1
|
Nakagawa T, Hata K, Izumi Y, Nakashima H, Katada S, Matsuda T, Bamba T, Nakashima K. E3 ubiquitin ligase RMND5A maintains the self-renewal state of human neural stem/precursor cells by regulating Wnt and mTOR signaling pathways. FEBS Lett 2025. [PMID: 40377017 DOI: 10.1002/1873-3468.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 05/18/2025]
Abstract
During cortical development, neural stem/precursor cells (NS/PCs) sequentially produce neurons, astrocytes, and oligodendrocytes. Before producing these cells, human (h) NS/PCs undergo prolonged self-renewal to form a larger cortex than other mammals, although the mechanisms are mostly unknown. Here, we performed a gene knockout screen using the CRISPR/Cas9 system to search for genes involved in hNS/PC self-renewal. We identified RMND5A, encoding an E3 ubiquitin ligase, among the candidate genes. We further demonstrated that knockdown of RMND5A decreased proliferation and promoted neuronal differentiation of hNS/PCs through the activation and suppression of the Wnt and mTOR signaling pathways, respectively. Taken together, our findings suggest that RMND5A participates in the maintenance of hNS/PC self-renewal by modulating the Wnt and mTOR signaling pathways. Impact statement During cortical development, human neural stem/precursor cells (hNS/PCs) undergo prolonged self-renewal to form a larger cortex than other mammals, although the mechanisms are mostly unknown. We identified RMND5A, an E3 ubiquitin ligase, as essential for maintaining self-renewal of hNS/PCs, providing valuable insights into the evolutionary expansion of the human brain.
Collapse
Affiliation(s)
- Takumi Nakagawa
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Hata
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideyuki Nakashima
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako Katada
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taito Matsuda
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Neural Regeneration and Brain Repair, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Nandagopal S, Terrio A, Vicente FZ, Megason SG, Jambhekar A, Lahav G. Activation-derepression synergy enables a bHLH network to coordinate a signal-specific fate response. Cell Rep 2024; 43:115077. [PMID: 39671287 PMCID: PMC11774475 DOI: 10.1016/j.celrep.2024.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024] Open
Abstract
Stem cells integrate multiple environmental signals to activate appropriate fate programs. To ensure coherent responses, alternative fates must be concomitantly inactivated. However, mechanisms that coordinate fates in a signal-specific manner are not fully understood. Here, we investigate the role of a network of basic-helix-loop-helix (bHLH) transcription factors in neural stem cells, which integrate leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP) signaling to synergistically induce glial fibrillary acidic protein (GFAP), a key astrocyte-fate determinant. Using quantitative RNA-fluorescence in situ hybridization (FISH) and ectopic expression, we find that multiple bHLHs that promote alternative fates also repress GFAP but are all suppressed by BMP and, to a lesser extent, LIF. Mathematical modeling shows that synergy arises from this coordinated derepression of GFAP combined with its activation by LIF signaling. Finally, we determine how coordinated and tunable derepression results from extensive cross-regulation among bHLHs. Activation-derepression synergy could be broadly utilized to couple signaling and fate, particularly across the numerous developmental systems regulated by bHLH factors.
Collapse
Affiliation(s)
- Sandy Nandagopal
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| | - Alexsandra Terrio
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Fernando Z Vicente
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Sean G Megason
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Moreira JF, Solá S. Dynamics of Neurogenic Signals as Biological Switchers of Brain Plasticity. Stem Cell Rev Rep 2024; 20:2032-2044. [PMID: 39259446 PMCID: PMC11554707 DOI: 10.1007/s12015-024-10788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The discovery of adult neurogenesis in the middle of the past century is considered one of the most important breakthroughs in neuroscience. Despite its controversial nature, this discovery shaped our concept of neural plasticity, revolutionizing the way we look at our brains. In fact, after the discovery of adult neurogenesis, we started to consider the brain as something even more dynamic and highly adaptable. In neurogenic niches, adult neurogenesis is supported by neural stem cells (NSCs). These cells possess a unique set of characteristics such as being quiescent for long periods while actively sensing and reacting to their surroundings to influence a multitude of processes, including the generation of new neurons and glial cells. Therefore, NSCs can be viewed as sentinels to our brain's homeostasis, being able to replace damaged cells and simultaneously secrete numerous factors that restore regular brain function. In addition, it is becoming increasingly evident that NSCs play a central role in memory formation and consolidation. In this review, we will dissect how NSCs influence their surroundings through paracrine and autocrine types of action. We will also depict the mechanism of action of each factor. Finally, we will describe how NSCs integrate different and often opposing signals to guide their fate.
Collapse
Affiliation(s)
- João F Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
4
|
Umeyama T, Matsuda T, Nakashima K. Lineage Reprogramming: Genetic, Chemical, and Physical Cues for Cell Fate Conversion with a Focus on Neuronal Direct Reprogramming and Pluripotency Reprogramming. Cells 2024; 13:707. [PMID: 38667322 PMCID: PMC11049106 DOI: 10.3390/cells13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions.
Collapse
Affiliation(s)
- Taichi Umeyama
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
5
|
San TT, Kim J, Kim HJ. Histone Lysine Demethylase KDM5 Inhibitor CPI-455 Induces Astrocytogenesis in Neural Stem Cells. ACS Chem Neurosci 2024; 15:1570-1580. [PMID: 38501572 DOI: 10.1021/acschemneuro.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Lysine-specific histone demethylase 5A (KDM5A) is known to facilitate proliferation in cancer cells and maintain stemness to repress the astrocytic differentiation of neural stem cells (NSCs). In the study presented here, we investigated the effect of a KDM5 inhibitor, CPI-455, on NSC fate control. CPI-455 induced astrocytogenesis in NSCs during differentiation. Kdm5a, but not Kdm5c, knockdown induced glial fibrillary acidic protein (Gfap) transcription. CPI-455 induced signal transducer and activator of transcription 3, increased bone morphogenetic protein 2 expression, and enhanced mothers against decapentaplegic homolog 1/5/9 phosphorylation. The treatment of CPI-455 enhanced the methylation of histone H3 lysine 4 in the Gfap promoter when compared to that of the dimethyl sulfoxide control. In addition, CPI-455 treatment significantly reduced the recruitment of KDM5A to the Gfap promoter. Our data suggest that the KDM5 inhibitor CPI-455 effectively controls NSC cell fate via KDM5A inhibition and induces astrocytogenesis.
Collapse
Affiliation(s)
- Thin Thin San
- Neuropharmacology and Stem Cell Lab, College of Pharmacy, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Junhyung Kim
- Neuropharmacology and Stem Cell Lab, College of Pharmacy, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Hyun-Jung Kim
- Neuropharmacology and Stem Cell Lab, College of Pharmacy, Chung-Ang University, 06974 Seoul, Republic of Korea
| |
Collapse
|
6
|
Sojka C, Sloan SA. Gliomas: a reflection of temporal gliogenic principles. Commun Biol 2024; 7:156. [PMID: 38321118 PMCID: PMC10847444 DOI: 10.1038/s42003-024-05833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The hijacking of early developmental programs is a canonical feature of gliomas where neoplastic cells resemble neurodevelopmental lineages and possess mechanisms of stem cell resilience. Given these parallels, uncovering how and when in developmental time gliomagenesis intersects with normal trajectories can greatly inform our understanding of tumor biology. Here, we review how elapsing time impacts the developmental principles of astrocyte (AS) and oligodendrocyte (OL) lineages, and how these same temporal programs are replicated, distorted, or circumvented in pathological settings such as gliomas. Additionally, we discuss how normal gliogenic processes can inform our understanding of the temporal progression of gliomagenesis, including when in developmental time gliomas originate, thrive, and can be pushed towards upon therapeutic coercion.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Golán-Cancela I, Caja L. The TGF-β Family in Glioblastoma. Int J Mol Sci 2024; 25:1067. [PMID: 38256140 PMCID: PMC10816220 DOI: 10.3390/ijms25021067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the transforming growth factor β (TGF-β) family have been implicated in the biology of several cancers. In this review, we focus on the role of TGFβ and bone morphogenetic protein (BMP) signaling in glioblastoma. Glioblastoma (GBM) is the most common malignant brain tumor in adults; it presents at a median age of 64 years, but can occur at any age, including childhood. Unfortunately, there is no cure, and even patients undergoing current treatments (surgical resection, radiotherapy, and chemotherapy) have a median survival of 15 months. There is a great need to identify new therapeutic targets to improve the treatment of GBM patients. TGF-βs signaling promotes tumorigenesis in glioblastoma, while BMPs suppress tumorigenic potential by inducing tumor cell differentiation. In this review, we discuss the actions of TGF-βs and BMPs on cancer cells as well as in the tumor microenvironment, and their use in potential therapeutic intervention.
Collapse
Affiliation(s)
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden;
| |
Collapse
|
8
|
Wang L, Tan TK, Kim H, Kappei D, Tan SH, Look AT, Sanda T. ASCL1 characterizes adrenergic neuroblastoma via its pioneer function and cooperation with core regulatory circuit factors. Cell Rep 2023; 42:113541. [PMID: 38060444 DOI: 10.1016/j.celrep.2023.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Neuroblastoma originates from developing neural crest and can interconvert between the mesenchymal (MES) and adrenergic (ADRN) states, each of which are controlled by different sets of transcription factors forming the core regulatory circuit (CRC). However, the roles of CRC factors in induction and maintenance of specific state are poorly understood. Here, we demonstrate that overexpression of ASCL1, an ADRN CRC factor, in MES neuroblastoma cells opens closed chromatin at the promoters of key ADRN genes, accompanied by epigenetic activation and establishment of enhancer-promoter interactions, initiating the ADRN gene expression program. ASCL1 inhibits the transforming growth factor β-SMAD2/3 pathway but activates the bone morphogenetic protein SMAD1-ID3/4 pathway. ASCL1 and other CRC members potentiate each other's activity, increasing the expression of the original targets and inducing a new set of genes, thereby fully inducing the ADRN program. Our results demonstrate that ASCL1 serves as a pioneer factor and cooperates with CRC factors to characterize the ADRN gene expression program.
Collapse
Affiliation(s)
- Lu Wang
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Hyoju Kim
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02216, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
9
|
Goto S, Zhang Y, Vyas SA, Zhu Q, Wildsoet CF. Changes in Expression in BMP2 and Two Closely Related Genes in Guinea Pig Retinal Pigment Epithelium during Induction and Recovery from Myopia. Biomolecules 2023; 13:1373. [PMID: 37759773 PMCID: PMC10526436 DOI: 10.3390/biom13091373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE We previously reported differential gene expression of the bone morphogenetic protein 2 (Bmp2) in guinea pig retinal pigment epithelium (RPE) after 1 day of hyperopic defocus, imposed with a negative contact lens (CLs). The study reported here sought to obtain insights into the temporal profiles of gene expression changes in Bmp2, as well as those of two closely related genes, the inhibitor of DNA binding 3 (Id3) and Noggin (Nog), both during myopia induction and when the CL treatment was terminated to allow recovery from induced myopia. METHODS To induce myopia, 2-week-old pigmented guinea pigs (New Zealand strain, n = 8) wore monocular -10 diopter (D) rigid gas-permeable (RGP) CLs for one week, while the other eye served as a control. Ocular measurements were made at baseline, 3 days, and 7 days after the initiation of CL wear, with treatment then being terminated and additional measurements being made after a further 3 days, 1 week, and 2 weeks. Spherical equivalent refractive errors (SERs), axial length (AL), choroidal thickness (ChT), and scleral thickness (ScT) data were collected using retinoscopy, optical biometry (Lenstar), and spectral domain optical coherence tomography (SD-OCT), respectively. RPE samples were collected from both eyes of the guinea pigs after either 1 day or 1 week of CL wear or 1 day or 2 weeks after its termination, and RNA was subsequently isolated and subjected to quantitative real-time PCR (qRT-PCR) analyses, targeting the Bmp2, Id3, and Nog genes. RESULTS Mean interocular differences (treated-control) in AL and SER were significantly different from baseline after 3 and 7 days of CL wear, consistent with induced myopia (p < 0.001 for all cases). Termination of CL wear resulted in the normalization (i.e., recovery) of the ALs and SERs of the treated eyes within 7 days, and the earlier significant ChT thinning with CL wear (p = 0004, day 7) was replaced by rapid thickening, which remained significant on day 7 (p = 0.009) but had normalized by day 14. The ChT changes were much smaller in magnitude than the AL changes in both phases. Interocular differences in the ScT showed no significant changes. The Bmp2 and Id3 genes were both significantly downregulated with CL wear, after 1 day (p = 0.012 and 0.016) and 7 days (p = 0.002 and 0.005), while Bmp2 gene expression increased and Nog gene expression decreased after the termination of CL wear, albeit transiently, which was significant on 1 day (p = 0.004 and 0.04) but not 2 weeks later. No change in Id3 gene expression was observed over the latter period. Conclusions: The above patterns of myopia induction and recovery validate this negative RGP-CL model as an alternative to traditional spectacle lens models for guinea pigs. The defocus-driven, sign-dependent changes in the expression of the Bmp2 gene in guinea pig RPE are consistent with observations in chicks and demonstrate the important role of BMP2 in eye growth regulation.
Collapse
Affiliation(s)
- So Goto
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, CA 94720, USA
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Department of Ophthalmology, National Hospital Organization, Tokyo Medical Center, Meguro-ku, Tokyo 152-8902, Japan
| | - Yan Zhang
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, CA 94720, USA
| | - Sonal Aswin Vyas
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, CA 94720, USA
| | - Qiurong Zhu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Christine F. Wildsoet
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Gao Y, Zhang H, Zhu J, Li J, Tang Y, Liu C. A fast and efficient method for isolating and culturing enteric neural precursor cells from adult mouse colon. J Neurosci Methods 2023; 386:109781. [PMID: 36586440 DOI: 10.1016/j.jneumeth.2022.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND The enteric neural precursor cells (ENPCs) are important for researching the pathogenesis of enteric nervous system (ENS)-related diseases, especially in adulthood. Because primary ENPCs are difficult to isolate and survive, easy to contaminate and low-yielding, a rapid and effective method to isolate and cultivate ENPCs from adult mice is necessary. NEW METHODS The longitudinal muscle myenteric plexus (LMMP) was isolated from the adult mouse colon. The papain and collagenase Ⅱ were chosen to increase the yield of ENPCs. The growth and proliferation of ENPCs could be promoted by using polylysine precoated culture plates and reasonable cell seeding density. The ENPCs were identified by Nestin and the proliferative properties were verified by EDU. The transgenic Nestin-cre:tdTomato mice were used to observe the proliferation of ENPCs more intuitively in vitro. RESULTS Our method to isolate the ENPCs from adult mouse colon was effective and high-yielding. The ENPCs were identified as Nestin positive. The Nestin-positive ENPCs could proliferate rapidly and had a tendency to differentiate into neurons and glial cells in vitro without any inducing factors. COMPARISON WITH EXISTING METHODS Previous studies about the ENPCs focused on experiment in vivo or were limited to the embryonic mice, and had limitations of low yield and long experiment time. The ENPCs from adult mice were isolated quickly by our method, and had a high yield and purity. CONCLUSION We described a rapid, efficient, step by step method for isolation and culture of ENPCs from the adult mouse colon, which was simple and obtained high yield of ENPCs.
Collapse
Affiliation(s)
- Yifei Gao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| | - Haojie Zhang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| | - Jianchun Zhu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| | - Yan Tang
- Department of Gastroenterology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, PR China.
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China; Provincial Key Lab of Mental Disorders, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
11
|
Kanno H, Matsumoto S, Yoshizumi T, Nakahara K, Kubo A, Murata H, Shuin T, U HS. Role of SOCS and VHL Proteins in Neuronal Differentiation and Development. Int J Mol Sci 2023; 24:ijms24043880. [PMID: 36835292 PMCID: PMC9960776 DOI: 10.3390/ijms24043880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The basic helix-loop-helix factors play a central role in neuronal differentiation and nervous system development, which involve the Notch and signal transducer and activator of transcription (STAT)/small mother against decapentaplegic signaling pathways. Neural stem cells differentiate into three nervous system lineages, and the suppressor of cytokine signaling (SOCS) and von Hippel-Lindau (VHL) proteins are involved in this neuronal differentiation. The SOCS and VHL proteins both contain homologous structures comprising the BC-box motif. SOCSs recruit Elongin C, Elongin B, Cullin5(Cul5), and Rbx2, whereas VHL recruits Elongin C, Elongin B, Cul2, and Rbx1. SOCSs form SBC-Cul5/E3 complexes, and VHL forms a VBC-Cul2/E3 complex. These complexes degrade the target protein and suppress its downstream transduction pathway by acting as E3 ligases via the ubiquitin-proteasome system. The Janus kinase (JAK) is the main target protein of the E3 ligase SBC-Cul5, whereas hypoxia-inducible factor is the primary target protein of the E3 ligase VBC-Cul2; nonetheless, VBC-Cul2 also targets the JAK. SOCSs not only act on the ubiquitin-proteasome system but also act directly on JAKs to suppress the Janus kinase-signal transduction and activator of transcription (JAK-STAT) pathway. Both SOCS and VHL are expressed in the nervous system, predominantly in brain neurons in the embryonic stage. Both SOCS and VHL induce neuronal differentiation. SOCS is involved in differentiation into neurons, whereas VHL is involved in differentiation into neurons and oligodendrocytes; both proteins promote neurite outgrowth. It has also been suggested that the inactivation of these proteins may lead to the development of nervous system malignancies and that these proteins may function as tumor suppressors. The mechanism of action of SOCS and VHL involved in neuronal differentiation and nervous system development is thought to be mediated through the inhibition of downstream signaling pathways, JAK-STAT, and hypoxia-inducible factor-vascular endothelial growth factor pathways. In addition, because SOCS and VHL promote nerve regeneration, they are expected to be applied in neuronal regenerative medicine for traumatic brain injury and stroke.
Collapse
Affiliation(s)
- Hiroshi Kanno
- Department of Neurosurgery, School of Medicine, Yokohama City University, Yokohama 232-0024, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
- Correspondence: ; Tel.: +81-3-5242-5800
| | - Shutaro Matsumoto
- Department of Neurosurgery, School of Medicine, Yokohama City University, Yokohama 232-0024, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
| | - Tetsuya Yoshizumi
- Department of Neurosurgery, St. Mariannna Medical University, Kawasaki 216-8511, Japan
| | - Kimihiro Nakahara
- Department of Neurosurgery, International University of Health and Welfare, Atami 413-0012, Japan
| | | | - Hidetoshi Murata
- Department of Neurosurgery, St. Mariannna Medical University, Kawasaki 216-8511, Japan
| | - Taro Shuin
- Kochi Medical School Hospital, Nangoku 783-0043, Japan
| | - Hoi-Sang U
- Department of Electrical Engineering, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
12
|
Identification of the Time Period during Which BMP Signaling Regulates Proliferation of Neural Progenitor Cells in Zebrafish. Int J Mol Sci 2023; 24:ijms24021733. [PMID: 36675251 PMCID: PMC9863262 DOI: 10.3390/ijms24021733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling regulates neural induction, neuronal specification, and neuronal differentiation. However, the role of BMP signaling in neural progenitors remains unclear. This is because interruption of BMP signaling before or during neural induction causes severe effects on subsequent neural developmental processes. To examine the role of BMP signaling in the development of neural progenitors in zebrafish, we bypassed the effect of BMP signaling on neural induction and suppressed BMP signaling at different time points during gastrulation using a temporally controlled transgenic line carrying a dominant-negative form of Bmp receptor type 1aa and a chemical inhibitor of BMP signaling, DMH1. Inhibiting BMP signaling from 8 hpf could bypass BMP regulation on neural induction, induce the number of proliferating neural progenitors, and reduce the number of neuronal precursors. Inhibiting BMP signaling upregulates the expression of the Notch downstream gene hairy/E(spl)-related 2 (her2). Inhibiting Notch signaling or knocking down the Her2 function reduced neural progenitor proliferation, whereas inactivating BMP signaling in Notch-Her2 deficient background restored the number of proliferating neural progenitors. These results reveal the time window for the proliferation of neural progenitors during zebrafish development and a fine balance between BMP and Notch signaling in regulating the proliferation of neural progenitor cells.
Collapse
|
13
|
Ahmed AKMA, Nakagawa H, Isaksen TJ, Yamashita T. The effects of Bone Morphogenetic Protein 4 on adult neural stem cell proliferation, differentiation and survival in an in vitro model of ischemic stroke. Neurosci Res 2022; 183:17-29. [PMID: 35870553 DOI: 10.1016/j.neures.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
The subventricular zone (SVZ) of the lateral ventricles represents a main region where neural stem cells (NSCs) of the mature central nervous system (CNS) reside. Bone Morphogenetic Proteins (BMPs) are the largest subclass of the transforming growth factor-β (TGF-β) superfamily of ligands. BMP4 is one such member and plays important roles in adult NSC differentiation. However, the exact effects of BMP4 on SVZ adult NSCs in CNS ischemia are still unknown. Using oxygen and glucose deprivation (OGD) as an in vitro model of ischemia, we examined the behavior of adult NSCs. We observed that anoxia resulted in reduced viability of adult NSCs, and that BMP4 treatment clearly rescued apoptotic cell death following anoxia. Furthermore, BMP4 treatment exhibited a strong inhibitory effect on cellular proliferation of the adult NSCs in normoxic conditions. Moreover, such inhibitory effects of BMP4 treatment were also found in OGD conditions, despite the enhanced cellular proliferation of the adult NSCs that was observed under such ischemic conditions. Increased neuronal and astroglial commitment of adult NSCs were found in the OGD conditions, whereas a reduction in differentiated neurons and an increase in differentiated astrocytes were observed following BMP4 treatment. The present data indicate that BMP4 modulates proliferation and differentiation of SVZ-derived adult NSCs and promotes cell survival in the in vitro model of ischemic stroke.
Collapse
Affiliation(s)
- Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Nakagawa
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toke Jost Isaksen
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Bioscience, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Manzari-Tavakoli A, Babajani A, Farjoo MH, Hajinasrollah M, Bahrami S, Niknejad H. The Cross-Talks Among Bone Morphogenetic Protein (BMP) Signaling and Other Prominent Pathways Involved in Neural Differentiation. Front Mol Neurosci 2022; 15:827275. [PMID: 35370542 PMCID: PMC8965007 DOI: 10.3389/fnmol.2022.827275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
The bone morphogenetic proteins (BMPs) are a group of potent morphogens which are critical for the patterning, development, and function of the central nervous system. The appropriate function of the BMP pathway depends on its interaction with other signaling pathways involved in neural differentiation, leading to synergistic or antagonistic effects and ultimately favorable biological outcomes. These opposite or cooperative effects are observed when BMP interacts with fibroblast growth factor (FGF), cytokines, Notch, Sonic Hedgehog (Shh), and Wnt pathways to regulate the impact of BMP-induced signaling in neural differentiation. Herein, we review the cross-talk between BMP signaling and the prominent signaling pathways involved in neural differentiation, emphasizing the underlying basic molecular mechanisms regarding the process of neural differentiation. Knowing these cross-talks can help us to develop new approaches in regenerative medicine and stem cell based therapy. Recently, cell therapy has received significant attention as a promising treatment for traumatic or neurodegenerative diseases. Therefore, it is important to know the signaling pathways involved in stem cell differentiation toward neural cells. Our better insight into the cross-talk of signaling pathways during neural development would improve neural differentiation within in vitro tissue engineering approaches and pre-clinical practices and develop futuristic therapeutic strategies for patients with neurological disease.
Collapse
Affiliation(s)
- Asma Manzari-Tavakoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University, Mashhad, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hajinasrollah
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Zheng K, Huang H, Yang J, Qiu M. Origin, molecular specification and stemness of astrocytes. Dev Neurobiol 2022; 82:149-159. [DOI: 10.1002/dneu.22863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Zheng
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Junlin Yang
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
16
|
Dey A, Barik D. Emergent Bistable Switches from the Incoherent Feed-Forward Signaling of a Positive Feedback Loop. ACS Synth Biol 2021; 10:3117-3128. [PMID: 34694110 DOI: 10.1021/acssynbio.1c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bistability is intrinsically connected to various decision making processes in living systems. The operating principles of a bistable switch, generated from a positive feedback loop, are well understood both in natural and synthetic settings. However, the fate of dynamic modularity of a positive feedback loop is unknown when it is connected to another dynamically modular signaling motif. In order to address this, here we investigate feed-forward signaling of a positive feedback loop to determine the fate of a bistable switch under such signaling. Using the potential energy based high-throughput bifurcation analysis method, we uncover that in addition to the conventional bistability the hybrid motifs generate various emergent bistable switches, namely mushroom and isola switches, which are not produced by the individual motifs. Using random parameter sampling, network perturbation, and phase plane analysis, we establish the design principles of such emergent behaviors. Incoherent feed-forward signaling of a positive feedback loop with distinct regulatory thresholds of the two arms of the feed-forward loop are the key requirements for such emergent behaviors. Our calculations show that the specific types of atypical bistable responses depend on the logic gate configuration of the signals. However, the emergent bistable behaviors of the hybrid networks do not depend on the nature of the positive feedback loop.
Collapse
Affiliation(s)
- Anupam Dey
- School of Chemistry, University of Hyderabad, Central University P.O., Hyderabad, 500046, Telangana, India
| | - Debashis Barik
- School of Chemistry, University of Hyderabad, Central University P.O., Hyderabad, 500046, Telangana, India
| |
Collapse
|
17
|
Katada S, Takouda J, Nakagawa T, Honda M, Igarashi K, Imamura T, Ohkawa Y, Sato S, Kurumizaka H, Nakashima K. Neural stem/precursor cells dynamically change their epigenetic landscape to differentially respond to BMP signaling for fate switching during brain development. Genes Dev 2021; 35:1431-1444. [PMID: 34675062 PMCID: PMC8559679 DOI: 10.1101/gad.348797.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
In this study, Katada et al. investigated NPC fate regulation and, using multiple genome-wide analyses, they demonstrate that Smads, transcription factors that act downstream from BMP signaling, target dramatically different genomic regions in neurogenic and gliogenic NPCs. Their results show the regulation of NPC property change mediated by the interplay between cell-extrinsic cues and -intrinsic epigenetic programs during cortical development. During neocortical development, tight regulation of neurogenesis-to-astrogenesis switching of neural precursor cells (NPCs) is critical to generate a balanced number of each neural cell type for proper brain functions. Accumulating evidence indicates that a complex array of epigenetic modifications and the availability of extracellular factors control the timing of neuronal and astrocytic differentiation. However, our understanding of NPC fate regulation is still far from complete. Bone morphogenetic proteins (BMPs) are renowned as cytokines that induce astrogenesis of gliogenic late-gestational NPCs. They also promote neurogenesis of mid-gestational NPCs, although the underlying mechanisms remain elusive. By performing multiple genome-wide analyses, we demonstrate that Smads, transcription factors that act downstream from BMP signaling, target dramatically different genomic regions in neurogenic and gliogenic NPCs. We found that histone H3K27 trimethylation and DNA methylation around Smad-binding sites change rapidly as gestation proceeds, strongly associated with the alteration of accessibility of Smads to their target binding sites. Furthermore, we identified two lineage-specific Smad-interacting partners—Sox11 for neurogenic and Sox8 for astrocytic differentiation—that further ensure Smad-regulated fate-specific gene induction. Our findings illuminate an exquisite regulation of NPC property change mediated by the interplay between cell-extrinsic cues and -intrinsic epigenetic programs during cortical development.
Collapse
Affiliation(s)
- Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jun Takouda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takumi Nakagawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mizuki Honda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuhide Igarashi
- Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takuya Imamura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
18
|
Chu YH, Lin JD, Nath S, Schachtrup C. Id proteins: emerging roles in CNS disease and targets for modifying neural stemcell behavior. Cell Tissue Res 2021; 387:433-449. [PMID: 34302526 PMCID: PMC8975794 DOI: 10.1007/s00441-021-03490-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Neural stem/progenitor cells (NSPCs) are found in the adult brain and spinal cord, and endogenous or transplanted NSPCs contribute to repair processes and regulate immune responses in the CNS. However, the molecular mechanisms of NSPC survival and integration as well as their fate determination and functionality are still poorly understood. Inhibitor of DNA binding (Id) proteins are increasingly recognized as key determinants of NSPC fate specification. Id proteins act by antagonizing the DNA-binding activity of basic helix-loop-helix (bHLH) transcription factors, and the balance of Id and bHLH proteins determines cell fate decisions in numerous cell types and developmental stages. Id proteins are central in responses to environmental changes, as they occur in CNS injury and disease, and cellular responses in adult NSPCs implicate Id proteins as prime candidates for manipulating stemcell behavior. Here, we outline recent advances in understanding Id protein pleiotropic functions in CNS diseases and propose an integrated view of Id proteins and their promise as potential targets in modifying stemcell behavior to ameliorate CNS disease.
Collapse
Affiliation(s)
- Yu-Hsuan Chu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jia-di Lin
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Suvra Nath
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Alisch M, Kerkering J, Crowley T, Rosiewicz K, Paul F, Siffrin V. Identification of the gliogenic state of human neural stem cells to optimize in vitro astrocyte differentiation. J Neurosci Methods 2021; 361:109284. [PMID: 34242705 DOI: 10.1016/j.jneumeth.2021.109284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Human preclinical models are crucial for advancing biomedical research. In particular consistent and robust protocols for astrocyte differentiation in the human system are rare. NEW METHOD We performed a transcriptional characterization of human gliogenesis using embryonic H9- derived hNSCs. Based on these findings we established a fast and highly efficient protocol for the differentiation of mature human astrocytes. We could reproduce these results in induced pluripotent stem cell (iPSC)-derived NSCs. RESULTS We identified an increasing propensity of NSCs to give rise to astrocytes with repeated cell passaging. The gliogenic phenotype of NSCs was marked by a down-regulation of stem cell factors (e.g. SOX1, SOX2, EGFR) and an increase of glia-associated factors (e.g. NFIX, SOX9, PDGFRa). Using late passage NSCs, rapid and robust astrocyte differentiation can be achieved within 28 days. COMPARISON WITH EXISTING METHOD(S) In published protocols it usually takes around three months to yield in mature astrocytes. The difficulty, expense and time associated with generating astrocytes in vitro represents a major roadblock for glial cell research. We show that rapid and robust astrocyte differentiation can be achieved within 28 days. We describe here by an extensive sequential transcriptome analysis of hNSCs the characterization of the signature of a novel gliogenic stem cell population. The transcriptomic signature might serve to identify the proper divisional maturity. CONCLUSIONS This work sheds light on the factors associated with rapid NSC differentiation into glial cells. These findings contribute to understand human gliogenesis and to develop novel preclinical models that will help to study CNS disease such as Multiple Sclerosis.
Collapse
Affiliation(s)
- Marlen Alisch
- Neuroimmunology Lab, Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Janis Kerkering
- Neuroimmunology Lab, Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Tadhg Crowley
- Neuroimmunology Lab, Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Kamil Rosiewicz
- Neuroimmunology Lab, Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Friedemann Paul
- Neurocure Clinical Research Center and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Volker Siffrin
- Neuroimmunology Lab, Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
20
|
Tanabe R, Miyazono K, Todo T, Saito N, Iwata C, Komuro A, Sakai S, Raja E, Koinuma D, Morikawa M, Westermark B, Heldin CH. PRRX1 induced by BMP signaling decreases tumorigenesis by epigenetically regulating glioma-initiating cell properties via DNA methyltransferase 3A. Mol Oncol 2021; 16:269-288. [PMID: 34214250 PMCID: PMC8732353 DOI: 10.1002/1878-0261.13051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Glioma‐initiating cells (GICs), a major source of glioblastoma recurrence, are characterized by the expression of neural stem cell markers and the ability to grow by forming nonadherent spheres under serum‐free conditions. Bone morphogenetic proteins (BMPs), members of the transforming growth factor‐β family, induce differentiation of GICs and suppress their tumorigenicity. However, the mechanisms underlying the BMP‐induced loss of GIC stemness have not been fully elucidated. Here, we show that paired related homeobox 1 (PRRX1) induced by BMPs decreases the CD133‐positive GIC population and inhibits tumorigenic activity of GICs in vivo. Of the two splice isoforms of PRRX1, the longer isoform, pmx‐1b, but not the shorter isoform, pmx‐1a, induces GIC differentiation. Upon BMP stimulation, pmx‐1b interacts with the DNA methyltransferase DNMT3A and induces promoter methylation of the PROM1 gene encoding CD133. Silencing DNMT3A maintains PROM1 expression and increases the CD133‐positive GIC population. Thus, pmx‐1b promotes loss of stem cell‐like properties of GICs through region‐specific epigenetic regulation of CD133 expression by recruiting DNMT3A, which is associated with decreased tumorigenicity of GICs.
Collapse
Affiliation(s)
- Ryo Tanabe
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Japan
| | - Caname Iwata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Akiyoshi Komuro
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Satoshi Sakai
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Erna Raja
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
21
|
Nakashima H, Tsujimura K, Irie K, Imamura T, Trujillo CA, Ishizu M, Uesaka M, Pan M, Noguchi H, Okada K, Aoyagi K, Andoh-Noda T, Okano H, Muotri AR, Nakashima K. MeCP2 controls neural stem cell fate specification through miR-199a-mediated inhibition of BMP-Smad signaling. Cell Rep 2021; 35:109124. [PMID: 34010654 DOI: 10.1016/j.celrep.2021.109124] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/28/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurological disorder, with impaired brain development caused by mutations in MECP2; however, the underlying mechanism remains elusive. We know from previous work that MeCP2 facilitates the processing of a specific microRNA, miR-199a, by associating with the Drosha complex to regulate neuronal functions. Here, we show that the MeCP2/miR-199a axis regulates neural stem/precursor cell (NS/PC) differentiation. A shift occurs from neuronal to astrocytic differentiation of MeCP2- and miR-199a-deficient NS/PCs due to the upregulation of a miR-199a target, Smad1, a downstream transcription factor of bone morphogenetic protein (BMP) signaling. Moreover, miR-199a expression and treatment with BMP inhibitors rectify the differentiation of RTT patient-derived NS/PCs and development of brain organoids, respectively, suggesting that facilitation of BMP signaling accounts for the impaired RTT brain development. Our study illuminates the molecular pathology of RTT and reveals the MeCP2/miR-199a/Smad1 axis as a potential therapeutic target for RTT.
Collapse
Affiliation(s)
- Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Koichiro Irie
- Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Suita, 565-0871 Osaka, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Cleber A Trujillo
- Department of Pediatrics and Cellular and Molecular Medicine/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Masataka Ishizu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Miao Pan
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hirofumi Noguchi
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kanako Okada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Kei Aoyagi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Tomoko Andoh-Noda
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Alysson R Muotri
- Department of Pediatrics and Cellular and Molecular Medicine/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| |
Collapse
|
22
|
Chen W, Foo SS, Hong E, Wu C, Lee WS, Lee SA, Evseenko D, Lopes Moreira ME, García-Sastre A, Cheng G, Nielsen-Saines K, Brasil P, Avvad-Portari E, Jung JU. Zika virus NS3 protease induces bone morphogenetic protein-dependent brain calcification in human fetuses. Nat Microbiol 2021; 6:455-466. [PMID: 33510473 PMCID: PMC8012254 DOI: 10.1038/s41564-020-00850-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
The most frequent fetal birth defect associated with prenatal Zika virus (ZIKV) infection is brain calcification, which in turn may potentially affect neurological development in infants. Understanding the mechanism could inform the development of potential therapies against prenatal ZIKV brain calcification. In perivascular cells, bone morphogenetic protein (BMP) is an osteogenic factor that undergoes maturation to activate osteogenesis and calcification. Here, we show that ZIKV infection of cultivated primary human brain pericytes triggers BMP2 maturation, leading to osteogenic gene expression and calcification. We observed extensive calcification near ZIKV+ pericytes of fetal human brain specimens and in vertically transmitted ZIKV+ human signal transducer and activator of transcription 2-knockin mouse pup brains. ZIKV infection of primary pericytes stimulated BMP2 maturation, inducing osteogenic gene expression and calcification that were completely blocked by anti-BMP2/4 neutralizing antibody. Not only did ZIKV NS3 expression alone induce BMP2 maturation, osteogenic gene expression and calcification, but purified NS3 protease also effectively cleaved pro-BMP2 in vitro to generate biologically active mature BMP2. These findings highlight ZIKV-induced calcification where the NS3 protease subverts the BMP2-mediated osteogenic signalling pathway to trigger brain calcification.
Collapse
Affiliation(s)
- Weiqiang Chen
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Suan-Sin Foo
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eunjin Hong
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Christine Wu
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wai-Suet Lee
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shin-Ae Lee
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Denis Evseenko
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Maria Elisabeth Lopes Moreira
- Clinical Research Unit, Fernandes Figueira Institute-FioCruz, Avenida Rui Barbosa, 716, Flamengo, Rio De Janeiro, RJ CEP 22250-020, Brazil
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA;,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA;,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA;,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Genhong Cheng
- Department of Microbiology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Marion Davies Children’s Health Center, 10833 LeConte Avenue, Los Angeles, CA 90095, USA
| | - Karin Nielsen-Saines
- Division of Pediatric Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, Marion Davies Children’s Health Center, 10833 LeConte Avenue, Los Angeles, CA 90095, USA
| | - Patrícia Brasil
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, FioCruz, 4365 Avenida Brasil, Rio de Janeiro – RJ, 21040-360, Brazil
| | - Elyzabeth Avvad-Portari
- Department of Pathology, Fernandes Figueira Institute-FioCruz, Avenida Rui Barbosa, 716, Flamengo, Rio De Janeiro, RJ CEP 22250-020, Brazil
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;,Correspondence: (Jae U. Jung, PhD)
| |
Collapse
|
23
|
Chakraborty R, Vijay Kumar MJ, Clement JP. Critical aspects of neurodevelopment. Neurobiol Learn Mem 2021; 180:107415. [PMID: 33647449 DOI: 10.1016/j.nlm.2021.107415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Organisms have the unique ability to adapt to their environment by making use of external inputs. In the process, the brain is shaped by experiences that go hand-in-hand with optimisation of neural circuits. As such, there exists a time window for the development of different brain regions, each unique for a particular sensory modality, wherein the propensity of forming strong, irreversible connections are high, referred to as a critical period of development. Over the years, this domain of neurodevelopmental research has garnered considerable attention from many scientists, primarily because of the intensive activity-dependent nature of development. This review discusses the cellular, molecular, and neurophysiological bases of critical periods of different sensory modalities, and the disorders associated in cases the regulators of development are dysfunctional. Eventually, the neurobiological bases of the behavioural abnormalities related to developmental pathologies are discussed. A more in-depth insight into the development of the brain during the critical period of plasticity will eventually aid in developing potential therapeutics for several neurodevelopmental disorders that are categorised under critical period disorders.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India.
| |
Collapse
|
24
|
Abstract
Mouse cortical radial glial cells (RGCs) are primary neural stem cells that give rise to cortical oligodendrocytes, astrocytes, and olfactory bulb (OB) GABAergic interneurons in late embryogenesis. There are fundamental gaps in understanding how these diverse cell subtypes are generated. Here, by combining single-cell RNA-Seq with intersectional lineage analyses, we show that beginning at around E16.5, neocortical RGCs start to generate ASCL1+EGFR+ apical multipotent intermediate progenitors (MIPCs), which then differentiate into basal MIPCs that express ASCL1, EGFR, OLIG2, and MKI67. These basal MIPCs undergo several rounds of divisions to generate most of the cortical oligodendrocytes and astrocytes and a subpopulation of OB interneurons. Finally, single-cell ATAC-Seq supported our model for the genetic logic underlying the specification and differentiation of cortical glial cells and OB interneurons. Taken together, this work reveals the process of cortical radial glial cell lineage progression and the developmental origins of cortical astrocytes and oligodendrocytes.
Collapse
|
25
|
Cardiopulmonary and Neurologic Dysfunctions in Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9020155. [PMID: 33562570 PMCID: PMC7915901 DOI: 10.3390/biomedicines9020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is an ultra-rare but debilitating disorder characterized by spontaneous, progressive, and irreversible heterotopic ossifications (HO) at extraskeletal sites. FOP is caused by gain-of-function mutations in the Activin receptor Ia/Activin-like kinase 2 gene (Acvr1/Alk2), with increased receptor sensitivity to bone morphogenetic proteins (BMPs) and a neoceptor response to Activin A. There is extensive literature on the skeletal phenotypes in FOP, but a much more limited understanding of non-skeletal manifestations of this disease. Emerging evidence reveals important cardiopulmonary and neurologic dysfunctions in FOP including thoracic insufficiency syndrome, pulmonary hypertension, conduction abnormalities, neuropathic pain, and demyelination of the central nervous system (CNS). Here, we review the recent research and discuss unanswered questions regarding the cardiopulmonary and neurologic phenotypes in FOP.
Collapse
|
26
|
Tan CX, Burrus Lane CJ, Eroglu C. Role of astrocytes in synapse formation and maturation. Curr Top Dev Biol 2021; 142:371-407. [PMID: 33706922 DOI: 10.1016/bs.ctdb.2020.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astrocytes are the most abundant glial cells in the mammalian brain and directly participate in the proper functioning of the nervous system by regulating ion homeostasis, controlling glutamate reuptake, and maintaining the blood-brain barrier. In the last two decades, a growing body of work also identified critical roles for astrocytes in regulating synaptic connectivity. Stemming from the observation that functional and morphological development of astrocytes occur concurrently with synapse formation and maturation, these studies revealed that both developmental processes are directly linked. In fact, astrocytes both physically contact numerous synaptic structures and actively instruct many aspects of synaptic development and function via a plethora of secreted and adhesion-based molecular signals. The complex astrocyte-to-neuron signaling modalities control different stages of synaptic development such as regulating the initial formation of structural synapses as well as their functional maturation. Furthermore, the synapse-modulating functions of astrocytes are evolutionarily conserved and contribute to the development and plasticity of diverse classes of synapses and circuits throughout the central nervous system. Importantly, because impaired synapse formation and function is a hallmark of many neurodevelopmental disorders, deficits in astrocytes are likely to be major contributors to disease pathogenesis. In this chapter, we review our current understanding of the cellular and molecular mechanisms by which astrocytes contribute to synapse development and discuss the bidirectional secretion-based and contact-mediated mechanisms responsible for these essential developmental processes.
Collapse
Affiliation(s)
- Christabel X Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Caley J Burrus Lane
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States; Duke Institute for Brain Sciences, Durham, NC, United States; Regeneration Next Initiative, Duke University, Durham, NC, United States.
| |
Collapse
|
27
|
Lopes A, Magrinelli E, Telley L. Emerging Roles of Single-Cell Multi-Omics in Studying Developmental Temporal Patterning. Int J Mol Sci 2020; 21:E7491. [PMID: 33050604 PMCID: PMC7589732 DOI: 10.3390/ijms21207491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
The complexity of brain structure and function is rooted in the precise spatial and temporal regulation of selective developmental events. During neurogenesis, both vertebrates and invertebrates generate a wide variety of specialized cell types through the expansion and specification of a restricted set of neuronal progenitors. Temporal patterning of neural progenitors rests on fine regulation between cell-intrinsic and cell-extrinsic mechanisms. The rapid emergence of high-throughput single-cell technologies combined with elaborate computational analysis has started to provide us with unprecedented biological insights related to temporal patterning in the developing central nervous system (CNS). Here, we present an overview of recent advances in Drosophila and vertebrates, focusing both on cell-intrinsic mechanisms and environmental influences. We then describe the various multi-omics approaches that have strongly contributed to our current understanding and discuss perspectives on the various -omics approaches that hold great potential for the future of temporal patterning research.
Collapse
Affiliation(s)
| | | | - Ludovic Telley
- Department of Basic Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland; (A.L.); (E.M.)
| |
Collapse
|
28
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|
29
|
Cytokines Induce Monkey Neural Stem Cell Differentiation through Notch Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1308526. [PMID: 32509845 PMCID: PMC7244951 DOI: 10.1155/2020/1308526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/01/2020] [Accepted: 01/23/2020] [Indexed: 11/24/2022]
Abstract
The mammalian central nervous system (CNS) has a limited ability to renew the damaged cells after a brain or spinal cord injury whether it is nonhuman primates like monkeys or humans. Transplantation of neural stem cells (NSCs) is a potential therapy for CNS injuries due to their pluripotency and differentiation abilities. Cytokines play an important role in CNS development and repair of CNS injuries. However, the detailed cytokine signaling response in monkey neural stem cells is rarely studied. In our previous research, we isolated NSCs from the adult monkey brain and found the effects of cytokines on monkey NSCs. Now, we further analyzed the regulation mechanisms of cytokines to the proliferation of monkey NSCs such as bone morphogenic protein 4 (BMP4), BMP4/leukaemia inhibitory factor (LIF), or retinoic acid (RA)/Forskolin. The data showed that BMP4 inhibited cell proliferation to arrest, but it did not affect the stemness of NSCs. BMP4/LIF promoted the astrocyte-like differentiation of monkey NSCs, and RA/forskolin induced the neuronal differentiation of monkey NSCs. BMP4/LIF and RA/forskolin induced monkey NSC differentiation by regulating Notch signaling. These results provide some theoretical evidence for NSC therapy to brain or spinal cord injury in regenerative medicine.
Collapse
|
30
|
Liang Q, Su L, Zhang D, Jiao J. CD93 negatively regulates astrogenesis in response to MMRN2 through the transcriptional repressor ZFP503 in the developing brain. Proc Natl Acad Sci U S A 2020; 117:9413-9422. [PMID: 32291340 PMCID: PMC7196765 DOI: 10.1073/pnas.1922713117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Astrogenesis is repressed in the early embryonic period and occurs in the late embryonic period. A variety of external and internal signals contribute to the sequential differentiation of neural stem cells. Here, we discovered that immune-related CD93 plays a critical negative role in the regulation of astrogenesis in the mouse cerebral cortex. We show that CD93 expression is detected in neural stem cells and neurons but not in astrocytes and declines as differentiation proceeds. Cd93 knockout increases astrogenesis at the expense of neuron production during the late embryonic period. CD93 responds to the extracellular matrix protein Multimerin 2 (MMRN2) to trigger the repression of astrogenesis. Mechanistically, CD93 delivers signals to β-Catenin through a series of phosphorylation cascades, and then β-Catenin transduces these signals to the nucleus to activate Zfp503 transcription. The transcriptional repressor ZFP503 inhibits the transcription of glial fibrillary acidic protein (Gfap) by binding to the Gfap promoter with the assistance of Grg5. Furthermore, Cd93 knockout mice exhibit autism-like behaviors. Taken together, our results reveal that CD93 is a negative regulator of the onset of astrogenesis and provide insight into therapy for psychiatric disorders.
Collapse
Affiliation(s)
- Qingli Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Dongming Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China;
- Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
- Innovation Academy for Stem Cell and Regeneration, 100101 Beijing, China
| |
Collapse
|
31
|
Tan F, Al-Rubeai M. Customizable Implant-specific and Tissue-Specific Extracellular Matrix Protein Coatings Fabricated Using Atmospheric Plasma. Front Bioeng Biotechnol 2019; 7:247. [PMID: 31637236 PMCID: PMC6787931 DOI: 10.3389/fbioe.2019.00247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Progression in implant science has benefited from ample amount of technological contributions from various disciplines, including surface biotechnology. In this work, we successfully used atmospheric plasma to enhance the biological functions of surgical implants by coating them with extracellular matrix proteins. The developed collagen and laminin coatings demonstrate advantageous material properties. Chemical analysis by XPS and morphological investigation by SEM both suggested a robust coating. Contact angle goniometry and dissolution study in simulated body fluid (SBF) elicited increased hydrophilicity and physiological durability. Furthermore, these coatings exhibited improved biological interactions with human mesenchymal and neural stem cells (NSCs). Cell adhesion, proliferation, and differentiation proved markedly refined as shown by enzymatic detachment, flow cytometry, and ELISA data, respectively. Most importantly, using the pathway-specific PCR array, our study discovered dozens of deregulated genes during osteogenesis and neurogenesis on our newly fabricated ECM coatings. The coating-induced change in molecular profile serves as a promising clue for designing future implant-based therapy. Collectively, we present atmospheric plasma as a versatile tool for enhancing surgical implants, through customizable implant-specific and tissue-specific coatings.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otolaryngology - Head & Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin—National University of Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
| | | |
Collapse
|
32
|
Sengupta D, Kar S. Deciphering the Dynamical Origin of Mixed Population during Neural Stem Cell Development. Biophys J 2019; 114:992-1004. [PMID: 29490258 DOI: 10.1016/j.bpj.2017.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Accepted: 12/27/2017] [Indexed: 02/04/2023] Open
Abstract
Neural stem cells (NSCs) often give rise to a mixed population of cells during differentiation. However, the dynamical origin of these mixed states is poorly understood. In this article, our mathematical modeling study demonstrates that the bone morphogenetic protein 2 (BMP2) mediated disparate differentiation dynamics of NSCs in central and peripheral nervous systems essentially function through two distinct bistable switches that are mutually interconnected via a mushroom-like bifurcation. Stochastic simulations of the model reveal that the mixed population originates due to the existence of these bistable switching regulations and that the maintenance of such mixed states depends on the level of stochastic fluctuations of the system. It further demonstrates that due to extrinsic variability, cells in an NSC population can dynamically transit from mushroom to a unique isola kind of bifurcation state, which essentially extends the range of the BMP2-driven mixed population state during differentiation. Importantly, the model predicts that by individually altering the expression level of key regulatory proteins, the NSCs can be converted entirely to a preferred phenotype for BMP2 doses that previously resulted in a mixed population. Our findings show that efficient neuronal regeneration can be achieved by systematically maneuvering the differentiation dynamics.
Collapse
Affiliation(s)
- Dola Sengupta
- Department of Chemistry, IIT Bombay, Powai, Mumbai, India
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, Mumbai, India.
| |
Collapse
|
33
|
Song P, Xia X, Han T, Fang H, Wang Y, Dong F, Zhang R, Ge P, Shen C. BMSCs promote the differentiation of NSCs into oligodendrocytes via mediating Id2 and Olig expression through BMP/Smad signaling pathway. Biosci Rep 2018; 38:BSR20180303. [PMID: 30143582 PMCID: PMC6147919 DOI: 10.1042/bsr20180303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells (NSCs) have emerged as a promising treatment for spinal cord injuries. However, the increasing expression of bone morphogenetic proteins (BMPs) in spinal cord injury lesion sites seems to have contributed to the limited oligodendroglial differentiation and the majority of the astroglial differentiation of NSCs. In the present study, we demonstrate that BMPs promote NSCs differentiation toward astrocytes and prevent them from differentiating into oligodendrocytes. This effect is accompanied by the increasing expression of Id2 and the reduction in Oilg1/2 expression. Treatment with bone marrow stromal cells (BMSCs) can enhance the development of oligodendrocytes in the presence of BMPs. The analysis of Id2, as well as Olig1 and Olig2 gene expression, reveals that the effect of BMPs on these gene expressions is reversed with the addition of BMSCs. In sum, these data strongly suggest that BMSCs can promote the differentiation of NSCs into oligodendrocytes through mediating Id2 and Olig1/2 expression by blocking the BMP/Smad signaling pathway.
Collapse
Affiliation(s)
- Peiwen Song
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Xiang Xia
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Huang Fang
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Ying Wang
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Fulong Dong
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Renjie Zhang
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Peng Ge
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| |
Collapse
|
34
|
HOPX Defines Heterogeneity of Postnatal Subventricular Zone Neural Stem Cells. Stem Cell Reports 2018; 11:770-783. [PMID: 30174314 PMCID: PMC6135899 DOI: 10.1016/j.stemcr.2018.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/16/2022] Open
Abstract
The largest diversity of neural lineages generated from the subventricular zone (SVZ) occurs early after birth and is regulated in a spatiotemporal manner depending on the expression of specific transcriptional cues. Transcriptomics and fate-mapping approaches were employed to explore the relationship between regional expression of transcription factors by neural stem cells (NSCs) and the specification of distinct neural lineages. Our results support an early priming of NSCs for the genesis of defined cell types depending on their spatial location in the SVZ and identify HOPX as a marker of a subpopulation primed toward astrocytic fates. Manipulation of HOPX expression, however, showed no effect on astrogenesis but resulted in marked changes in the number of NSCs and of their progenies. Taken together, our results highlight transcriptional and spatial heterogeneity of postnatal NSCs and reveal a key role for HOPX in controlling SVZ germinal activity.
Collapse
|
35
|
Lemes SF, de Souza ACP, Payolla TB, Versutti MD, de Fátima da Silva Ramalho A, Mendes-da-Silva C, Souza CM, Milanski M, Torsoni AS, Torsoni MA. Maternal Consumption of High-fat Diet in Mice Alters Hypothalamic Notch Pathway, NPY Cell Population and Food Intake in Offspring. Neuroscience 2018; 371:1-15. [DOI: 10.1016/j.neuroscience.2017.11.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 01/03/2023]
|
36
|
Fang H, Song P, Shen Y, Shen C, Liu X. Bone mesenchymal stem cell-conditioned medium decreases the generation of astrocytes during the process of neural stem cells differentiation. J Spinal Cord Med 2018; 41. [PMID: 28649933 PMCID: PMC5810792 DOI: 10.1080/10790268.2017.1314880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the effect of bone mesenchymal stem cell (BMSC) conditioned medium (CM) and Bone morphogenetic protein-4 (BMP-4) on the generation of astrocytes during the process of NSCs differentiation. DESIGN Neural stem cells (NSCs) were grown under different culture conditions. SETTING The First Affiliated Hospital of Anhui Medical University, Hefei, China. OUTCOME MEASURES The study consisted of four groups: NSCs cultured under control conditions (group 1) or with the addition of BMSC-CM (group 2);(BMP-4) (group 3) or both (group 4).The expression of glial fibrillary acidic protein (GFAP) was detected by immunocytochemical staining and Western blotting. RESULTS The expression of GFAP was higher in Group3 and lower in Group 2 compared to that in Group 1. The expression of GFAP in Group 4 was intermediate between that of Group 2 and Group 3. CONCLUSIONS These results suggest that BMSC-CM can decrease the generation of astrocytes and that the inhibition of the (BMP-4) /Smad1/5/8 signaling pathway may be the underlying mechanism. This phenomenon may be mediated by increasing the expression of Smad6.
Collapse
Affiliation(s)
- Huang Fang
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiwen Song
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuening Shen
- Department of Medical Imaging, Bengbu Medical College, Bengbu, China
| | - Cailiang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Correspondence to: Cailiang Shen, Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 210 Ji Xi Road, Hefei 230032, China.
| | - Xiaoying Liu
- School of Life Science, Anhui Medical University, Heifei, China
| |
Collapse
|
37
|
Kawamura Y, Katada S, Noguchi H, Yamamoto H, Sanosaka T, Iihara K, Nakashima K. Synergistic induction of astrocytic differentiation by factors secreted from meninges in the mouse developing brain. FEBS Lett 2017; 591:3709-3720. [PMID: 29029363 DOI: 10.1002/1873-3468.12881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
Astrocytes, which support diverse neuronal functions, are generated from multipotent neural stem/precursor cells (NS/PCs) during brain development. Although many astrocyte-inducing factors have been identified and studied in vitro, the regions and/or cells that produce these factors in the developing brain remain elusive. Here, we show that meninges-produced factors induce astrocytic differentiation of NS/PCs. Consistent with the timing when astrocytic differentiation of NS/PCs increases, expression of astrocyte-inducing factors is upregulated. Meningeal secretion-mimicking combinatorial treatment of NS/PCs with bone morphogenetic protein 4, retinoic acid and leukemia inhibitory factor synergistically activate the promoter of a typical astrocytic marker, glial fibrillary acidic protein. Taken together, our data suggest that meninges play an important role in astrocytic differentiation of NS/PCs in the developing brain.
Collapse
Affiliation(s)
- Yoichiro Kawamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Noguchi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Yamamoto
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tsukasa Sanosaka
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Lee ML, Martinez-Lozada Z, Krizman EN, Robinson MB. Brain endothelial cells induce astrocytic expression of the glutamate transporter GLT-1 by a Notch-dependent mechanism. J Neurochem 2017; 143:489-506. [PMID: 28771710 DOI: 10.1111/jnc.14135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023]
Abstract
Neuron-secreted factors induce astrocytic expression of the glutamate transporter, GLT-1 (excitatory amino acid transporter 2). In addition to their elaborate anatomic relationships with neurons, astrocytes also have processes that extend to and envelop the vasculature. Although previous studies have demonstrated that brain endothelia contribute to astrocyte differentiation and maturation, the effects of brain endothelia on astrocytic expression of GLT-1 have not been examined. In this study, we tested the hypothesis that endothelia induce expression of GLT-1 by co-culturing astrocytes from mice that utilize non-coding elements of the GLT-1 gene to control expression of reporter proteins with the mouse endothelial cell line, bEND.3. We found that endothelia increased steady state levels of reporter and GLT-1 mRNA/protein. Co-culturing with primary rat brain endothelia also increases reporter protein, GLT-1 protein, and GLT-1-mediated glutamate uptake. The Janus kinase/signal transducer and activator of transcription 3, bone morphogenic protein/transforming growth factor β, and nitric oxide pathways have been implicated in endothelia-to-astrocyte signaling; we provide multiple lines of evidence that none of these pathways mediate the effects of endothelia on astrocytic GLT-1 expression. Using transwells with a semi-permeable membrane, we demonstrate that the effects of the bEND.3 cell line are dependent upon contact. Notch has also been implicated in endothelia-astrocyte signaling in vitro and in vivo. The first step of Notch signaling requires cleavage of Notch intracellular domain by γ-secretase. We demonstrate that the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester blocks endothelia-induced increases in GLT-1. We show that the levels of Notch intracellular domain are higher in nuclei of astrocytes co-cultured with endothelia, an effect also blocked by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. Finally, infection of co-cultures with shRNA directed against recombination signal binding protein for immunoglobulin kappa J, a Notch effector, also reduces endothelia-dependent increases in enhanced green fluorescent protein and GLT-1. Together, these studies support a novel role for Notch in endothelia-dependent induction of GLT-1 expression. Cover Image for this issue: doi. 10.1111/jnc.13825.
Collapse
Affiliation(s)
- Meredith L Lee
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zila Martinez-Lozada
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth N Krizman
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael B Robinson
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Lee ML, Martinez-Lozada Z, Krizman EN, Robinson MB. Brain endothelial cells induce astrocytic expression of the glutamate transporter GLT-1 by a Notch-dependent mechanism. J Neurochem 2017. [PMID: 28771710 DOI: 10.1111/jnc.13825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuron-secreted factors induce astrocytic expression of the glutamate transporter, GLT-1 (excitatory amino acid transporter 2). In addition to their elaborate anatomic relationships with neurons, astrocytes also have processes that extend to and envelop the vasculature. Although previous studies have demonstrated that brain endothelia contribute to astrocyte differentiation and maturation, the effects of brain endothelia on astrocytic expression of GLT-1 have not been examined. In this study, we tested the hypothesis that endothelia induce expression of GLT-1 by co-culturing astrocytes from mice that utilize non-coding elements of the GLT-1 gene to control expression of reporter proteins with the mouse endothelial cell line, bEND.3. We found that endothelia increased steady state levels of reporter and GLT-1 mRNA/protein. Co-culturing with primary rat brain endothelia also increases reporter protein, GLT-1 protein, and GLT-1-mediated glutamate uptake. The Janus kinase/signal transducer and activator of transcription 3, bone morphogenic protein/transforming growth factor β, and nitric oxide pathways have been implicated in endothelia-to-astrocyte signaling; we provide multiple lines of evidence that none of these pathways mediate the effects of endothelia on astrocytic GLT-1 expression. Using transwells with a semi-permeable membrane, we demonstrate that the effects of the bEND.3 cell line are dependent upon contact. Notch has also been implicated in endothelia-astrocyte signaling in vitro and in vivo. The first step of Notch signaling requires cleavage of Notch intracellular domain by γ-secretase. We demonstrate that the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester blocks endothelia-induced increases in GLT-1. We show that the levels of Notch intracellular domain are higher in nuclei of astrocytes co-cultured with endothelia, an effect also blocked by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. Finally, infection of co-cultures with shRNA directed against recombination signal binding protein for immunoglobulin kappa J, a Notch effector, also reduces endothelia-dependent increases in enhanced green fluorescent protein and GLT-1. Together, these studies support a novel role for Notch in endothelia-dependent induction of GLT-1 expression. Cover Image for this issue: doi. 10.1111/jnc.13825.
Collapse
Affiliation(s)
- Meredith L Lee
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zila Martinez-Lozada
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth N Krizman
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael B Robinson
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Gonçalves DPN, Rodriguez RD, Kurth T, Bray LJ, Binner M, Jungnickel C, Gür FN, Poser SW, Schmidt TL, Zahn DRT, Androutsellis-Theotokis A, Schlierf M, Werner C. Enhanced targeting of invasive glioblastoma cells by peptide-functionalized gold nanorods in hydrogel-based 3D cultures. Acta Biomater 2017; 58:12-25. [PMID: 28576716 DOI: 10.1016/j.actbio.2017.05.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) are responsible for drug resistance, tumor recurrence, and metastasis in several cancer types, making their eradication a primary objective in cancer therapy. Glioblastoma Multiforme (GBM) tumors are usually composed of a highly infiltrating CSC subpopulation, which has Nestin as a putative marker. Since the majority of these infiltrating cells are able to elude conventional therapies, we have developed gold nanorods (AuNRs) functionalized with an engineered peptide capable of specific recognition and selective eradication of Nestin positive infiltrating GBM-CSCs. These AuNRs generate heat when irradiated by a near-infrared laser, and cause localized cell damage. Nanoparticle internalization assays performed with GBM-CSCs or Nestin negative cells cultured as two-dimensional (2D) monolayers or embedded in three-dimensional (3D) biodegradable-hydrogels of tunable mechanical properties, revealed that the AuNRs were mainly internalized by GBM-CSCs, and not by Nestin negative cells. The AuNRs were taken up via energy-dependent and caveolae-mediated endocytic mechanisms, and were localized inside endosomes. Photothermal treatments resulted in the selective elimination of GBM-CSCs through cell apoptosis, while Nestin negative cells remained viable. Results also indicated that GBM-CSCs embedded in hydrogels were more resistant to AuNR photothermal treatments than when cultured as 2D monolayers. In summary, the combination of our engineered AuNRs with our tunable hydrogel system has shown the potential to provide an in vitro platform for the evaluation and screening of AuNR-based cancer therapeutics, leading to a substantial advancement in the application of AuNRs for targeted GBM-CSC therapy. STATEMENT OF SIGNIFICANCE There is an urgent need for reliable and efficient therapies for the treatment of Glioblastoma Multiforme (GBM), which is currently an untreatable brain tumor form with a very poor patient survival rate. GBM tumors are mostly comprised of cancer stem cells (CSCs), which are responsible for tumor reoccurrence and therapy resistance. We have developed gold nanorods functionalized with an engineered peptide capable of selective recognition and eradication of GBM-CSCs via heat generation by nanorods upon NIR irradiation. An in vitro evaluation of nanorod therapeutic activities was performed in 3D synthetic-biodegradable hydrogel models with distinct biomechanical cues, and compared to 2D cultures. Results indicated that cells cultured in 3D were more resistant to photothermolysis than in 2D systems.
Collapse
Affiliation(s)
- Diana P N Gonçalves
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Raul D Rodriguez
- Institute of Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Thomas Kurth
- Electron Microscopy Facility, DFG-Center of Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Laura J Bray
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany; Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Marcus Binner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Christiane Jungnickel
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany; B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Fatih N Gür
- Cluster of Excellence Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Steve W Poser
- University Clinic Carl-Gustav Carus, Technische Universität Dresden, 01062 Dresden, Germany
| | - Thorsten L Schmidt
- Cluster of Excellence Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Dietrich R T Zahn
- Institute of Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | | | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| |
Collapse
|
41
|
Todd L, Palazzo I, Squires N, Mendonca N, Fischer AJ. BMP- and TGFβ-signaling regulate the formation of Müller glia-derived progenitor cells in the avian retina. Glia 2017; 65:1640-1655. [PMID: 28703293 DOI: 10.1002/glia.23185] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/24/2017] [Accepted: 06/13/2017] [Indexed: 01/20/2023]
Abstract
Müller glia-derived progenitor cells (MGPCs) have the capability to regenerate neurons in the retinas of different vertebrate orders. The formation of MGPCs is regulated by a network of cell-signaling pathways. The purpose of this study was to investigate how BMP/Smad1/5/8- and TGFβ/Smad2/3-signaling are coordinated to influence the formation of MGPCs in the chick model system. We find that pSmad1/5/8 is selectively up-regulated in the nuclei of Müller glia following treatment with BMP4, FGF2, or NMDA-induced damage, and this up-regulation is blocked by a dorsomorphin analogue DMH1. By comparison, Smad2/3 is found in the nuclei of Müller glia in untreated retinas, and becomes localized to the cytoplasm following NMDA- or FGF2-treatment. These findings suggest a decrease in TGFβ- and increase in BMP-signaling when MGPCs are known to form. In both NMDA-damaged and FGF2-treated retinas, inhibition of BMP-signaling suppressed the proliferation of MGPCs, whereas inhibition of TGFβ-signaling stimulated the proliferation of MGPCs. Consistent with these findings, TGFβ2 suppressed the formation of MGPCs in NMDA-damaged retinas. Our findings indicate that BMP/TGFβ/Smad-signaling is recruited into the network of signaling pathways that controls the formation of proliferating MGPCs. We conclude that signaling through BMP4/Smad1/5/8 promotes the formation of MGPCs, whereas signaling through TGFβ/Smad2/3 suppresses the formation of MGPCs.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Natalie Squires
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Ninoshka Mendonca
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| |
Collapse
|
42
|
Kasubuchi M, Watanabe K, Hirano K, Inoue D, Li X, Terasawa K, Konishi M, Itoh N, Kimura I. Membrane progesterone receptor beta (mPRβ/Paqr8) promotes progesterone-dependent neurite outgrowth in PC12 neuronal cells via non-G protein-coupled receptor (GPCR) signaling. Sci Rep 2017; 7:5168. [PMID: 28701790 PMCID: PMC5507890 DOI: 10.1038/s41598-017-05423-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/30/2017] [Indexed: 11/16/2022] Open
Abstract
Recently, sex steroid membrane receptors garnered world-wide attention because they may be related to sex hormone-mediated unknown rapid non-genomic action that cannot be currently explained by their genomic action via nuclear receptors. Progesterone affects cell proliferation and survival via non-genomic effects. In this process, membrane progesterone receptors (mPRα, mPRβ, mPRγ, mPRδ, and mPRε) were identified as putative G protein-coupled receptors (GPCRs) for progesterone. However, the structure, intracellular signaling, and physiological functions of these progesterone receptors are still unclear. Here, we identify a molecular mechanism by which progesterone promotes neurite outgrowth through mPRβ (Paqr8) activation. Mouse mPRβ mRNA was specifically expressed in the central nervous system. It has an incomplete GPCR topology, presenting 6 transmembrane domains and did not exhibit typical GPCR signaling. Progesterone-dependent neurite outgrowth was exhibited by the promotion of ERK phosphorylation via mPRβ, but not via other progesterone receptors such as progesterone membrane receptor 1 (PGRMC-1) and nuclear progesterone receptor in nerve growth factor-induced neuronal PC12 cells. These findings provide new insights of regarding the non-genomic action of progesterone in the central nervous system.
Collapse
Affiliation(s)
- Mayu Kasubuchi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Keita Watanabe
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kanako Hirano
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, 606-8501, Japan
| | - Daisuke Inoue
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, 606-8501, Japan
| | - Xuan Li
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kazuya Terasawa
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8501, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Higashinada, Kobe, 658-8558, Japan
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, 606-8501, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
43
|
A synthetic BMP-2 mimicking peptide induces glioblastoma stem cell differentiation. Biochim Biophys Acta Gen Subj 2017; 1861:2282-2292. [PMID: 28687190 DOI: 10.1016/j.bbagen.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/09/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive type of primary brain tumor, characterized by the intrinsic resistance to chemotherapy due to the presence of a highly aggressive Cancer Stem Cell (CSC) sub-population. In this context, Bone Morphogenetic Proteins (BMPs) have been demonstrated to induce CSC differentiation and to sensitize GBM cells to treatments. METHODS The BMP-2 mimicking peptide, named GBMP1a, was synthesized on solid-phase by Fmoc chemistry. Structural characterization and prediction of receptor binding were obtained by Circular Dicroism (CD) and NRM analyses. Activation of BMP signalling was evaluated by a luciferase reporter assay and western blot. Pro-differentiating effects of GBMP1a were verified by immunostaining and neurosphere assay in primary glioblastoma cultures. RESULTS CD and NMR showed that GBMP1a correctly folds into expected tridimensional structures and predicted its binding to BMPR-IA to the same epitope as in the native complex. Reporter analysis disclosed that GBMP1a is able to activate BMP signalling in GBM cells. Moreover, BMP-signalling activation was specifically dependent on smad1/5/8 phosphorylation. Finally, we confirmed that GBMP1a treatment is sufficient to enhance osteogenic differentiation of Mesenchymal Stem Cells and to induce astroglial differentiation of glioma stem cells (GSCs) in vitro. CONCLUSIONS GBMP1a was demonstrated to be a good inducer of GSC differentiation, thus being considered a potential anti-cancer tool to be further developed for GBM treatment. GENERAL SIGNIFICANCE These data highlight the role of BMP-mimicking peptides as potential anti-cancer agents against GBM and stimulate the further development of GBMP1a-based structures in order to enhance its stability and activity.
Collapse
|
44
|
The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proc Natl Acad Sci U S A 2017; 114:E5599-E5607. [PMID: 28655839 DOI: 10.1073/pnas.1705186114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms that determine whether a neural progenitor cell (NPC) reenters the cell cycle or exits and differentiates are pivotal for generating cells in the correct numbers and diverse types, and thus dictate proper brain development. Combining gain-of-function and loss-of-function approaches in an embryonic stem cell-derived cortical differentiation model, we report that doublesex- and mab-3-related transcription factor a2 (Dmrta2, also known as Dmrt5) plays an important role in maintaining NPCs in the cell cycle. Temporally controlled expression of transgenic Dmrta2 in NPCs suppresses differentiation without affecting their neurogenic competence. In contrast, Dmrta2 knockout accelerates the cell cycle exit and differentiation into postmitotic neurons of NPCs derived from embryonic stem cells and in Emx1-cre conditional mutant mice. Dmrta2 function is linked to the regulation of Hes1 and other proneural genes, as demonstrated by genome-wide RNA-seq and direct binding of Dmrta2 to the Hes1 genomic locus. Moreover, transient Hes1 expression rescues precocious neurogenesis in Dmrta2 knockout NPCs. Our study thus establishes a link between Dmrta2 modulation of Hes1 expression and the maintenance of NPCs during cortical development.
Collapse
|
45
|
Boda E, Nato G, Buffo A. Emerging pharmacological approaches to promote neurogenesis from endogenous glial cells. Biochem Pharmacol 2017. [PMID: 28647491 DOI: 10.1016/j.bcp.2017.06.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders are emerging as leading contributors to the global disease burden. While some drug-based approaches have been designed to limit or prevent neuronal loss following acute damage or chronic neurodegeneration, regeneration of functional neurons in the adult Central Nervous System (CNS) still remains an unmet need. In this context, the exploitation of endogenous cell sources has recently gained an unprecedented attention, thanks to the demonstration that, in some CNS regions or under specific circumstances, glial cells can activate spontaneous neurogenesis or can be instructed to produce neurons in the adult mammalian CNS parenchyma. This field of research has greatly advanced in the last years and identified interesting molecular and cellular mechanisms guiding the neurogenic activation/conversion of glia. In this review, we summarize the evolution of the research devoted to understand how resident glia can be directed to produce neurons. We paid particular attention to pharmacologically-relevant approaches exploiting the modulation of niche-associated factors and the application of selected small molecules.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy.
| | - Giulia Nato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| |
Collapse
|
46
|
Liu PP, Tang GB, Xu YJ, Zeng YQ, Zhang SF, Du HZ, Teng ZQ, Liu CM. MiR-203 Interplays with Polycomb Repressive Complexes to Regulate the Proliferation of Neural Stem/Progenitor Cells. Stem Cell Reports 2017; 9:190-202. [PMID: 28602614 PMCID: PMC5511050 DOI: 10.1016/j.stemcr.2017.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
The polycomb repressive complexes 1 (PRC1) and 2 (PRC2) are two distinct polycomb group (PcG) proteins that maintain the stable silencing of specific sets of genes through chromatin modifications. Although the PRC2 component EZH2 has been known as an epigenetic regulator in promoting the proliferation of neural stem/progenitor cells (NSPCs), the regulatory network that controls this process remains largely unknown. Here we show that miR-203 is repressed by EZH2 in both embryonic and adult NSPCs. MiR-203 negatively regulates the proliferation of NSPCs. One of PRC1 components, Bmi1, is a downstream target of miR-203 in NSPCs. Conditional knockout of Ezh2 results in decreased proliferation ability of both embryonic and adult NSPCs. Meanwhile, ectopic overexpression of BMI1 rescues the proliferation defects exhibited by miR-203 overexpression or EZH2 deficiency in NSPCs. Therefore, this study provides evidence for coordinated function of the EZH2-miR-203-BMI1 regulatory axis that regulates the proliferation of NSPCs. MiR-203 is repressed by EZH2 in NSPCs MiR-203 negatively regulates the proliferation of NSPCs Bmi1 is a downstream target of miR-203 in NSPCs MiR-203 is a mediator between PRC2 and PRC1 that modulates the proliferation of NSPCs
Collapse
Affiliation(s)
- Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang-Bin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Qiang Zeng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Feng Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Augustin H, McGourty K, Steinert JR, Cochemé HM, Adcott J, Cabecinha M, Vincent A, Halff EF, Kittler JT, Boucrot E, Partridge L. Myostatin-like proteins regulate synaptic function and neuronal morphology. Development 2017; 144:2445-2455. [PMID: 28533206 PMCID: PMC5536874 DOI: 10.1242/dev.152975] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022]
Abstract
Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. Summary: Myostatin-like proteins can modulate neuromuscular synapse strength as well as synaptogenesis beyond neuromuscular junctions, highlighting a key role for these proteins in synapse function and neuronal growth.
Collapse
Affiliation(s)
- Hrvoje Augustin
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.,Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne D-50931, Germany
| | - Kieran McGourty
- Institute of Structural and Molecular Biology, University College London, Darwin Building Gower Street, London WC1E 6BT, UK
| | - Joern R Steinert
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Helena M Cochemé
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.,Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne D-50931, Germany.,MRC Clinical Sciences Centre, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, ICTEM Building, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Jennifer Adcott
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.,Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne D-50931, Germany
| | - Melissa Cabecinha
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Alec Vincent
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Els F Halff
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, Darwin Building Gower Street, London WC1E 6BT, UK
| | - Linda Partridge
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK .,Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne D-50931, Germany
| |
Collapse
|
48
|
Brorin is required for neurogenesis, gliogenesis, and commissural axon guidance in the zebrafish forebrain. PLoS One 2017; 12:e0176036. [PMID: 28448525 PMCID: PMC5407822 DOI: 10.1371/journal.pone.0176036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/04/2017] [Indexed: 12/28/2022] Open
Abstract
Bmps regulate numerous neural functions with their regulators. We previously identified Brorin, a neural-specific secreted antagonist of Bmp signaling, in humans, mice, and zebrafish. Mouse Brorin has two cysteine-rich domains containing 10 cysteine residues in its core region, and these are located in similar positions to those in the cysteine-rich domains of Chordin family members, which are secreted Bmp antagonists. Zebrafish Brorin had two cysteine-rich domains with high similarity to those of mouse Brorin. We herein examined zebrafish brorin in order to elucidate its in vivo actions. Zebrafish brorin was predominantly expressed in developing neural tissues. The overexpression of brorin led to the inactivation of Bmp signaling. On the other hand, the knockdown of brorin resulted in the activation of Bmp signaling and brorin morphants exhibited defective development of the ventral domain in the forebrain. Furthermore, the knockdown of brorin inhibited the generation of γ–aminobutyric acid (GABA)ergic interneurons and oligodendrocytes and promoted the generation of astrocytes in the forebrain. In addition, brorin was required for axon guidance in the forebrain. The present results suggest that Brorin is a secreted Bmp antagonist predominantly expressed in developing neural tissues and that it plays multiple roles in the development of the zebrafish forebrain.
Collapse
|
49
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
50
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|