobic regions. The hinge region in the ATP site can be used for designing potent inhibitors. In this review, we discuss some representative studies that will highlight the interactions of heterocyclic compounds with hinge regions of different kinases like BRAF kinase, EGRF kinase, MAP kinase, and Mps1 kinase.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, USA.,GreenLight Biosciences, Woburn, MA, United States
| |
Collapse
|
21
|
Cui CH, Wu Q, Zhou HM, He H, Wang Y, Tang Z, Zhang Y, Wang X, Xiao J, Zhang H. High tyrosine threonine kinase expression predicts a poor prognosis: a potential therapeutic target for endometrial carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1352. [PMID: 36660721 PMCID: PMC9843307 DOI: 10.21037/atm-22-5783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Background As the most common female malignancy, the incidence and mortality of endometrial carcinoma (EC) continue to increase worldwide. The effects of traditional standard therapy are limited; thus, novel therapeutic strategies urgently need to be developed. We sought to provide prospective targeting insights into EC therapeutics by comprehensively examining and confirming the biological molecular characterization of EC genes. Methods The molecular characterization of EC genes was integrated and analyzed using data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) databases. The differentially expressed genes (DEGs) were identified, and the abnormal expression of some core cell-cycle proteins in the EC specimens was determined by examining and integrating the TCGA and GTEx data. The enriched signaling pathways involved in tumor progression were also examined. Results Immunohistochemical staining data from the Human Protein Atlas database showed that the differential expression levels of the cyclin dependent kinase inhibitor 2A (CDKN2A) and tyrosine threonine kinase (TTK) molecules, and the high messenger ribonucleic acid (RNA) levels of CDKN2A and TTK were associated with a poor prognosis in EC patients. High TTK expression was also significantly correlated with the tumor progression associated signaling pathways, such as the cell-cycle, nucleolus, and RNA processing pathways. The inhibition of TTK expression by a TTK inhibitor (NTRC0066-0) significantly suppressed the proliferation of the EC cells and synergistically increased the sensitivity of the EN and AN3-CA EC cell lines. Conclusions The findings suggest that the TTK inhibitor could be used in EC therapy. This study highlighted the potential predictive role of TTK molecules and showed that TTK molecules might serve as prospective targets for EC therapy.
Collapse
Affiliation(s)
- Chun-Hong Cui
- Basic Medical College, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai 10th People’s Hospital of Tongji University, Shanghai, China
| | - Hong-Mei Zhou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haiju He
- Department of Hematology, Soochow University Affiliated No. 1 People’s Hospital, Suzhou, China
| | - Yan Wang
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhendong Tang
- School of Data Science and Engineering, East China Normal University, Shanghai, China
| | - Yi Zhang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xue Wang
- Department of Dermatology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhang
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Pugh L, Pancholi A, Purat PC, Agudo-Alvarez S, Benito-Arenas R, Bastida A, Bolanos-Garcia VM. Computational Biology Dynamics of Mps1 Kinase Molecular Interactions with Isoflavones Reveals a Chemical Scaffold with Potential to Develop New Therapeutics for the Treatment of Cancer. Int J Mol Sci 2022; 23:ijms232214228. [PMID: 36430712 PMCID: PMC9692432 DOI: 10.3390/ijms232214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
The protein kinase Mps1 (monopolar spindle 1) is an important regulator of the Spindle Assembly Checkpoint (SAC), the evolutionary conserved checkpoint system of higher organisms that monitors the proper bipolar attachment of all chromosomes to the mitotic spindle during cell division. Defects in the catalytic activity and the transcription regulation of Mps1 are associated with genome instability, aneuploidy, and cancer. Moreover, multiple Mps1 missense and frameshift mutations have been reported in a wide range of types of cancer of different tissue origin. Due to these features, Mps1 arises as one promising drug target for cancer therapy. In this contribution, we developed a computational biology approach to study the dynamics of human Mps1 kinase interaction with isoflavones, a class of natural flavonoids, and compared their predicted mode of binding with that observed in the crystal structure of Mps1 in complex with reversine, a small-sized inhibitor of Mps1 and Aurora B kinases. We concluded that isoflavones define a chemical scaffold that can be used to develop new Mps1 inhibitors for the treatment of cancer associated with Mps1 amplification and aberrant chromosome segregation. In a broader context, the present report illustrates how modern chemoinformatics approaches can accelerate drug development in oncology.
Collapse
Affiliation(s)
- Lauren Pugh
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Alisha Pancholi
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Priscila Celeste Purat
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Sandra Agudo-Alvarez
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Raúl Benito-Arenas
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Agatha Bastida
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| | - Victor M. Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| |
Collapse
|
23
|
Ashraf N, Asari A, Yousaf N, Ahmad M, Ahmed M, Faisal A, Saleem M, Muddassar M. Combined 3D-QSAR, molecular docking and dynamics simulations studies to model and design TTK inhibitors. Front Chem 2022; 10:1003816. [PMID: 36405310 PMCID: PMC9666879 DOI: 10.3389/fchem.2022.1003816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 09/06/2023] Open
Abstract
Tyrosine threonine kinase (TTK) is the key component of the spindle assembly checkpoint (SAC) that ensures correct attachment of chromosomes to the mitotic spindle and thereby their precise segregation into daughter cells by phosphorylating specific substrate proteins. The overexpression of TTK has been associated with various human malignancies, including breast, colorectal and thyroid carcinomas. TTK has been validated as a target for drug development, and several TTK inhibitors have been discovered. In this study, ligand and structure-based alignment as well as various partial charge models were used to perform 3D-QSAR modelling on 1H-Pyrrolo[3,2-c] pyridine core containing reported inhibitors of TTK protein using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches to design better active compounds. Different statistical methods i.e., correlation coefficient of non-cross validation (r2), correlation coefficient of leave-one-out cross-validation (q2), Fisher's test (F) and bootstrapping were used to validate the developed models. Out of several charge models and alignment-based approaches, Merck Molecular Force Field (MMFF94) charges using structure-based alignment yielded highly predictive CoMFA (q2 = 0.583, Predr2 = 0.751) and CoMSIA (q2 = 0.690, Predr2 = 0.767) models. The models exhibited that electrostatic, steric, HBA, HBD, and hydrophobic fields play a key role in structure activity relationship of these compounds. Using the contour maps information of the best predictive model, new compounds were designed and docked at the TTK active site to predict their plausible binding modes. The structural stability of the TTK complexes with new compounds was confirmed using MD simulations. The simulation studies revealed that all compounds formed stable complexes. Similarly, MM/PBSA method based free energy calculations showed that these compounds bind with reasonably good affinity to the TTK protein. Overall molecular modelling results suggest that newly designed compounds can act as lead compounds for the optimization of TTK inhibitors.
Collapse
Affiliation(s)
- Noureen Ashraf
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
24
|
Li X, Wei W, Tao L, Zeng J, Zhu Y, Yang T, Wang Q, Tang M, Liu Z, Yu L. Design, synthesis and biological evaluation of a new class of 7H-pyrrolo[2,3-d]pyrimidine derivatives as Mps1 inhibitors for the treatment of breast cancer. Eur J Med Chem 2022; 245:114887. [DOI: 10.1016/j.ejmech.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
|
25
|
Hu Y, Tang C, Zhu W, Ye H, Lin Y, Wang R, Zhou T, Wen S, Yang J, Fang C. Identification of chromosomal instability-associated genes as hepatocellular carcinoma progression-related biomarkers to guide clinical diagnosis, prognosis and therapy. Comput Biol Med 2022; 148:105896. [PMID: 35868048 DOI: 10.1016/j.compbiomed.2022.105896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/21/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC) is a type of cancer characterized by high heterogeneity and a complex multistep progression process. Significantly-altered biomarkers for HCC need to be identified. Differentially expressed genes and weighted gene co-expression network analyses were used to identify progression-related biomarkers. LASSO-Cox regression and random forest algorithms were used to construct the progression-related prognosis (PRP) score. Three chromosomal instability-associated genes (KIF20A, TOP2A, and TTK) have been identified as progression-related biomarkers. The robustness of the PRP scores were validated using four independent cohorts. Immune status was observed using the single-sample gene set enrichment analysis (ssGSEA). Comprehensive analysis showed that the patients with high PRP score had wider genomic alterations, more malignant phenotypes, and were in a state of immunosuppression. The diagnostic models constructed via logistic regression based on the three genes showed satisfactory performances in distinguishing HCC from cirrhotic tissues or dysplastic nodules. The nomogram combining PRP scores with clinical factors had a better performance in predicting prognosis than the tumor node metastasis classification (TNM) system. We further confirmed that KIF20A, TOP2A, and TTK were highly expressed in HCC tissues than in cirrhotic tissues. Downregulation of all three genes aggravated chromosomal instabilities in HCC and suppressed HCC cells viability both in vitro and in vivo. Overall, our study highlights the important roles of chromosomal instability-associated genes during the progression of HCC and their potential clinical diagnosis and prognostic value and provides promising new ideas for developing therapeutic strategies to improve the outcomes of HCC patients.
Collapse
Affiliation(s)
- Yueyang Hu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Chuanyu Tang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Wen Zhu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Hanjie Ye
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Yuxing Lin
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Ruixuan Wang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Tianjun Zhou
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Sai Wen
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Jian Yang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China.
| |
Collapse
|
26
|
Albogami S. Comprehensive analysis of gene expression profiles to identify differential prognostic factors of primary and metastatic breast cancer. Saudi J Biol Sci 2022; 29:103318. [PMID: 35677896 PMCID: PMC9168623 DOI: 10.1016/j.sjbs.2022.103318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/17/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer accounts for nearly half of all cancer-related deaths in women worldwide. However, the molecular mechanisms that lead to tumour development and progression remain poorly understood and there is a need to identify candidate genes associated with primary and metastatic breast cancer progression and prognosis. In this study, candidate genes associated with prognosis of primary and metastatic breast cancer were explored through a novel bioinformatics approach. Primary and metastatic breast cancer tissues and adjacent normal breast tissues were evaluated to identify biomarkers characteristic of primary and metastatic breast cancer. The Cancer Genome Atlas-breast invasive carcinoma (TCGA-BRCA) dataset (ID: HS-01619) was downloaded using the mRNASeq platform. Genevestigator 8.3.2 was used to analyse TCGA-BRCA gene expression profiles between the sample groups and identify the differentially-expressed genes (DEGs) in each group. For each group, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to determine the function of DEGs. Networks of protein-protein interactions were constructed to identify the top hub genes with the highest degree of interaction. Additionally, the top hub genes were validated based on overall survival and immunohistochemistry using The Human Protein Atlas. Of the top 20 hub genes identified, four (KRT14, KIT, RAD51, and TTK) were considered as prognostic risk factors based on overall survival. KRT14 and KIT expression levels were upregulated while those of RAD51 and TTK were downregulated in patients with breast cancer. The four proposed candidate hub genes might aid in further understanding the molecular changes that distinguish primary breast tumours from metastatic tumours as well as help in developing novel therapeutics. Furthermore, they may serve as effective prognostic risk markers based on the strong correlation between their expression and patient overall survival.
Collapse
Key Words
- BC, breast cancer
- BP, biological process
- Breast cancer
- CC, cellular component
- CI, confidence interval
- DEG, differentially expressed gene
- Differentially expressed genes
- FDR, false discovery rate
- GEPIA, gene expression profiling interactive analysis
- GO, gene ontology
- HR, hazard ratio
- IDC, infiltrating ductal carcinoma
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MCODE, molecular complex detection
- MF, molecular function
- Metastasis
- OS, overall survival
- Overall survival
- PPI, protein-protein interaction
- Prognostic marker
- Protein-protein interaction
- RNA-Seq, RNA sequencing
- STRING, search tool for the retrieval of interacting genes
- TCGA-BRCA, The Cancer Genome Atlas-breast invasive carcinoma
Collapse
Affiliation(s)
- Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
27
|
Waenphimai O, Mahalapbutr P, Vaeteewoottacharn K, Wongkham S, Sawanyawisuth K. Multiple actions of NMS-P715, the monopolar spindle 1 (MPS1) mitotic checkpoint inhibitor in liver fluke-associated cholangiocarcinoma cells. Eur J Pharmacol 2022; 922:174899. [PMID: 35337815 DOI: 10.1016/j.ejphar.2022.174899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
AIM NMS-P715 is a potent inhibitor of monopolar spindle 1 (MPS1) mitotic checkpoint kinase. Overexpression of MPS1 is associated with short survival times in patients with cholangiocarcinoma (CCA). This study investigated the anti-cancer effects of NMS-P715 in human CCA cell lines. MAIN METHODS KKU-100 and KKU-213A CCA cell lines were treated with NMS-P715 and cell viability was determined using MTT and colony formation assays. Inhibitory effects of NMS-P715 on cell cycle and apoptosis were evaluated using flow cytometry. Expression of underlying mechanism-related proteins was examined by Western blotting. Mitotic catastrophe was assessed by counting abnormal nuclei. Transwell assays were used to examine cell migration and invasion. KEY FINDINGS Molecular docking showed that the NMS-P715/MPS1 complex was driven by an induced-fit mechanism. We provide new evidence that NMS-P715 potently inhibited cell proliferation and colony formation in both CCA cell lines. This was accompanied by induction of G2/M arrest and the consequent induction of mitotic catastrophe, a process that occurs during defective mitosis. The recent study showed that NMS-P715 activated caspase-dependent apoptosis and autophagosome formation with an increase of LC3 A/B-II protein expression in CCA cell lines. NMS-P715 also greatly impeded cell migration and invasion in CCA cell lines. The combination of NMS-P715 and gemcitabine or cisplatin showed synergistic effects on CCA cell proliferation. SIGNIFICANCE This study revealed for the first time that NMS-P715 is a promising candidate for combating CCA owing via multiple actions and may be suitable for further development in a clinical study.
Collapse
Affiliation(s)
- Orawan Waenphimai
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
28
|
M Serafim RA, da Silva Santiago A, Schwalm MP, Hu Z, Dos Reis CV, Takarada JE, Mezzomo P, Massirer KB, Kudolo M, Gerstenecker S, Chaikuad A, Zender L, Knapp S, Laufer S, Couñago RM, Gehringer M. Development of the First Covalent Monopolar Spindle Kinase 1 (MPS1/TTK) Inhibitor. J Med Chem 2022; 65:3173-3192. [PMID: 35167750 DOI: 10.1021/acs.jmedchem.1c01165] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1/TTK) is a key element of the mitotic checkpoint and clinically evaluated as a target in the treatment of aggressive tumors such as triple-negative breast cancer. While long drug-target residence times have been suggested to be beneficial in the context of therapeutic MPS1 inhibition, no irreversible inhibitors have been reported. Here we present the design and characterization of the first irreversible covalent MPS1 inhibitor, RMS-07, targeting a poorly conserved cysteine in the kinase's hinge region. RMS-07 shows potent MPS1 inhibitory activity and selectivity against all protein kinases with an equivalent cysteine but also in a broader kinase panel. We demonstrate potent cellular target engagement and pronounced activity against various cancer cell lines. The covalent binding mode was validated by mass spectrometry and an X-ray crystal structure. This proof of MPS1 covalent ligandability may open new avenues for the design of MPS1-specific chemical probes or drugs.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - André da Silva Santiago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Martin P Schwalm
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Zexi Hu
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| | - Caio V Dos Reis
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Jessica E Takarada
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Priscila Mezzomo
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Katlin B Massirer
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Mark Kudolo
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Gerstenecker
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany.,German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 72076 Tübingen, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI) and German Translational Cancer Network (DKTK) Site Frankfurt/Mainz, 60596 Frankfurt am Main, Germany
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Rafael M Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Li H, Zhu X, Zhang W, Lu W, Liu C, Ma J, Zang R, Song Y. Association of High Expression of Mitochondrial Fission Regulator 2 with Poor Survival of Patients with Esophageal Squamous Cell Carcinoma. J Cancer Prev 2021; 26:250-257. [PMID: 35047451 PMCID: PMC8749323 DOI: 10.15430/jcp.2021.26.4.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022] Open
Abstract
Mitochondrial fission regulator 2 (MTFR2) is associated with mitochondrial fission, while few studies have assessed the associations between MTFR2 expression and clinical characteristics or prognosis of esophageal squamous cell carcinoma (ESCC). In this study, we compared the expression of MTFR2 in 6 ESCC tumors and relative normal tissues by immunohistochemistry (IHC). To assess the effect of MTFR2 expression on clinicopathologic characteristics and survival, 115 paraffin embedded ESCC tissue samples were assessed by IHC staining. Furthermore, the association between clinicopathological properties and MTFR2 expression in patients with ESCC was examined. The survival analysis was performed using the Cox regression models. We found that MTFR2 expression was significantly increased in ESCC tumors compared with normal esophageal epithelial cells. IHC analysis of 115 paraffin embedded ESCC tumor specimens of the patients showed that the expression of MTFR2 was significantly associated with clinical stage (P < 0.001), tumor classification (P < 0.001), histological grade (P < 0.001), and other clinicopathological characteristics. Both univariate and multivariate analyses showed that MTFR2 expression was inversely correlated with the survival of ESCC patients. In conclusion, the expression of MTFR2 is significantly associated with clinicopathologic characteristics and prognosis of ESCC. Thus, MTFR2 expression could serve as a potentially important prognostic biomarker and clinical target for patients with ESCC.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xingzhuang Zhu
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Wenjie Lu
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| | - Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinbo Ma
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Rukun Zang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yipeng Song
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Qi G, Ma H, Li Y, Peng J, Chen J, Kong B. TTK inhibition increases cisplatin sensitivity in high-grade serous ovarian carcinoma through the mTOR/autophagy pathway. Cell Death Dis 2021; 12:1135. [PMID: 34876569 PMCID: PMC8651821 DOI: 10.1038/s41419-021-04429-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy. However, the molecular mechanisms underlying HGSOC development, progression, chemotherapy insensitivity and resistance remain unclear. Two independent GEO datasets, including the gene expression profile of primary ovarian carcinoma and normal controls, were analyzed to identify genes related to HGSOC development and progression. A KEGG pathway analysis of the differentially expressed genes (DEGs) revealed that the cell cycle pathway was the most enriched pathway, among which TTK protein kinase (TTK) was the only gene with a clinical-grade inhibitor that has been investigated in a clinical trial but had not been studied in HGSOC. TTK was also upregulated in cisplatin-resistant ovarian cancer cells from two other datasets. TTK is a regulator of spindle assembly checkpoint signaling, playing an important role in cell cycle control and tumorigenesis in various cancers. However, the function and regulatory mechanism of TTK in HGSOC remain to be determined. In this study, we observed TTK upregulation in patients with HGSOC. High TTK expression was related to a poor prognosis. Genetic and pharmacological inhibition of TTK impeded the proliferation of ovarian cancer cells by disturbing cell cycle progression and increasing apoptosis. TTK silencing increased cisplatin sensitivity by activating the mammalian target of rapamycin (mTOR) complex to further suppress cisplatin-induced autophagy in vitro. In addition, the enhanced sensitivity was partially diminished by rapamycin-mediated inhibition of mTOR in TTK knockdown cells. Furthermore, TTK knockdown increased the toxicity of cisplatin in vivo by decreasing autophagy. These findings suggest that the administration of TTK inhibitors in combination with cisplatin may lead to improved response rates to cisplatin in patients with HGSOC presenting high TTK expression. In summary, our study may provide a theoretical foundation for using the combination therapy of cisplatin and TTK inhibitors as a treatment for HGSOC in the future.
Collapse
Affiliation(s)
- Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Jingying Chen
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China.
| |
Collapse
|
31
|
Li Y, Zhan Z, Yin X, Fu S, Deng X. Targeted Therapeutic Strategies for Triple-Negative Breast Cancer. Front Oncol 2021; 11:731535. [PMID: 34778045 PMCID: PMC8581040 DOI: 10.3389/fonc.2021.731535] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, which is characterized by the absence of estrogen receptor (ER) and progesterone receptor (PR) expression and the absence of human epidermal growth factor receptor 2 (HER2) expression/amplification. Conventional chemotherapy is the mainstay of systemic treatment for TNBC. However, lack of molecular targeted therapies and poor prognosis of TNBC patients have prompted a great effort to discover effective targets for improving the clinical outcomes. For now, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi's) and immune checkpoint inhibitors have been approved for the treatment of TNBC. Moreover, agents that target signal transduction, angiogenesis, epigenetic modifications, and cell cycle are under active preclinical or clinical investigations. In this review, we highlight the current major developments in targeted therapies of TNBC, with some descriptions about their (dis)advantages and future perspectives.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Zhijun Zhan
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Xuemin Yin
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| |
Collapse
|
32
|
Yao ZP, Zhu H, Shen F, Gong D. Hsp90 regulates the tumorigenic function of tyrosine protein kinase in osteosarcoma. Clin Exp Pharmacol Physiol 2021; 49:380-390. [PMID: 34767669 DOI: 10.1111/1440-1681.13613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023]
Abstract
Despite recent advances in diagnosis and treatment, osteosarcoma remains as the most common bone cancer in children and is associated with poor prognosis. Growing evidence has supported dysregulation of threonine and tyrosine protein kinase (TTK) expression as a hallmark of multiple cancers, however, its function in osteosarcoma remains to be elucidated. In the present study, we found that TTK was frequently overexpressed in osteosarcoma and associated with increased tumour growth and progression. Moreover, using both in vitro and in vivo assays, we provided evidence that TTK level was regulated by a molecular chaperone, heat shock protein 90 (Hsp90). Hsp90 directly interacted with TTK and prevents proteasome-dependent TTK degradation, leading to the accumulation of TTK in osteosarcoma cells. Elevated TTK promoted cancer cell proliferation and survival by activating cell-cycle progression and inhibiting apoptosis. Consistently, depletion of TTK by Hsp90 inhibition induced cell-cycle arrest, generated aneuploidy and eventually resulted in apoptotic cancer cell death. Together, our study revealed an important Hsp90-TTK regulatory axis in osteosarcoma cells to promote cancer cell growth and survival. These findings expand our knowledge on osteosarcoma pathogenesis and offer novel therapeutic options for clinical practice.
Collapse
Affiliation(s)
- Zhao-Peng Yao
- Department of Orthopaedics, The First Hospital of Nanchang, Nanchang, China
| | - Hui Zhu
- Department of Breast Cancer Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, China
| | - Feng Shen
- Department of Orthopaedics, The First Hospital of Nanchang, Nanchang, China
| | - Dan Gong
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
33
|
Elsner J, Cashion D, Robinson D, Bahmanyar S, Tehrani L, Fultz KE, Narla RK, Peng X, Tran T, Apuy J, LeBrun L, Leftheris K, Boylan JF, Zhu D, Riggs JR. Structure-Guided Optimization Provides a Series of TTK Protein Inhibitors with Potent Antitumor Activity. J Med Chem 2021; 64:12670-12679. [PMID: 34459599 DOI: 10.1021/acs.jmedchem.1c00635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TTK is an essential spindle assembly checkpoint enzyme in many organisms. It plays a central role in tumor cell proliferation and is aberrantly overexpressed in a wide range of tumor types. We recently reported on a series of potent and selective TTK inhibitors with strong antiproliferative activity in triple negative breast cancer (TNBC) cell lines (8: TTK IC50 = 3.0 nM; CAL-51 IC50 = 84.0 nM). Inspired by previously described potent tricyclic TTK inhibitor 6 (TTK IC50 = 0.9 nM), we embarked on a structure-enabled design and optimization campaign to identify an improved series with excellent potency, TTK selectivity, solubility, CYP inhibition profile, and in vivo efficacy in a TNBC xenograft model. These efforts culminated in the discovery of 25 (TTK IC50 = 3.0 nM; CAL-51 IC50 = 16.0 nM), which showed significant single-agent efficacy when dosed iv in a TNBC xenograft model without body weight loss.
Collapse
Affiliation(s)
- Jan Elsner
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Dan Cashion
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Dale Robinson
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Sogole Bahmanyar
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Lida Tehrani
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Kimberly E Fultz
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Rama Krishna Narla
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Xiaohui Peng
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Tam Tran
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Julius Apuy
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Laurie LeBrun
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Katerina Leftheris
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - John F Boylan
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Dan Zhu
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Jennifer R Riggs
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| |
Collapse
|
34
|
Tandon N, Luxami V, Kant D, Tandon R, Paul K. Current progress, challenges and future prospects of indazoles as protein kinase inhibitors for the treatment of cancer. RSC Adv 2021; 11:25228-25257. [PMID: 35478899 PMCID: PMC9037120 DOI: 10.1039/d1ra03979b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/29/2021] [Indexed: 01/19/2023] Open
Abstract
The indazole core is an interesting pharmacophore due to its applications in medicinal chemistry. In the past few years, this moiety has been used for the synthesis of kinase inhibitors. Many researchers have demonstrated the use of indazole derivatives as specific kinase inhibitors, including tyrosine kinase and serine/threonine kinases. A number of anticancer drugs with an indazole core are commercially available, e.g. axitinib, linifanib, niraparib, and pazopanib. Indazole derivatives are applied for the targeted treatment of lung, breast, colon, and prostate cancers. In this review, we compile the current development of indazole derivatives as kinase inhibitors and their application as anticancer agents in the past five years.
Collapse
Affiliation(s)
- Nitin Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Divya Kant
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Runjhun Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
35
|
Zhang R, Huang M, Wang H, Wu S, Yao J, Ge Y, Lu Y, Hu Q. Identification of Potential Biomarkers From Hepatocellular Carcinoma With MT1 Deletion. Pathol Oncol Res 2021; 27:597527. [PMID: 34257549 PMCID: PMC8262205 DOI: 10.3389/pore.2021.597527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide. Metallothioneins (MTs) are metal-binding proteins involved in multiple biological processes such as metal homeostasis and detoxification, as well as in oncogenesis. Copy number variation (CNV) plays a vital role in pathogenesis and carcinogenesis. Nevertheless, there is no study on the role of MT1 CNV in HCC. Methods: Array-based Comparative Genomic Hybridization (aCGH) analysis was performed to obtain the CNV data of 79 Guangxi HCC patients. The prognostic effect of MT1-deletion was analyzed by univariate and multivariate Cox regression analysis. The differentially expressed genes (DEGs) were screened based on The Gene Expression Omnibus database (GEO) and the Liver Hepatocellular Carcinoma of The Cancer Genome Atlas (TCGA-LIHC). Then function and pathway enrichment analysis, protein-protein interaction (PPI) and hub gene selection were applied on the DEGs. Lastly, the hub genes were validated by immunohistochemistry, tissue expression and prognostic analysis. Results: The MT1-deletion was demonstrated to affect the prognosis of HCC and can act as an independent prognostic factor. 147 common DEGs were screened. The most significant cluster of DEGs identified by Molecular Complex Detection (MCODE) indicated that the expression of four MT1s were down-regulated. MT1X and other five hub genes (TTK, BUB1, CYP3A4, NR1I2, CYP8B1) were associated with the prognosis of HCC. TTK, could affect the prognosis of HCC with MT1-deletion and non-deletion. NR1I2, CYP8B1, and BUB1 were associated with the prognosis of HCC with MT1-deletion. Conclusions: In the current study, we demonstrated that MT1-deletion can be an independent prognostic factor in HCC. We identified TTK, BUB1, NR1I2, CYP8B1 by processing microarray data, for the first time revealed the underlying function of MT1 deletion in HCC, MT1-deletion may influence the gene expression in HCC, which may be the potential biomarkers for HCC with MT1 deletion.
Collapse
Affiliation(s)
- Ruohao Zhang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Miao Huang
- Radiology Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Hong Wang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Shengming Wu
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jiali Yao
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Yingying Ge
- Department of Histology and Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Yufei Lu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
36
|
Jilderda LJ, Zhou L, Foijer F. Understanding How Genetic Mutations Collaborate with Genomic Instability in Cancer. Cells 2021; 10:342. [PMID: 33562057 PMCID: PMC7914657 DOI: 10.3390/cells10020342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 01/23/2023] Open
Abstract
Chromosomal instability is the process of mis-segregation for ongoing chromosomes, which leads to cells with an abnormal number of chromosomes, also known as an aneuploid state. Induced aneuploidy is detrimental during development and in primary cells but aneuploidy is also a hallmark of cancer cells. It is therefore believed that premalignant cells need to overcome aneuploidy-imposed stresses to become tumorigenic. Over the past decade, some aneuploidy-tolerating pathways have been identified through small-scale screens, which suggest that aneuploidy tolerance pathways can potentially be therapeutically exploited. However, to better understand the processes that lead to aneuploidy tolerance in cancer cells, large-scale and unbiased genetic screens are needed, both in euploid and aneuploid cancer models. In this review, we describe some of the currently known aneuploidy-tolerating hits, how large-scale genome-wide screens can broaden our knowledge on aneuploidy specific cancer driver genes, and how we can exploit the outcomes of these screens to improve future cancer therapy.
Collapse
Affiliation(s)
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (L.J.J.); (L.Z.)
| |
Collapse
|
37
|
Prajumwongs P, Phumphu R, Waenphimai O, Lert-itthiporn W, Vaeteewoottacharn K, Wongkham S, Chamgramol Y, Pairojkul C, Sawanyawisuth K. High Monopolar Spindle 1 Is Associated with Short Survival of Cholangiocarcinoma Patients and Enhances the Progression Via AKT and STAT3 Signaling Pathways. Biomedicines 2021; 9:68. [PMID: 33450849 PMCID: PMC7828338 DOI: 10.3390/biomedicines9010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium. The major problems of this cancer are late diagnosis and a high rate of metastasis. CCA patients in advanced stages have poor survival and cannot be cured with surgery. Therefore, targeting molecules involved in the metastatic process may be an effective CCA treatment. Monopolar spindle 1 (MPS1) is a kinase protein that controls the spindle assemble checkpoint in mitosis. It is overexpressed in proliferating cells and various cancers. The functional roles of MPS1 in CCA progression have not been investigated. The aims of this study were to examine the roles and molecular mechanisms of MPS1 in CCA progression. Immunohistochemistry results showed that MPS1 was up-regulated in carcinogenesis of CCA in a hamster model, and positive expression of MPS1 in human CCA tissues was correlated to short survival of CCA patients (n = 185). Small interfering RNA (siRNA)-induced knockdown of MPS1 expression reduced cell proliferation via G2/M arrest, colony formation, migration, and invasion. Moreover, MPS1 controlled epithelial to mesenchymal transition (EMT)-mediated migration via AKT and STAT3 signaling transductions. MPS1 was also involved in MMPs-dependent invasion of CCA cell lines. The current research highlights for the first time that MPS1 has an essential role in promoting the progression of CCA via AKT and STAT3 signaling pathways and could be an attractive target for metastatic CCA treatment.
Collapse
Affiliation(s)
- Piya Prajumwongs
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Ratthaphong Phumphu
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Orawan Waenphimai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Worachart Lert-itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Yaovalux Chamgramol
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| |
Collapse
|
38
|
Hong Z, Wang Q, Hong C, Liu M, Qiu P, Lin R, Lin X, Chen F, Li Q, Liu L, Wang C, Chen D. Identification of Seven Cell Cycle-Related Genes with Unfavorable Prognosis and Construction of their TF-miRNA-mRNA regulatory network in Breast Cancer. J Cancer 2021; 12:740-753. [PMID: 33403032 PMCID: PMC7778540 DOI: 10.7150/jca.48245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC), with complex tumorigenesis and progression, remains the most common malignancy in women. We aimed to explore some novel and significant genes with unfavorable prognoses and potential pathways involved in BC initiation and progression via bioinformatics methods. BC tissue-specific microarray datasets of GSE42568, GSE45827 and GSE54002, which included a total of 651 BC tissues and 44 normal breast tissues, were obtained from the Gene Expression Omnibus (GEO) database, and 124 differentially expressed genes (DEGs) were identified between BC tissues and normal breast tissues via R software and an online Venn diagram tool. Database for Annotation, Visualization and Integration Discovery (DAVID) software showed that 65 upregulated DEGs were mainly enriched in the regulation of the cell cycle, and Search Tool for the Retrieval of Interacting Genes (STRING) software identified the 39 closest associated upregulated DEGs in protein-protein interactions (PPIs), which validated the high expression of genes in BC tissues by the Gene Expression Profiling Interactive Analysis (GEPIA) tool. In addition, 36 out of 39 BC patients showed significantly worse outcomes by Kaplan-Meier plotter (KM plotter), and an additional Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that seven genes (cyclin E2 (CCNE2), cyclin B1 (CCNB1), cyclin B2 (CCNB2), mitotic checkpoint serine/threonine kinase B (BUB1B), dual-specificity protein kinase (TTK), cell division cycle 20 (CDC20), and pituitary tumor transforming gene 1 (PTTG1)) were markedly enriched in the cell cycle pathway. Analysis of the clinicopathological characteristics of hub genes revealed that seven cell cycle-related genes (CCRGs) were significantly highly expressed in four BC subtypes (luminal A, luminal B, HER2-positive and triple-negative (TNBC)), and except for the CCNE2 gene, high expression levels were significantly associated with tumor pathological grade and stage and metastatic events of BC. Furthermore, genetic mutation analysis indicated that genetic alterations of CCRGs could also significantly affect BC patients' prognosis. A quantitative real-time polymerase chain reaction (qRT-PCR) assay found that the seven CCRGs were significantly differentially expressed in BC cell lines. Integration of published multilevel expression data and a bioinformatics computational approach were used to predict and construct a regulation mechanism: a transcription factor (TF)-microRNA (miRNA)-messenger RNA (mRNA) regulation network. The present work is the first to construct a regulatory network of TF-miRNA-mRNA in BC for CCRGs and provides new insights into the molecular mechanism of BC.
Collapse
Affiliation(s)
- Zhipeng Hong
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, P. R. China.,Department of Breast Surgery and General Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350001, P. R. China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, 350001, P.R. China
| | - Qinglan Wang
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, P. R. China
| | - Chengye Hong
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, P. R. China
| | - Meimei Liu
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, P. R. China
| | - Pengqin Qiu
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, P. R. China
| | - Rongrong Lin
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, P. R. China
| | - Xiaolan Lin
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, P. R. China
| | - Fangfang Chen
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, P. R. China
| | - Qiuhuang Li
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, P. R. China
| | - Lingling Liu
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, P. R. China
| | - Chuan Wang
- Department of Breast Surgery and General Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350001, P. R. China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, 350001, P.R. China
| | - Debo Chen
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, P. R. China
| |
Collapse
|
39
|
Huang M, Huang Y, Guo J, Yu L, Chang Y, Wang X, Luo J, Huang Y, Tu Z, Lu X, Xu Y, Zhang Z, Zhang Z, Ding K. Pyrido[2, 3-d]pyrimidin-7(8H)-ones as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors. Eur J Med Chem 2020; 211:113023. [PMID: 33248853 DOI: 10.1016/j.ejmech.2020.113023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 11/10/2020] [Indexed: 01/12/2023]
Abstract
A series of pyrido [2, 3-d]pyrimidin-7(8H)-ones were designed and synthesized as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors. One of the representative compounds, 5o, exhibited strong binding affinity with a Kd value of 0.15 nM, but was significantly less potent against a panel of 402 wild-type kinases at 100 nM. The compound also potently inhibited the kinase activity of TTK with an IC50 value of 23 nM, induced chromosome missegregation and aneuploidy, and suppressed proliferation of a panel of human cancer cell lines with low μM IC50 values. Compound 5o demonstrated good oral pharmacokinetic properties with a bioavailability value of 45.3% when administered at a dose of 25 mg/kg in rats. Moreover, a combination therapy of 5o with paclitaxel displayed promising in vivo efficacy against the HCT-116 human colon cancer xenograft model in nude mice with a Tumor Growth Inhibition (TGI) value of 78%. Inhibitor 5o may provide a new research tool for further validating therapeutic potential of TTK inhibition.
Collapse
Affiliation(s)
- Minhao Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Yongjun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lei Yu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yu Chang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaolu Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Yanhui Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zhengchao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yong Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zhimin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
40
|
Lu W, Zang R, Du Y, Li X, Li H, Liu C, Song Y, Li Y, Wang Y. Overexpression of MTFR2 Predicts Poor Prognosis of Breast Cancer. Cancer Manag Res 2020; 12:11095-11102. [PMID: 33173342 PMCID: PMC7646465 DOI: 10.2147/cmar.s272088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023] Open
Abstract
Background Mitochondrial fission regulator 2 (MTFR2) has been reported to promote proliferation, migration and invasion in tumors; however, little is known about its function in breast cancer. Thus, we investigated the effect of MTFR2 expression on prognosis of breast cancer. Methods The expression of MTFR2 in breast cancer tissues was detected by immunohistochemistry, and overall survival (OS) and recurrence free survival (RFS) were evaluated by the Log rank test and Cox model. Results We found that MTFR2 expression was significantly associated with clinical stage (P<0.001), T classification (P=0.005), N classification (P=0.001), M classification (P=0.041), HER2 expression (P= 0.001), and molecular subtypes (P=0.002), respectively. Compared with low MTFR2 expression, the patients with higher expression of MTFR2 exhibited significantly shorter OS and RFS (All P < 0.001). Both univariate and multivariate analyses showed that MTFR2 was an independent prognostic factor for OS (HR, 2.8, 95% CI 1.1-6.8, P = 0.023) and RFS (HR, 2.8, 95% CI 1.2-6.4, P = 0.015) in breast cancer patients. Moreover, in HER2 positive and TNBC subtype, the associations between high MTFR2 expression and poor OS and RFS were more pronounced. Conclusion Taken together, our results demonstrated that high MTFR2 expression was associated with poor prognosis of breast cancer patients, and such an association was more pronounced in the patients with aggressive tumors. Therefore, MTFR2 expression might be a potentially important prognostic biomarker and clinical target for patients with breast cancer.
Collapse
Affiliation(s)
- Wenjie Lu
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Rukun Zang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Yuanna Du
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Xinghua Li
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Hongwei Li
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yipeng Song
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yang Wang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
41
|
Wu G, Xia P, Yan S, Chen D, Xie L, Fan G. Identification of unique long non-coding RNAs as putative biomarkers for chromophobe renal cell carcinoma. Per Med 2020; 18:9-19. [PMID: 33052074 DOI: 10.2217/pme-2020-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate whether long non-coding RNAs (lncRNAs) can be utilized as molecular biomarkers in predicting the occurrence and progression of chromophobe renal cell carcinoma. Methods & results: Genetic and related clinical traits of chromophobe renal cell carcinoma were downloaded from the Cancer Genome Atlas and used to construct modules using weighted gene coexpression network analysis. In total, 44,889 genes were allocated into 21 coexpression modules depending on intergenic correlation. Among them, the green module was the most significant key module identified by module-trait correlation calculations (R2 = 0.43 and p = 4e-04). Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that genes in the green module were enriched in many pathways. Coexpression, protein-protein interaction networks, screening for differentially expressed genes, and survival analysis were used to select hub lncRNAs. Five hub lncRNAs (TTK, CENPE, KIF2C, BUB1, and RAD51AP1) were selected out. Conclusion: Our findings suggest that the five lncRNAs may act as potential biomarkers for chromophobe renal cell carcinoma progression and prognosis.
Collapse
Affiliation(s)
- Guanlin Wu
- Experimental & Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin-Buch, Germany.,Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Pengfei Xia
- Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Shixian Yan
- Experimental & Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin-Buch, Germany.,Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Dongming Chen
- Department of Cerebral Surgery, First People's Hospital of Tianmen, Tianmen, PR China
| | - Lei Xie
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China.,The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, PR China
| |
Collapse
|
42
|
Simon Serrano S, Sime W, Abassi Y, Daams R, Massoumi R, Jemaà M. Inhibition of mitotic kinase Mps1 promotes cell death in neuroblastoma. Sci Rep 2020; 10:11997. [PMID: 32686724 PMCID: PMC7371706 DOI: 10.1038/s41598-020-68829-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
Neuroblastoma is the most common paediatric cancer type. Patients diagnosed with high-risk neuroblastoma have poor prognosis and occasionally tumours relapse. As a result, novel treatment strategies are needed for relapse and refractory neuroblastoma patients. Here, we found that high expression of Mps1 kinase (mitotic kinase Monopolar Spindle 1) was associated with relapse-free neuroblastoma patient outcomes and poor overall survival. Silencing and inhibition of Mps1 in neuroblastoma or PDX-derived cells promoted cell apoptosis via the caspase-dependent mitochondrial apoptotic pathway. The mechanism of cell death upon Mps1 inhibition was dependent on the polyploidization/aneuploidization of the cells before undergoing mitotic catastrophe. Furthermore, tumour growth retardation was confirmed in a xenograft mouse model after Mps1-inhibitor treatment. Altogether, these results suggest that Mps1 expression and inhibition can be considered as a novel prognostic marker as well as a therapeutic strategy for the treatment of high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Sonia Simon Serrano
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Wondossen Sime
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Yasmin Abassi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Renée Daams
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden.
| | - Mohamed Jemaà
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden.
| |
Collapse
|
43
|
Voutsadakis IA. Clinical Implications of Chromosomal Instability (CIN) and Kinetochore Abnormalities in Breast Cancers. Mol Diagn Ther 2020; 23:707-721. [PMID: 31372940 DOI: 10.1007/s40291-019-00420-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Genetic instability is a defining property of cancer cells and is the basis of various lesions including point mutations, copy number alterations and translocations. Chromosomal instability (CIN) is part of the genetic instability of cancer and consists of copy number alterations in whole or parts of cancer cell chromosomes. CIN is observed in differing degrees in most cancers. In breast cancer, CIN is commonly part of the genomic landscape of the disease and has a higher incidence in aggressive sub-types. Tumor suppressors that are commonly mutated or disabled in cancer, such as p53 and pRB, play roles in protection against CIN, and as a result, their dysfunction contributes to the establishment or tolerance of CIN. Several structural and regulatory proteins of the centromeres and kinetochore, the complex structure that is responsible for the correct distribution of genetic material in the daughter cells during mitosis, are direct or, mostly, indirect transcription targets of p53 and pRB. Thus, despite the absence of structural defects in genes encoding for centromere and kinetochore components, dysfunction of these tumor suppressors may have profound implications for the correct function of the mitotic apparatus contributing to CIN. CIN and its prognostic and therapeutic implications in breast cancer are discussed in this article.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste Marie, ON, P6B 0A8, Canada. .,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.
| |
Collapse
|
44
|
Curtis NL, Ruda GF, Brennan P, Bolanos-Garcia VM. Deregulation of Chromosome Segregation and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The mitotic spindle assembly checkpoint (SAC) is an intricate cell signaling system that ensures the high fidelity and timely segregation of chromosomes during cell division. Mistakes in this process can lead to the loss, gain, or rearrangement of the genetic material. Gross chromosomal aberrations are usually lethal but can cause birth and development defects as well as cancer. Despite advances in the identification of SAC protein components, important details of the interactions underpinning chromosome segregation regulation remain to be established. This review discusses the current understanding of the function, structure, mode of regulation, and dynamics of the assembly and disassembly of SAC subcomplexes, which ultimately safeguard the accurate transmission of a stable genome to descendants. We also discuss how diverse oncoviruses take control of human cell division by exploiting the SAC and the potential of this signaling circuitry as a pool of drug targets to develop effective cancer therapies.
Collapse
Affiliation(s)
- Natalie L. Curtis
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Gian Filippo Ruda
- Target Discovery Institute and Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Paul Brennan
- Target Discovery Institute and Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Victor M. Bolanos-Garcia
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
45
|
Chandler BC, Moubadder L, Ritter CL, Liu M, Cameron M, Wilder-Romans K, Zhang A, Pesch AM, Michmerhuizen AR, Hirsh N, Androsiglio M, Ward T, Olsen E, Niknafs YS, Merajver S, Thomas DG, Brown PH, Lawrence TS, Nyati S, Pierce LJ, Chinnaiyan A, Speers C. TTK inhibition radiosensitizes basal-like breast cancer through impaired homologous recombination. J Clin Invest 2020; 130:958-973. [PMID: 31961339 PMCID: PMC6994133 DOI: 10.1172/jci130435] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Increased rates of locoregional recurrence are observed in patients with basal-like breast cancer (BC) despite the use of radiation therapy (RT); therefore, approaches that result in radiosensitization of basal-like BC are critically needed. Using patients' tumor gene expression data from 4 independent data sets, we correlated gene expression with recurrence to find genes significantly correlated with early recurrence after RT. The highest-ranked gene, TTK, was most highly expressed in basal-like BC across multiple data sets. Inhibition of TTK by both genetic and pharmacologic methods enhanced radiosensitivity in multiple basal-like cell lines. Radiosensitivity was mediated, at least in part, through persistent DNA damage after treatment with TTK inhibition and RT. Inhibition of TTK impaired homologous recombination (HR) and repair efficiency, but not nonhomologous end-joining, and decreased the formation of Rad51 foci. Reintroduction of wild-type TTK rescued both radioresistance and HR repair efficiency after TTK knockdown; however, reintroduction of kinase-dead TTK did not. In vivo, TTK inhibition combined with RT led to a significant decrease in tumor growth in both heterotopic and orthotopic, including patient-derived xenograft, BC models. These data support the rationale for clinical development of TTK inhibition as a radiosensitizing strategy for patients with basal-like BC, and efforts toward this end are currently underway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dafydd G. Thomas
- Rogel Cancer Center
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Powel H. Brown
- Department of Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Shyam Nyati
- Department of Radiation Oncology
- Rogel Cancer Center
| | | | - Arul Chinnaiyan
- Rogel Cancer Center
- Michigan Center for Translation Pathology
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Corey Speers
- Department of Radiation Oncology
- Rogel Cancer Center
- Cancer Biology Program
| |
Collapse
|
46
|
Anderhub SJ, Mak GWY, Gurden MD, Faisal A, Drosopoulos K, Walsh K, Woodward HL, Innocenti P, Westwood IM, Naud S, Hayes A, Theofani E, Filosto S, Saville H, Burke R, van Montfort RLM, Raynaud FI, Blagg J, Hoelder S, Eccles SA, Linardopoulos S. High Proliferation Rate and a Compromised Spindle Assembly Checkpoint Confers Sensitivity to the MPS1 Inhibitor BOS172722 in Triple-Negative Breast Cancers. Mol Cancer Ther 2019; 18:1696-1707. [PMID: 31575759 DOI: 10.1158/1535-7163.mct-18-1203] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/21/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022]
Abstract
BOS172722 (CCT289346) is a highly potent, selective, and orally bioavailable inhibitor of spindle assembly checkpoint kinase MPS1. BOS172722 treatment alone induces significant sensitization to death, particularly in highly proliferative triple-negative breast cancer (TNBC) cell lines with compromised spindle assembly checkpoint activity. BOS172722 synergizes with paclitaxel to induce gross chromosomal segregation defects caused by MPS1 inhibitor-mediated abrogation of the mitotic delay induced by paclitaxel treatment. In in vivo pharmacodynamic experiments, BOS172722 potently inhibits the spindle assembly checkpoint induced by paclitaxel in human tumor xenograft models of TNBC, as measured by inhibition of the phosphorylation of histone H3 and the phosphorylation of the MPS1 substrate, KNL1. This mechanistic synergy results in significant in vivo efficacy, with robust tumor regressions observed for the combination of BOS172722 and paclitaxel versus either agent alone in long-term efficacy studies in multiple human tumor xenograft TNBC models, including a patient-derived xenograft and a systemic metastasis model. The current target indication for BOS172722 is TNBC, based on their high sensitivity to MPS1 inhibition, the well-defined clinical patient population with high unmet need, and the synergy observed with paclitaxel.
Collapse
Affiliation(s)
- Simon J Anderhub
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Grace Wing-Yan Mak
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Mark D Gurden
- The Breast Cancer Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Amir Faisal
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Konstantinos Drosopoulos
- The Breast Cancer Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Katie Walsh
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Hannah L Woodward
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Paolo Innocenti
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Isaac M Westwood
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Sébastien Naud
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Angela Hayes
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Efthymia Theofani
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Simone Filosto
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Harry Saville
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Rob L M van Montfort
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Florence I Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Swen Hoelder
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Spiros Linardopoulos
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom.
- The Breast Cancer Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
47
|
Moreira MP, Brayner FA, Alves LC, Cassali GD, Silva LM. Phenotypic, structural, and ultrastructural analysis of triple-negative breast cancer cell lines and breast cancer stem cell subpopulation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:673-684. [PMID: 31485678 DOI: 10.1007/s00249-019-01393-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/24/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
Abstract
Triple negative breast cancer (TNBC) is a highly heterogeneous disease, which influences the therapeutic response and makes difficult the discovery of effective targets. This heterogeneity is attributed to the presence of breast cancer stem cells (BCSCs), which determines resistance to chemotherapy and subsequently disease recurrence and metastasis. In this context, this work aimed to evaluate the morphological and phenotypic cellular heterogeneity of two TNBC cell lines cultured in monolayer and tumorsphere (TS) models by fluorescence and electron microscopy and flow cytometry. The BT-549 and Hs 578T analyses demonstrated large phenotypic and morphological heterogeneity between these cell lines, as well as between the cell subpopulations that compose them. BT-549 and Hs 578T are heterogeneous considering the cell surface marker CD44 and CD24 expression, characterizing BCSC mesenchymal-like cells (CD44+/CD24-), epithelial cells (CD44-/CD24+), hybrid cells with mesenchymal and epithelial features (CD44+/CD24+), and CD44-/CD24- cells. BCSC epithelial-like cells (ALDH+) were found in BT-549, BT-549 TS, and Hs 578T TS; however, only BT-549 TS showed a high ALDH activity. Ultrastructural characterization showed the heterogeneity within and among BT-549 and Hs 578T in monolayer and TS models being formed by more than one cellular type. Further, the mesenchymal characteristic of these cells is demonstrated by E-cadherin absence and filopodia. It is well known that tumor cell heterogeneity can influence survival, therapy responses, and the rate of tumor growth. Thus, molecular understanding of this heterogeneity is essential for the identification of potential therapeutic options and vulnerabilities of oncological patients.
Collapse
Affiliation(s)
- Milene Pereira Moreira
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
- Laboratório de Patologia Comparada, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Fábio André Brayner
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife, Pernambuco, 50740-465, Brazil
- Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife, Pernambuco, 50670-420, Brazil
| | - Luiz Carlos Alves
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife, Pernambuco, 50740-465, Brazil
- Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife, Pernambuco, 50670-420, Brazil
| | - Geovanni Dantas Cassali
- Laboratório de Patologia Comparada, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luciana Maria Silva
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil.
| |
Collapse
|
48
|
Molecular design and anticancer activities of small-molecule monopolar spindle 1 inhibitors: A Medicinal chemistry perspective. Eur J Med Chem 2019; 175:247-268. [DOI: 10.1016/j.ejmech.2019.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022]
|
49
|
Abstract
Mistakes in the process of cell division can lead to the loss, gain or rearrangement of chromosomes. Significant chromosomal abnormalities are usually lethal to the cells and cause spontaneous miscarriages. However, in some cases, defects in the spindle assembly checkpoint lead to severe diseases, such as cancer and birth and development defects, including Down's syndrome. The timely and accurate control of chromosome segregation in mitosis relies on the spindle assembly checkpoint (SAC), an evolutionary conserved, self-regulated signalling system present in higher organisms. The spindle assembly checkpoint is orchestrated by dynamic interactions between spindle microtubules and the kinetochore , a multiprotein complex that constitutes the site for attachment of chromosomes to microtubule polymers to pull sister chromatids apart during cell division. This chapter discusses the current molecular understanding of the essential, highly dynamic molecular interactions underpinning spindle assembly checkpoint signalling and how the complex choreography of interactions can be coordinated in time and space to finely regulate the process. The potential of targeting this signalling pathway to interfere with the abnormal segregation of chromosomes, which occurs in diverse malignancies and the new opportunities that recent technological developments are opening up for a deeper understanding of the spindle assembly checkpoint are also discussed.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
50
|
Combinatorial Use of Chitosan Nanoparticles, Reversine, and Ionising Radiation on Breast Cancer Cells Associated with Mitosis Deregulation. Biomolecules 2019; 9:biom9050186. [PMID: 31083605 PMCID: PMC6571805 DOI: 10.3390/biom9050186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer in women worldwide and the second most common cancer overall. The development of new therapies to treat this devastating malignancy is needed urgently. Nanoparticles are one class of nanomaterial with multiple applications in medicine, ranging from their use as drug delivery systems and the promotion of changes in cell morphology to the control of gene transcription. Nanoparticles made of the natural polymer chitosan are easy to produce, have a very low immunogenic profile, and diffuse easily into cells. One hallmark feature of cancer, including breast tumours, is the genome instability caused by defects in the spindle-assembly checkpoint (SAC), the molecular signalling mechanism that ensures the timely and high-fidelity transmission of the genetic material to an offspring. In recent years, the use of nanoparticles to treat cancer cells has gained momentum. This is in part because nanoparticles made of different materials can sensitise cancer cells to chemotherapy and radiotherapy. These advances prompted us to study the potential sensitising effect of chitosan-based nanoparticles on breast cancer cells treated with reversine, which is a small molecule inhibitor of Mps1 and Aurora B that induces premature exit from mitosis, aneuploidy, and cell death, before and after exposure of the cancer cells to X-ray irradiation. Our measurements of metabolic activity as an indicator of cell viability, DNA damage by alkaline comet assay, and immunofluorescence using anti-P-H3 as a mitotic biomarker indicate that chitosan nanoparticles elicit cellular responses that affect mitosis and cell viability and can sensitise breast cancer cells to X-ray radiation (2Gy). We also show that such a sensitisation effect is not caused by direct damage to the DNA by the nanoparticles. Taken together, our data indicates that chitosan nanoparticles have potential application for the treatment of breast cancer as adjunct to radiotherapy.
Collapse
|