1
|
Devakinandan GVS, Terasaki M, Dani A. Single-cell transcriptomics of vomeronasal neuroepithelium reveals a differential endoplasmic reticulum environment amongst neuronal subtypes. eLife 2024; 13:RP98250. [PMID: 39670989 PMCID: PMC11643622 DOI: 10.7554/elife.98250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.
Collapse
Affiliation(s)
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health CenterFarmingtonUnited States
| | - Adish Dani
- Tata Institute of Fundamental ResearchHyderabadIndia
| |
Collapse
|
2
|
Chen L, Lin J, Wen Y, Chen Y, Chen CB. Development and validation of a model based on immunogenic cell death related genes to predict the prognosis and immune response to bladder urothelial carcinoma. Front Oncol 2023; 13:1291720. [PMID: 38023241 PMCID: PMC10676223 DOI: 10.3389/fonc.2023.1291720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Immunogenic cell death (ICD) has been categorized as a variant of regulated cell death that is capable of inducing an adaptive immune response. A growing body of evidence has indicated that ICD can modify the tumor immune microenvironment by releasing danger signals or damage-associated molecular patterns (DAMPs), potentially enhancing the efficacy of immunotherapy. Consequently, the identification of biomarkers associated with ICD that can classify patients based on their potential response to ICD immunotherapy would be highly advantageous. Therefore the goal of the study is to better understand and identify what patients with bladder urothelial carcinoma (BLCA) will respond to immunotherapy by analyzing ICD signatures and investigate ICD-related prognostic factors in the context of BLCA. Methods The data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases regarding BLCA and normal samples was categorized based on ICD-related genes (IRGs). Specifically, we conducted an immunohistochemical (IHC) experiment to validate the expression levels of Calreticulin (CALR) in both tumor and adjacent tissues, and evaluated its prognostic significance using the Kaplan-Meier (KM) curve. Subsequently, the samples from TCGA were divided into two subtypes using consensus clustering. To obtain a more comprehensive comprehension of the biological functions, we utilized Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The calculation of immune landscape between two subtypes was performed through ESTIMATE and CIBERSORT. Risk models were constructed using Cox and Lasso regression and their prognosis predictive ability was evaluated using nomogram, receiver operating characteristic (ROC), and calibration curves. Finally, Tumor Immune Dysfunction and Exclusion (TIDE) algorithms was utilized to predict the response to immunotherapy. Results A total of 34 IRGs were identified, with most of them exhibiting upregulation in BLCA samples. The expression of CALR was notably higher in BLCA compared to the adjacent tissue, and this increase was associated with an unfavorable prognosis. The differentially expressed genes (DEGs) associated with ICD were linked to various immune-related pathways. The ICD-high subtypes exhibited an immune-activated tumor microenvironment (TME) compared to the ICD-low subtypes. Utilizing three IRGs including CALR, IFNB1, and IFNG, a risk model was developed to categorize BLCA patients into high- and low-risk groups. The overall survival (OS) was considerably greater in the low-risk group compared to the high-risk group, as evidenced by both the TCGA and GEO cohorts. The risk score was identified as an independent prognostic parameter (all p < 0.001). Our model demonstrated good predictive ability (The area under the ROC curve (AUC), AUC1-year= 0.632, AUC3-year= 0.637, and AUC5-year =0.653). Ultimately, the lower risk score was associated with a more responsive immunotherapy group. Conclusion The potential of the ICD-based risk signature to function as a marker for evaluating the prognosis and immune landscape in BLCA suggests its usefulness in identifying the suitable population for effective immunotherapy against BLCA.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Jiexiang Lin
- The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaoming Wen
- Drug Development, Fujian Institute of Microbiology, Fuzhou, Fujian, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Chuan-ben Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Accumulation of amyloid-β in the brain of mouse models of Alzheimer's disease is modified by altered gene expression in the presence of human apoE isoforms during aging. Neurobiol Aging 2023; 123:63-74. [PMID: 36638682 DOI: 10.1016/j.neurobiolaging.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Apolipoprotein E4 (apoE4) is a risk factor for Alzheimer's disease (AD). Here, we investigated brain amyloid-β (Aβ) accumulation throughout the aging process in an amyloid precursor protein (APP) knock-in (KI) mouse model of AD that expresses human APPNL-G-F with or without human apoE4 or apoE3. Brain Aβ42 levels were significantly lower in 9-month-old mice that express human isoforms of apoE than in age-matched APP-KI control mice. Linear accumulation of Aβ42 began in 5-month-old apoE4 mice, and a strong increase in Aβ42 levels was observed in 21-month-old apoE3 mice. Aβ42 levels in cerebroventricular fluid were higher in apoE3 than in apoE4 mice at 6-7 months of age, suggesting that apoE3 is more efficient at clearing Aβ42 than apoE4 at these ages. However, apoE3 protein levels were lower than apoE4 protein levels in the brains of 21-month-old apoE3 and apoE4 mice, respectively, which may explain the rapid increase in brain Aβ42 burden in apoE3 mice. We identified genes that were downregulated in a human apoE-dependent (apoE4 > apoE3) and age-dependent (apoE3 = apoE4) manner, which may regulate brain Aβ burden and/or AD progression. Analysis of gene expression in AD mouse models helps identify molecular mechanisms of pleiotropy by the human APOE gene during aging.
Collapse
|
4
|
Lin JM, Mitchell TA, Rothstein M, Pehl A, Taroc EZM, Katreddi RR, Parra KE, Zuloaga DG, Simoes-Costa M, Forni PE. Sociosexual behavior requires both activating and repressive roles of Tfap2e/AP-2ε in vomeronasal sensory neurons. eLife 2022; 11:e77259. [PMID: 36111787 PMCID: PMC9525060 DOI: 10.7554/elife.77259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal identity dictates the position in an epithelium, and the ability to detect, process, and transmit specific signals to specified targets. Transcription factors (TFs) determine cellular identity via direct modulation of genetic transcription and recruiting chromatin modifiers. However, our understanding of the mechanisms that define neuronal identity and their magnitude remain a critical barrier to elucidate the etiology of congenital and neurodegenerative disorders. The rodent vomeronasal organ provides a unique system to examine in detail the molecular mechanisms underlying the differentiation and maturation of chemosensory neurons. Here, we demonstrated that the identity of postmitotic/maturing vomeronasal sensory neurons (VSNs), and vomeronasal-dependent behaviors can be reprogrammed through the rescue of Tfap2e/AP-2ε expression in the Tfap2eNull mice, and partially reprogrammed by inducing ectopic Tfap2e expression in mature apical VSNs. We suggest that the TF Tfap2e can reprogram VSNs bypassing cellular plasticity restrictions, and that it directly controls the expression of batteries of vomeronasal genes.
Collapse
Affiliation(s)
- Jennifer M Lin
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| | - Tyler A Mitchell
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| | - Megan Rothstein
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Alison Pehl
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| | - Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| | - Raghu R Katreddi
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| | - Katherine E Parra
- Department of Psychology, University at Albany, State University of New YorkAlbanyUnited States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University of New YorkAlbanyUnited States
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Paolo Emanuele Forni
- Department of Biological Sciences, University at Albany, State University of New YorkAlbanyUnited States
- The RNA Institute, University at AlbanyAlbanyUnited States
| |
Collapse
|
5
|
Wang L, Chen J, Zuo Q, Wu C, Yu T, Zheng P, Huang H, Deng J, Fang L, Liu H, Li C, Yu P, Zou Q, Zheng J. Calreticulin enhances gastric cancer metastasis by dimethylating H3K9 in the E-cadherin promoter region mediating by G9a. Oncogenesis 2022; 11:29. [PMID: 35641480 PMCID: PMC9156786 DOI: 10.1038/s41389-022-00405-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 01/06/2023] Open
Abstract
The latest study shows that gastric cancer (GC) ranked the fifth most common cancer (5.6%) with over 1 million estimated new cases annually and the fourth most common cause of cancer death (7.7%) globally in 2020. Metastasis is the leading cause of GC treatment failure. Therefore, clarifying the regulatory mechanisms for GC metastatic process is necessary. In the current study, we discovered that calreticulin (CALR) was highly expressed in GC tissues and related to lymph node metastasis and patient’s terrible prognosis. The introduction of CALR dramatically promoted GC cell migration in vitro and in vivo, while the repression of CALR got the opposite effects. Cell migration is a functional consequence of the epithelial-mesenchymal transition (EMT) and is related to adhesion of cells. Additionally, we observed that CALR inhibition or overexpression regulated the expression of EMT markers (E-cadherin, ZO-1, Snail, N-cadherin, and ZEB1) and cellular adhesive moleculars (Fibronectin, integrin β1and MMP2). Mechanistically, our data indicated that CALR could mediate DNA methylation of E-cadherin promoter by interacting with G9a, a major euchromatin methyltransferase responsible for methylation of histone H3 on lysine 9(H3K9me2) and recruiting G9a to the E-cadherin promoter. Knockdown of G9a in CALR overexpressing models restored E-cadherin expression and blocked the stimulatory effects of CALR on GC cell migration. Taken together, these findings not only reveal critical roles of CALR medicated GC metastasis but also provide novel treatment strategies for GC.
Collapse
Affiliation(s)
- Lina Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Jun Chen
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Qianfei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Chunmei Wu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Ting Yu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Pengfei Zheng
- Department of medicinal chemistry, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Hui Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Jun Deng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Huamin Liu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Chenghong Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China
| | - Peiwu Yu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, 400038, Chongqing, China.
| |
Collapse
|
6
|
Jabeen A, de March CA, Matsunami H, Ranganathan S. Machine Learning Assisted Approach for Finding Novel High Activity Agonists of Human Ectopic Olfactory Receptors. Int J Mol Sci 2021; 22:ijms222111546. [PMID: 34768977 PMCID: PMC8583936 DOI: 10.3390/ijms222111546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022] Open
Abstract
Olfactory receptors (ORs) constitute the largest superfamily of G protein-coupled receptors (GPCRs). ORs are involved in sensing odorants as well as in other ectopic roles in non-nasal tissues. Matching of an enormous number of the olfactory stimulation repertoire to its counterpart OR through machine learning (ML) will enable understanding of olfactory system, receptor characterization, and exploitation of their therapeutic potential. In the current study, we have selected two broadly tuned ectopic human OR proteins, OR1A1 and OR2W1, for expanding their known chemical space by using molecular descriptors. We present a scheme for selecting the optimal features required to train an ML-based model, based on which we selected the random forest (RF) as the best performer. High activity agonist prediction involved screening five databases comprising ~23 M compounds, using the trained RF classifier. To evaluate the effectiveness of the machine learning based virtual screening and check receptor binding site compatibility, we used docking of the top target ligands to carefully develop receptor model structures. Finally, experimental validation of selected compounds with significant docking scores through in vitro assays revealed two high activity novel agonists for OR1A1 and one for OR2W1.
Collapse
Affiliation(s)
- Amara Jabeen
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
- Correspondence: (H.M.); (S.R.)
| | - Shoba Ranganathan
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia;
- Correspondence: (H.M.); (S.R.)
| |
Collapse
|
7
|
Tirindelli R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 2021; 383:367-386. [PMID: 33433690 DOI: 10.1007/s00441-020-03376-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.
Collapse
Affiliation(s)
- Roberto Tirindelli
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
8
|
Interpopulational Variations of Odorant-Binding Protein Expression in the Black Cutworm Moth, Agrotis ipsilon. INSECTS 2020; 11:insects11110798. [PMID: 33202803 PMCID: PMC7696954 DOI: 10.3390/insects11110798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/28/2022]
Abstract
Simple Summary Odorant-binding proteins (OBPs) are small soluble transporter proteins that are believed to play a key role in insect olfaction. However, there is an emerging set of data that shows a role in insecticide resistance for similar families of binding proteins. The black cutworm Agrotis ipsilon is a migrant species of moth known to feed on multiple types of crops (polyphagous) worldwide. It is therefore likely that the olfactory system of this species can be modulated to adapt to different environments. We compared gene expression between American and European continental populations of the moth. We found continental-specific expression of antennal binding protein X (ABPX) and general odorant-binding protein 2 (GOBP2), suggesting a function of these proteins in migration, environment recognition, crop change and adaptation that are required for a polyphagous species such as A. ipsilon. Abstract A long-range migrant species of moth (Agrotis ipsilon) has served as a model to compare the expression profiles of antennal proteins between different continental populations. Our results showed that the American and French populations of the black cutworm moth, A. ipsilon, expressed the same odorant-binding proteins (OBPs), but apparently in different levels. Electrophoretic analysis of antennal protein profiles and reverse transcription polymerase chain reaction using RNA as a template showed significant differences between the two populations in the expression of antennal binding protein-X (ABPX) and general odorant-binding protein-2 (GOBP2). However, the two A. ipsilon populations showed no differences in RNA levels coding for pheromone binding proteins (PBPs), suggesting that the expression of generalist OBPs is population-specific and could be affected by specific odor and/or chemical changes in external environmental conditions. To support the role of ABPX and GOBP2 with expression, the role of ABPX and GOBP2 is discussed in regard to odor detection, memorization and/or degradation of toxic chemical insecticides.
Collapse
|
9
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
10
|
Tao YX. Molecular chaperones and G protein-coupled receptor maturation and pharmacology. Mol Cell Endocrinol 2020; 511:110862. [PMID: 32389798 DOI: 10.1016/j.mce.2020.110862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly conserved versatile signaling molecules located at the plasma membrane that respond to diverse extracellular signals. They regulate almost all physiological processes in the vertebrates. About 35% of current drugs target these receptors. Mutations in these genes have been identified as causes of numerous diseases. The seven transmembrane domain structure of GPCRs implies that the folding of these transmembrane proteins is extremely complicated and difficult. Indeed, many wild type GPCRs are not folded optimally. The most common defect in genetic diseases caused by GPCR mutations is misfolding and failure to reach the plasma membrane where it functions. General molecular chaperones aid the folding of all proteins, including GPCRs, by preventing aggregation, promoting folding and disaggregating small aggregates. Some GPCRs need additional receptor-specific chaperones to assist their folding. Many of these receptor-specific chaperones interact with additional receptors and alter receptor pharmacology, expanding the understanding of these chaperone proteins.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849-5519, USA.
| |
Collapse
|
11
|
Kluebsoongnoen J, Panyim S, Udomkit A. Regulation of vitellogenin gene expression under the negative modulator, gonad-inhibiting hormone in Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110682. [PMID: 32092399 DOI: 10.1016/j.cbpa.2020.110682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/15/2022]
Abstract
Vitellogenesis is a principal process during ovarian maturation in crustaceans. This process is negatively regulated by gonad-inhibiting hormone (GIH), a neuronal peptide hormone from eyestalks. However, the detailed mechanism through which GIH regulates Vg expression is still ambiguous. In this study, suppression subtractive hybridization (SSH) under specific GIH-knockdown condition was utilized to determine the expression of genes in the ovary that may act downstream of GIH to control vitellogenin synthesis in Penaeus monodon. The total of 102 and 82 positive clones of up-regulated and down-regulated genes in GIH- knockdown shrimp were identified from the forward and reverse SSH libraries, respectively. Determination of the expression profiles of these reproduction-related genes during ovarian development revealed that the expression of calreticulin (CALR) was significantly reduced in vitellogenic ovary suggesting its role in vitellogenesis. Suppression of CALR by specific dsRNA showed elevated vitellogenin (Vg) transcript level in the ovary at day 7 post-dsRNA injection. Since CALR can bind to steroid hormone receptors and prevents the binding of the receptor to its responsive element to regulate gene expression, it is possible that CALR is an inhibitory mediator of vitellogenin synthesis via steroidal pathway. Our results posted a possible novel pathway of GIH signaling that might interfere the steroid signaling cascade to mediate Vg synthesis in the shrimp.
Collapse
Affiliation(s)
- Jakkapong Kluebsoongnoen
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
12
|
Ikegami K, de March CA, Nagai MH, Ghosh S, Do M, Sharma R, Bruguera ES, Lu YE, Fukutani Y, Vaidehi N, Yohda M, Matsunami H. Structural instability and divergence from conserved residues underlie intracellular retention of mammalian odorant receptors. Proc Natl Acad Sci U S A 2020; 117:2957-2967. [PMID: 31974307 PMCID: PMC7022149 DOI: 10.1073/pnas.1915520117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mammalian odorant receptors are a diverse and rapidly evolving set of G protein-coupled receptors expressed in olfactory cilia membranes. Most odorant receptors show little to no cell surface expression in nonolfactory cells due to endoplasmic reticulum retention, which has slowed down biochemical studies. Here we provide evidence that structural instability and divergence from conserved residues of individual odorant receptors underlie intracellular retention using a combination of large-scale screening of odorant receptors cell surface expression in heterologous cells, point mutations, structural modeling, and machine learning techniques. We demonstrate the importance of conserved residues by synthesizing consensus odorant receptors that show high levels of cell surface expression similar to conventional G protein-coupled receptors. Furthermore, we associate in silico structural instability with poor cell surface expression using molecular dynamics simulations. We propose an enhanced evolutionary capacitance of olfactory sensory neurons that enable the functional expression of odorant receptors with cryptic mutations.
Collapse
Affiliation(s)
- Kentaro Ikegami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Maira H Nagai
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Biochemistry, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Matthew Do
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Ruchira Sharma
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Elise S Bruguera
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Yueyang Eric Lu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Yosuke Fukutani
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710;
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710
| |
Collapse
|
13
|
Fukutani Y, Tamaki R, Inoue R, Koshizawa T, Sakashita S, Ikegami K, Ohsawa I, Matsunami H, Yohda M. The N-terminal region of RTP1S plays important roles in dimer formation and odorant receptor-trafficking. J Biol Chem 2019; 294:14661-14673. [PMID: 31395660 PMCID: PMC6779431 DOI: 10.1074/jbc.ra118.007110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Receptor-transporting protein 1S (RTP1S) is an accessory protein that mediates the transport of mammalian odorant receptors (ORs) into the plasma membrane. Although most ORs fail to localize to the cell surface when expressed alone in nonolfactory cells, functional expression of ORs is achieved with the coexpression of RTP1S. However, the mechanism for RTP1S-mediated OR trafficking remains unclear. In this study, we attempted to reveal the mode of action and critical residues of RTP1S in OR trafficking. Experiments using N-terminal truncation and Ala substitution mutants of RTP1S demonstrated that four N-terminal amino acids have essential roles in OR trafficking. Additionally, using recombinant proteins and split luciferase assays in mammalian cells, we provided evidence for the dimer formation of RTP1S. Furthermore, we determined that the 2nd Cys residue is required for the efficient dimerization of RTP1S. Altogether, these findings provide insights into the mechanism for plasma membrane transport of ORs by RTP1S.
Collapse
Affiliation(s)
- Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Ryohei Tamaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ryosuke Inoue
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tomoyo Koshizawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Shuto Sakashita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kentaro Ikegami
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.,Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina 27705.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
14
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Kotian V, Sarmah D, Kaur H, Kesharwani R, Verma G, Mounica L, Veeresh P, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chem Neurosci 2019; 10:2629-2646. [PMID: 31017385 DOI: 10.1021/acschemneuro.9b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), a lectin-like ER chaperone, was initially known only for its housekeeping function, but today it is recognized for many versatile roles in different compartments of a cell. Apart from canonical roles in protein folding and calcium homeostasis, it performs a variety of noncanonical roles, mostly in CNS development. In the past, studies have linked Calreticulin with various other biological components which are detrimental in deciding the fate of neurons. Many neurological disorders that differ in their etiology are commonly associated with aberrant levels of Calreticulin, that lead to modulation of apoptosis and phagocytosis, and impact on transcriptional pathways, impairment in proteostatis, and calcium imbalances. Such multifaceted properties of Calreticulin are the reason why it has been implicated in vital roles of the nervous system in recent years. Hence, understanding its role in the physiology of neurons would help to unearth its involvement in the spectrum of neurological disorders. This Review aims toward exploring the interplay of Calreticulin in neurological disorders which would aid in targeting Calreticulin for developing novel neurotherapeutics.
Collapse
Affiliation(s)
- Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
16
|
Abstract
The mammalian vomeronasal organ (VNO) detects and transduces molecular cues emitted by other individuals that influence social behaviors such as mating and aggression. The detection of these chemosignals involves recognition of specific ligands by dedicated G protein-coupled receptors. Here, we describe recent methodological advances using a herpes virus-based amplicon delivery system to overexpress vomeronasal receptor genes in native, dissociated VNO neurons and to characterize corresponding cell responses to potential ligands through Ca2+ imaging. This methodology enables us to analyze the response patterns of single vomeronasal receptors to a large number of chemosensory stimuli.
Collapse
|
17
|
Biwer LA, Good ME, Hong K, Patel RK, Agrawal N, Looft-Wilson R, Sonkusare SK, Isakson BE. Non-Endoplasmic Reticulum-Based Calr (Calreticulin) Can Coordinate Heterocellular Calcium Signaling and Vascular Function. Arterioscler Thromb Vasc Biol 2018; 38:120-130. [PMID: 29122814 PMCID: PMC5746467 DOI: 10.1161/atvbaha.117.309886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In resistance arteries, endothelial cell (EC) extensions can make contact with smooth muscle cells, forming myoendothelial junction at holes in the internal elastic lamina (HIEL). At these HIEL, calcium signaling is tightly regulated. Because Calr (calreticulin) can buffer ≈50% of endoplasmic reticulum calcium and is expressed throughout IEL holes in small arteries, the only place where myoendothelial junctions form, we investigated the effect of EC-specific Calr deletion on calcium signaling and vascular function. APPROACH AND RESULTS We found Calr expressed in nearly every IEL hole in third-order mesenteric arteries, but not other ER markers. Because of this, we generated an EC-specific, tamoxifen inducible, Calr knockout mouse (EC Calr Δ/Δ). Using this mouse, we tested third-order mesenteric arteries for changes in calcium events at HIEL and vascular reactivity after application of CCh (carbachol) or PE (phenylephrine). We found that arteries from EC Calr Δ/Δ mice stimulated with CCh had unchanged activity of calcium signals and vasodilation; however, the same arteries were unable to increase calcium events at HIEL in response to PE. This resulted in significantly increased vasoconstriction to PE, presumably because of inhibited negative feedback. In line with these observations, the EC Calr Δ/Δ had increased blood pressure. Comparison of ER calcium in arteries and use of an ER-specific GCaMP indicator in vitro revealed no observable difference in ER calcium with Calr knockout. Using selective detergent permeabilization of the artery and inhibition of Calr translocation, we found that the observed Calr at HIEL may not be within the ER. CONCLUSIONS Our data suggest that Calr specifically at HIEL may act in a non-ER dependent manner to regulate arteriolar heterocellular communication and blood pressure.
Collapse
Affiliation(s)
- Lauren A Biwer
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Miranda E Good
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Kwangseok Hong
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Rahul K Patel
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Neha Agrawal
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Robin Looft-Wilson
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Swapnil K Sonkusare
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.).
| |
Collapse
|
18
|
Sharma R, Ishimaru Y, Davison I, Ikegami K, Chien MS, You H, Chi Q, Kubota M, Yohda M, Ehlers M, Matsunami H. Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice. eLife 2017; 6. [PMID: 28262096 PMCID: PMC5362263 DOI: 10.7554/elife.21895] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
Each of the olfactory sensory neurons (OSNs) chooses to express a single G protein-coupled olfactory receptor (OR) from a pool of hundreds. Here, we show the receptor transporting protein (RTP) family members play a dual role in both normal OR trafficking and determining OR gene choice probabilities. Rtp1 and Rtp2 double knockout mice (RTP1,2DKO) show OR trafficking defects and decreased OSN activation. Surprisingly, we discovered a small subset of the ORs are expressed in larger numbers of OSNs despite the presence of fewer total OSNs in RTP1,2DKO. Unlike typical ORs, some overrepresented ORs show robust cell surface expression in heterologous cells without the co-expression of RTPs. We present a model in which developing OSNs exhibit unstable OR expression until they choose to express an OR that exits the ER or undergo cell death. Our study sheds light on the new link between OR protein trafficking and OR transcriptional regulation.
Collapse
Affiliation(s)
- Ruchira Sharma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Yoshiro Ishimaru
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ian Davison
- Department of Biology, Boston University, Boston, United States
| | - Kentaro Ikegami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Helena You
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Quiyi Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Momoka Kubota
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Masafumi Yohda
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michael Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Biogen Inc, Cambridge, United States
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Duke Institute for Brain Sciences, Durham, United States
| |
Collapse
|
19
|
Garg AD, Elsen S, Krysko DV, Vandenabeele P, de Witte P, Agostinis P. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget 2016; 6:26841-60. [PMID: 26314964 PMCID: PMC4694957 DOI: 10.18632/oncotarget.4754] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022] Open
Abstract
Immunogenic cell death (ICD) is a well-established instigator of ‘anti-cancer vaccination-effect (AVE)’. ICD has shown considerable preclinical promise, yet there remain subset of cancer patients that fail to respond to clinically-applied ICD inducers. Non-responsiveness to ICD inducers could be explained by the existence of cancer cell-autonomous, anti-AVE resistance mechanisms. However such resistance mechanisms remain poorly investigated. In this study, we have characterized for the first time, a naturally-occurring preclinical cancer model (AY27) that exhibits intrinsic anti-AVE resistance despite treatment with ICD inducers like mitoxantrone or hypericin-photodynamic therapy. Further mechanistic analysis revealed that this anti-AVE resistance was associated with a defect in exposing the important ‘eat me’ danger signal, surface-calreticulin (ecto-CRT/CALR). In an ICD setting, this defective ecto-CRT further correlated with severely reduced phagocytic clearance of AY27 cells as well as the failure of these cells to activate AVE. Defective ecto-CRT in response to ICD induction was a result of low endogenous CRT protein levels (i.e. CRTlow-phenotype) in AY27 cells. Exogenous reconstitution of ecto-rCRT (recombinant-CRT) improved the phagocytic removal of ICD inducer-treated AY27 cells, and importantly, significantly increased their AVE-activating ability. Moreover, we found that a subset of cancer patients of various cancer-types indeed possessed CALRlow or CRTlow-tumours. Remarkably, we found that tumoural CALRhigh-phenotype was predictive of positive clinical responses to therapy with ICD inducers (radiotherapy and paclitaxel) in lung and ovarian cancer patients, respectively. Furthermore, only in the ICD clinical setting, tumoural CALR levels positively correlated with the levels of various phagocytosis-associated genes relevant for phagosome maturation or processing. Thus, we reveal the existence of a cancer cell-autonomous, anti-AVE or anti-ICD resistance mechanism that has profound clinical implications for anticancer immunotherapy and cancer predictive biomarker analysis.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Unit, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Sanne Elsen
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Dmitri V Krysko
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Functional Overexpression of Vomeronasal Receptors Using a Herpes Simplex Virus Type 1 (HSV-1)-Derived Amplicon. PLoS One 2016; 11:e0156092. [PMID: 27195771 PMCID: PMC4873243 DOI: 10.1371/journal.pone.0156092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/01/2022] Open
Abstract
In mice, social behaviors such as mating and aggression are mediated by pheromones and related chemosignals. The vomeronasal organ (VNO) detects olfactory information from other individuals by sensory neurons tuned to respond to specific chemical cues. Receptors expressed by vomeronasal neurons are implicated in selective detection of these cues. Nearly 400 receptor genes have been identified in the mouse VNO, but the tuning properties of individual receptors remain poorly understood, in part due to the lack of a robust heterologous expression system. Here we develop a herpes virus-based amplicon delivery system to overexpress three types of vomeronasal receptor genes and to characterize cell responses to their proposed ligands. Through Ca2+ imaging in native VNO cells we show that virus-induced overexpression of V1rj2, V2r1b or Fpr3 caused a pronounced increase of responsivity to sulfated steroids, MHC-binding peptide or the synthetic hexapeptide W-peptide, respectively. Other related ligands were not recognized by infected individual neurons, indicating a high degree of selectivity by the overexpressed receptor. Removal of G-protein signaling eliminates Ca2+ responses, indicating that the endogenous second messenger system is essential for observing receptor activation. Our results provide a novel expression system for vomeronasal receptors that should be useful for understanding the molecular logic of VNO ligand detection. Functional expression of vomeronasal receptors and their deorphanization provides an essential requirement for deciphering the neural mechanisms controlling behavior.
Collapse
|
21
|
Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains. Sci Rep 2016; 6:25745. [PMID: 27160511 PMCID: PMC4861910 DOI: 10.1038/srep25745] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/22/2016] [Indexed: 11/09/2022] Open
Abstract
Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states.
Collapse
|
22
|
Brignall AC, Cloutier JF. Neural map formation and sensory coding in the vomeronasal system. Cell Mol Life Sci 2015; 72:4697-709. [PMID: 26329476 PMCID: PMC11113928 DOI: 10.1007/s00018-015-2029-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/31/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Sensory systems enable us to encode a clear representation of our environment in the nervous system by spatially organizing sensory stimuli being received. The organization of neural circuitry to form a map of sensory activation is critical for the interpretation of these sensory stimuli. In rodents, social communication relies strongly on the detection of chemosignals by the vomeronasal system, which regulates a wide array of behaviours, including mate recognition, reproduction, and aggression. The binding of these chemosignals to receptors on vomeronasal sensory neurons leads to activation of second-order neurons within glomeruli of the accessory olfactory bulb. Here, vomeronasal receptor activation by a stimulus is organized into maps of glomerular activation that represent phenotypic qualities of the stimuli detected. Genetic, electrophysiological and imaging studies have shed light on the principles underlying cell connectivity and sensory map formation in the vomeronasal system, and have revealed important differences in sensory coding between the vomeronasal and main olfactory system. In this review, we summarize the key factors and mechanisms that dictate circuit formation and sensory coding logic in the vomeronasal system, emphasizing differences with the main olfactory system. Furthermore, we discuss how detection of chemosignals by the vomeronasal system regulates social behaviour in mice, specifically aggression.
Collapse
Affiliation(s)
- Alexandra C Brignall
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Room MP105, Montréal, QC, H3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Room MP105, Montréal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.
| |
Collapse
|
23
|
Nakano H, Iida Y, Suzuki M, Aoki M, Umemura M, Takahashi S, Takahashi Y. Activating transcription factor 5 (ATF5) is essential for the maturation and survival of mouse basal vomeronasal sensory neurons. Cell Tissue Res 2015; 363:621-33. [DOI: 10.1007/s00441-015-2283-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022]
|
24
|
Haga-Yamanaka S, Ma L, Yu CR. Tuning properties and dynamic range of type 1 vomeronasal receptors. Front Neurosci 2015; 9:244. [PMID: 26236183 PMCID: PMC4501179 DOI: 10.3389/fnins.2015.00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/26/2015] [Indexed: 11/29/2022] Open
Abstract
The mouse vomeronasal organ (VNO) expresses chemosensory receptors that detect intra-species as well as inter-species cues. The vomeronasal neurons are thought to be highly selective in their responses. The tuning properties of individual receptors remain difficult to characterize due to the lack of a robust heterologous expression system. Here, we take a transgenic approach to ectopically express two type 1 vomeronasal receptors in the mouse VNO and characterize their responses to steroid compounds. We find that V1rj2 and V1rj3 are sensitive to two sulfated estrogens (SEs) and can be activated by a broad variety of sulfated and glucuronidated steroids at high concentrations. Individual neurons exhibit narrow range of concentration-dependent activation. Collectively, a neuronal population expressing the same receptor covers a wide dynamic range in their responses to SEs. These properties recapitulate the response profiles of endogenous neurons to SEs.
Collapse
Affiliation(s)
| | - Limei Ma
- Stowers Institute for Medical Research Kansas City, MO, USA
| | - C Ron Yu
- Stowers Institute for Medical Research Kansas City, MO, USA ; Department of Anatomy and Cell Biology, University of Kansas Medical Center Kansas City, KS, USA
| |
Collapse
|
25
|
Structure and function of a peptide pheromone family that stimulate the vomeronasal sensory system in mice. Biochem Soc Trans 2015; 42:873-7. [PMID: 25109971 DOI: 10.1042/bst20140051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammals use pheromones to communicate with other animals of the same species. In mice, the VNO (vomeronasal organ) has a pivotal role in pheromone detection. We discovered a 7 kDa peptide, ESP1 (exocrine-gland-secreting peptide 1), in tear fluids from male mice that enhances the sexual behaviour of female mice via the VNO. NMR studies demonstrate that ESP1 adopts a compact structure with a helical fold stabilized by an intramolecular disulfide bridge. Functional analysis in combination with docking simulation indicates that ESP1 is recognized by a specific G-protein-coupled vomeronasal receptor, V2Rp5, via charge-charge interactions in the large extracellular region of the receptor. ESP1 is a member of the ESP family, which comprises 38 homologous genes in mice, and some of these genes are expressed in a sex- or age-dependent manner. Most recently, ESP22 was found to be released specifically in juvenile tear fluids and to inhibit the sexual behaviour of adult male mice. These studies demonstrate that peptide pheromones are used for chemical communication in mice, and they indicate a structural basis for the narrowly tuned perception of mammalian peptide pheromones by vomeronasal receptors.
Collapse
|
26
|
Abstract
The senses provide a means by which data on the physical and chemical properties of the environment may be collected and meaningfully interpreted. Sensation begins at the periphery, where a multitude of different sensory cell types are activated by environmental stimuli as different as photons and odorant molecules. Stimulus sensitivity is due to expression of different cell surface sensory receptors, and therefore the receptive field of each sense is defined by the aggregate of expressed receptors in each sensory tissue. Here, we review current understanding on patterns of expression and modes of regulation of sensory receptors.
Collapse
|
27
|
Pérez-Gómez A, Stein B, Leinders-Zufall T, Chamero P. Signaling mechanisms and behavioral function of the mouse basal vomeronasal neuroepithelium. Front Neuroanat 2014; 8:135. [PMID: 25505388 PMCID: PMC4244706 DOI: 10.3389/fnana.2014.00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/03/2014] [Indexed: 01/20/2023] Open
Abstract
The vomeronasal organ (VNO) is a sensory organ that is found in most terrestrial vertebrates and that is principally implicated in the detection of pheromones. The VNO contains specialized sensory neurons organized in a pseudostratified neuroepithelium that recognize chemical signals involved in initiating innate behavioral responses. In rodents, the VNO neuroepithelium is segregated into two distinct zones, apical and basal. The molecular mechanisms involved in ligand detection by apical and basal VNO sensory neurons differ extensively. These two VNO subsystems express different subfamilies of vomeronasal receptors and signaling molecules, detect distinct chemosignals, and project to separate regions of the accessory olfactory bulb (AOB). The roles that these olfactory subdivisions play in the control of specific olfactory-mediated behaviors are largely unclear. However, analysis of mutant mouse lines for signal transduction components together with identification of defined chemosensory ligands has revealed a fundamental role of the basal part of the mouse VNO in mediating a wide range of instinctive behaviors, such as aggression, predator avoidance, and sexual attraction. Here we will compare the divergent functions and synergies between the olfactory subsystems and consider new insights in how higher neural circuits are defined for the initiation of instinctive behaviors.
Collapse
Affiliation(s)
- Anabel Pérez-Gómez
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| | - Benjamin Stein
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| | - Trese Leinders-Zufall
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| | - Pablo Chamero
- Department of Physiology, University of Saarland School of Medicine Homburg, Saarland, Germany
| |
Collapse
|
28
|
Lin Q, Cao Y, Gao J. Serum calreticulin is a negative biomarker in patients with Alzheimer's disease. Int J Mol Sci 2014; 15:21740-53. [PMID: 25429433 PMCID: PMC4284675 DOI: 10.3390/ijms151221740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 11/16/2022] Open
Abstract
Calreticulin is down-regulated in the cortical neurons of patients with Alzheimer's disease (AD) and may be a potential biomarker for the diagnosis of AD. A total of 128 AD patients were randomly recruited from May 2012 to July 2013. The mRNA levels of calreticulin were measured from the serum of tested subjects using real-time quantitative reverse transcriptase-PCR (real-time qRT-PCR). Serum levels of calreticulin were determined by ELISA and Western Blot. Serum levels of calreticulin in AD patients were significantly lower than those from a healthy group (p < 0.01). The baseline characters indicated that sample size, gender, mean age, diabetes and BMI (body mass index) were not major sources of heterogeneity. The serum levels of mRNA and protein of calreticulin were lower in AD patients than those from a healthy group, and negatively associated with the progression of AD according to CDR scores (p < 0.01). Thus, there is a trend toward decreased serum levels of calreticulin in the patients with progression of AD. Serum levels of calreticulin can be a negative biomarker for the diagnosis of AD patients.
Collapse
Affiliation(s)
- Qiao Lin
- Department of Internal Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China.
| | - Yunpeng Cao
- Neural Department of Internal Medicine, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Jie Gao
- Department of Anatomy, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
29
|
Calreticulin: roles in cell-surface protein expression. MEMBRANES 2014; 4:630-41. [PMID: 25230046 PMCID: PMC4194052 DOI: 10.3390/membranes4030630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 12/03/2022]
Abstract
In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins.
Collapse
|
30
|
Tao YX, Conn PM. Chaperoning G protein-coupled receptors: from cell biology to therapeutics. Endocr Rev 2014; 35:602-47. [PMID: 24661201 PMCID: PMC4105357 DOI: 10.1210/er.2013-1121] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology (Y.-X.T.), College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519; and Departments of Internal Medicine and Cell Biology (P.M.C.), Texas Tech University Health Science Center, Lubbock, Texas 79430-6252
| | | |
Collapse
|
31
|
Haga-Yamanaka S, Ma L, He J, Qiu Q, Lavis LD, Looger LL, Yu CR. Integrated action of pheromone signals in promoting courtship behavior in male mice. eLife 2014; 3:e03025. [PMID: 25073926 PMCID: PMC4107909 DOI: 10.7554/elife.03025] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian vomeronasal organ encodes pheromone information about gender, reproductive status, genetic background and individual differences. It remains unknown how pheromone information interacts to trigger innate behaviors. In this study, we identify vomeronasal receptors responsible for detecting female pheromones. A sub-group of V1re clade members recognizes gender-identifying cues in female urine. Multiple members of the V1rj clade are cognate receptors for urinary estrus signals, as well as for sulfated estrogen (SE) compounds. In both cases, the same cue activates multiple homologous receptors, suggesting redundancy in encoding female pheromone cues. Neither gender-specific cues nor SEs alone are sufficient to promote courtship behavior in male mice, whereas robust courtship behavior can be induced when the two cues are applied together. Thus, integrated action of different female cues is required in pheromone-triggered mating behavior. These results suggest a gating mechanism in the vomeronasal circuit in promoting specific innate behavior.DOI: http://dx.doi.org/10.7554/eLife.03025.001.
Collapse
Affiliation(s)
| | - Limei Ma
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jie He
- Stowers Institute for Medical Research, Kansas City, United States
| | - Qiang Qiu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Luke D Lavis
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, United States
| | - Loren L Looger
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, United States
| | - C Ron Yu
- Stowers Institute for Medical Research, Kansas City, United States Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, United States
| |
Collapse
|
32
|
A family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons. J Neurosci 2014; 34:5121-33. [PMID: 24719092 DOI: 10.1523/jneurosci.0186-14.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mouse vomeronasal organ (VNO) has a pivotal role in chemical communication. The vomeronasal sensory neuroepithelium consists of distinct populations of vomeronasal sensory neurons (VSNs). A subset of VSNs, with cell bodies in the basal part of the basal layer, coexpress Vmn2r G-protein-coupled receptor genes with H2-Mv genes, a family of nine nonclassical class I major histocompatibility complex genes. The in vivo, physiological roles of the H2-Mv gene family remain mysterious more than a decade after the discovery of combinatorial H2-Mv gene expression in VSNs. Here, we have taken a genetic approach and have deleted the 530 kb cluster of H2-Mv genes in the mouse germline by chromosome engineering. Homozygous mutant mice (ΔH2Mv mice) are viable and fertile. There are no major anatomical defects in their VNO and accessory olfactory bulb (AOB). Their VSNs can be stimulated with chemostimuli (peptides and proteins) to the same maximum responses as VSNs of wild-type mice, but require much higher concentrations. This physiological phenotype is displayed at the single-cell level and is cell autonomous: single V2rf2-expressing VSNs, which normally coexpress H2-Mv genes, display a decreased sensitivity to a peptide ligand in ΔH2Mv mice, whereas single V2r1b-expressing VSNs, which do not coexpress H2-Mv genes, show normal sensitivity to a peptide ligand in ΔH2Mv mice. Consistent with the greatly decreased VSN sensitivity, ΔH2Mv mice display pronounced deficits in aggressive and sexual behaviors. Thus, H2-Mv genes are not absolutely essential for the generation of physiological responses, but are required for ultrasensitive chemodetection by a subset of VSNs.
Collapse
|
33
|
Dalton RP, Lyons DB, Lomvardas S. Co-opting the unfolded protein response to elicit olfactory receptor feedback. Cell 2013; 155:321-32. [PMID: 24120133 DOI: 10.1016/j.cell.2013.09.033] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/10/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
Abstract
Olfactory receptor (OR) expression requires the transcriptional activation of 1 out of 1,000s of OR alleles and a feedback signal that preserves this transcriptional choice. The mechanism by which olfactory sensory neurons (OSNs) detect ORs to signal to the nucleus remains elusive. Here, we show that OR proteins generate this feedback by activating the unfolded protein response (UPR). OR expression induces Perk-mediated phosphorylation of the translation initiation factor eif2α causing selective translation of activating transcription factor 5 (ATF5). ATF5 induces the transcription of adenylyl cyclase 3 (Adcy3), which relieves the UPR. Our data provide a role for the UPR in defining neuronal identity and cell fate commitment and support a two-step model for the feedback signal: (1) OR protein, as a stress stimulus, alters the translational landscape of the OSN and induces Adcy3 expression; (2), Adcy3 relieves that stress, restores global translation, and makes OR choice permanent.
Collapse
Affiliation(s)
- Ryan P Dalton
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
34
|
Role of a ubiquitously expressed receptor in the vertebrate olfactory system. J Neurosci 2013; 33:15235-47. [PMID: 24048853 DOI: 10.1523/jneurosci.2339-13.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the "one receptor, one neuron" rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed.
Collapse
|
35
|
Abstract
Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors.
Collapse
Affiliation(s)
- Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
36
|
Ibarra-Soria X, Levitin MO, Logan DW. The genomic basis of vomeronasal-mediated behaviour. Mamm Genome 2013; 25:75-86. [PMID: 23884334 PMCID: PMC3916702 DOI: 10.1007/s00335-013-9463-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/19/2013] [Indexed: 11/04/2022]
Abstract
The vomeronasal organ (VNO) is a chemosensory subsystem found in the nose of most mammals. It is principally tasked with detecting pheromones and other chemical signals that initiate innate behavioural responses. The VNO expresses subfamilies of vomeronasal receptors (VRs) in a cell-specific manner: each sensory neuron expresses just one or two receptors and silences all the other receptor genes. VR genes vary greatly in number within mammalian genomes, from no functional genes in some primates to many hundreds in rodents. They bind semiochemicals, some of which are also encoded in gene families that are coexpanded in species with correspondingly large VR repertoires. Protein and peptide cues that activate the VNO tend to be expressed in exocrine tissues in sexually dimorphic, and sometimes individually variable, patterns. Few chemical ligand–VR–behaviour relationships have been fully elucidated to date, largely due to technical difficulties in working with large, homologous gene families with high sequence identity. However, analysis of mouse lines with mutations in genes involved in ligand–VR signal transduction has revealed that the VNO mediates a range of social behaviours, including male–male and maternal aggression, sexual attraction, lordosis, and selective pregnancy termination, as well as interspecific responses such as avoidance and defensive behaviours. The unusual logic of VR expression now offers an opportunity to map the specific neural circuits that drive these behaviours.
Collapse
Affiliation(s)
- Ximena Ibarra-Soria
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | | |
Collapse
|
37
|
Dey S, Zhan S, Matsunami H. A protocol for heterologous expression and functional assay for mouse pheromone receptors. Methods Mol Biol 2013; 1068:121-31. [PMID: 24014358 DOI: 10.1007/978-1-62703-619-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Innate social behaviors like intermale aggression, fear, and mating rituals are important for survival and propagation of a species. In mice, these behaviors have been implicated to be mediated by peptide pheromones that are sensed by a class of G protein-coupled receptors, vomeronasal receptor type 2 (V2Rs), expressed in the pheromone-detecting vomeronasal organ (VNO) (Chamero et al., Nature 450:899-902, 2007; Haga et al., Nature 466:118-122, 2010; Kimoto et al., Curr Biol 17:1879-1884, 2007; Leinders-Zufall et al., Nat Neurosci 12:1551-1558, 2009; Papes et al., Cell 141:692-703, 2010). Matching V2Rs with their cognate ligands is required to understand what receptors the biologically relevant pheromones are acting on. However, this goal has been greatly limited by the unavailability of appropriate heterologous tools commonly used to carry out receptor deorphanization, due to the fact that this family of receptors fails to traffic to the surface of heterologous cells. We have demonstrated that calreticulin, a housekeeping chaperone commonly expressed in most eukaryotic cells, is sparsely expressed in the vomeronasal sensory neurons (VSNs). Stable knock down of calreticulin in a HEK293T derived cell line (R24 cells) allows us to functionally express V2Rs on the surface of heterologous cells. In this chapter we describe protocols for maintenance and expansion of the R24 cell line and functional assays for V2Rs using these cells.
Collapse
Affiliation(s)
- Sandeepa Dey
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | | | |
Collapse
|
38
|
Celsi F, D'Errico A, Menini A. Responses to sulfated steroids of female mouse vomeronasal sensory neurons. Chem Senses 2012; 37:849-58. [PMID: 22923146 DOI: 10.1093/chemse/bjs068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rodent vomeronasal organ plays an important role in many social behaviors. Using the calcium imaging technique with the dye fluo-4 we measured intracellular calcium concentration changes induced by the application of sulfated steroids to neurons isolated from the vomeronasal organ of female mice. We found that a mix of 10 sulfated steroids from the androgen, estrogen, pregnanolone, and glucocorticoid families induced a calcium response in 71% of neurons. Moreover, 31% of the neurons responded to a mix composed of 3 glucocorticoid-derived compounds, and 28% responded to a mix composed of 3 pregnanolone-derived compounds. Immunohistochemistry showed that neurons responding to sulfated steroids expressed phosphodiesterase 4A, a marker specific for apical neurons expressing V1R receptors. None of the neuron that responded to 1 mix responded also to the other, indicating a specificity of the responses. Some neurons responded to more than 1 individual component of the glucocorticoid-derived mix tested at high concentration, suggesting that these neurons are broadly tuned, although they still displayed strong specificity, remaining unresponsive to high concentrations of the ineffective compounds.
Collapse
Affiliation(s)
- Fulvio Celsi
- Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), and Italian Institute of Technology, SISSA Unit, Trieste, Italy
| | | | | |
Collapse
|
39
|
Adipietro KA, Mainland JD, Matsunami H. Functional evolution of mammalian odorant receptors. PLoS Genet 2012; 8:e1002821. [PMID: 22807691 PMCID: PMC3395614 DOI: 10.1371/journal.pgen.1002821] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 05/23/2012] [Indexed: 12/23/2022] Open
Abstract
The mammalian odorant receptor (OR) repertoire is an attractive model to study evolution, because ORs have been subjected to rapid evolution between species, presumably caused by changes of the olfactory system to adapt to the environment. However, functional assessment of ORs in related species remains largely untested. Here we investigated the functional properties of primate and rodent ORs to determine how well evolutionary distance predicts functional characteristics. Using human and mouse ORs with previously identified ligands, we cloned 18 OR orthologs from chimpanzee and rhesus macaque and 17 mouse-rat orthologous pairs that are broadly representative of the OR repertoire. We functionally characterized the in vitro responses of ORs to a wide panel of odors and found similar ligand selectivity but dramatic differences in response magnitude. 87% of human-primate orthologs and 94% of mouse-rat orthologs showed differences in receptor potency (EC50) and/or efficacy (dynamic range) to an individual ligand. Notably dN/dS ratio, an indication of selective pressure during evolution, does not predict functional similarities between orthologs. Additionally, we found that orthologs responded to a common ligand 82% of the time, while human OR paralogs of the same subfamily responded to the common ligand only 33% of the time. Our results suggest that, while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy dynamically change during evolution, even in closely related species. These functional changes in orthologs provide a platform for examining how the evolution of ORs can meet species-specific demands.
Collapse
Affiliation(s)
- Kaylin A. Adipietro
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joel D. Mainland
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
40
|
Chamero P, Leinders-Zufall T, Zufall F. From genes to social communication: molecular sensing by the vomeronasal organ. Trends Neurosci 2012; 35:597-606. [PMID: 22658923 DOI: 10.1016/j.tins.2012.04.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 12/22/2022]
Abstract
The ability to distinguish molecular cues emitted by other individuals is a fundamental feature of social interactions such as finding and identifying a mate, establishing social hierarchies, and initiating interspecies defensive behaviors. In rodents, this ability involves the vomeronasal organ (VNO), a distinct chemoreceptive structure that is part of the olfactory system. Recent insights have led to unprecedented progress in identifying ligand and receptor families underlying vomeronasal recognition, characterizing the behavioral consequences caused by VNO activation, and defining higher neural circuits underlying the initiation of instinctive behaviors such as aggression. Here, we review such findings and discuss future areas for investigation, including large-scale mapping studies, immune system-VNO interactions, in vivo recording of neural activity, and optogenetic alteration of sexual and social behaviors.
Collapse
Affiliation(s)
- Pablo Chamero
- Department of Physiology, University of Saarland School of Medicine, D-66424 Homburg, Germany
| | | | | |
Collapse
|
41
|
Abstract
The vomeronasal organ detects chemical cues that trigger sexual, aggressive and defensive behaviors. An in situ hybridization analysis has identified the specificities of nearly a hundred VNO receptors and elucidated the logic by which they encode these cues.
Collapse
Affiliation(s)
- Tong-Wey Koh
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|