1
|
Qiu X, Huang W, Yue W, Li D, Zhi J. Response of the serine/threonine kinase AKT and phosphoinositide-dependent kinase PDK in Frankliniella occidentalis (Thysanoptera: Thripidae) to three kinds of foods and their regulation of reproductive function. INSECT MOLECULAR BIOLOGY 2024; 33:372-386. [PMID: 38450915 DOI: 10.1111/imb.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Frankliniella occidentalis (Pergande) is a typical omnivorous insect that feeds on host plants, pollens and mite eggs, and poses a threat to crops worldwide. The insulin signalling pathway (ISP) is a typical nutrient-sensitive pathway that participates in the regulation of various functions in insects. Serine/threonine kinases (AKTs) and phosphoinositide-dependent kinases (PDKs) are key components of the ISP. In this study, the FoAKT and FoPDK genes in F. occidentalis were cloned, and the effects of three foods on their expression were determined. The expression of FoAKT and FoPDK in the thrips fed on kidney bean leaves supplemented with pine pollen or mite eggs was higher than in those primarily fed on leaves alone. Meanwhile, the fecundity of thrips fed on leaves supplemented with pine pollen was highest. In addition, RNA interference-mediated knockdown of FoAKT and FoPDK decreased vitellogenin (Vg) content and Vg expression in females, shortened ovariole length, delayed egg development and reduced fecundity and offspring hatching rates. Furthermore, the synthesis of juvenile hormone (JH) was reduced, and the contents of glucose, trehalose, glycogen and trehalase were affected. These results suggest that FoAKT and FoPDK regulate the reproduction of F. occidentalis by regulating Vg and JH production as well as carbohydrate metabolism.
Collapse
Affiliation(s)
- Xinyue Qiu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Wanqing Huang
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Tobacco Company, Tongren Branch, Tongren, China
| | - Wenbo Yue
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Dingyin Li
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Junrui Zhi
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Deichsel S, Gahr BM, Mastel H, Preiss A, Nagel AC. Numerous Serine/Threonine Kinases Affect Blood Cell Homeostasis in Drosophila melanogaster. Cells 2024; 13:576. [PMID: 38607015 PMCID: PMC11011202 DOI: 10.3390/cells13070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Blood cells in Drosophila serve primarily innate immune responses. Various stressors influence blood cell homeostasis regarding both numbers and the proportion of blood cell types. The principle molecular mechanisms governing hematopoiesis are conserved amongst species and involve major signaling pathways like Notch, Toll, JNK, JAK/Stat or RTK. Albeit signaling pathways generally rely on the activity of protein kinases, their specific contribution to hematopoiesis remains understudied. Here, we assess the role of Serine/Threonine kinases with the potential to phosphorylate the transcription factor Su(H) in crystal cell homeostasis. Su(H) is central to Notch signal transduction, and its inhibition by phosphorylation impedes crystal cell formation. Overall, nearly twenty percent of all Drosophila Serine/Threonine kinases were studied in two assays, global and hemocyte-specific overexpression and downregulation, respectively. Unexpectedly, the majority of kinases influenced crystal cell numbers, albeit only a few were related to hematopoiesis so far. Four kinases appeared essential for crystal cell formation, whereas most kinases restrained crystal cell development. This group comprises all kinase classes, indicative of the complex regulatory network underlying blood cell homeostasis. The rather indiscriminative response we observed opens the possibility that blood cells measure their overall phospho-status as a proxy for stress-signals, and activate an adaptive immune response accordingly.
Collapse
Affiliation(s)
- Sebastian Deichsel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Bernd M. Gahr
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Helena Mastel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anette Preiss
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anja C. Nagel
- Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
3
|
Haroon, Li YX, Ye CX, Su J, Nabi G, Su XH, Xing LX. De Novo Transcriptome Assembly and Analysis of Longevity Genes Using Subterranean Termite ( Reticulitermes chinensis) Castes. Int J Mol Sci 2022; 23:13660. [PMID: 36362447 PMCID: PMC9657995 DOI: 10.3390/ijms232113660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The longevity phenomenon is entirely controlled by the insulin signaling pathway (IIS-pathway). Both vertebrates and invertebrates have IIS-pathways that are comparable to one another, though no one has previously described de novo transcriptome assembly of IIS-pathway-associated genes in termites. In this research, we analyzed the transcriptomes of both reproductive (primary kings “PK” and queens “PQ”, secondary worker reproductive kings “SWRK” and queens “SWRQ”) and non-reproductive (male “WM” and female “WF” workers) castes of the subterranean termite Reticulitermes chinensis. The goal was to identify the genes responsible for longevity in the reproductive and non-reproductive castes. Through transcriptome analysis, we annotated 103,589,264 sequence reads and 184,436 (7G) unigenes were assembled, GC performance was measured at 43.02%, and 64,046 sequences were reported as CDs sequences. Of which 35 IIS-pathway-associated genes were identified, among 35 genes, we focused on the phosphoinositide-dependent kinase-1 (Pdk1), protein kinase B2 (akt2-a), tuberous sclerosis-2 (Tsc2), mammalian target of rapamycin (mTOR), eukaryotic translation initiation factor 4E (EIF4E) and ribosomal protein S6 (RPS6) genes. Previously these genes (Pdk1, akt2-a, mTOR, EIF4E, and RPS6) were investigated in various organisms, that regulate physiological effects, growth factors, protein translation, cell survival, proliferation, protein synthesis, cell metabolism and survival, autophagy, fecundity rate, egg size, and follicle number, although the critical reason for longevity is still unclear in the termite castes. However, based on transcriptome profiling, the IIS-pathway-associated genes could prolong the reproductive caste lifespan and health span. Therefore, the transcriptomic shreds of evidence related to IIS-pathway genes provide new insights into the maintenance and relationships between biomolecular homeostasis and remarkable longevity. Finally, we propose a strategy for future research to decrypt the hidden costs associated with termite aging in reproductive and non-reproductive castes.
Collapse
Affiliation(s)
- Haroon
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Yu-Xin Li
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Chen-Xu Ye
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Jian Su
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, 31120 Krakow, Poland
| | - Xiao-Hong Su
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Lian-Xi Xing
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| |
Collapse
|
4
|
Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Int J Mol Sci 2022; 23:11244. [PMID: 36232546 PMCID: PMC9569508 DOI: 10.3390/ijms231911244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Alexey V. Pindyurin
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Lebo DPV, Chirn A, Taylor JD, Levan A, Doerre Torres V, Agreda E, Serizier SB, Lord AK, Jenkins VK, McCall K. An RNAi screen of the kinome in epithelial follicle cells of the Drosophila melanogaster ovary reveals genes required for proper germline death and clearance. G3-GENES GENOMES GENETICS 2021; 11:6080751. [PMID: 33693600 PMCID: PMC8022946 DOI: 10.1093/g3journal/jkaa066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Programmed cell death and cell corpse clearance are an essential part of organismal health and development. Cell corpses are often cleared away by professional phagocytes such as macrophages. However, in certain tissues, neighboring cells known as nonprofessional phagocytes can also carry out clearance functions. Here, we use the Drosophila melanogaster ovary to identify novel genes required for clearance by nonprofessional phagocytes. In the Drosophila ovary, germline cells can die at multiple time points. As death proceeds, the epithelial follicle cells act as phagocytes to facilitate the clearance of these cells. We performed an unbiased kinase screen to identify novel proteins and pathways involved in cell clearance during two death events. Of 224 genes examined, 18 demonstrated severe phenotypes during developmental death and clearance while 12 demonstrated severe phenotypes during starvation-induced cell death and clearance, representing a number of pathways not previously implicated in phagocytosis. Interestingly, it was found that several genes not only affected the clearance process in the phagocytes, but also non-autonomously affected the process by which germline cells died. This kinase screen has revealed new avenues for further exploration and investigation.
Collapse
Affiliation(s)
- Diane P V Lebo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Alice Chirn
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jeffrey D Taylor
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Andre Levan
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | - Emily Agreda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sandy B Serizier
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Allison K Lord
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
6
|
Formica M, Storaci AM, Bertolini I, Carminati F, Knævelsrud H, Vaira V, Vaccari T. V-ATPase controls tumor growth and autophagy in a Drosophila model of gliomagenesis. Autophagy 2021; 17:4442-4452. [PMID: 33978540 PMCID: PMC8726678 DOI: 10.1080/15548627.2021.1918915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma (GBM), a very aggressive and incurable tumor, often results from constitutive activation of EGFR (epidermal growth factor receptor) and of phosphoinositide 3-kinase (PI3K). To understand the role of autophagy in the pathogenesis of glial tumors in vivo, we used an established Drosophila melanogaster model of glioma based on overexpression in larval glial cells of an active human EGFR and of the PI3K homolog Pi3K92E/Dp110. Interestingly, the resulting hyperplastic glia express high levels of key components of the lysosomal-autophagic compartment, including vacuolar-type H+-ATPase (V-ATPase) subunits and ref(2)P (refractory to Sigma P), the Drosophila homolog of SQSTM1/p62. However, cellular clearance of autophagic cargoes appears inhibited upstream of autophagosome formation. Remarkably, downregulation of subunits of V-ATPase, of Pdk1, or of the Tor (Target of rapamycin) complex 1 (TORC1) component raptor prevents overgrowth and normalize ref(2)P levels. In addition, downregulation of the V-ATPase subunit VhaPPA1-1 reduces Akt and Tor-dependent signaling and restores clearance. Consistent with evidence in flies, neurospheres from patients with high V-ATPase subunit expression show inhibition of autophagy. Altogether, our data suggest that autophagy is repressed during glial tumorigenesis and that V-ATPase and MTORC1 components acting at lysosomes could represent therapeutic targets against GBM.
Collapse
Affiliation(s)
- Miriam Formica
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - Alessandra Maria Storaci
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - Irene Bertolini
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | | | - Helene Knævelsrud
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - Thomas Vaccari
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
7
|
Millington JW, Brownrigg GP, Basner-Collins PJ, Sun Z, Rideout EJ. Genetic manipulation of insulin/insulin-like growth factor signaling pathway activity has sex-biased effects on Drosophila body size. G3 (BETHESDA, MD.) 2021; 11:jkaa067. [PMID: 33793746 PMCID: PMC8063079 DOI: 10.1093/g3journal/jkaa067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
In Drosophila raised in nutrient-rich conditions, female body size is approximately 30% larger than male body size due to an increased rate of growth and differential weight loss during the larval period. While the mechanisms that control this sex difference in body size remain incompletely understood, recent studies suggest that the insulin/insulin-like growth factor signaling pathway (IIS) plays a role in the sex-specific regulation of processes that influence body size during development. In larvae, IIS activity differs between the sexes, and there is evidence of sex-specific regulation of IIS ligands. Yet, we lack knowledge of how changes to IIS activity impact body size in each sex, as the majority of studies on IIS and body size use single- or mixed-sex groups of larvae and/or adult flies. The goal of our current study was to clarify the body size requirement for IIS activity in each sex. To achieve this goal, we used established genetic approaches to enhance, or inhibit, IIS activity, and quantified pupal size in males and females. Overall, genotypes that inhibited IIS activity caused a female-biased decrease in body size, whereas genotypes that augmented IIS activity caused a male-specific increase in body size. These data extend our current understanding of body size regulation by showing that most changes to IIS pathway activity have sex-biased effects, and highlights the importance of analyzing body size data according to sex.
Collapse
Affiliation(s)
- Jason W Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Paige J Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
8
|
Millington JW, Brownrigg GP, Chao C, Sun Z, Basner-Collins PJ, Wat LW, Hudry B, Miguel-Aliaga I, Rideout EJ. Female-biased upregulation of insulin pathway activity mediates the sex difference in Drosophila body size plasticity. eLife 2021; 10:e58341. [PMID: 33448263 PMCID: PMC7864645 DOI: 10.7554/elife.58341] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Nutrient-dependent body size plasticity differs between the sexes in most species, including mammals. Previous work in Drosophila showed that body size plasticity was higher in females, yet the mechanisms underlying increased female body size plasticity remain unclear. Here, we discover that a protein-rich diet augments body size in females and not males because of a female-biased increase in activity of the conserved insulin/insulin-like growth factor signaling pathway (IIS). This sex-biased upregulation of IIS activity was triggered by a diet-induced increase in stunted mRNA in females, and required Drosophila insulin-like peptide 2, illuminating new sex-specific roles for these genes. Importantly, we show that sex determination gene transformer promotes the diet-induced increase in stunted mRNA via transcriptional coactivator Spargel to regulate the male-female difference in body size plasticity. Together, these findings provide vital insight into conserved mechanisms underlying the sex difference in nutrient-dependent body size plasticity.
Collapse
Affiliation(s)
- Jason W Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Paige J Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Lianna W Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Bruno Hudry
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
9
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
10
|
Trautenberg LC, Prince E, Maas C, Beier N, Honold F, Grzybek M, Brankatschk M. Selective Phosphorylation of Akt/Protein-Kinase B Isoforms in Response to Dietary Cues. Front Cell Dev Biol 2019; 7:206. [PMID: 31649929 PMCID: PMC6796796 DOI: 10.3389/fcell.2019.00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
A calorie-rich diet is one reason for the continuous spread of metabolic syndromes in western societies. Smart food design is one powerful tool to prevent metabolic stress, and the search for suitable bioactive additives is a continuous task. The nutrient-sensing insulin pathway is an evolutionary conserved mechanism that plays an important role in metabolism, growth and development. Recently, lipid cues capable to stimulate insulin signaling were identified. However, the mechanistic base of their activity remains obscure to date. We show that specific Akt/Protein-kinase B isoforms are responsive to different calorie-rich diets, and potentiate the activity of the cellular insulin cascade. Our data add a new dimension to existing models and position Drosophila as a powerful tool to study the relation between dietary lipid cues and the insulin-induced cellular signal pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Michal Grzybek
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Oberschleissheim, Germany
| | | |
Collapse
|
11
|
Triacylglycerol Metabolism in Drosophila melanogaster. Genetics 2019; 210:1163-1184. [PMID: 30523167 DOI: 10.1534/genetics.118.301583] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
Triacylglycerol (TAG) is the most important caloric source with respect to energy homeostasis in animals. In addition to its evolutionarily conserved importance as an energy source, TAG turnover is crucial to the metabolism of structural and signaling lipids. These neutral lipids are also key players in development and disease. Here, we review the metabolism of TAG in the Drosophila model system. Recently, the fruit fly has attracted renewed attention in research due to the unique experimental approaches it affords in studying the tissue-autonomous and interorgan regulation of lipid metabolism in vivo Following an overview of the systemic control of fly body fat stores, we will cover lipid anabolic, enzymatic, and regulatory processes, which begin with the dietary lipid breakdown and de novo lipogenesis that results in lipid droplet storage. Next, we focus on lipolytic processes, which mobilize storage TAG to make it metabolically accessible as either an energy source or as a building block for biosynthesis of other lipid classes. Since the buildup and breakdown of fat involves various organs, we highlight avenues of lipid transport, which are at the heart of functional integration of organismic lipid metabolism. Finally, we draw attention to some "missing links" in basic neutral lipid metabolism and conclude with a perspective on how fly research can be exploited to study functional metabolic roles of diverse lipids.
Collapse
|
12
|
Raza Q, Choi JY, Li Y, O’Dowd RM, Watkins SC, Chikina M, Hong Y, Clark NL, Kwiatkowski AV. Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in Drosophila. PLoS Genet 2019; 15:e1007720. [PMID: 30763317 PMCID: PMC6375579 DOI: 10.1371/journal.pgen.1007720] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
The adherens junction couples the actin cytoskeletons of neighboring cells to provide the foundation for multicellular organization. The core of the adherens junction is the cadherin-catenin complex that arose early in the evolution of multicellularity to link actin to intercellular adhesions. Over time, evolutionary pressures have shaped the signaling and mechanical functions of the adherens junction to meet specific developmental and physiological demands. Evolutionary rate covariation (ERC) identifies proteins with correlated fluctuations in evolutionary rate that can reflect shared selective pressures and functions. Here we use ERC to identify proteins with evolutionary histories similar to the Drosophila E-cadherin (DE-cad) ortholog. Core adherens junction components α-catenin and p120-catenin displayed positive ERC correlations with DE-cad, indicating that they evolved under similar selective pressures during evolution between Drosophila species. Further analysis of the DE-cad ERC profile revealed a collection of proteins not previously associated with DE-cad function or cadherin-mediated adhesion. We then analyzed the function of a subset of ERC-identified candidates by RNAi during border cell (BC) migration and identified novel genes that function to regulate DE-cad. Among these, we found that the gene CG42684, which encodes a putative GTPase activating protein (GAP), regulates BC migration and adhesion. We named CG42684 raskol (“to split” in Russian) and show that it regulates DE-cad levels and actin protrusions in BCs. We propose that Raskol functions with DE-cad to restrict Ras/Rho signaling and help guide BC migration. Our results demonstrate that a coordinated selective pressure has shaped the adherens junction and this can be leveraged to identify novel components of the complexes and signaling pathways that regulate cadherin-mediated adhesion. The establishment of intercellular adhesions facilitated the genesis of multicellular organisms. The adherens junction, which links the actin cytoskeletons of neighboring cells, arose early in the evolution of multicellularity and selective pressures have shaped its function and molecular composition over time. In this study, we used evolutionary rate covariation (ERC) analysis to examine the evolutionary history of the adherens junction and to identify proteins that coevolved with the core adherens junction protein Drosophila E-cadherin (DE-cad). ERC analysis of DE-cad revealed a collection of proteins with similar evolutionary histories. We then tested the role of ERC-identified candidates in border cell migration in the fly egg chamber, a process that requires the coordinated regulation of cell-cell adhesion and cell motility. Among these, we found that a previously uncharacterized gene CG42684, which encodes a putative GTPase activating protein (GAP), regulates the collective cell migration of border cells, stabilizes cell-cell adhesions and regulates the actin dynamics. Our results demonstrate that components of the adherens junction share an evolutionary history and that ERC analysis is a powerful method to identify novel components of cell adhesion complexes in Drosophila.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Yang Li
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Roisin M. O’Dowd
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Nathan L. Clark
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Adam V. Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Pan J, Di YQ, Li YB, Chen CH, Wang JX, Zhao XF. Insulin and 20-hydroxyecdysone oppose each other in the regulation of phosphoinositide-dependent kinase-1 expression during insect pupation. J Biol Chem 2018; 293:18613-18623. [PMID: 30305395 DOI: 10.1074/jbc.ra118.004891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Insulin promotes larval growth of insects by stimulating the synthesis of the steroid hormone 20-hydroxyecdysone (20E), which induces pupation and apoptosis. However, the mechanism underlying the coordinate regulation of insect pupation and apoptosis by these two functionally opposing hormones is still unclear. Here, using the lepidopteran insect and serious agricultural pest Helicoverpa armigera (cotton bollworm) as a model, we report that phosphoinositide-dependent kinase-1 (PDK1) and forkhead box O (FoxO) play key roles in these processes. We found that the transcript levels of the PDK1 gene are increased during the larval feeding stages. Moreover, PDK1 expression was increased by insulin, but repressed by 20E. dsRNA-mediated PDK1 knockdown in the H. armigera larvae delayed pupation and resulted in small pupae and also decreased Akt/protein kinase B expression and increased FoxO expression. Furthermore, the PDK1 knockdown blocked midgut remodeling and decreased 20E levels in the larvae. Of note, injecting larvae with 20E overcame the effect of the PDK1 knockdown and restored midgut remodeling. FoxO overexpression in an H. armigera epidermal cell line (HaEpi) did not induce apoptosis, but promoted autophagy and repressed cell proliferation. These results reveal cross-talk between insulin and 20E and that both hormones oppose each other's activities in the regulation of insect pupation and apoptosis by controlling PDK1 expression and, in turn, FoxO expression. We conclude that sufficiently high 20E levels are a key factor for inducing apoptosis during insect pupation.
Collapse
Affiliation(s)
- Jing Pan
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yu-Qin Di
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yong-Bo Li
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Cai-Hua Chen
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
14
|
PDK1 plays a vital role on hematopoietic stem cell function. Sci Rep 2017; 7:4943. [PMID: 28694518 PMCID: PMC5504031 DOI: 10.1038/s41598-017-05213-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 05/25/2017] [Indexed: 12/21/2022] Open
Abstract
3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a pivotal regulator in the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway that have been shown to play key roles in the functional development of B and T cells via activation of AGC protein kinases during hematopoiesis. However, the role of PDK1 in HSCs has not been fully defined. Here we specifically deleted the PDK1 gene in the hematopoietic system and found that PDK1-deficient HSCs exhibited impaired function and defective lineage commitment abilities. Lack of PDK1 caused HSCs to be less quiescent and to produce a higher number of phenotypic HSCs and fewer progenitors. PDK1-deficient HSCs were also unable to reconstitute the hematopoietic system. Notably, HSC function was more dependent on PDK1 than on mTORC2, which indicates that PDK1 plays a dominant role in the Akt-mediated regulation of HSC function. PDK1-deficient HSCs also exhibited reduced ROS levels, and treatment of PDK1-deficient HSCs with L-butathioninesulfoximine in vitro elevated the low ROS level and promoted colony formation. Therefore, PDK1 appears to contribute to HSC function partially via regulating ROS levels.
Collapse
|
15
|
Cha IJ, Lee JH, Cho KS, Lee SB. Drosophila tensin plays an essential role in cell migration and planar polarity formation during oogenesis by mediating integrin-dependent extracellular signals to actin organization. Biochem Biophys Res Commun 2017; 484:702-709. [DOI: 10.1016/j.bbrc.2017.01.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/31/2017] [Indexed: 12/17/2022]
|
16
|
Altintas O, Park S, Lee SJV. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 2016; 49:81-92. [PMID: 26698870 PMCID: PMC4915121 DOI: 10.5483/bmbrep.2016.49.2.261] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway regulates
aging in many organisms, ranging from simple invertebrates to mammals, including
humans. Many seminal discoveries regarding the roles of IIS in aging and
longevity have been made by using the roundworm Caenorhabditis
elegans and the fruit fly Drosophila melanogaster. In this
review, we describe the mechanisms by which various IIS components regulate
aging in C. elegans and D. melanogaster. We
also cover systemic and tissue-specific effects of the IIS components on the
regulation of lifespan. We further discuss IIS-mediated physiological processes
other than aging and their effects on human disease models focusing on
C. elegans studies. As both C. elegans and
D. melanogaster have been essential for key findings
regarding the effects of IIS on organismal aging in general, these invertebrate
models will continue to serve as workhorses to help our understanding of
mammalian aging. [BMB Reports 2016; 49(2): 81-92]
Collapse
Affiliation(s)
- Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sangsoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Jae V Lee
- School of Interdisciplinary Bioscience and Bioengineering, Department of Life Sciences, and Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
17
|
Lin X, Yao Y, Wang B, Emlen DJ, Lavine LC. Ecological Trade-offs between Migration and Reproduction Are Mediated by the Nutrition-Sensitive Insulin-Signaling Pathway. Int J Biol Sci 2016; 12:607-16. [PMID: 27143957 PMCID: PMC4852207 DOI: 10.7150/ijbs.14802] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/23/2016] [Indexed: 01/06/2023] Open
Abstract
Crowding and changes in food availability are two critical environmental conditions that impact an animal's trajectory toward either migration or reproduction. Many insects facing this challenge have evolved wing polyphenisms. When conditions favor reproduction, wing polyphenic species produce adults that either have no wings or short, non-functional wings. Facultative wing growth reflects a physiological and evolutionary trade-off between migration and reproduction, triggered by environmental conditions. How environmental cues are transduced to produce these alternative forms, and their associated ecological shift from migration to reproduction, remains an important unsolved problem in evolutionary ecology. The brown planthopper, a wing polymorphic insect exhibiting strong trade-offs in investment between migration and reproduction, is one of the most serious rice pests in Asia. In this study, we investigated the function of four genes in the insulin-signaling pathway known to couple nutrition with growth, PI3 Kinase (PI3K), PDK1, Akt (Protein Kinase B), and the forkhead gene FOXO. Using a combination of RNA interference and pharmacological inhibitor treatment, we show that all four genes contribute to tissue level regulation of wing polymorphic development in this insect. As predicted, silencing of the NlPI3K, NlAkt and NlPDK1 through dsRNA and with the pharmacological inhibitor Perifosine resulted in short-winged brown planthoppers, whereas knockdown of NlFOXO resulted in long-winged planthoppers. Morphometric analyses confirm that phenotypes from our manipulations mimic what would be found in nature, i.e., major parameters such as bristle number, wing area and body weight are not significantly different from non-experimental animals. Taken together, these data implicate the insulin-signaling pathway in the transduction of environmental factors into condition-dependent patterns of wing growth in insects.
Collapse
Affiliation(s)
- Xinda Lin
- 1. College of Life Sciences, China Jiliang University, Hangzhou, China, 310018
| | - Yun Yao
- 1. College of Life Sciences, China Jiliang University, Hangzhou, China, 310018
| | - Bo Wang
- 1. College of Life Sciences, China Jiliang University, Hangzhou, China, 310018
| | - Douglas J Emlen
- 2. Division of Biological Sciences, The University of Montana, Missoula, Montana 59812, USA
| | - Laura Corley Lavine
- 3. Department of Entomology, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
18
|
Molecular characterization of the Haemonchus contortus phosphoinositide-dependent protein kinase-1 gene (Hc-pdk-1). Parasit Vectors 2016; 9:65. [PMID: 26842781 PMCID: PMC4741024 DOI: 10.1186/s13071-016-1351-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background Phosphoinositide-dependent protein kinase-1 (PDK-1), which functions downstream of phosphoinositide 3-kinase (AGE-1) and activates protein kinases of the AGC family, plays critical roles in regulating biology processes, such as metabolism, growth, development and survival. In the free-living nematode Caenorhabditis elegans, PDK-1 is a key component of the insulin-like signalling pathway, regulating the entry into and exit from dauer (arrested development). Although it is proposed that similar molecular mechanisms control the transition from the free-living to the parasitic stages of nematodes, nothing is known about PDK-1 in Haemonchus contortus, a socioeconomically important gastric nematode of ruminants. Methods Here, we isolated and characterized the pdk-1 gene (Hc-pdk-1) and its inferred product (Hc-PDK-1) from H. contortus. Using in vitro and in vivo methods, we then studied the transcriptional profiles of Hc-pdk-1 and anatomical gene expression patterns of Hc-PDK-1 in different developmental stages of C. elegans. Results In silico analysis of Hc-PDK-1 displayed conserved functional domains, such as protein kinase and pleckstrin homology (PH) domains and two predicted phosphorylation sites (Thr226/Tyr229), which are crucial for the phosphorylation of downstream signalling. The Hc-pdk-1 gene is transcribed in all of the main developmental stages of H. contortus, with its highest transcription in the infective third-stage larvae (iL3) compared with other stages. Transgene constructs, in which respective promoters were fused to the coding sequence for green fluorescent protein (GFP), were used to transform C. elegans, and to localize and compare the expression of Hc-pdk-1 and Ce-pdk-1. The expression of GFP under the control of the Hc-pdk-1 promoter was localized to the intestine, and head and tail neurons, contrasting somewhat the profile for the C. elegans ortholog, which is expressed in pharynx, intestine and head and tail neurons. Conclusions This is the first characterization of pdk-1/PDK-1 from a trichostrongyloid nematode. Taken together, the findings from this study provide a first glimpse of the involvement of Hc-pdk-1 in the insulin-like signalling pathway in H. contortus. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1351-6) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Balakrishnan SS, Basu U, Raghu P. Phosphoinositide signalling in Drosophila. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:770-84. [PMID: 25449646 DOI: 10.1016/j.bbalip.2014.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 01/28/2023]
Abstract
Phosphoinositides (PtdInsPs) are lipids that mediate a range of conserved cellular processes in eukaryotes. These include the transduction of ligand binding to cell surface receptors, vesicular transport and cytoskeletal function. The nature and functions of PtdInsPs were initially elucidated through biochemical experiments in mammalian cells. However, over the years, genetic and cell biological analysis in a range of model organisms including S. cerevisiae, D. melanogaster and C. elegans have contributed to an understanding of the involvement of PtdInsPs in these cellular events. The fruit fly Drosophila is an excellent genetic model for the analysis of cell and developmental biology as well as physiological processes, particularly analysis of the complex relationship between the cell types of a metazoan in mediating animal physiology. PtdInsP signalling pathways are underpinned by enzymes that synthesise and degrade these molecules and also by proteins that bind to these lipids in cells. In this review we provide an overview of the current understanding of PtdInsP signalling in Drosophila. We provide a comparative genomic analysis of the PtdInsP signalling toolkit between Drosophila and mammalian systems. We also review some areas of cell and developmental biology where analysis in Drosophila might provide insights into the role of this lipid-signalling pathway in metazoan biology. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Sruthi S Balakrishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Urbashi Basu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
20
|
The role of serine 190 in FOXO nuclear export and cell death induction in Drosophila melanogaster. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Toll mediated infection response is altered by gravity and spaceflight in Drosophila. PLoS One 2014; 9:e86485. [PMID: 24475130 PMCID: PMC3901686 DOI: 10.1371/journal.pone.0086485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/12/2013] [Indexed: 11/19/2022] Open
Abstract
Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response.
Collapse
|
22
|
PTEN, Longevity and Age-Related Diseases. Biomedicines 2013; 1:17-48. [PMID: 28548055 PMCID: PMC5423463 DOI: 10.3390/biomedicines1010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 02/08/2023] Open
Abstract
Since the discovery of PTEN, this protein has been shown to be an effective suppressor of cancer and a contributor to longevity. This report will review, in depth, the associations between PTEN and other molecules, its mutations and regulations in order to present how PTEN can be used to increase longevity. This report will collect recent research of PTEN and use this to discuss PTEN’s role in caloric restriction, antioxidative defense of DNA-damage and the role it plays in suppressing tumors. The report will also discuss that variety of ways that PTEN can be compromised, through mutations, complete loss of alleles and its main antagonist, the PI3K/AKT pathway.
Collapse
|
23
|
Zhong Y, Huang Y, Cao J, Lu X, Feng M, Shen G, Shen A, Yu X. Increase in phosphorylation of PDK1 and cell survival after acute spinal cord injury. J Neurol Sci 2012; 320:38-44. [DOI: 10.1016/j.jns.2012.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 02/23/2012] [Accepted: 03/01/2012] [Indexed: 11/30/2022]
|
24
|
Zhong Y, Huang Y, Cao J, Lu X, Feng M, Shen G, Shen A, Yu X. WITHDRAWN: Increase in phosphorylation of PDK1 and cell survival after acute spinal cord injury. J Neurol Sci 2012:S0022-510X(12)00441-8. [PMID: 22947897 DOI: 10.1016/j.jns.2012.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 02/23/2012] [Accepted: 02/29/2012] [Indexed: 11/22/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, doi:10.1016/j.jns.2012.06.003. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Orthopaedics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing 210011, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ishii K, Adachi T, Imamura K, Takano S, Usui K, Suzuki K, Hamamoto H, Watanabe T, Sekimizu K. Serratia marcescens induces apoptotic cell death in host immune cells via a lipopolysaccharide- and flagella-dependent mechanism. J Biol Chem 2012; 287:36582-92. [PMID: 22859304 DOI: 10.1074/jbc.m112.399667] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH(2)-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity.
Collapse
Affiliation(s)
- Kenichi Ishii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tunstall NE, Herr A, de Bruyne M, Warr CG. A screen for genes expressed in the olfactory organs of Drosophila melanogaster identifies genes involved in olfactory behaviour. PLoS One 2012; 7:e35641. [PMID: 22530061 PMCID: PMC3329464 DOI: 10.1371/journal.pone.0035641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/19/2012] [Indexed: 12/20/2022] Open
Abstract
Background For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. Methodology/Principal Findings We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. Conclusions/Significance We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Coral G. Warr
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
27
|
Napolioni V, Curatolo P. Genetics and molecular biology of tuberous sclerosis complex. Curr Genomics 2011; 9:475-87. [PMID: 19506736 PMCID: PMC2691673 DOI: 10.2174/138920208786241243] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 07/21/2008] [Accepted: 07/26/2008] [Indexed: 02/08/2023] Open
Abstract
Tuberous Sclerosis Complex is a multisystem disorder exhibiting a wide range of manifestations characterized by tumour-like lesions called hamartomas in the brain, skin, eyes, heart, lungs and kidneys. Tuberous Sclerosis Complex is genetically determined with an autosomal dominant inheritance and is caused by inactivating mutations in either the TSC1 or TSC2 genes. TSC1/2 genes play a fundamental role in the regulation of phosphoinositide 3-kinase (PI3K) signalling pathway, inhibiting the mammalian target of rapamycin (mTOR) through activation of the GTPase activity of Rheb. Mutations in TSC1/2 genes impair the inhibitory function of the hamartin/tuberin complex, leading to phosphorylation of the downstream effectors of mTOR, p70 S6 kinase (S6K), ribosomal protein S6 and the elongation factor binding protein 4E-BP1, resulting in uncontrolled cell growth and tumourigenesis. Despite recent promising genetic, diagnostic, and therapeutic advances in Tuberous Sclerosis Complex, continuing research in all aspects of this complex disease will be pivotal to decrease its associated morbidity and mortality. In this review we will discuss and analyse all the important findings in the molecular pathogenesis of Tuberous Sclerosis Complex, focusing on genetics and the molecular mechanisms that define this multisystemic disorder.
Collapse
Affiliation(s)
- Valerio Napolioni
- Laboratory of Human Genetics, Department of Molecular, Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | | |
Collapse
|
28
|
Chell JM, Brand AH. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 2011; 143:1161-73. [PMID: 21183078 PMCID: PMC3087489 DOI: 10.1016/j.cell.2010.12.007] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 11/28/2022]
Abstract
The systemic regulation of stem cells ensures that they meet the needs of the organism during growth and in response to injury. A key point of regulation is the decision between quiescence and proliferation. During development, Drosophila neural stem cells (neuroblasts) transit through a period of quiescence separating distinct embryonic and postembryonic phases of proliferation. It is known that neuroblasts exit quiescence via a hitherto unknown pathway in response to a nutrition-dependent signal from the fat body. We have identified a population of glial cells that produce insulin/IGF-like peptides in response to nutrition, and we show that the insulin/IGF receptor pathway is necessary for neuroblasts to exit quiescence. The forced expression of insulin/IGF-like peptides in glia, or activation of PI3K/Akt signaling in neuroblasts, can drive neuroblast growth and proliferation in the absence of dietary protein and thus uncouple neuroblasts from systemic control.
Collapse
Affiliation(s)
- James M Chell
- The Gurdon Institute and Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | |
Collapse
|
29
|
Westmoreland JJ, Wang Q, Bouzaffour M, Baker SJ, Sosa-Pineda B. Pdk1 activity controls proliferation, survival, and growth of developing pancreatic cells. Dev Biol 2009; 334:285-98. [PMID: 19635472 PMCID: PMC2744847 DOI: 10.1016/j.ydbio.2009.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/29/2009] [Accepted: 07/20/2009] [Indexed: 12/22/2022]
Abstract
The formation of adequate masses of endocrine and exocrine pancreatic tissues during embryogenesis is essential to ensure proper nutrition and glucose homeostasis at postnatal stages. We generated mice with pancreas-specific ablation of the 3-phosphoinositide-dependent protein kinase 1 (Pdk1) to investigate how signaling downstream of the phosphatidylinositol-3-OH kinase (PI3K) pathway controls pancreas development. Pdk1-conditional knock-out mice were born with conspicuous pancreas hypoplasia, and within a few weeks, they developed severe hyperglycemia. Our detailed characterization of the mutant embryonic pancreas also revealed distinct temporal, cell type-specific requirements of Pdk1 activity in the control of cell proliferation, cell survival, and cell size during pancreas development. These results thus uncover Pdk1 as a novel, crucial regulator of pancreatic growth during embryogenesis. In addition, we provide evidence that Pdk1 activity is required differently in mature pancreatic cell types, since compensatory proliferation and possible mTORC2 activation occurred in exocrine cells but not in beta cells of the Pdk1-deficient postnatal pancreas.
Collapse
Affiliation(s)
- Joby J. Westmoreland
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Qian Wang
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mohamed Bouzaffour
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Suzanne J. Baker
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Beatriz Sosa-Pineda
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
30
|
Abstract
The Drosophila melanogaster ovary is a powerful yet simple system with only a few cell types. Cell death in the ovary can be induced in response to multiple developmental and environmental signals. These cell deaths occur at distinct stages of oogenesis and involve unique mechanisms utilizing apoptotic, autophagic and perhaps necrotic processes. In this review, we summarize recent progress characterizing cell death mechanisms in the fly ovary.
Collapse
|
31
|
Body size in Drosophila: genetic architecture, allometries and sexual dimorphism. Heredity (Edinb) 2008; 102:246-56. [PMID: 19018274 DOI: 10.1038/hdy.2008.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Even though substantial progress has been made to elucidate the physiological and environmental factors underpinning differences in body size, little is known about its genetic architecture. Furthermore, all animal species bear a specific relationship between the size of each organ and overall body size, so different body size traits should be investigated as well as their sexual dimorphism that may have an important impact on the evolution of body size. We have surveyed 191 co-isogenic lines of Drosophila melanogaster, each one of them homozygous for a single P-element insertion, and assessed the effects of mutations on different body size traits compared to the P-element-free co-isogenic control. Nearly 60% of the lines showed significant differences with respect to the control for these traits in one or both sexes and almost 35% showed trait- and sex-specific effects. Candidate gene mutations frequently increased body size in males and decreased it in females. Among the 92 genes identified, most are involved in development and/or metabolic processes and their molecular functions principally include protein-binding and nucleic acid-binding activities. Although several genes showed pleiotropic effects in relation to body size, few of them were involved in the expression of all traits in one or both sexes. These genes seem to be important for different aspects related to the general functioning of the organism. In general, our results indicate that the genetic architecture of body size traits involves a large fraction of the genome and is largely sex and trait specific.
Collapse
|
32
|
Requirement of 3-phosphoinositide-dependent protein kinase-1 for BDNF-mediated neuronal survival. J Neurosci 2008; 28:11409-20. [PMID: 18971483 DOI: 10.1523/jneurosci.2135-08.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although PDK1 regulates several signaling pathways that respond to neurotrophins, direct evidence for its involvement in neurotrophin-mediated survival has not yet been reported. Here we show high neuronal expression of active PDK1 in the rat cortex and hippocampus at the developmental stages with pronounced dependence on extracellular survival signals. Also, in cultured cortical neurons from newborn rats, BDNF resulted in PDK1- and extracellular signal-regulated kinase-1/2 (ERK1/2)-mediated activation of their direct target, the p90 ribosomal S6 kinase 1/2 (RSK1/2). In trophic-deprived cortical neurons, knockdown of endogenous PDK1 attenuated the antiapoptotic survival response to 10 ng/ml BDNF, whereas an overexpressed active mutant form of PDK1 reduced apoptosis. The neuroprotection by BDNF or active PDK1 required RSK1/2. Conversely, PDK1 knockdown reversed the survival effects of combining the overexpressed RSK1 with a low, subprotective BDNF concentration of 2 ng/ml. Likewise, the protection by the overexpressed, active PDK1 was enhanced by coexpression of an active RSK1 mutant. Consistent with the observations that in BDNF-stimulated neurons RSK1/2 activation required both PDK1 and ERK1/2, ERK1/2 knockdown removed BDNF-mediated survival. Selective activation of ERK1/2 with an overexpressed active mutant form of MKK1 resulted in RSK1/2- and PDK1-dependent neuroprotection. Finally, at subprotective plasmid DNA dosage, overexpression of the active MKK1 and PDK1 mutants produced synergistic effect on survival. Our findings indicate a critical role for PDK1-RSK1/2 signaling in BDNF-mediated neuronal survival. Thus, the PDK1 is indispensable for the antiapoptotic effects of the ERK1/2 pathway offering previously unrecognized layer of survival signal processing and integration.
Collapse
|
33
|
Nakamura K, Sakaue H, Nishizawa A, Matsuki Y, Gomi H, Watanabe E, Hiramatsua R, Tamamori-Adachi M, Kitajima S, Noda T, Ogawa W, Kasuga M. PDK1 regulates cell proliferation and cell cycle progression through control of cyclin D1 and p27Kip1 expression. J Biol Chem 2008; 283:17702-11. [PMID: 18430722 DOI: 10.1074/jbc.m802589200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PDK1 (3-phosphoinositide-dependent protein kinase 1) is a key mediator of signaling by phosphoinositide 3-kinase. To gain insight into the physiological importance of PDK1 in cell proliferation and cell cycle control, we established immortalized mouse embryonic fibroblasts (MEFs) from mice homozygous for a "floxed" allele of Pdk1 and from wild-type mice. Introduction of Cre recombinase by retrovirus-mediated gene transfer resulted in the depletion of PDK1 in Pdk1(lox/lox) MEFs but not in Pdk1(+/+) MEFs. The insulin-like growth factor-1-induced phosphorylation of various downstream effectors of PDK1, including Akt, glycogen synthase kinase 3, ribosomal protein S6, and p70 S6 kinase, was markedly inhibited in the PDK1-depleted (Pdk1-KO) MEFs. The rate of serum-induced cell proliferation was reduced; progression of the cell cycle from the G(0)-G(1) phase to the S phase was delayed, and cell cycle progression at G(2)-M phase was impaired in Pdk1-KO MEFs. These cells also manifested an increased level of p27(Kip1) expression and a reduced level of cyclin D1 expression during cell cycle progression. The defect in cell cycle progression from the G(0)-G(1) to the S phase in Pdk1-KO MEFs was rescued by forced expression of cyclin D1, whereas rescue of the defect in G(2)-M progression in these cells required both overexpression of cyclin D1 and depletion of p27(Kip1) by RNA interference. These data indicate that PDK1 plays an important role in cell proliferation and cell cycle progression by controlling the expression of both cyclin D1 and p27(Kip1).
Collapse
Affiliation(s)
- Kyoko Nakamura
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cinar B, Fang PK, Lutchman M, Di Vizio D, Adam RM, Pavlova N, Rubin MA, Yelick PC, Freeman MR. The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO J 2007; 26:4523-34. [PMID: 17932490 DOI: 10.1038/sj.emboj.7601872] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 09/10/2007] [Indexed: 12/25/2022] Open
Abstract
Akt kinases mediate cell growth and survival. Here, we report that a pro-apoptotic kinase, Mst1/STK4, is a physiological Akt1 interaction partner. Mst1 was identified as a component of an Akt1 multiprotein complex isolated from lipid raft-enriched fractions of LNCaP human prostate cancer cells. Endogenous Mst1, along with its paralog, Mst2, acted as inhibitors of endogenous Akt1. Surprisingly, mature Mst1 as well as both of its caspase cleavage products, which localize to distinct subcellular compartments and are not structurally homologous, complexed with and inhibited Akt1. cRNAs encoding full-length Mst1, and N- and C-terminal caspase Mst1 cleavage products, reverted an early lethal phenotype in zebrafish development induced by expression of membrane-targeted Akt1. Mst1 and Akt1 localized to identical subcellular sites in human prostate tumors. Mst1 levels declined with progression from clinically localized to hormone refractory disease, coinciding with an increase in Akt activation with transition from hormone naïve to hormone-resistant metastases. These results position Mst1/2 within a novel branch of the phosphoinositide 3-kinase/Akt pathway and suggest an important role in cancer progression.
Collapse
Affiliation(s)
- Bekir Cinar
- Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Primo L, di Blasio L, Roca C, Droetto S, Piva R, Schaffhausen B, Bussolino F. Essential role of PDK1 in regulating endothelial cell migration. ACTA ACUST UNITED AC 2007; 176:1035-47. [PMID: 17371830 PMCID: PMC2064087 DOI: 10.1083/jcb.200607053] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The serine/threonine protein kinase phosphoinositide-dependent kinase 1 (PDK1) plays a central role in cellular signaling by phosphorylating members of the AGC family of kinases, including PKB/Akt. We now present evidence showing that PDK1 is essential for the motility of vascular endothelial cells (ECs) and that it is involved in the regulation of their chemotaxis. ECs differentiated from mouse embryonic stem cells lacking PDK1 completely lost their ability to migrate in vitro in response to vascular endothelial growth factor-A (VEGF-A). In addition, PDK1−/− embryoid bodies exhibit evident developmental and vascular defects that can be attributed to a reduced cell migration. Moreover, the overexpression of PDK1 increased the EC migration induced by VEGF-A. We propose a model of spatial distribution of PDK1 and Akt in which the synthesis of phosphatidylinositol 3,4,5 triphosphate at plasma membrane by activation of phosphoinositide 3-kinase recruits both proteins at the leading edge of the polarized ECs and promotes cell chemotaxis. These findings establish a mechanism for the spatial localization of PDK1 and its substrate Akt to regulate directional migration.
Collapse
Affiliation(s)
- Luca Primo
- Department of Oncological Sciences, University of Torino, 10060 Candiolo, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chan CM, Ma CW, Chan WY, Chan HYE. The SARS-Coronavirus Membrane protein induces apoptosis through modulating the Akt survival pathway. Arch Biochem Biophys 2007; 459:197-207. [PMID: 17306213 PMCID: PMC7094499 DOI: 10.1016/j.abb.2007.01.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/20/2006] [Accepted: 01/05/2007] [Indexed: 01/12/2023]
Abstract
A number of viral gene products are capable of triggering apoptotic cell death through interfering with cellular signaling cascades, including the Akt kinase pathway. In this study, the pro-apoptotic role of the SARS-CoV Membrane (M) structural protein is described. We found that the SARS-CoV M protein induced apoptosis in both HEK293T cells and transgenic Drosophila. We further showed that M protein-induced apoptosis involved mitochondrial release of cytochrome c protein, and could be suppressed by caspase inhibitors. Over-expression of M caused a dominant rough-eye phenotype in adult Drosophila. By performing a forward genetic modifier screen, we identified phosphoinositide-dependent kinase-1 (PDK-1) as a dominant suppressor of M-induced apoptotic cell death. Both PDK-1 and Akt kinases play essential roles in the cell survival signaling pathway. Altogether, our data show that SARS-CoV M protein induces apoptosis through the modulation of the cellular Akt pro-survival pathway and mitochondrial cytochrome c release.
Collapse
Affiliation(s)
- Chak-Ming Chan
- Laboratory of Drosophila Research, Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | |
Collapse
|
37
|
Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2007; 20:3347-65. [PMID: 17182864 DOI: 10.1101/gad.1492806] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Postnatal growth of the heart is primarily achieved through hypertrophy of individual myocytes. Cardiac growth observed in athletes represents adaptive or physiological hypertrophy, whereas cardiac growth observed in patients with hypertension or valvular heart diseases is called maladaptive or pathological hypertrophy. These two types of hypertrophy are morphologically, functionally, and molecularly distinct from each other. The serine/threonine protein kinase Akt is activated by various extracellular stimuli in a phosphatidylinositol-3 kinase-dependent manner and regulates multiple aspects of cellular functions including survival, growth and metabolism. In this review we will discuss the role of the Akt signaling pathway in the heart, focusing on the regulation of cardiac growth, contractile function, and coronary angiogenesis. How this signaling pathway contributes to the development of physiological/pathological hypertrophy and heart failure will also be discussed.
Collapse
Affiliation(s)
- Ichiro Shiojima
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
38
|
DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, Muslin AJ. Akt1 is required for physiological cardiac growth. Circulation 2006; 113:2097-104. [PMID: 16636172 DOI: 10.1161/circulationaha.105.595231] [Citation(s) in RCA: 427] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Postnatal growth of the heart chiefly involves nonproliferative cardiomyocyte enlargement. Cardiac hypertrophy exists in a "physiological" form that is an adaptive response to long-term exercise training and as a "pathological" form that often is a maladaptive response to provocative stimuli such as hypertension and aortic valvular stenosis. A signaling cascade that includes the protein kinase Akt regulates the growth and survival of many cell types, but the precise role of Akt1 in either form of cardiac hypertrophy is unknown. METHODS AND RESULTS To evaluate the role of Akt1 in physiological cardiac growth, akt1(-/-) adult murine cardiac myocytes (AMCMs) were treated with IGF-1, and akt1(-/-) mice were subjected to exercise training. akt1(-/-) AMCMs were resistant to insulin-like growth factor-1-stimulated protein synthesis. The akt1(-/-) mice were found to be resistant to swimming training-induced cardiac hypertrophy. To evaluate the role of Akt in pathological cardiac growth, akt1(-/-) AMCMs were treated with endothelin-1, and akt1(-/-) mice were subjected to pressure overload by transverse aortic constriction. Surprisingly, akt1(-/-) AMCMs were sensitized to endothelin-1-induced protein synthesis, and akt1(-/-) mice developed an exacerbated form of cardiac hypertrophy in response to transverse aortic constriction. CONCLUSIONS These results establish Akt1 as a pivotal regulatory switch that promotes physiological cardiac hypertrophy while antagonizing pathological hypertrophy.
Collapse
Affiliation(s)
- Brian DeBosch
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Insulin-like peptides (ILPs) exist in insects and are encoded by multigene families that are expressed in the brain and other tissues. Upon secretion, these peptides likely serve as hormones, neurotransmitters, and growth factors, but to date, few direct functions have been demonstrated. In Drosophila melanogaster, molecular genetic studies have revealed elements of a conserved insulin signaling pathway, and as in other animal models, it appears to play a key role in metabolism, growth, reproduction, and aging. This review offers (a) an integrated summary of the efforts to characterize the distribution of ILPs in insects and to define this pathway and its functions in Drosophila and (b) a few considerations for future studies of ILP endocrinology in insects.
Collapse
Affiliation(s)
- Qi Wu
- Department of Cellular Biology, University of Georgia, Athens.
| | | |
Collapse
|
40
|
Nelson B, Nishimura S, Kanuka H, Kuranaga E, Inoue M, Hori G, Nakahara H, Miura M. Isolation of gene sets affected specifically by polyglutamine expression: implication of the TOR signaling pathway in neurodegeneration. Cell Death Differ 2005; 12:1115-23. [PMID: 15861189 DOI: 10.1038/sj.cdd.4401635] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transcriptional dysregulation as a result of sequestration of essential transcription factors into protein aggregates formed by polyglutamine (polyQ) expansions can lead to late-onset progressive neurodegeneration. DNA microarray analysis of Drosophila expressing polyQ in the compound eye over time revealed large numbers of transcriptional changes at the earliest stages of the disease including repression of the transient receptor potential calcium channels in a polyQ-induced cell death specific manner. While significant differences in expression profiles were found between the Drosophila compound eye and polyQ-sensitive neural cells, a number of possible key overlapping regulators were extracted. Among these, PDK1 was shown to act as a mediator for polyQ-toxicity, suggesting the involvement of the TOR pathway in polyQ-induced neurodegeneration.
Collapse
Affiliation(s)
- B Nelson
- Laboratory for Cell Recovery Mechanisms, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee JH, Koh H, Kim M, Park J, Lee SY, Lee S, Chung J. JNK pathway mediates apoptotic cell death induced by tumor suppressor LKB1 in Drosophila. Cell Death Differ 2005; 13:1110-22. [PMID: 16273080 DOI: 10.1038/sj.cdd.4401790] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although recent progresses have unveiled the diverse in vivo functions of LKB1, detailed molecular mechanisms governing these processes still remain enigmatic. Here, we showed that Drosophila LKB1 negatively regulates organ growth by caspase-dependent apoptosis, without affecting cell size and cell cycle progression. Through genetic screening for LKB1 modifiers, we discovered the JNK pathway as a novel component of LKB1 signaling; the JNK pathway was activated by LKB1 and mediated the LKB1-dependent apoptosis. Consistently, LKB1-null mutant was defective in embryonic apoptosis and displayed a drastic hyperplasia in the central nervous system; these phenotypes were fully rescued by ectopic JNK activation as well as wild-type LKB1 expression. Furthermore, inhibition of LKB1 resulted in epithelial morphogenesis failure, which was associated with a decrease in JNK activity. Collectively, our studies unprecedentedly elucidate JNK as the downstream mediator of the LKB1-dependent apoptosis, and provide a new paradigm for understanding the diverse LKB1 functions in vivo.
Collapse
Affiliation(s)
- J H Lee
- National Creative Research Initiatives Center for Cell Growth Regulation and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong, Taejon, Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Cavaliere V, Donati A, Hsouna A, Hsu T, Gargiulo G. dAkt kinase controls follicle cell size during Drosophila oogenesis. Dev Dyn 2005; 232:845-54. [PMID: 15712201 PMCID: PMC2265433 DOI: 10.1002/dvdy.20333] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila Akt (dAkt) serine/threonine kinase is a component of the insulin receptor/PI3K signaling pathway that regulates cell growth. Here, we show that this kinase is expressed during Drosophila oogenesis and is required for egg chamber development. Loss of dAkt function in follicle cells causes a cell-autonomous reduction of cell size while expression of the constitutively active myristylated form of this kinase (dAkt(myr)) causes increased cell size. Accordingly, expression of the antagonist dPTEN in the same follicular domains causes reduced follicle cell size. Perturbations of dAkt function do not affect follicle cell proliferation or cell death. Of interest, expression of dAkt(myr) in the posterior domain of the follicular epithelium causes a delay in the posterior movement of follicular epithelium and dumpless-like egg chambers. It appears that dAkt is required for maintaining the continuity of cell size within the follicular epithelium, which in turn is necessary for its proper morphogenesis.
Collapse
Affiliation(s)
- Valeria Cavaliere
- Dipartimento di Biologia Evoluzionistica Sperimentale, Bologna, Italy.
| | | | | | | | | |
Collapse
|
43
|
Cha GH, Kim S, Park J, Lee E, Kim M, Lee SB, Kim JM, Chung J, Cho KS. Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci U S A 2005; 102:10345-50. [PMID: 16002472 PMCID: PMC1177361 DOI: 10.1073/pnas.0500346102] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkin, an E3 ubiquitin ligase, has been found to be responsible for autosomal recessive juvenile parkinsonism characterized primarily by selective loss of dopaminergic neurons with subsequent defects in movements. However, the molecular mechanisms underlying this neuron loss remain elusive. Here, we characterized Drosophila parkin loss-of-function mutants, which exhibit shrinkage of dopaminergic neurons with decreased tyrosine hydroxylase level and impaired locomotion. The behavioral defect of parkin mutant flies was partially restored by administering L-DOPA, and the dopamine level in the brains of parkin mutant flies was highly decreased. Intriguingly, we found that c-Jun N-terminal kinase (JNK) is strongly activated in the dopaminergic neurons of parkin mutants and that impaired dopaminergic neuron phenotypes are dependent on the activation of the JNK signaling pathway. In consistent with this, our epistatic analysis and mammalian cell studies showed that Parkin inhibits the JNK signaling pathway in an E3 activity-dependent manner. These results suggest that loss of Parkin function up-regulates the JNK signaling pathway, which may contribute to the vulnerability of dopaminergic neurons in Drosophila parkin mutants and perhaps autosomal recessive juvenile parkinsonism patients.
Collapse
Affiliation(s)
- Guang-Ho Cha
- National Creative Research Initiatives Center for Cell Growth Regulation, and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bregenholt S, Møldrup A, Blume N, Karlsen AE, Nissen Friedrichsen B, Tornhave D, Knudsen LB, Petersen JS. The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits beta-cell apoptosis in vitro. Biochem Biophys Res Commun 2005; 330:577-84. [PMID: 15796922 DOI: 10.1016/j.bbrc.2005.03.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Indexed: 12/16/2022]
Abstract
We here show that GLP-1 and the long-acting GLP-1 analogue, liraglutide, interfere with diabetes-associated apoptotic processes in the beta-cell. Studies using primary neonatal rat islets showed that native GLP-1 and liraglutide inhibited both cytokine- and free fatty acid-induced apoptosis in a dose-dependent manner. The anti-apoptotic effect of liraglutide was mediated by the GLP-1 receptor as the specific GLP-1 receptor antagonist, exendin(9-39), blocked the effects. The adenylate cyclase activator, forskolin, had an anti-apoptotic effect similar to those of GLP-1 and liraglutide indicating that the effect was cAMP-mediated. Blocking the PI3 kinase pathway using wortmannin but not the MAP kinase pathways by PD98059 inhibited the effects of liraglutide. In conclusion, GLP-1 receptor activation has anti-apoptotic effect on both cytokine, and free fatty acid-induced apoptosis in primary islet-cells, thus suggesting that the long-acting GLP-1 analogue, liraglutide, may be useful for retaining beta-cell mass in both type 1 and type 2 diabetic patients.
Collapse
|
45
|
Reiling JH, Hafen E. The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev 2004; 18:2879-92. [PMID: 15545626 PMCID: PMC534649 DOI: 10.1101/gad.322704] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Diverse extrinsic and intrinsic cues must be integrated within a developing organism to ensure appropriate growth at the cellular and organismal level. In Drosophila, the insulin receptor/TOR/S6K signaling network plays a fundamental role in the control of metabolism and cell growth. Here we show that scylla and charybdis, two homologous genes identified as growth suppressors in an EP (enhancer/promoter) overexpression screen, act as negative regulators of growth. The simultaneous loss of both genes generates flies that are more susceptible to reduced oxygen concentrations (hypoxia) and that show mild overgrowth phenotypes. Conversely, scylla or charybdis overactivation reduces growth. Growth inhibition is associated with a reduction in S6K but not PKB/Akt activity. Together, genetic and biochemical analysis places Scylla/Charybdis downstream of PKB and upstream of TSC. Furthermore, we show that scylla and charybdis are induced under hypoxic conditions and that scylla is a target of Drosophila HIF-1 (hypoxia-inducible factor-1) like its mammalian counterpart RTP801/REDD1, thus establishing a potential cross-talk between growth and oxygen sensing.
Collapse
Affiliation(s)
- Jan H Reiling
- Zoologisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
46
|
McManus EJ, Collins BJ, Ashby PR, Prescott AR, Murray-Tait V, Armit LJ, Arthur JSC, Alessi DR. The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO J 2004; 23:2071-82. [PMID: 15116068 PMCID: PMC424399 DOI: 10.1038/sj.emboj.7600218] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 03/31/2004] [Indexed: 01/05/2023] Open
Abstract
We generated homozygous knockin ES cells expressing a form of 3-phosphoinositide-dependent protein kinase-1 (PDK1) with a mutation in its pleckstrin homology (PH) domain that abolishes phosphatidylinositol 3,4,5-tris-phosphate (PtdIns(3,4,5)P3) binding, without affecting catalytic activity. In the knockin cells, protein kinase B (PKB) was not activated by IGF1, whereas ribosomal S6 kinase (RSK) was activated normally, indicating that PtdIns(3,4,5)P3 binding to PDK1 is required for PKB but not RSK activation. Interestingly, amino acids and Rheb, but not IGF1, activated S6K in the knockin cells, supporting the idea that PtdIns(3,4,5)P3 stimulates S6K through PKB-mediated activation of Rheb. Employing PDK1 knockin cells in which either the PtdIns(3,4,5)P3 binding or substrate-docking 'PIF pocket' was disrupted, we established the roles that these domains play in regulating phosphorylation and stabilisation of protein kinase C isoforms. Moreover, mouse PDK1 knockin embryos in which either the PH domain or PIF pocket was disrupted died displaying differing phenotypes between E10.5 and E11.5. Although PDK1 plays roles in regulating cell size, cells derived from PH domain or PIF pocket knockin embryos were of normal size. These experiments establish the roles of the PDK1 regulatory domains and illustrate the power of knockin technology to probe the physiological function of protein-lipid and protein-protein interactions.
Collapse
Affiliation(s)
- Edward J McManus
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB complex, University of Dundee, Dundee, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mora A, Komander D, van Aalten DMF, Alessi DR. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 2004; 15:161-70. [PMID: 15209375 DOI: 10.1016/j.semcdb.2003.12.022] [Citation(s) in RCA: 634] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The interaction of insulin and growth factors with their receptors on the outside surface of a cell, leads to the activation of phosphatidylinositol 3-kinase (PI 3-kinase) and generation of the phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) second messenger at the inner surface of the cell membrane. One of the most studied signalling events controlled by PtdIns(3,4,5)P3, comprises the activation of a group of AGC family protein kinases, including isoforms of protein kinase B (PKB)/Akt, p70 ribosomal S6 kinase (S6K), serum- and glucocorticoid-induced protein kinase (SGK) and protein kinase C (PKC), which play crucial roles in regulating physiological processes relevant to metabolism, growth, proliferation and survival. Here, we review recent biochemical, genetic and structural studies on the 3-phosphoinositide-dependent protein kinase-1 (PDK1), which phosphorylates and activates the AGC kinase members regulated by PI 3-kinase. We also discuss whether inhibitors of PDK1 might have chemotherapeutic potential in the treatment of cancers in which the PDK1-regulated AGC kinases are constitutively activated.
Collapse
Affiliation(s)
- Alfonso Mora
- MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | | | |
Collapse
|
48
|
Kim M, Cha GH, Kim S, Lee JH, Park J, Koh H, Choi KY, Chung J. MKP-3 has essential roles as a negative regulator of the Ras/mitogen-activated protein kinase pathway during Drosophila development. Mol Cell Biol 2004; 24:573-83. [PMID: 14701731 PMCID: PMC343793 DOI: 10.1128/mcb.24.2.573-583.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP-3) is a well-known negative regulator in the Ras/extracellular signal-regulated kinase (ERK)-MAPK signaling pathway responsible for cell fate determination and proliferation during development. However, the physiological roles of MKP-3 and the mechanism by which MKP-3 regulates Ras/Drosophila ERK (DERK) signaling in vivo have not been determined. Here, we demonstrated that Drosophila MKP-3 (DMKP-3) is critically involved in cell differentiation, proliferation, and gene expression by suppressing the Ras/DERK pathway, specifically binding to DERK via the N-terminal ERK-binding domain of DMKP-3. Overexpression of DMKP-3 reduced the number of photoreceptor cells and inhibited wing vein differentiation. Conversely, DMKP-3 hypomorphic mutants exhibited extra photoreceptor cells and wing veins, and its null mutants showed striking phenotypes, such as embryonic lethality and severe defects in oogenesis. All of these phenotypes were highly similar to those of the gain-of-function mutants of DERK/rl. The functional interaction between DMKP-3 and the Ras/DERK pathway was further confirmed by genetic interactions between DMKP-3 loss-of-function mutants or overexpressing transgenic flies and various mutants of the Ras/DERK pathway. Collectively, these data provide the direct evidences that DMKP-3 is indispensable to the regulation of DERK signaling activity during Drosophila development.
Collapse
Affiliation(s)
- Myungjin Kim
- National Creative Research Initiatives Center for Cell Growth Regulation and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong, Taejon 305-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Tuberous sclerosis complex (TSC) is a human syndrome characterized by a widespread development of benign tumors. This disease is caused by mutations in the TSC1 or TSC2 tumor suppressor genes; the molecular mechanisms underlying the activity of these have long been elusive. Recent studies of Drosophila and mammalian cells demonstrate that the TSC1-TSC2 complex functions as GTPase activating protein against Rheb - a Ras-like small GTPase, which in turn regulates TOR signaling in nutrient-stimulated cell growth. These findings provide a new paradigm for how proteins involved in nutrient sensing could function as tumor suppressors and suggest novel therapeutic targets against TSC. Here, we review these exciting developments with an emphasis on Drosophila studies and discuss how Drosophila can be a powerful model system for an understanding of the molecular mechanisms of the activity of human disease genes.
Collapse
Affiliation(s)
- Duojia Pan
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, USA.
| | | | | | | |
Collapse
|
50
|
Miron M, Lasko P, Sonenberg N. Signaling from Akt to FRAP/TOR targets both 4E-BP and S6K in Drosophila melanogaster. Mol Cell Biol 2004; 23:9117-26. [PMID: 14645523 PMCID: PMC309682 DOI: 10.1128/mcb.23.24.9117-9126.2003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eIF4E-binding proteins (4E-BPs) interact with translation initiation factor 4E to inhibit translation. Their binding to eIF4E is reversed by phosphorylation of several key Ser/Thr residues. In Drosophila, S6 kinase (dS6K) and a single 4E-BP (d4E-BP) are phosphorylated via the insulin and target of rapamycin (TOR) signaling pathways. Although S6K phosphorylation is independent of phosphoinositide 3-OH kinase (PI3K) and serine/threonine protein kinase Akt, that of 4E-BP is dependent on PI3K and Akt. This difference prompted us to examine the regulation of d4E-BP in greater detail. Analysis of d4E-BP phosphorylation using site-directed mutagenesis and isoelectric focusing-sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the regulatory interplay between Thr37 and Thr46 of d4E-BP is conserved in flies and that phosphorylation of Thr46 is the major phosphorylation event that regulates d4E-BP activity. We used RNA interference (RNAi) to target components of the PI3K, Akt, and TOR pathways. RNAi experiments directed at components of the insulin and TOR signaling cascades show that d4E-BP is phosphorylated in a PI3K- and Akt-dependent manner. Surprisingly, RNAi of dAkt also affected insulin-stimulated phosphorylation of dS6K, indicating that dAkt may also play a role in dS6K phosphorylation.
Collapse
Affiliation(s)
- Mathieu Miron
- Department of Biochemistry and McGill Cancer Center, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|