1
|
Fan JJ, Erickson AW, Carrillo-Garcia J, Wang X, Skowron P, Wang X, Chen X, Shan G, Dou W, Bahrampour S, Xiong Y, Dong W, Abeysundara N, Francisco MA, Pusong RJ, Wang W, Li M, Ying E, Suárez RA, Farooq H, Holgado BL, Wu X, Daniels C, Dupuy AJ, Cadiñanos J, Bradley A, Bagchi A, Moriarity BS, Largaespada DA, Morrissy AS, Ramaswamy V, Mack SC, Garzia L, Dirks PB, Li X, Wanggou S, Egan S, Sun Y, Taylor MD, Huang X. A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance. Dev Cell 2025:S1534-5807(25)00001-2. [PMID: 39862856 DOI: 10.1016/j.devcel.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver. KCNB2 governs cell volume of MB-propagating cells (MPCs), with KCNB2 depletion causing osmotic swelling, decreased plasma membrane tension, and elevated endocytic internalization of epidermal growth factor receptor (EGFR), thereby mitigating proliferation of MPCs to ultimately impair MB growth. KCNB2 is largely dispensable for mouse development and KCNB2 knockout synergizes with anti-SHH therapy in treating MB. These results demonstrate the utility of the Lazy Piggy functional genomic approach in identifying cancer maintenance drivers and elucidate a mechanism by which potassium homeostasis integrates biomechanical and biochemical signaling to promote MB aggression.
Collapse
Affiliation(s)
- Jerry J Fan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anders W Erickson
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julia Carrillo-Garcia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xin Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Patryk Skowron
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xian Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shahrzad Bahrampour
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yi Xiong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weifan Dong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Namal Abeysundara
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michelle A Francisco
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ronwell J Pusong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miranda Li
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elliot Ying
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Raúl A Suárez
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hamza Farooq
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Borja L Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaochong Wu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Daniels
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam J Dupuy
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo 33193, Spain
| | - Allan Bradley
- T-Therapeutics Ltd. One Riverside, Granta Park, Cambridge CB21 6AD, UK
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Branden S Moriarity
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - A Sorana Morrissy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T8, Canada
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen C Mack
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, Center of Excellence in Neuro-Oncology Sciences, St Jude Children's Hospital, Memphis, TN 38105, USA
| | - Livia Garzia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal, QC H4A 3J1, Canada; Cancer Research Program, RI-MUHC, Montreal, QC H4A 3J1, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Sean Egan
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xi Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
de Almeida FN, Vasciaveo A, Antao AM, Zou M, Di Bernardo M, de Brot S, Rodriguez-Calero A, Chui A, Wang ALE, Floc'h N, Kim JY, Afari SN, Mukhammadov T, Arriaga JM, Lu J, Shen MM, Rubin MA, Califano A, Abate-Shen C. A forward genetic screen identifies Sirtuin1 as a driver of neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609538. [PMID: 39253480 PMCID: PMC11383054 DOI: 10.1101/2024.08.24.609538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although localized prostate cancer is relatively indolent, advanced prostate cancer manifests with aggressive and often lethal variants, including neuroendocrine prostate cancer (NEPC). To identify drivers of aggressive prostate cancer, we leveraged Sleeping Beauty (SB) transposon mutagenesis in a mouse model based on prostate-specific loss-of-function of Pten and Tp53 . Compared with control mice, SB mice developed more aggressive prostate tumors, with increased incidence of metastasis. Notably, a significant percentage of the SB prostate tumors display NEPC phenotypes, and the transcriptomic features of these SB mouse tumors recapitulated those of human NEPC. We identified common SB transposon insertion sites (CIS) and prioritized associated CIS-genes differentially expressed in NEPC versus non-NEPC SB tumors. Integrated analysis of CIS-genes encoding for proteins representing upstream, post-translational modulators of master regulators controlling the transcriptional state of SB -mouse and human NEPC tumors identified sirtuin 1 ( Sirt1 ) as a candidate mechanistic determinant of NEPC. Gain-of-function studies in human prostate cancer cell lines confirmed that SIRT1 promotes NEPC, while its loss-of-function or pharmacological inhibition abrogates NEPC. This integrative analysis is generalizable and can be used to identify novel cancer drivers for other malignancies. Summary Using an unbiased forward mutagenesis screen in an autochthonous mouse model, we have investigated mechanistic determinants of aggressive prostate cancer. SIRT1 emerged as a key regulator of neuroendocrine prostate cancer differentiation and a potential target for therapeutic intervention.
Collapse
|
3
|
Iida N, Muranaka Y, Park JW, Sekine S, Copeland NG, Jenkins NA, Shiraishi Y, Oshima M, Takeda H. Sleeping Beauty transposon mutagenesis in mouse intestinal organoids identifies genes involved in tumor progression and metastasis. Cancer Gene Ther 2024; 31:527-536. [PMID: 38177308 DOI: 10.1038/s41417-023-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
To identify genes important for colorectal cancer (CRC) development and metastasis, we established a new metastatic mouse organoid model using Sleeping Beauty (SB) transposon mutagenesis. Intestinal organoids derived from mice carrying actively mobilizing SB transposons, an activating KrasG12D, and an inactivating ApcΔ716 allele, were transplanted to immunodeficient mice. While 66.7% of mice developed primary tumors, 7.6% also developed metastatic tumors. Analysis of SB insertion sites in tumors identified numerous candidate cancer genes (CCGs) identified previously in intestinal SB screens performed in vivo, in addition to new CCGs, such as Slit2 and Atxn1. Metastatic tumors from the same mouse were clonally related to each other and to primary tumors, as evidenced by the transposon insertion site. To provide functional validation, we knocked out Slit2, Atxn1, and Cdkn2a in mouse tumor organoids and transplanted to mice. Tumor development was promoted when these gene were knocked out, demonstrating that these are potent tumor suppressors. Cdkn2a knockout cells also metastasized to the liver in 100% of the mice, demonstrating that Cdkn2a loss confers metastatic ability. Our organoid model thus provides a new approach that can be used to understand the evolutionary forces driving CRC metastasis and a rich resource to uncover CCGs promoting CRC.
Collapse
Affiliation(s)
- Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukari Muranaka
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kang-won National University, Chuncheon-si, Republic of Korea
| | - Shigeki Sekine
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Neal G Copeland
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy A Jenkins
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
- Nano-Life Science Institute, Kanazawa University, Ishikawa, Japan
| | - Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
- Cancer genes and genomes unit, Cancer Research Institute, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
4
|
Shin W, Yun J, Han K, Park DG. Comparison of genetic variation between primary colorectal cancer and metastatic peritoneal cancer. Genes Genomics 2023; 45:989-1001. [PMID: 37277571 DOI: 10.1007/s13258-023-01408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Among cancer metastases by primary colorectal cancer (CRC), peritoneal metastasis is the second most common metastatic lesion after liver metastasis. In treating metastatic CRC, it is very important to differentiate targeted-therapy and chemotherapy according to the characteristics of each lesion because the genetic variation of the primary and metastatic lesions are different. However, there are few studies of genetic characteristics on peritoneal metastasis caused by primary CRC, so molecular-level studies are continuously required. OBJECTIVE We propose an appropriate peritoneal metastasis treatment policy by identifying the genetic characteristics between primary CRC and synchronous peritoneal metastatic lesions. METHODS Primary CRC and synchronous peritoneal metastasis samples were analyzed in pairs from six patients using Comprehensive Cancer Panel (409 cancer-related genes, Thermo Fisher Scientific, USA) and next-generation sequencing (NGS). RESULTS The mutations were commonly found on the KMT2C and THBS1 genes in both primary CRC and peritoneal metastasis. The PDE4DIP gene was mutated in all cases except for on a sample of peritoneal metastasis. As a result of analysis using the mutation database, we confirmed that the gene mutations of primary CRC and the peritoneal metastasis derived from it showed the same tendency, although we did not accompany the gene expression level or epigenetic study. CONCLUSION It is thought that the treatment policy through molecular genetic testing of primary CRC can also be applied to peritoneal metastasis treatment. Our study is expected to be the basis for further peritoneal metastasis research.
Collapse
Affiliation(s)
- Wonseok Shin
- NGS Clinical Laboratory, Dankook University Hospital, Cheonan, Republic of Korea
| | - Jeongseok Yun
- Department of Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Kyudong Han
- NGS Clinical Laboratory, Dankook University Hospital, Cheonan, Republic of Korea.
- Department of Microbiology, Dankook University, Cheonan, Republic of Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea.
- R&D Center, HuNbiome Co., Ltd, Seoul, Republic of Korea.
| | - Dong-Guk Park
- NGS Clinical Laboratory, Dankook University Hospital, Cheonan, Republic of Korea.
- Department of Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
5
|
Pan R, Dai J, Liang W, Wang H, Ye L, Ye S, Lin Z, Huang S, Xiong Y, Zhang L, Lu L, Wang O, Shen X, Liao W, Lu X. PDE4DIP contributes to colorectal cancer growth and chemoresistance through modulation of the NF1/RAS signaling axis. Cell Death Dis 2023; 14:373. [PMID: 37355626 PMCID: PMC10290635 DOI: 10.1038/s41419-023-05885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
Phosphodiesterase 4D interacting protein (PDE4DIP) is a centrosome/Golgi protein associated with cyclic nucleotide phosphodiesterases. PDE4DIP is commonly mutated in human cancers, and its alteration in mice leads to a predisposition to intestinal cancer. However, the biological function of PDE4DIP in human cancer remains obscure. Here, we report for the first time the oncogenic role of PDE4DIP in colorectal cancer (CRC) growth and adaptive MEK inhibitor (MEKi) resistance. We show that the expression of PDE4DIP is upregulated in CRC tissues and associated with the clinical characteristics and poor prognosis of CRC patients. Knockdown of PDE4DIP impairs the growth of KRAS-mutant CRC cells by inhibiting the core RAS signaling pathway. PDE4DIP plays an essential role in the full activation of oncogenic RAS/ERK signaling by suppressing the expression of the RAS GTPase-activating protein (RasGAP) neurofibromin (NF1). Mechanistically, PDE4DIP promotes the recruitment of PLCγ/PKCε to the Golgi apparatus, leading to constitutive activation of PKCε, which triggers the degradation of NF1. Upregulation of PDE4DIP results in adaptive MEKi resistance in KRAS-mutant CRC by reactivating the RAS/ERK pathway. Our work reveals a novel functional link between PDE4DIP and NF1/RAS signal transduction and suggests that targeting PDE4DIP is a promising therapeutic strategy for KRAS-mutant CRC.
Collapse
Affiliation(s)
- Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Juji Dai
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weicheng Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongxiao Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lin Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Siqi Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ziqi Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shishun Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yan Xiong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Takeda H, Jenkins NA, Copeland NG. Identification of cancer driver genes using Sleeping Beauty transposon mutagenesis. Cancer Sci 2021; 112:2089-2096. [PMID: 33783919 PMCID: PMC8177796 DOI: 10.1111/cas.14901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer genome sequencing studies have identified driver genes for a variety of different cancers and helped to understand the genetic landscape of human cancer. It is still challenging, however, to identify cancer driver genes with confidence simply from genetic data alone. In vivo forward genetic screens using Sleeping Beauty (SB) transposon mutagenesis provides another powerful genetic tool for identifying candidate cancer driver genes in wild-type and sensitized mouse tumors. By comparing cancer driver genes identified in human and mouse tumors, cancer driver genes can be identified with additional confidence based upon comparative oncogenomics. This review describes how SB mutagenesis works in mice and focuses on studies that have identified cancer driver genes in the mouse gastrointestinal tract.
Collapse
Affiliation(s)
- Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Nancy A Jenkins
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Neal G Copeland
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Law EK, Levin-Klein R, Jarvis MC, Kim H, Argyris PP, Carpenter MA, Starrett GJ, Temiz NA, Larson LK, Durfee C, Burns MB, Vogel RI, Stavrou S, Aguilera AN, Wagner S, Largaespada DA, Starr TK, Ross SR, Harris RS. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J Exp Med 2021; 217:152061. [PMID: 32870257 PMCID: PMC7953736 DOI: 10.1084/jem.20200261] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis. All other APOBEC3 family members, including APOBEC3B, fail to promote liver tumor formation. Tumor DNA sequences from APOBEC3A-expressing animals display hallmark APOBEC signature mutations in TCA/T motifs. Bioinformatic comparisons of the observed APOBEC3A mutation signature in murine tumors, previously reported APOBEC3A and APOBEC3B mutation signatures in yeast, and reanalyzed APOBEC mutation signatures in human tumor datasets support cause-and-effect relationships for APOBEC3A-catalyzed deamination and mutagenesis in driving multiple human cancers.
Collapse
Affiliation(s)
- Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Hyoung Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Prokopios P Argyris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Gabriel J Starrett
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN
| | - Lindsay K Larson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Cameron Durfee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Michael B Burns
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Department of Biology, Loyola University, Chicago, IL
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Spyridon Stavrou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sandra Wagner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Susan R Ross
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
8
|
Conboy CB, Vélez-Reyes GL, Rathe SK, Abrahante JE, Temiz NA, Burns MB, Harris RS, Starr TK, Largaespada DA. R-Spondins 2 and 3 Are Overexpressed in a Subset of Human Colon and Breast Cancers. DNA Cell Biol 2021; 40:70-79. [PMID: 33320737 PMCID: PMC7821429 DOI: 10.1089/dna.2020.5585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt signaling is activated in many cancer types, yet targeting the canonical Wnt pathway has been challenging for cancer therapy. The pathway might be effectively targeted at many levels depending on the mechanism by which it has become hyperactive. Recently, mouse genetic screens have found that R-spondins (RSPOs) act as oncogenes. Evidence includes recurrent genomic rearrangements that led to increased RSPO2 or RSPO3 expression in human colorectal adenocarcinomas, exclusive of APC mutations. RSPOs modulate Wnt signaling to promote epithelial cell proliferation and survival. These secreted proteins modulate Wnt signaling by binding to G-coupled receptors LGR4/5/6, ultimately inhibiting frizzled membrane clearance by RNF43 and ZNRF3. They also exert their function independent of leucine-rich repeat-containing, G protein-coupled receptors (LGRs) by binding to ZNRF3 and RNF43. This results in increased β-catenin concentration that, after translocation to the nucleus, acts as a transcriptional coactivator of genes necessary for proliferation and cell survival. In this article, we aimed to identify the role of RSPOs in colon and breast cancers by using in silico and in vitro studies. We found that expression of RSPO2 and RSPO3 at high levels characterized a subset of colorectal cancers (CRCs). RSPO2 expression was found to characterize a subset of triple-negative breast cancers. In both instances, increased expression of RSPOs was associated with an activated Wnt signaling gene expression profile. Furthermore, knockdown of RSPO2 decreased Wnt signaling and proliferation in human breast cancer cells. Our findings show and confirm that RSPO2 and RSPO3 expression is upregulated in a subset of colorectal adenocarcinomas and breast cancers and that both are attractive druggable oncoprotein targets against such cancers. We also describe novel fusion transcripts that occur in CRC.
Collapse
Affiliation(s)
- Caitlin B. Conboy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Susan K. Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, Minneapolis, Minnesota, USA
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael B. Burns
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reuben S. Harris
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy K. Starr
- Department of Obstetrics, Gynecology and Women's Health and University of Minnesota, Minneapolis, Minnesota, USA
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Weber J, Braun CJ, Saur D, Rad R. In vivo functional screening for systems-level integrative cancer genomics. Nat Rev Cancer 2020; 20:573-593. [PMID: 32636489 DOI: 10.1038/s41568-020-0275-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
With the genetic portraits of all major human malignancies now available, we next face the challenge of characterizing the function of mutated genes, their downstream targets, interactions and molecular networks. Moreover, poorly understood at the functional level are also non-mutated but dysregulated genomes, epigenomes or transcriptomes. Breakthroughs in manipulative mouse genetics offer new opportunities to probe the interplay of molecules, cells and systemic signals underlying disease pathogenesis in higher organisms. Herein, we review functional screening strategies in mice using genetic perturbation and chemical mutagenesis. We outline the spectrum of genetic tools that exist, such as transposons, CRISPR and RNAi and describe discoveries emerging from their use. Genome-wide or targeted screens are being used to uncover genomic and regulatory landscapes in oncogenesis, metastasis or drug resistance. Versatile screening systems support experimentation in diverse genetic and spatio-temporal settings to integrate molecular, cellular or environmental context-dependencies. We also review the combination of in vivo screening and barcoding strategies to study genetic interactions and quantitative cancer dynamics during tumour evolution. These scalable functional genomics approaches are transforming our ability to interrogate complex biological systems.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Christian J Braun
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
10
|
Noorani I, Bradley A, de la Rosa J. CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biol 2020; 21:204. [PMID: 32811551 PMCID: PMC7437018 DOI: 10.1186/s13059-020-02118-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Human cancers harbor substantial genetic, epigenetic, and transcriptional changes, only some of which drive oncogenesis at certain times during cancer evolution. Identifying the cancer-driver alterations amongst the vast swathes of "passenger" changes still remains a major challenge. Transposon and CRISPR screens in vivo provide complementary methods for achieving this, and each platform has its own advantages. Here, we review recent major technological breakthroughs made with these two approaches and highlight future directions. We discuss how each genetic screening platform can provide unique insight into cancer evolution, including intra-tumoral heterogeneity, metastasis, and immune evasion, presenting transformative opportunities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Imran Noorani
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Department of Neurosurgery, University of Cambridge, Cambridge, CB2 0QQ, UK.
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Allan Bradley
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jorge de la Rosa
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
11
|
Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities. Int J Mol Sci 2020; 21:ijms21031172. [PMID: 32050713 PMCID: PMC7036786 DOI: 10.3390/ijms21031172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity.
Collapse
|
12
|
Conboy CB, Vélez-Reyes GL, Tschida BR, Hu H, Kaufmann G, Koes N, Keller B, Alsinet C, Cornellà H, Pinyol R, Abrahante JE, Temiz NA, Linden MA, Amin K, Kuka TP, Keng VW, Llovet JM, Starr TK, Largaespada DA. R-spondin 2 Drives Liver Tumor Development in a Yes-Associated Protein-Dependent Manner. Hepatol Commun 2019; 3:1496-1509. [PMID: 31701073 PMCID: PMC6824083 DOI: 10.1002/hep4.1422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Each year, more than 25,000 people succumb to liver cancer in the United States, and this neoplasm represents the second cause of cancer-related death globally. R-spondins (RSPOs) are secreted regulators of Wnt signaling that function in development and promote tissue stem cell renewal. In cancer, RSPOs 2 and 3 are oncogenes first identified by insertional mutagenesis screens in tumors induced by mouse mammary tumor virus and by transposon mutagenesis in the colonic epithelium of rodents. RSPO2 has been reported to be activated by chromosomal rearrangements in colorectal cancer and overexpressed in a subset of hepatocellular carcinoma. Using human liver tumor gene expression data, we first discovered that a subset of liver cancers were characterized by high levels of RSPO2 in contrast to low levels in adjacent nontumor tissue. To determine if RSPOs are capable of inducing liver tumors, we used an in vivo model from which we found that overexpression of RSPO2 in the liver promoted Wnt signaling, hepatomegaly, and enhanced liver tumor formation when combined with loss of transformation-related protein 53 (Trp53). Moreover, the Hippo/yes-associated protein (Yap) pathway has been implicated in many human cancers, influencing cell survival. Histologic and gene expression studies showed activation of Wnt/β-catenin and Hippo/Yap pathways following RSPO2 overexpression. We demonstrate that knockdown of Yap1 leads to reduced tumor penetrance following RSPO2 overexpression in the context of loss of Trp53. Conclusion: RSPO2 overexpression leads to tumor formation in the mouse liver in a Hippo/Yap-dependent manner. Overall, our results suggest a role for Yap in the initiation and progression of liver tumors and uncover a novel pathway activated in RSPO2-induced malignancies. We show that RSPO2 promotes liver tumor formation in vivo and in vitro and that RSPO2's oncogenic activity requires Hippo/Yap activation in hepatocytes. Both RSPO2 and YAP1 are suggested to represent novel druggable targets in Wnt-driven tumors of the liver.
Collapse
Affiliation(s)
| | | | | | - Hsiangyu Hu
- Masonic Cancer Center University of Minnesota Minneapolis MN
| | | | - Nicholas Koes
- Masonic Cancer Center University of Minnesota Minneapolis MN
| | - Bryant Keller
- Masonic Cancer Center University of Minnesota Minneapolis MN
| | - Clara Alsinet
- Liver Cancer Translational Research Laboratory Liver Unit, L'Institut d'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clinic of Barcelona University of Barcelona Barcelona Spain
| | - Helena Cornellà
- Liver Cancer Translational Research Laboratory Liver Unit, L'Institut d'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clinic of Barcelona University of Barcelona Barcelona Spain
| | - Roser Pinyol
- Liver Cancer Translational Research Laboratory Liver Unit, L'Institut d'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clinic of Barcelona University of Barcelona Barcelona Spain
| | | | - Nuri A Temiz
- Masonic Cancer Center University of Minnesota Minneapolis MN
| | - Michael A Linden
- Comparative Pathology Shared Resource University of Minnesota St. Paul MN.,Department of Medicine Division of Hematology, Oncology, and Transplantation University of Minnesota Minneapolis MN
| | - Khalid Amin
- Comparative Pathology Shared Resource University of Minnesota St. Paul MN.,Department of Medicine Division of Hematology, Oncology, and Transplantation University of Minnesota Minneapolis MN
| | - Timothy P Kuka
- Masonic Cancer Center University of Minnesota Minneapolis MN
| | - Vincent W Keng
- Masonic Cancer Center University of Minnesota Minneapolis MN.,Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Josep M Llovet
- Liver Cancer Translational Research Laboratory Liver Unit, L'Institut d'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clinic of Barcelona University of Barcelona Barcelona Spain.,Mount Sinai Liver Cancer Program Division of Liver Diseases Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York NY.,Catalan Institution for Research and Advanced Studies Barcelona Spain
| | - Timothy K Starr
- Department of Obstetrics, Gynecology, and Women's Health University of Minnesota Minneapolis MN
| | - David A Largaespada
- Masonic Cancer Center University of Minnesota Minneapolis MN.,Department of Pediatrics University of Minnesota Minneapolis MN
| |
Collapse
|
13
|
Hou J, Zhao L, Yan J, Ren X, Zhu K, Gao T, Du X, Luo H, Li Z, Xu M. MicroRNA expression profile is altered in the upper airway skeletal muscle tissue of patients with obstructive sleep apnea-hypopnea syndrome. J Int Med Res 2019; 47:4163-4182. [PMID: 31296077 PMCID: PMC6753562 DOI: 10.1177/0300060519858900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the involvement of microRNAs (miRNAs) in the pathogenesis of
obstructive sleep apnea-hypopnea syndrome (OSAHS). Methods In this study, we investigated miRNA profiles in the upper airway (UA)
skeletal muscles of four patients with OSAHS and four matched controls using
the miRCURY miRNA array. In another cohort of 12 OSAHS cases and 7 controls,
the mRNA expression levels of interleukin (IL)-6 and Lin-28 homolog A
(Lin28A), targets of the downregulated let-7 family members, were measured
by real-time quantitative-PCR. The potential targets of the miRNAs were
predicted by miRNA target prediction databases miRanda, Microcosm, and
Targetscan. Results The array identified 370 differentially expressed miRNAs, of which 181 were
upregulated and 189 were downregulated in OSAHS patients (based on a
fold-change >2.0 and p < 0.05). Upregulation of IL-6
and Lin28A was validated by quantitative reverse transcription PCR. The 612
targets predicted by all three algorithms were subjected to gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses.
The results revealed perturbations in signaling pathways and cellular
functions. Conclusion This study demonstrated profoundly altered miRNA expression profiles in upper
airway muscular tissues of patients with OSAHS, which might contribute to
the formation and development of OSAHS.
Collapse
Affiliation(s)
- Jin Hou
- Department of Otorhinolaryngology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jing Yan
- Department of Otorhinolaryngology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyong Ren
- Department of Otorhinolaryngology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Kang Zhu
- Department of Otorhinolaryngology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Tianxi Gao
- Department of Otorhinolaryngology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoying Du
- Department of Otorhinolaryngology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Huanan Luo
- Department of Otorhinolaryngology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Zhihui Li
- Department of Otorhinolaryngology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Min Xu
- Department of Otorhinolaryngology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Ma W, Li C, Zhao L, Wang Y, Xiao R. NF-κB-mediated inflammatory damage is differentially affected in SH-SY5Y and C6 cells treated with 27-hydroxycholesterol. Food Sci Nutr 2019; 7:1685-1694. [PMID: 31139381 PMCID: PMC6526694 DOI: 10.1002/fsn3.1005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Previous studies have demonstrated that 27-hydroxycholesterol (27-OHC), a cholesterol metabolite, was involved in the inflammatory process of Alzheimer's disease (AD). The present study aimed to investigate the 27-OHC-induced inflammatory damage to neurons and astrocytes and the underlying mechanism(s) accounting for this damage. Human neuroblastoma cells (SH-SY5Y cells) and rat glioma cells (C6 cells) were treated with vehicle or 27-OHC (5, 10, or 20 μM) for 24 hr. The levels of secreted interleukin-1β (IL-1β), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), and inducible nitric oxide synthase (iNOS) were determined by using an enzyme-linked immunosorbent assay (ELISA). Immunofluorescence staining was used to determine the cellular expression of toll-like receptor 4 (TLR4) and transforming growth factor-β (TGF-β). The mRNA and protein expression levels of nuclear factor-κB p65 (NF-κB p65), nuclear factor-κB p50 (NF-κB p50) and cyclooxygenase-2 (COX-2) in both SH-SY5Y and C6 cells were also detected by real-time PCR and Western blot, respectively. The results of this study showed that 27-OHC treatment increased secretion of TNF-α and iNOS and decreased secretion of IL-10, upregulated expression of TGF-β, NF-κB p65 and p50, and downregulated expression of COX-2 in SH-SY5Y cells. In C6 cells, treatment with 27-OHC resulted in decreased secretion of IL-1β, IL-10, TNF-α, and iNOS, and increased expression of TLR4 and TGF-β. These results suggest that 27-OHC may cause inflammatory damage to neurons by activating the TGF-β/NF-κB signaling pathway and to astrocytes by activating the TLR4/TGF-β signaling, which results in the subsequent release of inflammatory cytokines.
Collapse
Affiliation(s)
- Wei‐Wei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijingChina
| | - Chao‐Qun Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijingChina
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer CenterUniversity of Iowa Carver College of MedicineIowa CityIowa
| | - Yu‐Shan Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijingChina
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijingChina
| |
Collapse
|
15
|
MiR-208a-3p functions as an oncogene in colorectal cancer by targeting PDCD4. Biosci Rep 2019; 39:BSR20181598. [PMID: 30914452 PMCID: PMC6465200 DOI: 10.1042/bsr20181598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/08/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidences have shown microRNAs (miRNAs) play important roles in the progression of human cancers including colorectal cancer (CRC). However, the biological function and molecular mechanism of miRNAs in CRC still remains to be further investigated. Using microarray, we found and confirmed that miR-208a-3p was up-regulated in CRC tissues. Its high expression was statistically associated with distant metastasis and TNM stage. Functional assays revealed inhibition of miR-208a-3p suppressed proliferation, invasion and migration, and induced cell apoptosis of CRC cells. Moreover, we identified programmed cell death protein 4 (PDCD4), a well-known tumor suppressor, is a direct target of miR-208a-3p. We also found that overexpression of PDCD4 suppressed cell proliferation, invasion, and migration. Importantly, silencing of PDCD4 efficiently abrogated the promoting effects on CRC cells proliferation, invasion, and migration caused by inhibition of miR-208a-3p. Our findings confirmed the oncogenic role of miR-208a-3p via targeting PDCD4 in CRC, identifying miR-208a-3p as a potential diagnosis and therapeutic biomarker for CRC.
Collapse
|
16
|
Serre L, Stoppin-Mellet V, Arnal I. Adenomatous Polyposis Coli as a Scaffold for Microtubule End-Binding Proteins. J Mol Biol 2019; 431:1993-2005. [PMID: 30959051 DOI: 10.1016/j.jmb.2019.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 11/17/2022]
Abstract
End-binding proteins (EBs), referred to as the core components of the microtubule plus-end tracking protein network, interact with the C-terminus of the adenomatous polyposis coli (APC) tumor suppressor. This interaction is disrupted in colon cancers expressing truncated APC. APC and EBs act in synergy to regulate microtubule dynamics during spindle formation, chromosome segregation and cell migration. Since EBs autonomously end-track microtubules and partially co-localize with APC at microtubule tips in cells, EBs have been proposed to direct APC to microtubule ends. However, the interdependency of EB and APC localization on microtubules remains elusive. Here, using in vitro reconstitution and single-molecule imaging, we have investigated the interplay between EBs and the C-terminal domain of APC (APC-C) on dynamic microtubules. Our results show that APC-C binds along the microtubule wall but does not accumulate at microtubule tips, even when EB proteins are present. APC-C was also found to enhance EB binding at the extremity of growing microtubules and on the microtubule lattice: APC-C promotes EB end-tracking properties by increasing the time EBs spend at microtubule growing ends, whereas a pool of EBs with a fast turnover accumulates along the microtubule surface. Overall, our results suggest that APC is a promoter of EB interaction with microtubules, providing molecular determinants to reassess the relationship between APC and EBs.
Collapse
Affiliation(s)
- Laurence Serre
- Grenoble Institut des Neurosciences, INSERM U1216, Univ. Grenoble Alpes, Grenoble, 38000 France.
| | - Virginie Stoppin-Mellet
- Grenoble Institut des Neurosciences, INSERM U1216, Univ. Grenoble Alpes, Grenoble, 38000 France
| | - Isabelle Arnal
- Grenoble Institut des Neurosciences, INSERM U1216, Univ. Grenoble Alpes, Grenoble, 38000 France.
| |
Collapse
|
17
|
Abstract
Cancer is a complex disease that originates from genetic changes leading to multiple phenotypic manifestations that ultimately result in suffering and death from cancer. Attempts have been made to define the phenotypic and genetic "hallmarks" of cancer, but many of these "hallmarks" remain descriptive, while the underlying mechanisms responsible for these hallmarks remain elusive. For decades, cancer researchers have been methodically identifying the molecular mechanisms that result in tumor initiation, growth, metastases, and resistance to therapy. Great strides forward have been made and we are entering an era of "precision medicine" with the goal of treating each cancer based on its unique etiology. Increasingly, the decision to use targeted therapies and immunotherapies in the clinic is based on the genotype of the cancer being treated. For example, specific tyrosine kinase inhibitors are only prescribed to patients that express the tyrosine kinase protein on their cancer cells. Likewise, a genetically unstable cancer is predictive for successful immunotherapy. Knowledge of the specific genetic changes that result in overproduction of oncogenes and reduced production of tumor suppressors is crucial for advancing therapeutic options for cancer. The first chapter of this book presents a brief history of cancer gene discovery. In the remaining chapters of this book, we present protocols using in silico, in vitro, and in vivo techniques for identifying genetic drivers of cancer, in the hope that these protocols will be used to increase our knowledge of the molecular mechanisms driving cancer.
Collapse
|
18
|
Abstract
Transposon mutagenesis has emerged as a powerful methodology for functionally annotating cancer genomes. Although in vivo transposon-mediated forward genetic screens have proven to be valuable for cancer gene identification, they are also time consuming and resource intensive. To facilitate the rapid and cost-effective identification of genes that regulate tumor-promoting pathways, we developed a complementary ex vivo transposon mutagenesis approach wherein human or mouse cells growing in culture are mutagenized and screened for the acquisition of specific phenotypes in vitro or in vivo, such as growth factor independence or tumor-forming ability. This approach allows discovery of both gain- and loss-of-function mutations in the same screen. Transposon insertions sites are recovered by high-throughput sequencing. We recently applied this system to comprehensively identify and validate genes that promote growth factor independence and transformation of murine Ba/F3 cells. Here we describe a method for performing ex vivo Sleeping Beauty-mediated mutagenesis screens in these cells, which may be adapted for the acquisition of many different phenotypes in distinct cell types.
Collapse
|
19
|
Chiu AP, Keng VW. Liver-Specific Delivery of Sleeping Beauty Transposon System by Hydrodynamic Injection for Cancer Gene Validation. Methods Mol Biol 2019; 1907:185-196. [PMID: 30543001 DOI: 10.1007/978-1-4939-8967-6_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the complex genetic background of cancers is key in developing effective targeted therapies. The Sleeping Beauty (SB) transposon system is a powerful and unbiased genetic editing tool that can be used for rapid screening of candidate liver cancer driver genes. Manipulating their expression level using a reverse genetic mouse model involving hydrodynamic tail-vein injection delivery can rapidly elucidate the role of these candidate genes in liver cancer tumorigenesis.
Collapse
Affiliation(s)
- Amy P Chiu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Vincent W Keng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| |
Collapse
|
20
|
Guimaraes-Young A, Feddersen CR, Dupuy AJ. Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics. Front Oncol 2019; 9:611. [PMID: 31338332 PMCID: PMC6629774 DOI: 10.3389/fonc.2019.00611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon insertional mutagenesis system offers a streamlined approach to identify genetic drivers of cancer. With a relatively random insertion profile, SB is uniquely positioned for conducting unbiased forward genetic screens. Indeed, SB mouse models of cancer have revealed insights into the genetics of tumorigenesis. In this review, we highlight experiments that have exploited the SB system to interrogate the genetics of cancer in distinct biological contexts. We also propose experimental designs that could further our understanding of the relationship between tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Amy Guimaraes-Young
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Charlotte R Feddersen
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
21
|
Transposon mutagenesis screen in mice identifies TM9SF2 as a novel colorectal cancer oncogene. Sci Rep 2018; 8:15327. [PMID: 30333512 PMCID: PMC6193042 DOI: 10.1038/s41598-018-33527-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 01/04/2023] Open
Abstract
New therapeutic targets for advanced colorectal cancer (CRC) are critically needed. Our laboratory recently performed an insertional mutagenesis screen in mice to identify novel CRC driver genes and, thus, potential drug targets. Here, we define Transmembrane 9 Superfamily 2 (TM9SF2) as a novel CRC oncogene. TM9SF2 is an understudied protein, belonging to a well conserved protein family characterized by their nine putative transmembrane domains. Based on our transposon screen we found that TM9SF2 is a candidate progression driver in digestive tract tumors. Analysis of The Cancer Genome Atlas (TCGA) data revealed that approximately 35% of CRC patients have elevated levels of TM9SF2 mRNA, data we validated using an independent set of CRC samples. RNAi silencing of TM9SF2 reduced CRC cell growth in an anchorage-independent manner, a hallmark of cancer. Furthermore, CRISPR/Cas9 knockout of TM9SF2 substantially diminished CRC tumor fitness in vitro and in vivo. Transcriptome analysis of TM9SF2 knockout cells revealed a potential role for TM9SF2 in cell cycle progression, oxidative phosphorylation, and ceramide signaling. Lastly, we report that increased TM9SF2 expression correlates with disease stage and low TM9SF2 expression correlate with a more favorable relapse-free survival. Taken together, this study provides evidence that TM9SF2 is a novel CRC oncogene.
Collapse
|
22
|
Isakson SH, Rizzardi AE, Coutts AW, Carlson DF, Kirstein MN, Fisher J, Vitte J, Williams KB, Pluhar GE, Dahiya S, Widemann BC, Dombi E, Rizvi T, Ratner N, Messiaen L, Stemmer-Rachamimov AO, Fahrenkrug SC, Gutmann DH, Giovannini M, Moertel CL, Largaespada DA, Watson AL. Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Commun Biol 2018; 1:158. [PMID: 30302402 PMCID: PMC6168575 DOI: 10.1038/s42003-018-0163-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a genetic disease caused by mutations in Neurofibromin 1 (NF1). NF1 patients present with a variety of clinical manifestations and are predisposed to cancer development. Many NF1 animal models have been developed, yet none display the spectrum of disease seen in patients and the translational impact of these models has been limited. We describe a minipig model that exhibits clinical hallmarks of NF1, including café au lait macules, neurofibromas, and optic pathway glioma. Spontaneous loss of heterozygosity is observed in this model, a phenomenon also described in NF1 patients. Oral administration of a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor suppresses Ras signaling. To our knowledge, this model provides an unprecedented opportunity to study the complex biology and natural history of NF1 and could prove indispensable for development of imaging methods, biomarkers, and evaluation of safety and efficacy of NF1-targeted therapies.
Collapse
Affiliation(s)
- Sara H Isakson
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Anthony E Rizzardi
- Recombinetics Inc., 1246 University Avenue W., Suite 301, St. Paul, MN, 55104, USA
| | - Alexander W Coutts
- Recombinetics Inc., 1246 University Avenue W., Suite 301, St. Paul, MN, 55104, USA
| | - Daniel F Carlson
- Recombinetics Inc., 1246 University Avenue W., Suite 301, St. Paul, MN, 55104, USA
| | - Mark N Kirstein
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA.,Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Room 459, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - James Fisher
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Room 459, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, 675 Charles E Young Drive S, MRL Room 2240, Los Angeles, CA, 90095, USA
| | - Kyle B Williams
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - G Elizabeth Pluhar
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, 660S. Euclid Avenue, CB 8118, St. Louis, MO, 63110, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC 1-5750, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC 1-5750, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Tilat Rizvi
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, 3333 Burnet Avenue, ML 7013, Cincinnati, OH, 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, 3333 Burnet Avenue, ML 7013, Cincinnati, OH, 45229, USA
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Kaul Building, 720 20th Street South, Birmingham, AL, 35294, USA
| | - Anat O Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Warren Building, Room 333A, 55 Fruit Street, Boston, MA, 02114, USA
| | - Scott C Fahrenkrug
- Recombinetics Inc., 1246 University Avenue W., Suite 301, St. Paul, MN, 55104, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, Box 8111, 660S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, 675 Charles E Young Drive S, MRL Room 2240, Los Angeles, CA, 90095, USA
| | - Christopher L Moertel
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA.,Department of Pediatrics, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA.,Department of Pediatrics, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Adrienne L Watson
- Recombinetics Inc., 1246 University Avenue W., Suite 301, St. Paul, MN, 55104, USA.
| |
Collapse
|
23
|
Choi HJ, Lee HB, Jung S, Park HK, Jo W, Cho SM, Kim WJ, Son WC. Development of a Mouse Model of Prostate Cancer Using the Sleeping Beauty Transposon and Electroporation. Molecules 2018; 23:molecules23061360. [PMID: 29874846 PMCID: PMC6100630 DOI: 10.3390/molecules23061360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2018] [Accepted: 06/01/2018] [Indexed: 01/12/2023] Open
Abstract
The Sleeping Beauty (SB) transposon system is non-viral and uses insertional mutagenesis, resulting in the permanent expression of transferred genes. Although the SB transposon is a useful method for establishing a mouse tumor model, there has been difficulty in using this method to generate tumors in the prostate. In the present study, electroporation was used to enhance the transfection efficiency of the SB transposon. To generate tumors, three constructs (a c-Myc expression cassette, a HRAS (HRas proto-oncogene, GTPase) expression cassette and a shRNA against p53) contained within the SB transposon plasmids were directly injected into the prostate. Electroporation was conducted on the injection site after the injection of the DNA plasmid. Following the tumorigenesis, the tumors were monitored by animal PET imaging and identified by gross observation. After this, the tumors were characterized by using histological and immunohistochemical techniques. The expression of the targeted genes was analyzed by Real-Time qRT-PCR. All mice subjected to the injection were found to have prostate tumors, which was supported by PSA immunohistochemistry. To our knowledge, this is the first demonstration of tumor induction in the mouse prostate using the electroporation-enhanced SB transposon system in combination with c-Myc, HRAS and p53. This model serves as a valuable resource for the future development of SB-induced mouse models of cancer.
Collapse
Affiliation(s)
- Hyun-Ji Choi
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Han-Byul Lee
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Sunyoung Jung
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Hyun-Kyu Park
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woori Jo
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Sung-Min Cho
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woo-Jin Kim
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woo-Chan Son
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| |
Collapse
|
24
|
Liang L, Zhao L, Zan Y, Zhu Q, Ren J, Zhao X. MiR-93-5p enhances growth and angiogenesis capacity of HUVECs by down-regulating EPLIN. Oncotarget 2017; 8:107033-107043. [PMID: 29291009 PMCID: PMC5739794 DOI: 10.18632/oncotarget.22300] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Tumor angiogenesis is essential in delivering oxygen and nutrients to growing tumors, and therefore considered as a hallmark of cancer. MicroRNAs (miRNAs) have been shown to play important roles in regulating tumor angiogenesis. MicroRNA-93-5p (miR-93-5p) has been identified as an oncogenic miRNA in a variety of human malignancies and involved in tumor angiogenesis in astrocytoma. However, the direct effect(s) of miR-93-5p on the biological behaviors of endothelial cells have not been investigated. Thus, in the present study we investigated the role(s) of miR-93-5p in regulating the functions of human umbilical vein endothelial cells (HUVECs). We found that triple negative breast cancer (TNBC) tissues with higher levels of miR-93-5p showed higher blood vessel density. Overexpression of miR-93-5p accelerated HUVECs proliferation and migration and promoted HUVECs lumen formation and sprouting in vitro, while blockade of miR-93-5p suppressed HUVECs migration and angiogenic capacity. The mechanistic studies revealed that miR-93-5p can promote angiogenic process through inhibiting epithelial protein lost in neoplasm (EPLIN) expression in HUVECs. In sum, our results have indicated that miR-93-5p promoted angiogenesis through down-regulating EPLIN and therefore represented a promising target for developing novel anti-angiogenic therapeutics.
Collapse
Affiliation(s)
- Liang Liang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ying Zan
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Qing Zhu
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Juan Ren
- Department of Radiation Oncology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
25
|
Ma WW, Zhao L, Yuan LH, Yu HL, Wang H, Gong XY, Wei F, Xiao R. Elaidic acid induces cell apoptosis through induction of ROS accumulation and endoplasmic reticulum stress in SH‑SY5Y cells. Mol Med Rep 2017; 16:9337-9346. [PMID: 29152653 PMCID: PMC5779995 DOI: 10.3892/mmr.2017.7830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
Elaidic acid, which is a major trans fatty acid, has been reported to be involved in neurotoxicity; however, the underlying molecular mechanisms underlying its neurotoxic effects remain largely unknown. Therefore, the present study aimed to investigate the potential mechanisms underlying elaidic acid‑induced neuronal damage in vitro. The SH‑SY5Y neuroblastoma cell line was used as a model in the present study. Following treatment of cells with various concentrations of elaidic acid or with vehicle for 24 h, cell viability was measured using the MTT assay. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) release were measured using flow cytometry. Cell apoptosis was measured by Annexin V‑fluorescein isothiocyanate/propidium iodide double staining, and cellular redox status was determined using ELISA analysis. Furthermore, western blotting was used to detect the protein expression levels of factors associated with oxidative damage and components of the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) signaling pathways. The results demonstrated that elaidic acid treatment inhibited cell viability, elevated cell apoptosis and resulted in a loss of MMP. In addition, elaidic acid induced marked alterations in cellular redox status. Treatment with high doses of elaidic acid treatment also enhanced the release of ROS, and upregulated lipid peroxide and malondialdehyde levels; however, it reduced superoxide dismutase and glutathione peroxidase activities. Furthermore, elaidic acid resulted in upregulation of nuclear factor erythroid 2‑related factor 2 and downregulation of heme oxygenase 1, which are two key antioxidative factors. Elaidic acid treatment also induced or inhibited the expression of numerous ER stress/UPR‑associated molecules. It induced glucose‑regulated protein 78 (GRP78) expression, whereas the expression levels of activating transcription factor 4 (ATF4) and CCAAT/enhancer‑binding protein homologous protein (CHOP) were upregulated and then downregulated following treatment with various doses of elaidic acid. These results indicated that elaidic acid inhibited SH‑SY5Y cell growth and induced apoptosis by enhancing oxidative stress and activating the ER stress/UPR signaling pathway and the GRP78/ATF4/CHOP pathway.
Collapse
Affiliation(s)
- Wei-Wei Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lin-Hong Yuan
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Huan-Ling Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Hui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Xin-Yuan Gong
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Feng Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Rong Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
26
|
Du L, Ma S, Wen X, Chai J, Zhou D. Oral squamous cell carcinoma cells are resistant to doxorubicin through upregulation of miR‑221. Mol Med Rep 2017; 16:2659-2667. [PMID: 28677788 PMCID: PMC5547975 DOI: 10.3892/mmr.2017.6915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) cells are usually resistant to doxorubicin, resulting in limited application of doxorubicin in OSCC treatment. MicroRNA (miR)‑221 has been reported to be involved in the development of OSCC; however, it remains unclear if and how miR‑221 is implicated in modulating the sensitivity of OSCC cells to doxorubicin. In the present study, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to assess miR‑221 expression in OSCC cells in response to doxorubicin treatment. In addition, the SCC4 and SCC9 OSCC cell lines were transfected with anti‑miR‑221 oligonucleotides and cell viability and apoptosis following doxorubicin treatment were evaluated using an MTT assay and Annexin V‑fluorescein isothiocyanate/Hoechst double staining, respectively. The mRNA and protein expression levels of tissue inhibitor of metalloproteinase‑3 (TIMP3) in anti‑miR‑221‑transfected cells were assessed using RT‑qPCR and western blot analysis, respectively. Furthermore, a luciferase reporter assay was performed to investigate whether TIMP3 may be a direct target gene of miR‑221. To explore the roles of TIMP3 in miR‑221‑mediated cell responses, TIMP3 expression was silenced following transfection with TIMP3‑targeting small interfering (si)RNA in cells overexpressing miR‑221, and cell viability and apoptosis in response to doxorubicin treatment were measured. The results of the present study demonstrated that miR‑221 expression was upregulated in SCC4 and SCC9 cells following treatment with doxorubicin. However, inhibiting the doxorubicin‑induced upregulation of miR‑221 through transfection with anti‑miR‑221 oligonucleotides led to an increase in the sensitivity of OSCC cells to doxorubicin. In addition, the results indicated that TIMP3 was a direct target of miR‑221 in OSCC cells, as determined by a 3'‑untranslated region luciferase reporter assay. Co‑transfection of cells with anti‑miR‑221 oligonucleotides and TIMP3‑specific small interfering RNA resulted in reduced sensitivity to doxorubicin compared with the cells transfected with the miR‑221 inhibitor alone. In conclusion, these results indicated that OSCC cells are resistant to doxorubicin through upregulation of miR‑221, which in turn downregulates TIMP3. Therefore, silencing miR‑221 or upregulating TIMP3 may be considered promising therapeutic approaches to enhance the sensitivity of OSCC to doxorubicin.
Collapse
Affiliation(s)
- Liangzhi Du
- Department of Implant Dentistry, Stomatology Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Siwei Ma
- Department of Implant Dentistry, Stomatology Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Wen
- School of Sports and Health, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Juan Chai
- Department of Oral and Maxillofacial Surgery and Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Dangxia Zhou
- Department of Pathology, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
27
|
Transposon mutagenesis identifies chromatin modifiers cooperating with Ras in thyroid tumorigenesis and detects ATXN7 as a cancer gene. Proc Natl Acad Sci U S A 2017; 114:E4951-E4960. [PMID: 28584132 DOI: 10.1073/pnas.1702723114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oncogenic RAS mutations are present in 15-30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with HrasG12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-HrasG12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7, a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene.
Collapse
|
28
|
Transposon insertional mutagenesis in mice identifies human breast cancer susceptibility genes and signatures for stratification. Proc Natl Acad Sci U S A 2017; 114:E2215-E2224. [PMID: 28251929 PMCID: PMC5358385 DOI: 10.1073/pnas.1701512114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite concerted efforts to identify causal genes that drive breast cancer (BC) initiation and progression, we have yet to establish robust signatures to stratify patient risk. Here we used in vivo transposon-based forward genetic screening to identify potentially relevant BC driver genes. Integrating this approach with survival prediction analysis, we identified six gene pairs that could prognose human BC subtypes into high-, intermediate-, and low-risk groups with high confidence and reproducibility. Furthermore, we identified susceptibility gene sets for basal and claudin-low subtypes (21 and 16 genes, respectively) that stratify patients into three relative risk subgroups. These signatures offer valuable prognostic insight into the genetic basis of BC and allow further exploration of the interconnectedness of BC driver genes during disease progression. Robust prognostic gene signatures and therapeutic targets are difficult to derive from expression profiling because of the significant heterogeneity within breast cancer (BC) subtypes. Here, we performed forward genetic screening in mice using Sleeping Beauty transposon mutagenesis to identify candidate BC driver genes in an unbiased manner, using a stabilized N-terminal truncated β-catenin gene as a sensitizer. We identified 134 mouse susceptibility genes from 129 common insertion sites within 34 mammary tumors. Of these, 126 genes were orthologous to protein-coding genes in the human genome (hereafter, human BC susceptibility genes, hBCSGs), 70% of which are previously reported cancer-associated genes, and ∼16% are known BC suppressor genes. Network analysis revealed a gene hub consisting of E1A binding protein P300 (EP300), CD44 molecule (CD44), neurofibromin (NF1) and phosphatase and tensin homolog (PTEN), which are linked to a significant number of mutated hBCSGs. From our survival prediction analysis of the expression of human BC genes in 2,333 BC cases, we isolated a six-gene-pair classifier that stratifies BC patients with high confidence into prognostically distinct low-, moderate-, and high-risk subgroups. Furthermore, we proposed prognostic classifiers identifying three basal and three claudin-low tumor subgroups. Intriguingly, our hBCSGs are mostly unrelated to cell cycle/mitosis genes and are distinct from the prognostic signatures currently used for stratifying BC patients. Our findings illustrate the strength and validity of integrating functional mutagenesis screens in mice with human cancer transcriptomic data to identify highly prognostic BC subtyping biomarkers.
Collapse
|
29
|
Wang L, Zhu Y, Wang D. High-Dose Fluoride Induces Apoptosis and Inhibits Ameloblastin Secretion in Primary Rat Ameloblast. Biol Trace Elem Res 2016; 174:402-409. [PMID: 27193486 DOI: 10.1007/s12011-016-0738-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
The objectives of this study are to establish the in vitro culture system for rat primary ameloblast and to investigate the effects of fluoride on cell viability, apoptosis, and ameloblastin (AMBN) secretion of primary rat ameloblast in vitro. Ameloblast was isolated from the tooth germ of the maxillomandibular molar and cultured in vitro. Cells were treated with NaF at 0.4, 0.8, 1.6, 3.2, and 6.4 mM for 24, 48, and 72 h, respectively. Cell viability was measured by MTT assay and apoptosis was tested by flow cytometry. The activation of Fas ligand (FasL)/Fas pathway was detected using immunoblotting for FasL, Fas, cleaved caspase-8, cleaved caspase-3, and cleaved PARP. Secretion of AMBN in culture medium was measured using ELISA. Primary rat ameloblast was successfully isolated and cultured. The effects of low-dose fluoride on cell viability were bi-phasic, while high-dose fluoride resulted in decreased cell viability uniformly. Fluoride induced ameloblast apoptosis via activation of FasL/Fas signaling pathway and diminished secretion of AMBN by ameloblast. Fluoride could decrease ameloblast viability, induce ameloblast apoptosis via activating FasL/Fas signaling pathway, and reduce AMBN secretion.
Collapse
Affiliation(s)
- Lin Wang
- Department of Stomatology, Xi'an Medical University, No. 1, XinWang Road, WeiYang District, Xi'an, 710021, China.
| | - Yong Zhu
- Department of Stomatology, Xi'an Medical University, No. 1, XinWang Road, WeiYang District, Xi'an, 710021, China
| | - Danyang Wang
- Department of Stomatology, Xi'an Medical University, No. 1, XinWang Road, WeiYang District, Xi'an, 710021, China
| |
Collapse
|
30
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
31
|
Chen HJ, Zheng Y, Wei Z. Advancements in Modeling Colorectal Cancer in Rodents. CURRENT COLORECTAL CANCER REPORTS 2016. [DOI: 10.1007/s11888-016-0334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
High selective pressure for Notch1 mutations that induce Myc in T-cell acute lymphoblastic leukemia. Blood 2016; 128:2229-2240. [PMID: 27670423 DOI: 10.1182/blood-2016-01-692855] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022] Open
Abstract
Activating NOTCH1 mutations are frequent in human T-cell acute lymphoblastic leukemia (T-ALL) and Notch inhibitors (γ-secretase inhibitors [GSIs]) have produced responses in patients with relapsed, refractory disease. However, sustained responses, although reported, are uncommon, suggesting that other pathways can substitute for Notch in T-ALL. To address this possibility, we first generated KrasG12D transgenic mice with T-cell-specific expression of the pan-Notch inhibitor, dominant-negative Mastermind (DNMAML). These mice developed leukemia, but instead of accessing alternative oncogenic pathways, the tumor cells acquired Notch1 mutations and subsequently deleted DNMAML, reinforcing the notion that activated Notch1 is particularly transforming within the context of T-cell progenitors. We next took a candidate approach to identify oncogenic pathways downstream of Notch, focusing on Myc and Akt, which are Notch targets in T-cell progenitors. KrasG12D mice transduced with Myc developed T-ALLs that were GSI-insensitive and lacked Notch1 mutations. In contrast, KrasG12D mice transduced with myristoylated AKT developed GSI-sensitive T-ALLs that acquired Notch1 mutations. Thus, Myc can substitute for Notch1 in leukemogenesis, whereas Akt cannot. These findings in primary tumors extend recent work using human T-ALL cell lines and xenografts and suggest that the Notch/Myc signaling axis is of predominant importance in understanding both the selective pressure for Notch mutations in T-ALL and response and resistance of T-ALL to Notch pathway inhibitors.
Collapse
|
33
|
Clark CR, Starr TK. Mouse models for the discovery of colorectal cancer driver genes. World J Gastroenterol 2016; 22:815-822. [PMID: 26811627 PMCID: PMC4716079 DOI: 10.3748/wjg.v22.i2.815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) constitutes a major public health problem as the third most commonly diagnosed and third most lethal malignancy worldwide. The prevalence and the physical accessibility to colorectal tumors have made CRC an ideal model for the study of tumor genetics. Early research efforts using patient derived CRC samples led to the discovery of several highly penetrant mutations (e.g., APC, KRAS, MMR genes) in both hereditary and sporadic CRC tumors. This knowledge has enabled researchers to develop genetically engineered and chemically induced tumor models of CRC, both of which have had a substantial impact on our understanding of the molecular basis of CRC. Despite these advances, the morbidity and mortality of CRC remains a cause for concern and highlight the need to uncover novel genetic drivers of CRC. This review focuses on mouse models of CRC with particular emphasis on a newly developed cancer gene discovery tool, the Sleeping Beauty transposon-based mutagenesis model of CRC.
Collapse
MESH Headings
- Adenomatous Polyposis Coli/genetics
- Adenomatous Polyposis Coli/metabolism
- Adenomatous Polyposis Coli/pathology
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms, Hereditary Nonpolyposis/genetics
- Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism
- Colorectal Neoplasms, Hereditary Nonpolyposis/pathology
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Humans
- Mice
- Mutation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Phenotype
- Transposases/genetics
- Transposases/metabolism
Collapse
|
34
|
Guo Y, Updegraff BL, Park S, Durakoglugil D, Cruz VH, Maddux S, Hwang TH, O'Donnell KA. Comprehensive Ex Vivo Transposon Mutagenesis Identifies Genes That Promote Growth Factor Independence and Leukemogenesis. Cancer Res 2015; 76:773-86. [PMID: 26676752 DOI: 10.1158/0008-5472.can-15-1697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/18/2015] [Indexed: 11/16/2022]
Abstract
Aberrant signaling through cytokine receptors and their downstream signaling pathways is a major oncogenic mechanism underlying hematopoietic malignancies. To better understand how these pathways become pathologically activated and to potentially identify new drivers of hematopoietic cancers, we developed a high-throughput functional screening approach using ex vivo mutagenesis with the Sleeping Beauty transposon. We analyzed over 1,100 transposon-mutagenized pools of Ba/F3 cells, an IL3-dependent pro-B-cell line, which acquired cytokine independence and tumor-forming ability. Recurrent transposon insertions could be mapped to genes in the JAK/STAT and MAPK pathways, confirming the ability of this strategy to identify known oncogenic components of cytokine signaling pathways. In addition, recurrent insertions were identified in a large set of genes that have been found to be mutated in leukemia or associated with survival, but were not previously linked to the JAK/STAT or MAPK pathways nor shown to functionally contribute to leukemogenesis. Forced expression of these novel genes resulted in IL3-independent growth in vitro and tumorigenesis in vivo, validating this mutagenesis-based approach for identifying new genes that promote cytokine signaling and leukemogenesis. Therefore, our findings provide a broadly applicable approach for classifying functionally relevant genes in diverse malignancies and offer new insights into the impact of cytokine signaling on leukemia development.
Collapse
Affiliation(s)
- Yabin Guo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Barrett L Updegraff
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sunho Park
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deniz Durakoglugil
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Victoria H Cruz
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sarah Maddux
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tae Hyun Hwang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kathryn A O'Donnell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas. Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
35
|
Freeman J, Smith D, Latinkic B, Ewan K, Samuel L, Zollo M, Marino N, Tyas L, Jones N, Dale TC. A functional connectome: regulation of Wnt/TCF-dependent transcription by pairs of pathway activators. Mol Cancer 2015; 14:206. [PMID: 26643252 PMCID: PMC4672529 DOI: 10.1186/s12943-015-0475-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/23/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Wnt/β-catenin signaling is often portrayed as a simple pathway that is initiated by Wnt ligand at the cell surface leading, via linear series of interactions between 'core pathway' members, to the induction of nuclear transcription from genes flanked by β-catenin/TCF transcription factor binding sites. Wnt/β-catenin signaling is also regulated by a much larger set of 'non-core regulators'. However the relationship between 'non-core regulators' is currently not well understood. Aberrant activation of the pathway has been shown to drive tumorgenesis in a number of different tissues. METHODS Mammalian cells engineered to have a partially-active level of Wnt/β-catenin signaling were screened by transfection for proteins that up or down-regulated a mid-level of TCF-dependent transcription induced by transient expression of an activated LRP6 Wnt co-receptor (∆NLRP). RESULTS 141 novel regulators of TCF-dependent transcription were identified. Surprisingly, when tested without ∆NLRP activation, most up-regulators failed to alter TCF-dependent transcription. However, when expressed in pairs, 27 % (466/1170) functionally interacted to alter levels of TCF-dependent transcription. When proteins were displayed as nodes connected by their ability to co-operate in the regulation of TCF-dependent transcription, a network of functional interactions was revealed. In this network, 'core pathway' components (Eg. β-catenin, GSK-3, Dsh) were found to be the most highly connected nodes. Activation of different nodes in this network impacted on the sensitivity to Wnt pathway small molecule antagonists. CONCLUSIONS The 'functional connectome' identified here strongly supports an alternative model of the Wnt pathway as a complex context-dependent network. The network further suggests that mutational activation of highly connected Wnt signaling nodes predisposed cells to further context-dependent alterations in levels of TCF-dependent transcription that may be important during tumor progression and treatment.
Collapse
Affiliation(s)
- Jamie Freeman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - David Smith
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Branko Latinkic
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Ken Ewan
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Lee Samuel
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Massimo Zollo
- Department of Molecular Medicine and Biotechnology and Centro di Ingegneria Genetica e Biotecnologia Avanzate, Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Natascia Marino
- Department of Molecular Medicine and Biotechnology and Centro di Ingegneria Genetica e Biotecnologia Avanzate, Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Lorraine Tyas
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Nick Jones
- Department of Mathematics, Imperial College, London, SW7 2AZ, UK
| | - Trevor C Dale
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK.
| |
Collapse
|
36
|
DeNicola GM, Karreth FA, Adams DJ, Wong CC. The utility of transposon mutagenesis for cancer studies in the era of genome editing. Genome Biol 2015; 16:229. [PMID: 26481584 PMCID: PMC4612416 DOI: 10.1186/s13059-015-0794-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The use of transposons as insertional mutagens to identify cancer genes in mice has generated a wealth of information over the past decade. Here, we discuss recent major advances in transposon-mediated insertional mutagenesis screens and compare this technology with other screening strategies.
Collapse
Affiliation(s)
- Gina M DeNicola
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Florian A Karreth
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, 10021, USA.
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1HH, UK
| | - Chi C Wong
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1HH, UK. .,Department of Haematology, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
37
|
McIntyre RE, Buczacki SJ, Arends MJ, Adams DJ. Mouse models of colorectal cancer as preclinical models. Bioessays 2015; 37:909-920. [PMID: 26115037 PMCID: PMC4755199 DOI: 10.1002/bies.201500032] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022]
Abstract
In this review, we discuss the application of mouse models to the identification and pre-clinical validation of novel therapeutic targets in colorectal cancer, and to the search for early disease biomarkers. Large-scale genomic, transcriptomic and epigenomic profiling of colorectal carcinomas has led to the identification of many candidate genes whose direct contribution to tumourigenesis is yet to be defined; we discuss the utility of cross-species comparative 'omics-based approaches to this problem. We highlight recent progress in modelling late-stage disease using mice, and discuss ways in which mouse models could better recapitulate the complexity of human cancers to tackle the problem of therapeutic resistance and recurrence after surgical resection.
Collapse
Affiliation(s)
- Rebecca E. McIntyre
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
| | | | - Mark J. Arends
- Edinburgh Cancer Research UK CentreUniversity of EdinburghEdinburghUK
| | - David J. Adams
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
| |
Collapse
|
38
|
Bermejo-Rodríguez C, Pérez-Mancera PA. Use of DNA transposons for functional genetic screens in mouse models of cancer. Curr Opin Biotechnol 2015; 35:103-10. [PMID: 26073851 DOI: 10.1016/j.copbio.2015.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/14/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
Abstract
Cancer is a very heterogeneous disease with complex genetic interactions. In recent years, the systematic sequencing of cancer genomes has provided information to design personalized therapeutic interventions. However, the complexity of cancer genomes commonly makes it difficult to identify specific genes involved in tumour development or therapeutic responsiveness. The generation of mouse models of cancer using transposon-mediated approaches has provided a powerful tool to unveil the role of key genes during cancer development. Here we will discuss how the use of forward and reverse genetic approaches mediated by DNA transposons can support the investigation of cancer pathogenesis, including the identification of cancer promoting mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Camino Bermejo-Rodríguez
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Pedro A Pérez-Mancera
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Department of Molecular and Clinical Cancer Medicine, National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK.
| |
Collapse
|
39
|
Moriarity BS, Largaespada DA. Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery. Curr Opin Genet Dev 2015; 30:66-72. [PMID: 26051241 DOI: 10.1016/j.gde.2015.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023]
Abstract
Large-scale genomic efforts to study human cancer, such as the cancer gene atlas (TCGA), have identified numerous cancer drivers in a wide variety of tumor types. However, there are limitations to this approach, the mutations and expression or copy number changes that are identified are not always clearly functionally relevant, and only annotated genes and genetic elements are thoroughly queried. The use of complimentary, nonbiased, functional approaches to identify drivers of cancer development and progression is ideal to maximize the rate at which cancer discoveries are achieved. One such approach that has been successful is the use of the Sleeping Beauty (SB) transposon-based mutagenesis system in mice. This system uses a conditionally expressed transposase and mutagenic transposon allele to target mutagenesis to somatic cells of a given tissue in mice to cause random mutations leading to tumor development. Analysis of tumors for transposon common insertion sites (CIS) identifies candidate cancer genes specific to that tumor type. While similar screens have been performed in mice with the PiggyBac (PB) transposon and viral approaches, we limit extensive discussion to SB. Here we discuss the basic structure of these screens, screens that have been performed, methods used to identify CIS.
Collapse
Affiliation(s)
- Branden S Moriarity
- Department of Pediatrics, University of Minnesota Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota Minneapolis, MN 55455, United States
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota Minneapolis, MN 55455, United States; Department of Genetics, Cell Biology, and Development, University of Minnesota Minneapolis, MN 55455, United States.
| |
Collapse
|
40
|
Takeda H, Wei Z, Koso H, Rust AG, Yew CCK, Mann MB, Ward JM, Adams DJ, Copeland NG, Jenkins NA. Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression. Nat Genet 2015; 47:142-50. [PMID: 25559195 DOI: 10.1038/ng.3175] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/04/2014] [Indexed: 12/14/2022]
Abstract
To provide a more comprehensive understanding of the genes and evolutionary forces driving colorectal cancer (CRC) progression, we performed Sleeping Beauty (SB) transposon mutagenesis screens in mice carrying sensitizing mutations in genes that act at different stages of tumor progression. This approach allowed us to identify a set of genes that appear to be highly relevant for CRC and to provide a better understanding of the evolutionary forces and systems properties of CRC. We also identified six genes driving malignant tumor progression and a new human CRC tumor-suppressor gene, ZNF292, that might also function in other types of cancer. Our comprehensive CRC data set provides a resource with which to develop new therapies for treating CRC.
Collapse
Affiliation(s)
- Haruna Takeda
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Department of Oncologic Pathology, School of Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Zhubo Wei
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Hideto Koso
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Christopher Chin Kuan Yew
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Michael B Mann
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jerrold M Ward
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Neal G Copeland
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nancy A Jenkins
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
41
|
Riordan JD, Drury LJ, Smith RP, Brett BT, Rogers LM, Scheetz TE, Dupuy AJ. Sequencing methods and datasets to improve functional interpretation of sleeping beauty mutagenesis screens. BMC Genomics 2014; 15:1150. [PMID: 25526783 PMCID: PMC4378557 DOI: 10.1186/1471-2164-15-1150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animal models of cancer are useful to generate complementary datasets for comparison to human tumor data. Insertional mutagenesis screens, such as those utilizing the Sleeping Beauty (SB) transposon system, provide a model that recapitulates the spontaneous development and progression of human disease. This approach has been widely used to model a variety of cancers in mice. Comprehensive mutation profiles are generated for individual tumors through amplification of transposon insertion sites followed by high-throughput sequencing. Subsequent statistical analyses identify common insertion sites (CISs), which are predicted to be functionally involved in tumorigenesis. Current methods utilized for SB insertion site analysis have some significant limitations. For one, they do not account for transposon footprints - a class of mutation generated following transposon remobilization. Existing methods also discard quantitative sequence data due to uncertainty regarding the extent to which it accurately reflects mutation abundance within a heterogeneous tumor. Additionally, computational analyses generally assume that all potential insertion sites have an equal probability of being detected under non-selective conditions, an assumption without sufficient relevant data. The goal of our study was to address these potential confounding factors in order to enhance functional interpretation of insertion site data from tumors. RESULTS We describe here a novel method to detect footprints generated by transposon remobilization, which revealed minimal evidence of positive selection in tumors. We also present extensive characterization data demonstrating an ability to reproducibly assign semi-quantitative information to individual insertion sites within a tumor sample. Finally, we identify apparent biases for detection of inserted transposons in several genomic regions that may lead to the identification of false positive CISs. CONCLUSION The information we provide can be used to refine analyses of data from insertional mutagenesis screens, improving functional interpretation of results and facilitating the identification of genes important in cancer development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adam J Dupuy
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City IA 52242, USA.
| |
Collapse
|
42
|
Than BLN, Goos JACM, Sarver AL, O’Sullivan MG, Rod A, Starr TK, Fijneman RJA, Meijer GA, Zhao L, Zhang Y, Largaespada DA, Scott PM, Cormier RT. The role of KCNQ1 in mouse and human gastrointestinal cancers. Oncogene 2014; 33:3861-3868. [PMID: 23975432 PMCID: PMC3935979 DOI: 10.1038/onc.2013.350] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/07/2013] [Accepted: 07/04/2013] [Indexed: 12/19/2022]
Abstract
Kcnq1, which encodes for the pore-forming α-subunit of a voltage-gated potassium channel, was identified as a gastrointestinal (GI) tract cancer susceptibility gene in multiple Sleeping Beauty DNA transposon-based forward genetic screens in mice. To confirm that Kcnq1 has a functional role in GI tract cancer, we created Apc(Min) mice that carried a targeted deletion mutation in Kcnq1. Results demonstrated that Kcnq1 is a tumor suppressor gene as Kcnq1 mutant mice developed significantly more intestinal tumors, especially in the proximal small intestine and colon, and some of these tumors progressed to become aggressive adenocarcinomas. Gross tissue abnormalities were also observed in the rectum, pancreas and stomach. Colon organoid formation was significantly increased in organoids created from Kcnq1 mutant mice compared with wild-type littermate controls, suggesting a role for Kcnq1 in the regulation of the intestinal crypt stem cell compartment. To identify gene expression changes due to loss of Kcnq1, we carried out microarray studies in the colon and proximal small intestine. We identified altered genes involved in innate immune responses, goblet and Paneth cell function, ion channels, intestinal stem cells, epidermal growth factor receptor and other growth regulatory signaling pathways. We also found genes implicated in inflammation and in cellular detoxification. Pathway analysis using Ingenuity Pathway Analysis and Gene Set Enrichment Analysis confirmed the importance of these gene clusters and further identified significant overlap with genes regulated by MUC2 and CFTR, two important regulators of intestinal homeostasis. To investigate the role of KCNQ1 in human colorectal cancer (CRC), we measured protein levels of KCNQ1 by immunohistochemistry in tissue microarrays containing samples from CRC patients with liver metastases who had undergone hepatic resection. Results showed that low expression of KCNQ1 expression was significantly associated with poor overall survival.
Collapse
Affiliation(s)
- B. L. N Than
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812
- Toxicology Graduate Program, University of Minnesota, Duluth, MN 55812
| | - J. A. C. M. Goos
- Dept. of Pathology, VU University Medical Center, 1081 HV, Amsterdam, Netherlands
| | - A. L. Sarver
- Department of Biostatistics and Informatics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - M. G. O’Sullivan
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - A. Rod
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812
| | - T. K. Starr
- Department of Genetics, Cell Biology & Development, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Obstetrics, Gynecology & Women’s Health, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455
| | - R. J. A. Fijneman
- Dept. of Pathology, VU University Medical Center, 1081 HV, Amsterdam, Netherlands
| | - G. A. Meijer
- Dept. of Pathology, VU University Medical Center, 1081 HV, Amsterdam, Netherlands
| | - L Zhao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812
| | - Y Zhang
- University of Minnesota Supercomputing Institute, Minneapolis, MN 55455
| | - D. A. Largaespada
- Department of Genetics, Cell Biology & Development, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - P. M. Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812
| | - R. T. Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812
| |
Collapse
|
43
|
Been RA, Linden MA, Hager CJ, DeCoursin KJ, Abrahante JE, Landman SR, Steinbach M, Sarver AL, Largaespada DA, Starr TK. Genetic signature of histiocytic sarcoma revealed by a sleeping beauty transposon genetic screen in mice. PLoS One 2014; 9:e97280. [PMID: 24827933 PMCID: PMC4020815 DOI: 10.1371/journal.pone.0097280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 04/18/2014] [Indexed: 02/06/2023] Open
Abstract
Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients.
Collapse
Affiliation(s)
- Raha A. Been
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Comparative and Molecular Biosciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Michael A. Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Courtney J. Hager
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Krista J. DeCoursin
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Juan E. Abrahante
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sean R. Landman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael Steinbach
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Aaron L. Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy K. Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
44
|
Mouse models of cancer: Sleeping Beauty transposons for insertional mutagenesis screens and reverse genetic studies. Semin Cell Dev Biol 2014; 27:86-95. [PMID: 24468652 DOI: 10.1016/j.semcdb.2014.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/01/2013] [Accepted: 01/07/2014] [Indexed: 01/04/2023]
Abstract
The genetic complexity and heterogeneity of cancer has posed a problem in designing rationally targeted therapies effective in a large proportion of human cancer. Genomic characterization of many cancer types has provided a staggering amount of data that needs to be interpreted to further our understanding of this disease. Forward genetic screening in mice using Sleeping Beauty (SB) based insertional mutagenesis is an effective method for candidate cancer gene discovery that can aid in distinguishing driver from passenger mutations in human cancer. This system has been adapted for unbiased screens to identify drivers of multiple cancer types. These screens have already identified hundreds of candidate cancer-promoting mutations. These can be used to develop new mouse models for further study, which may prove useful for therapeutic testing. SB technology may also hold the key for rapid generation of reverse genetic mouse models of cancer, and has already been used to model glioblastoma and liver cancer.
Collapse
|
45
|
Howell VM, Colvin EK. Genetically engineered insertional mutagenesis in mice to model cancer: Sleeping Beauty. Methods Mol Biol 2014; 1194:367-383. [PMID: 25064115 DOI: 10.1007/978-1-4939-1215-5_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ability to accurately model human cancer in mice enables in vivo examination of the biological mechanisms related to cancer initiation and progression as well as preclinical testing of new anticancer treatments and potential targets. The emergence of the genetically engineered Sleeping Beauty system of insertional mutagenesis has led to the development of a new generation of genetic mouse models of cancer and identification of novel cancer-causing genes. This chapter reviews the published cancer models of Sleeping Beauty and strategies using available strains to generate several models of cancer.
Collapse
Affiliation(s)
- Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Level 8, Kolling Building, St Leonards, NSW, 2065, Australia,
| | | |
Collapse
|
46
|
Sleeping Beauty mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups. Proc Natl Acad Sci U S A 2013; 110:E4325-34. [PMID: 24167280 DOI: 10.1073/pnas.1318639110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Sleeping Beauty (SB) transposon mutagenesis screen is a powerful tool to facilitate the discovery of cancer genes that drive tumorigenesis in mouse models. In this study, we sought to identify genes that functionally cooperate with sonic hedgehog signaling to initiate medulloblastoma (MB), a tumor of the cerebellum. By combining SB mutagenesis with Patched1 heterozygous mice (Ptch1(lacZ/+)), we observed an increased frequency of MB and decreased tumor-free survival compared with Ptch1(lacZ/+) controls. From an analysis of 85 tumors, we identified 77 common insertion sites that map to 56 genes potentially driving increased tumorigenesis. The common insertion site genes identified in the mutagenesis screen were mapped to human orthologs, which were used to select probes and corresponding expression data from an independent set of previously described human MB samples, and surprisingly were capable of accurately clustering known molecular subgroups of MB, thereby defining common regulatory networks underlying all forms of MB irrespective of subgroup. We performed a network analysis to discover the likely mechanisms of action of subnetworks and used an in vivo model to confirm a role for a highly ranked candidate gene, Nfia, in promoting MB formation. Our analysis implicates candidate cancer genes in the deregulation of apoptosis and translational elongation, and reveals a strong signature of transcriptional regulation that will have broad impact on expression programs in MB. These networks provide functional insights into the complex biology of human MB and identify potential avenues for intervention common to all clinical subgroups.
Collapse
|
47
|
Ranzani M, Annunziato S, Adams DJ, Montini E. Cancer gene discovery: exploiting insertional mutagenesis. Mol Cancer Res 2013; 11:1141-58. [PMID: 23928056 DOI: 10.1158/1541-7786.mcr-13-0244] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insertional mutagenesis has been used as a functional forward genetics screen for the identification of novel genes involved in the pathogenesis of human cancers. Different insertional mutagens have been successfully used to reveal new cancer genes. For example, retroviruses are integrating viruses with the capacity to induce the deregulation of genes in the neighborhood of the insertion site. Retroviruses have been used for more than 30 years to identify cancer genes in the hematopoietic system and mammary gland. Similarly, another tool that has revolutionized cancer gene discovery is the cut-and-paste transposons. These DNA elements have been engineered to contain strong promoters and stop cassettes that may function to perturb gene expression upon integration proximal to genes. In addition, complex mouse models characterized by tissue-restricted activity of transposons have been developed to identify oncogenes and tumor suppressor genes that control the development of a wide range of solid tumor types, extending beyond those tissues accessible using retrovirus-based approaches. Most recently, lentiviral vectors have appeared on the scene for use in cancer gene screens. Lentiviral vectors are replication-defective integrating vectors that have the advantage of being able to infect nondividing cells, in a wide range of cell types and tissues. In this review, we describe the various insertional mutagens focusing on their advantages/limitations, and we discuss the new and promising tools that will improve the insertional mutagenesis screens of the future.
Collapse
Affiliation(s)
- Marco Ranzani
- San Raffaele-Telethon Institute for Gene Therapy, via Olgettina 58, 20132, Milan, Italy.
| | | | | | | |
Collapse
|
48
|
Łastowska M, Al-Afghani H, Al-Balool HH, Sheth H, Mercer E, Coxhead JM, Redfern CPF, Peters H, Burt AD, Santibanez-Koref M, Bacon CM, Chesler L, Rust AG, Adams DJ, Williamson D, Clifford SC, Jackson MS. Identification of a neuronal transcription factor network involved in medulloblastoma development. Acta Neuropathol Commun 2013; 1:35. [PMID: 24252690 PMCID: PMC3893591 DOI: 10.1186/2051-5960-1-35] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Medulloblastomas, the most frequent malignant brain tumours affecting children, comprise at least 4 distinct clinicogenetic subgroups. Aberrant sonic hedgehog (SHH) signalling is observed in approximately 25% of tumours and defines one subgroup. Although alterations in SHH pathway genes (e.g. PTCH1, SUFU) are observed in many of these tumours, high throughput genomic analyses have identified few other recurring mutations. Here, we have mutagenised the Ptch+/- murine tumour model using the Sleeping Beauty transposon system to identify additional genes and pathways involved in SHH subgroup medulloblastoma development. RESULTS Mutagenesis significantly increased medulloblastoma frequency and identified 17 candidate cancer genes, including orthologs of genes somatically mutated (PTEN, CREBBP) or associated with poor outcome (PTEN, MYT1L) in the human disease. Strikingly, these candidate genes were enriched for transcription factors (p=2x10-5), the majority of which (6/7; Crebbp, Myt1L, Nfia, Nfib, Tead1 and Tgif2) were linked within a single regulatory network enriched for genes associated with a differentiated neuronal phenotype. Furthermore, activity of this network varied significantly between the human subgroups, was associated with metastatic disease, and predicted poor survival specifically within the SHH subgroup of tumours. Igf2, previously implicated in medulloblastoma, was the most differentially expressed gene in murine tumours with network perturbation, and network activity in both mouse and human tumours was characterised by enrichment for multiple gene-sets indicating increased cell proliferation, IGF signalling, MYC target upregulation, and decreased neuronal differentiation. CONCLUSIONS Collectively, our data support a model of medulloblastoma development in SB-mutagenised Ptch+/- mice which involves disruption of a novel transcription factor network leading to Igf2 upregulation, proliferation of GNPs, and tumour formation. Moreover, our results identify rational therapeutic targets for SHH subgroup tumours, alongside prognostic biomarkers for the identification of poor-risk SHH patients.
Collapse
Affiliation(s)
- Maria Łastowska
- Institute of Genetic Medicine, Newcastle University, Central Parkway,
Newcastle upon Tyne NE1 3BZ, UK
- Department of Pathology, Children’s Memorial Health Institute, Av.
Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Hani Al-Afghani
- Institute of Genetic Medicine, Newcastle University, Central Parkway,
Newcastle upon Tyne NE1 3BZ, UK
| | - Haya H Al-Balool
- Institute of Genetic Medicine, Newcastle University, Central Parkway,
Newcastle upon Tyne NE1 3BZ, UK
| | - Harsh Sheth
- Institute of Genetic Medicine, Newcastle University, Central Parkway,
Newcastle upon Tyne NE1 3BZ, UK
| | - Emma Mercer
- Institute of Genetic Medicine, Newcastle University, Central Parkway,
Newcastle upon Tyne NE1 3BZ, UK
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and The London
School of Medicine and Dentistry, Queen Mary University of London,
Charterhouse Square, London EC1M 6BQ, UK
| | - Jonathan M Coxhead
- NewGene Limited, Bioscience Building, International Centre for Life,
Newcastle upon Tyne NE1 4EP, UK
| | - Chris PF Redfern
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon
Tyne NE1 4LP, UK
| | - Heiko Peters
- Institute of Genetic Medicine, Newcastle University, Central Parkway,
Newcastle upon Tyne NE1 3BZ, UK
| | - Alastair D Burt
- Faculty of Medical Sciences, William Leech Building, Newcastle University,
Newcastle upon Tyne NE2 4HH, UK
- School of Medicine, Faculty of Health Sciences, University of Adelaide,
Adelaide, South Australia SA 5045, Australia
| | - Mauro Santibanez-Koref
- Institute of Genetic Medicine, Newcastle University, Central Parkway,
Newcastle upon Tyne NE1 3BZ, UK
| | - Chris M Bacon
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon
Tyne NE1 4LP, UK
| | - Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer
Research & The Royal Marsden NHS Trust, Sutton, Surrey, SM2 5NG, UK
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton CB10
1HH, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton CB10
1HH, UK
| | - Daniel Williamson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon
Tyne NE1 4LP, UK
| | - Steven C Clifford
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon
Tyne NE1 4LP, UK
| | - Michael S Jackson
- Institute of Genetic Medicine, Newcastle University, Central Parkway,
Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
49
|
van der Weyden L, Adams DJ. Cancer of mice and men: old twists and new tails. J Pathol 2013; 230:4-16. [PMID: 23436574 DOI: 10.1002/path.4184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 01/28/2013] [Accepted: 02/16/2013] [Indexed: 12/18/2022]
Abstract
In this review we set out to celebrate the contribution that mouse models of human cancer have made to our understanding of the fundamental mechanisms driving tumourigenesis. We take the opportunity to look forward to how the mouse will be used to model cancer and the tools and technologies that will be applied, and indulge in looking back at the key advances the mouse has made possible.
Collapse
|
50
|
Zanesi N, Balatti V, Riordan J, Burch A, Rizzotto L, Palamarchuk A, Cascione L, Lagana A, Dupuy AJ, Croce CM, Pekarsky Y. A Sleeping Beauty screen reveals NF-kB activation in CLL mouse model. Blood 2013; 121:4355-8. [PMID: 23591791 PMCID: PMC3663428 DOI: 10.1182/blood-2013-02-486035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/14/2013] [Indexed: 11/20/2022] Open
Abstract
TCL1 oncogene is overexpressed in aggressive form of human chronic lymphocytic leukemia (CLL) and its dysregulation in mouse B cells causes a CD5-positive leukemia similar to the aggressive form of human CLLs. To identify oncogenes that cooperate with Tcl1, we performed genetic screen in Eμ-TCL1 mice using Sleeping Beauty transposon-mediated mutagenesis. Analysis of transposon common insertion sites identified 7 genes activated by transposon insertions. Overexpression of these genes in mouse CLL was confirmed by real time reverse transcription-polymerase chain reaction. Interestingly, the main known function of 4 of 7 genes (Nfkb1, Tab2, Map3K14, and Nfkbid) is participation in or activation of the nuclear factor-kB (NF-kB) pathway. In addition, activation of the NF-kB is 1 of main functions of Akt2, also identified in the screen. These findings demonstrate cooperation of Tcl1 and the NF-kB pathway in the pathogenesis of aggressive CLL. Identification cooperating cancer genes will result in the development of combinatorial therapies to treat CLL.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Disease Models, Animal
- Gene Expression Regulation, Leukemic/physiology
- Genetic Testing/methods
- Kaplan-Meier Estimate
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Mice
- Mice, Transgenic
- Mutagenesis, Insertional/methods
- NF-kappa B p50 Subunit/genetics
- NF-kappa B p50 Subunit/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Signal Transduction/physiology
- Transposases/genetics
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Nicola Zanesi
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|