1
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
2
|
Balasenthilkumaran NV, Whitesell JC, Pyle L, Friedman RS, Kravets V. Network approach reveals preferential T-cell and macrophage association with α-linked β-cells in early stage of insulitis in NOD mice. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1393397. [PMID: 38979061 PMCID: PMC11228247 DOI: 10.3389/fnetp.2024.1393397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 07/10/2024]
Abstract
One of the challenges in studying islet inflammation-insulitis-is that it is a transient phenomenon. Traditional reporting of the insulitis progression is based on cumulative, donor-averaged values of leucocyte density in the vicinity of pancreatic islets, that hinder intra- and inter-islet heterogeneity of disease progression. Here, we aimed to understand why insulitis is non-uniform, often with peri-insulitis lesions formed on one side of an islet. To achieve this, we demonstrated the applicability of network theory in detangling intra-islet multi-cellular interactions during insulitis. Specifically, we asked the question "What is unique about regions of the islet that interact with immune cells first". This study utilized the non-obese diabetic mouse model of type one diabetes and examined the interplay among α-, β-, T-cells, myeloid cells, and macrophages in pancreatic islets during the progression of insulitis. Disease evolution was tracked based on the T/β cell ratio in individual islets. In the early stage, we found that immune cells are preferentially interacting with α-cell-rich regions of an islet. At the islet periphery α-linked β-cells were found to be targeted significantly more compared to those without α-cell neighbors. Additionally, network analysis revealed increased T-myeloid, and T-macrophage interactions with all β-cells.
Collapse
Affiliation(s)
- Nirmala V. Balasenthilkumaran
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, San Diego, CA, United States
| | - Jennifer C. Whitesell
- Department of Immunology and Microbiology, School of Medicine, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura Pyle
- Department of Pediatrics, University of Colorado School of Medicine, Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, United States
| | - Rachel S. Friedman
- Department of Immunology and Microbiology, School of Medicine, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Vira Kravets
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, San Diego, CA, United States
- Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
3
|
Balasenthilkumaran NV, Whitesell JC, Pyle L, Friedman R, Kravets V. Network approach reveals preferential T-cell and macrophage association with α-linked β-cells in early stage of insulitis in NOD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592831. [PMID: 38766090 PMCID: PMC11100702 DOI: 10.1101/2024.05.06.592831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
One of the challenges in studying islet inflammation - insulitis - is that it is a transient phenomenon. Traditional reporting of the insulitis progression is based on cumulative, donor-averaged values of leucocyte density in the vicinity of pancreatic islets, that hinders intra- and inter-islet heterogeneity of disease progression. Here, we aimed to understand why insulitis is non-uniform, often with peri-insulitis lesions formed on one side of an islet. To achieve this, we demonstrated applicability of network theory in detangling intra-islet multi-cellular interactions during insulitis. Specifically, we asked the question "what is unique about regions of the islet which interact with immune cells first". This study utilized the non-obese diabetic mouse model of type one diabetes and examined the interplay among α-, β-, T-cells, myeloid cells, and macrophages in pancreatic islets during the progression of insulitis. Disease evolution was tracked based on T/β cell ratio in individual islets. In the early stage, we found that immune cells are preferentially interacting with α-cell-rich regions of an islet. At the islet periphery α-linked β-cells were found to be targeted significantly more compared to those without α-cell neighbors. Additionally, network analysis revealed increased T-myeloid, and T-macrophage interactions with all β-cells.
Collapse
|
4
|
Martin TM, Burke SJ, Wasserfall CH, Collier JJ. Islet beta-cells and intercellular adhesion molecule-1 (ICAM-1): Integrating immune responses that influence autoimmunity and graft rejection. Autoimmun Rev 2023; 22:103414. [PMID: 37619906 PMCID: PMC10543623 DOI: 10.1016/j.autrev.2023.103414] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Type 1 diabetes (T1D) develops due to autoimmune targeting of the pancreatic islet β-cells. Clinical symptoms arise from reduced insulin in circulation. The molecular events and interactions between discrete immune cell populations, infiltration of such leukocytes into pancreatic and islet tissue, and selective targeting of the islet β-cells during autoimmunity and graft rejection are not entirely understood. One protein central to antigen presentation, priming of immune cells, trafficking of leukocytes, and vital for leukocyte effector function is the intercellular adhesion molecule-1 (ICAM-1). The gene encoding ICAM-1 is transcriptionally regulated and rapidly responsive (i.e., within hours) to pro-inflammatory cytokines. ICAM-1 is a transmembrane protein that can be glycosylated; its presence on the cell surface provides co-stimulatory functions for immune cell activation and stabilization of cell-cell contacts. ICAM-1 interacts with the β2-integrins, CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1), which are present on discrete immune cell populations. A whole-body ICAM-1 deletion protects NOD mice from diabetes onset, strongly implicating this protein in autoimmune responses. Since several different cell types express ICAM-1, its biology is fundamentally essential for various physiological and pathological outcomes. Herein, we review the role of ICAM-1 during both autoimmunity and islet graft rejection to understand the mechanism(s) leading to islet β-cell death and dysfunction that results in insufficient circulating quantities of insulin to control glucose homeostasis.
Collapse
Affiliation(s)
- Thomas M Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, United States of America
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
5
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Huang Y, Zhang W, Xu C, Li Q, Zhang W, Xu W, Zhang M. Presence of PD-1 similarity genes in monocytes may promote the development of type 1 diabetes mellitus and poor prognosis of pancreatic cancer. BMJ Open Diabetes Res Care 2023; 11:11/3/e003196. [PMID: 37130628 PMCID: PMC10163525 DOI: 10.1136/bmjdrc-2022-003196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023] Open
Abstract
INTRODUCTION To identify proteins and corresponding genes that share sequential and structural similarity with programmed cell death protein-1 (PD-1) in patients with type 1 diabetes mellitus (T1DM) via bioinformatics analysis. RESEARCH DESIGN AND METHODS All proteins with immunoglobulin V-set domain were screened in the human protein sequence database, and the corresponding genes were obtained in the gene sequence database. GSE154609 was downloaded from the GEO database, which contained peripheral blood CD14+ monocyte samples from patients with T1DM and healthy controls. The difference result and the similar genes were intersected. Analysis of gene ontology and Kyoto encyclopedia of genes and genomes pathways was used to predict potential functions using the R package 'cluster profiler'. The expression differences of intersected genes were analyzed in The Cancer Genome Atlas pancreatic cancer dataset and GTEx database using t-test. The correlation between the overall survival and disease-free progression of patients with pancreatic cancer was analyzed using Kaplan-Meier survival analysis. RESULTS 2068 proteins with immunoglobulin V-set domain similar to PD-1 and 307 corresponding genes were found. 1705 upregulated differentially expressed genes (DEGs) and 1335 downregulated DEGs in patients with T1DM compared with healthy controls were identified. A total of 21 genes were overlapped with the 307 PD-1 similarity genes, including 7 upregulated and 14 downregulated. Of these, mRNA levels of 13 genes were significantly increased in patients with pancreatic cancer. High expression of MYOM3 and HHLA2 was significantly correlated with shorter overall survival of patients with pancreatic cancer, while high expression of FGFRL1, CD274, and SPEG was significantly correlated with shorter disease-free survival of patients with pancreatic cancer. CONCLUSIONS Genes encoding immunoglobulin V-set domain similar to PD-1 may contribute to the occurrence of T1DM. Of these genes, MYOM3 and SPEG may serve as potential biomarkers for the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Yuquan Huang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenchuan Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Can Xu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qingxia Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wu Zhang
- Clinical School of Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wanfeng Xu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingming Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Scherm MG, Wyatt RC, Serr I, Anz D, Richardson SJ, Daniel C. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol Metab 2022; 64:101565. [PMID: 35944899 PMCID: PMC9418549 DOI: 10.1016/j.molmet.2022.101565] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022] Open
Abstract
Background Scope of review Major conclusions
Collapse
|
8
|
Abstract
T-cell interaction with the endothelial cells lining the vessel wall is a necessary step in the inflammatory response that allows T cells to extravasate from the circulation and migrate to sites of infectious or sterile inflammation. On one hand, the vascular endothelium is activated and, as a result, switches from an anti-adhesive to a pro-adhesive state, allowing adhesion of T cells and other leukocytes. On the other hand, T cells express ligands of endothelial adhesion molecules to sustain these interactions that eventually result in T-cell extravasation into sites of inflammation. A better understanding of the central players mediating these interactions may help develop novel therapeutics that modulate this process by preventing T-cell migration and inflammation. Here, I summarize current knowledge on the nature of these interactions in the context of inflammation and cancer immunotherapy.
Collapse
Affiliation(s)
- Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston 02111, Massachusetts, USA
| |
Collapse
|
9
|
Kong Y, Jing Y, Allard D, Scavuzzo MA, Sprouse ML, Borowiak M, Bettini ML, Bettini M. A dormant T cell population with autoimmune potential exhibits low self-reactivity and infiltrates islets in type 1 diabetes. Eur J Immunol 2022; 52:1158-1170. [PMID: 35389516 DOI: 10.1002/eji.202149690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
The contribution of low affinity T cells to autoimmunity in the context of polyclonal T cell responses is understudied due to the limitations in their capture by tetrameric reagents and low level of activation in response to antigenic stimulation. As a result, low affinity T cells are often disregarded as non-antigen specific cells irrelevant to the immune response. Our study aimed to assess how the level of self-antigen reactivity shapes T cell lineage and effector responses in the context of spontaneous tissue specific autoimmunity observed in NOD mice. Using multi-color flow cytometry in combination with Nur77GFP reporter of TCR signaling we identified a dormant population of T cells that infiltrated the pancreatic islets of pre-diabetic NOD mice, which exhibited reduced level of self-tissue reactivity based on expression of CD5 and Nur77GFP . We showed that these CD5low T cells had a unique TCR repertoire, exhibited low activation and minimal effector function; however, induced rapid diabetes upon transfer. The CD4+ CD5low T cell population displayed transcriptional signature of central memory T cells, consistent with the ability to acquire effector function post-transfer. Transcriptional profile of CD5low T cells was similar to T cells expressing a low affinity TCR, indicating TCR affinity to be the important factor in shaping CD5low T cell phenotype and function at the tissue site. Overall, our study suggests that autoimmune tissue can maintain a reservoir of undifferentiated central memory-like autoreactive T cells with pathogenic effector potential that might be an important source for effector T cells during long-term chronic autoimmunity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuelin Kong
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030
| | - Yi Jing
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112
| | - Denise Allard
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112
| | - Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Maran L Sprouse
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,McNair Medical Institute, Houston, TX, 77030
| | - Matthew L Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112.,McNair Medical Institute, Houston, TX, 77030
| | - Maria Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112.,McNair Medical Institute, Houston, TX, 77030
| |
Collapse
|
10
|
Jacobelli J, Buser AE, Heiden DL, Friedman RS. Autoimmunity in motion: Mechanisms of immune regulation and destruction revealed by in vivo imaging. Immunol Rev 2022; 306:181-199. [PMID: 34825390 PMCID: PMC9135487 DOI: 10.1111/imr.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/30/2022]
Abstract
Autoimmunity arises when mechanisms of immune tolerance fail. Here we discuss mechanisms of T cell activation and tolerance and the dynamics of the autoimmune response at the site of disease. Live imaging of autoimmunity provides the ability to analyze immune cell dynamics at the single-cell level within the complex intact environment where disease occurs. These analyses have revealed mechanisms of T cell activation and tolerance in the lymph nodes, mechanisms of T cell entry into sites of autoimmune disease, and mechanisms leading to pathogenesis or protection in the autoimmune lesions. The overarching conclusions point to stable versus transient T cell antigen presenting cell interactions dictating the balance between T cell activation and tolerance, and T cell restimulation as a driver of pathogenesis at the site of autoimmunity. Findings from models of multiple sclerosis and type 1 diabetes are highlighted, however, the results have implications for basic mechanisms of T cell regulation during immune responses, tumor immunity, and autoimmunity.
Collapse
Affiliation(s)
- Jordan Jacobelli
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alan E. Buser
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dustin L. Heiden
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rachel S. Friedman
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
11
|
Hu J, Zhang R, Zou H, Xie L, Zhou Z, Xiao Y. Latent Autoimmune Diabetes in Adults (LADA): From Immunopathogenesis to Immunotherapy. Front Endocrinol (Lausanne) 2022; 13:917169. [PMID: 35937817 PMCID: PMC9350734 DOI: 10.3389/fendo.2022.917169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a type of diabetes characterized by slow autoimmune damage of pancreatic β cells without insulin treatment in the early clinical stage. There are differences between LADA and classical type 1 diabetes (T1D) and type 2 diabetes (T2D) in genetic background, autoimmune response, rate of islet function decline, clinical metabolic characteristics, and so on. The disease progression and drug response of patients with LADA are closely related to the level of islet autoimmunity, thus exploring the pathogenesis of LADA is of great significance for its prevention and treatment. Previous studies reported that adaptive immunity and innate immunity play a critical role in the etiology of LADA. Recent studies have shown that the intestinal microbiota which impacts host immunity hugely, participates in the pathogenesis of LADA. In addition, the progression of autoimmune pancreatic β cell destruction in LADA is slower than in classical T1D, providing a wider window of opportunities for intervention. Therefore, therapies including antidiabetic drugs with immune-regulation effects and immunomodulators could contribute to promising interventions for LADA. We also shed light on potential interventions targeting the gut microbiota and gut-associated immunity, which may be envisaged to halt or delay the process of autoimmunity in LADA.
Collapse
|
12
|
Nelson AS, Akgul A, Maddaloni M, Bhagyaraj E, Hoffman C, Pascual DW. Oral probiotic promotes indoleamine 2,3-dioxygenase- and TGF-β-Producing plasmacytoid dendritic cells to initiate protection against type 1 diabetes. Immunol Lett 2021; 239:12-19. [PMID: 34333043 PMCID: PMC9808532 DOI: 10.1016/j.imlet.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023]
Abstract
Colonization factor antigen I (CFA/I) fimbria, an adhesin from enterotoxigenic Escherichia coli, confers protection in murine autoimmune models for type 1 diabetes (T1D), multiple sclerosis, and rheumatoid arthritis. Although CFA/I fimbriae's initial mode of action is in a bystander or in an antigen (Ag)-independent fashion, protection is ultimately dependent upon the induction and/or activation of auto-Ag-specific regulatory T cells (Tregs). However, little is known about how protection transitions from bystander suppression to Ag-specific Tregs. Since dendritic cells (DCs) play an integral role in fate decisions for T cells becoming inflammatory or tolerogenic, the described study tests the hypothesis that Lactococcus lactis expressing CFA/I (LL-CFA/I) stimulates DCs to establish a regulatory microenvironment. To this end, bone marrow-derived dendritic cells (BMDCs) were infected in vitro with LL-CFA/I. Results revealed increased production of IL-10, TGF-β, and indoleamine 2,3-deoxygenase (IDO). Although co-culture of LL-CFA/I infected BMDCs with naïve T cells did not promote Foxp3 expression, TNF-α and IFN-γ production was suppressed. NOD mice orally dosed with LL-CFA/I showed an increase in regulatory plasmacytoid DCs (pDCs) expressing IDO and TGF-β in pancreatic lymph nodes (PaLNs) and spleen three days post-treatment. However, Tregs did not appear in the mucosal inductive sites until much later. These findings show that LL-CFA/I influences specific DC populations to establish tolerance.
Collapse
Affiliation(s)
- Andrew S. Nelson
- Department of Infectious Diseases and Immunology, University of Florida, 2015 SW 16th Ave, Gainesville, FL, United States,Quansys Biosciences, Logan, UT, United States
| | - Ali Akgul
- Department of Infectious Diseases and Immunology, University of Florida, 2015 SW 16th Ave, Gainesville, FL, United States
| | - Massimo Maddaloni
- Department of Infectious Diseases and Immunology, University of Florida, 2015 SW 16th Ave, Gainesville, FL, United States
| | - Ella Bhagyaraj
- Department of Infectious Diseases and Immunology, University of Florida, 2015 SW 16th Ave, Gainesville, FL, United States
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, 2015 SW 16th Ave, Gainesville, FL, United States
| | - David W. Pascual
- Department of Infectious Diseases and Immunology, University of Florida, 2015 SW 16th Ave, Gainesville, FL, United States,Corresponding author. (D.W. Pascual)
| |
Collapse
|
13
|
Hehenkamp P, Hoffmann M, Kummer S, Reinauer C, Döing C, Förtsch K, Enczmann J, Balz V, Mayatepek E, Meissner T, Jacobsen M, Seyfarth J. Interleukin-7-dependent nonclassical monocytes and CD40 expression are affected in children with type 1 diabetes. Eur J Immunol 2021; 51:3214-3227. [PMID: 34625948 DOI: 10.1002/eji.202149229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
The important role of IL-7 in the generation of self-reactive T-cells in autoimmune diseases is well established. Recent studies on autoimmunity-associated genetic polymorphisms indicated that differential IL-7 receptor (IL-7R) expression of monocytes may play a role in the underlying pathogenesis. The relevance of IL-7-mediated monocyte functions in type 1 diabetes remains elusive. In the present study, we characterized monocyte phenotype and IL-7-mediated effects in children with type 1 diabetes and healthy controls with multicolor flow cytometry and t-distributed Stochastic Neighbor-Embedded (t-SNE)-analyses. IL-7R expression of monocytes rapidly increased in vitro and was boosted through LPS. In the presence of IL-7, we detected lower monocyte IL-7R expression in type 1 diabetes patients as compared to healthy controls. This difference was most evident for the subset of nonclassical monocytes, which increased after IL-7 stimulation. t-SNE analyses revealed IL-7-dependent differences in monocyte subset distribution and expression of activation and maturation markers (i.e., HLA-DR, CD80, CD86, CD40). Notably, monocyte CD40 expression increased considerably by IL-7 and CD40/IL-7R co-expression differed between patients and controls. This study shows the unique effects of IL-7 on monocyte phenotype and functions. Lower IL-7R expression on IL-7-induced CD40high monocytes and impaired IL-7 response characterize monocytes from patients with type 1 diabetes.
Collapse
Affiliation(s)
- Paul Hehenkamp
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Maximilian Hoffmann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Christina Reinauer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Carsten Döing
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Katharina Förtsch
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Jürgen Enczmann
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital, Duesseldorf, Germany
| | - Vera Balz
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
14
|
Clark M, Kroger CJ, Ke Q, Zhang R, Statum K, Milner JJ, Martin AJ, Wang B, Tisch R. Coreceptor therapy has distinct short- and long-term tolerogenic effects intrinsic to autoreactive effector T cells. JCI Insight 2021; 6:e149130. [PMID: 34314385 PMCID: PMC8492310 DOI: 10.1172/jci.insight.149130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Immunotherapies are needed in the clinic that effectively suppress beta cell autoimmunity and reestablish long-term self-tolerance in type 1 diabetes. We previously demonstrated that nondepleting αCD4 and αCD8α antibodies establish rapid and indefinite remission in recent-onset diabetic NOD mice. Diabetes reversal by coreceptor therapy (CoRT) is induced by suppression of pathogenic effector T cells (Teff) and the selective egress of T cells from the pancreatic lymph nodes and islets that remain free of infiltration long-term. Here, we defined CoRT-induced events regulating early Teff function and pancreatic residency, and long-term tolerance. TCR-driven gene expression controlling autoreactive Teff expansion and proinflammatory activity was suppressed by CoRT, and islet T cell egress was sphingosine-1 phosphate-dependent. In both murine and human T cells, CoRT upregulated the Foxo1 transcriptional axis, which in turn was required for suppression and efficient pancreatic egress of Teff. Interestingly, long-term tolerance induced in late-preclinical NOD mice was marked by reseeding of the pancreas by a reduced CD8+ Teff pool exhibiting an exhausted phenotype. Notably, PD-1 blockade, which rescues exhausted Teff, resulted in diabetes onset in protected animals. These findings demonstrate that CoRT has distinct intrinsic effects on Teff that impact events early in induction and later in maintenance of self-tolerance.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Rui Zhang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Karen Statum
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - J Justin Milner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Aaron J Martin
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| |
Collapse
|
15
|
Li Y, Sun F, Yue TT, Wang FX, Yang CL, Luo JH, Rong SJ, Xiong F, Zhang S, Wang CY. Revisiting the Antigen-Presenting Function of β Cells in T1D Pathogenesis. Front Immunol 2021; 12:690783. [PMID: 34335595 PMCID: PMC8318689 DOI: 10.3389/fimmu.2021.690783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by the unresolved autoimmune inflammation and islet β cell destruction. The islet resident antigen-presenting cells (APCs) including dendritic cells and macrophages uptake and process the β cell-derived antigens to prime the autoreactive diabetogenic T cells. Upon activation, those autoreactive T cells produce copious amount of IFN-γ, TNF-α and IL-1β to induce β cell stress and death. Autoimmune attack and β cell damage intertwine together to push forward this self-destructive program, leading to T1D onset. However, β cells are far beyond a passive participant during the course of T1D development. Herein in this review, we summarized how β cells are actively involved in the initiation of autoimmune responses in T1D setting. Specifically, β cells produce modified neoantigens under stressed condition, which is coupled with upregulated expression of MHC I/II and co-stimulatory molecules as well as other immune modules, that are essential properties normally exhibited by the professional APCs. At the cellular level, this subset of APC-like β cells dynamically interacts with plasmacytoid dendritic cells (pDCs) and manifests potency to activate autoreactive CD4 and CD8 T cells, by which β cells initiate early autoimmune responses predisposing to T1D development. Overall, the antigen-presenting function of β cells helps to explain the tissue specificity of T1D and highlights the active roles of structural cells played in the pathogenesis of various immune related disorders.
Collapse
Affiliation(s)
- Yang Li
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Tian Yue
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Liang Yang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hui Luo
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Jie Rong
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Golden TN, Simmons RA. Immune dysfunction in developmental programming of type 2 diabetes mellitus. Nat Rev Endocrinol 2021; 17:235-245. [PMID: 33526907 PMCID: PMC7969450 DOI: 10.1038/s41574-020-00464-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
Intrauterine growth restriction (IUGR) is a common complication of pregnancy and increases the risk of the offspring developing type 2 diabetes mellitus (T2DM) later in life. Alterations in the immune system are implicated in the pathogenesis of IUGR-induced T2DM. The development of the fetal immune system is a delicate balance as it must remain tolerant of maternal antigens whilst also preparing for the post-birth environment. In addition, the fetal immune system is susceptible to an altered intrauterine milieu caused by maternal and placental inflammatory mediators or secondary to nutrient and oxygen deprivation. Pancreatic-resident macrophages populate the pancreas during fetal development, and their phenotype is dynamic through the neonatal period. Furthermore, macrophages in the islets are instrumental in islet development as they influence β-cell proliferation and islet neogenesis. In addition, cytokines, derived from β-cells and macrophages, are important to islet homeostasis in the fetus and adult and, when perturbed, can cause islet dysfunction. Several activated immune pathways have been identified in the islets of people who experienced IUGR, with alternations in the levels of IL-1β and IL-4 as well as changes in TGFβ signalling. Leptin levels are also altered. Immunomodulation has shown therapeutic benefit in T2DM and might be particularly useful in IUGR-induced T2DM.
Collapse
Affiliation(s)
- Thea N Golden
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA.
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA.
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Nandedkar-Kulkarni N, Esakov E, Gregg B, Atkinson MA, Rogers DG, Horner JD, Singer K, Lundy SK, Felton JL, Al-Huniti T, Kalinoski AN, Morran MP, Gupta NK, Bretz JD, Balaji S, Chen T, McInerney MF. Insulin Receptor-Expressing T Cells Appear in Individuals at Risk for Type 1 Diabetes and Can Move into the Pancreas in C57BL/6 Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2021; 206:1443-1453. [PMID: 33658296 DOI: 10.4049/jimmunol.1900357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/19/2021] [Indexed: 01/04/2023]
Abstract
Insulin receptor (IR) expression on the T cell surface can indicate an activated state; however, the IR is also chemotactic, enabling T cells with high IR expression to physically move toward insulin. In humans with type 1 diabetes (T1D) and the NOD mouse model, a T cell-mediated autoimmune destruction of insulin-producing pancreatic β cells occurs. In previous work, when purified IR+ and IR- T cells were sorted from diabetic NOD mice and transferred into irradiated nondiabetic NOD mice, only those that received IR+ T cells developed insulitis and diabetes. In this study, peripheral blood samples from individuals with T1D (new onset to 14 y of duration), relatives at high-risk for T1D, defined by positivity for islet autoantibodies, and healthy controls were examined for frequency of IR+ T cells. High-risk individuals had significantly higher numbers of IR+ T cells as compared with those with T1D (p < 0.01) and controls (p < 0.001); however, the percentage of IR+ T cells in circulation did not differ significantly between T1D and control subjects. With the hypothesis that IR+ T cells traffic to the pancreas in T1D, we developed a (to our knowledge) novel mouse model exhibiting a FLAG-tagged mouse IR on T cells on the C57BL/6 background, which is not susceptible to developing T1D. Interestingly, these C57BL/6-CD3FLAGmIR/mfm mice showed evidence of increased IR+ T cell trafficking into the islets compared with C57BL/6 controls (p < 0.001). This transgenic animal model provides a (to our knowledge) novel platform for investigating the influence of IR expression on T cell trafficking and the development of insulitis.
Collapse
Affiliation(s)
- Neha Nandedkar-Kulkarni
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Emily Esakov
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Brigid Gregg
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610.,University of Florida Diabetes Institute, University of Florida, Gainesville, FL 32610
| | - Douglas G Rogers
- Center for Pediatric and Adolescent Endocrinology, Cleveland Clinic Foundation, Cleveland, OH 44053
| | - James D Horner
- Department of Pediatrics, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614
| | - Kanakadurga Singer
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jamie L Felton
- Department of Pediatric Endocrinology and Diabetology, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Tasneem Al-Huniti
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Andrea Nestor Kalinoski
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614
| | - Michael P Morran
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614
| | - Nirdesh K Gupta
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - James D Bretz
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Swapnaa Balaji
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Tian Chen
- Department of Mathematics and Statistics, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606; and
| | - Marcia F McInerney
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614; .,Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| |
Collapse
|
18
|
Kwong CTJ, Selck C, Tahija K, McAnaney LJ, Le DV, Kay TW, Thomas HE, Krishnamurthy B. Harnessing CD8 + T-cell exhaustion to treat type 1 diabetes. Immunol Cell Biol 2021; 99:486-495. [PMID: 33548057 DOI: 10.1111/imcb.12444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
Although immune interventions have shown great promise in type 1 diabetes mellitus (T1D) clinical trials, none are yet in routine clinical use or able to achieve insulin independence in patients. In addition to this, the principles of T1D treatment remain essentially unchanged since the isolation of insulin, almost a century ago. T1D is characterized by insulin deficiency as a result of destruction of insulin-producing beta cells mediated by autoreactive T cells. Therapies that target beta-cell antigen-specific T cells are needed to prevent T1D. CD8+ T-cell exhaustion is an emerging area of research in chronic infection, cancer immunotherapy, and more recently, autoimmunity. Recent data suggest that exhausted T-cell populations are associated with improved markers of T1D. T-cell exhaustion is both characterized and mediated by inhibitory receptors. This review aims to identify which inhibitory receptors may prove useful to induce T-cell exhaustion to treat T1D and identify limitations and gaps in the current literature.
Collapse
Affiliation(s)
- Chun-Ting J Kwong
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Claudia Selck
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Krisna Tahija
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Lachlan J McAnaney
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Dan V Le
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Thomas Wh Kay
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Helen E Thomas
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Balasubramanian Krishnamurthy
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| |
Collapse
|
19
|
Zakharov PN, Hu H, Wan X, Unanue ER. Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. J Exp Med 2021; 217:151619. [PMID: 32251514 PMCID: PMC7971127 DOI: 10.1084/jem.20192362] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Tissue-specific autoimmune diseases are driven by activation of diverse immune cells in the target organs. However, the molecular signatures of immune cell populations over time in an autoimmune process remain poorly defined. Using single-cell RNA sequencing, we performed an unbiased examination of diverse islet-infiltrating cells during autoimmune diabetes in the nonobese diabetic mouse. The data revealed a landscape of transcriptional heterogeneity across the lymphoid and myeloid compartments. Memory CD4 and cytotoxic CD8 T cells appeared early in islets, accompanied by regulatory cells with distinct phenotypes. Surprisingly, we observed a dramatic remodeling in the islet microenvironment, in which the resident macrophages underwent a stepwise activation program. This process resulted in polarization of the macrophage subpopulations into a terminal proinflammatory state. This study provides a single-cell atlas defining the staging of autoimmune diabetes and reveals that diabetic autoimmunity is driven by transcriptionally distinct cell populations specialized in divergent biological functions.
Collapse
Affiliation(s)
- Pavel N Zakharov
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Hao Hu
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Xiaoxiao Wan
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Emil R Unanue
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
20
|
Kloc M, Ghobrial RM, Lewicki S, Kubiak JZ. Macrophages in diabetes mellitus (DM) and COVID-19: do they trigger DM? J Diabetes Metab Disord 2020; 19:2045-2048. [PMID: 33102261 PMCID: PMC7568660 DOI: 10.1007/s40200-020-00665-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 08/28/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus (DM) augments the risk of hospitalization and mortality resulting from viral, bacterial, or fungal pathogen infection. This has been also true for the past SARS and MERS, and current SARS-CoV-2 coronavirus epidemics. Clinical data indicate that SARS-CoV-2 infection triggers a severe course of COVID-19 more frequently in diabetic than non-diabetic patients. Here we overview the cellular and molecular mechanisms associated with this phenomenon. We focus on alterations in the immune cells, especially monocytes and macrophages, involved in innate immune response and inflammatory processes, which differ in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). We also describe the DM-related changes in the monocyte/macrophages functions, how they could lead to the severe outcome of SARS-CoV-2 infection, and importantly, if and how they could initiate DM in DM-susceptible patients.
Collapse
Affiliation(s)
- Małgorzata Kloc
- The Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX USA
- Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX USA
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX USA
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
- UnivRennes, UMR 6290, CNRS, Institute of Genetics and Development of Rennes, Cell Cycle Group, Faculty of Medicine, 2 Ave. du Prof. Leon Bernard, 35043 Rennes Cedex, France
| |
Collapse
|
21
|
Winn NC, Volk KM, Hasty AH. Regulation of tissue iron homeostasis: the macrophage "ferrostat". JCI Insight 2020; 5:132964. [PMID: 31996481 DOI: 10.1172/jci.insight.132964] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Iron is an essential element for multiple fundamental biological processes required for life; yet iron overload can be cytotoxic. Consequently, iron concentrations at the cellular and tissue level must be exquisitely governed by mechanisms that complement and fine-tune systemic control. It is well appreciated that macrophages are vital for systemic iron homeostasis, supplying or sequestering iron as needed for erythropoiesis or bacteriostasis, respectively. Indeed, recycling of iron through erythrophagocytosis by splenic macrophages is a major contributor to systemic iron homeostasis. However, accumulating evidence suggests that tissue-resident macrophages regulate local iron availability and modulate the tissue microenvironment, contributing to cellular and tissue function. Here, we summarize the significance of tissue-specific regulation of iron availability and highlight how resident macrophages are critical for this process. This tissue-dependent regulation has broad implications for understanding both resident macrophage function and tissue iron homeostasis in health and disease.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Katrina M Volk
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Sandor AM, Jacobelli J, Friedman RS. Immune cell trafficking to the islets during type 1 diabetes. Clin Exp Immunol 2019; 198:314-325. [PMID: 31343073 PMCID: PMC6857188 DOI: 10.1111/cei.13353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2019] [Indexed: 01/01/2023] Open
Abstract
Inhibition of immune cell trafficking to the pancreatic islets during type 1 diabetes (T1D) has therapeutic potential, since targeting of T cell and B cell trafficking has been clinically effective in other autoimmune diseases. Trafficking to the islets is characterized by redundancy in adhesion molecule and chemokine usage, which has not enabled effective targeting to date. Additionally, cognate antigen is not consistently required for T cell entry into the islets throughout the progression of disease. However, myeloid cells are required to enable T cell and B cell entry into the islets, and may serve as a convergence point in the pathways controlling this process. In this review we describe current knowledge of the factors that mediate immune cell trafficking to pancreatic islets during T1D progression.
Collapse
Affiliation(s)
- A. M. Sandor
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - J. Jacobelli
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - R. S. Friedman
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| |
Collapse
|
23
|
Shtylla B, Gee M, Do A, Shabahang S, Eldevik L, de Pillis L. A Mathematical Model for DC Vaccine Treatment of Type I Diabetes. Front Physiol 2019; 10:1107. [PMID: 31555144 PMCID: PMC6742690 DOI: 10.3389/fphys.2019.01107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/12/2019] [Indexed: 01/28/2023] Open
Abstract
Type I diabetes (T1D) is an autoimmune disease that can be managed, but for which there is currently no cure. Recent discoveries, particularly in mouse models, indicate that targeted modulation of the immune response has the potential to move an individual from a diabetic to a long-term, if not permanent, healthy state. In this paper we develop a single compartment mathematical model that captures the dynamics of dendritic cells (DC and tDC), T cells (effector and regulatory), and macrophages in the development of type I diabetes. The model supports the hypothesis that differences in macrophage clearance rates play a significant role in determining whether or not an individual is likely to become diabetic subsequent to a significant immune challenge. With this model we are able to explore the effects of strengthening the anti-inflammatory component of the immune system in a vulnerable individual. Simulations indicate that there are windows of opportunity in which treatment intervention is more likely to be beneficial in protecting an individual from entering a diabetic state. This model framework can be used as a foundation for modeling future T1D treatments as they are developed.
Collapse
Affiliation(s)
- Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, United States
| | - Marissa Gee
- Mathematics Department, Harvey Mudd College, Claremont, CA, United States
| | - An Do
- Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA, United States
| | | | - Leif Eldevik
- Aditx Therapeutics, Inc., Loma Linda, CA, United States
| | - Lisette de Pillis
- Mathematics Department, Harvey Mudd College, Claremont, CA, United States
| |
Collapse
|
24
|
Abstract
Macrophages are a heterogeneous group of cells that are capable of carrying out distinct functions in different tissues, as well as in different locations within a given tissue. Some of these tissue macrophages lie on, or close to, the outer (abluminal) surface of blood vessels and perform several crucial activities at this interface between the tissue and the blood. In steady-state tissues, these perivascular macrophages maintain tight junctions between endothelial cells and limit vessel permeability, phagocytose potential pathogens before they enter tissues from the blood and restrict inappropriate inflammation. They also have a multifaceted role in diseases such as cancer, Alzheimer disease, multiple sclerosis and type 1 diabetes. Here, we examine the important functions of perivascular macrophages in various adult tissues and describe how these functions are perturbed in a broad array of pathological conditions.
Collapse
|
25
|
Singh K, Martinell M, Luo Z, Espes D, Stålhammar J, Sandler S, Carlsson PO. Cellular immunological changes in patients with LADA are a mixture of those seen in patients with type 1 and type 2 diabetes. Clin Exp Immunol 2019; 197:64-73. [PMID: 30843600 PMCID: PMC6591143 DOI: 10.1111/cei.13289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
There is currently scarce knowledge of the immunological profile of patients with latent autoimmune diabetes mellitus in the adult (LADA) when compared with healthy controls (HC) and patients with classical type 1 diabetes (T1D) and type 2 diabetes (T2D). The objective of this study was to investigate the cellular immunological profile of LADA patients and compare to HC and patients with T1D and T2D. All patients and age‐matched HC were recruited from Uppsala County. Peripheral blood mononuclear cells were isolated from freshly collected blood to determine the proportions of immune cells by flow cytometry. Plasma concentrations of the cytokine interleukin (IL)‐35 were measured by enzyme‐linked immunosorbent assay (ELISA). The proportion of CD11c+CD123– antigen‐presenting cells (APCs) was lower, while the proportions of CD11c+CD123+ APCs and IL‐35+ tolerogenic APCs were higher in LADA patients than in T1D patients. The proportion of CD3–CD56highCD16+ natural killer (NK) cells was higher in LADA patients than in both HC and T2D patients. The frequency of IL‐35+ regulatory T cells and plasma IL‐35 concentrations in LADA patients were similar to those in T1D and T2D patients, but lower than in HC. The proportion of regulatory B cells in LADA patients was higher than in healthy controls, T1D and T2D patients, and the frequency of IL‐35+ regulatory B cells was higher than in T1D patients. LADA presents a mixed cellular immunological pattern with features overlapping with both T1D and T2D.
Collapse
Affiliation(s)
- K Singh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - M Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Z Luo
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - D Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J Stålhammar
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - S Sandler
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - P-O Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Rogal J, Zbinden A, Schenke-Layland K, Loskill P. Stem-cell based organ-on-a-chip models for diabetes research. Adv Drug Deliv Rev 2019; 140:101-128. [PMID: 30359630 DOI: 10.1016/j.addr.2018.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/10/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) ranks among the severest global health concerns of the 21st century. It encompasses a group of chronic disorders characterized by a dysregulated glucose metabolism, which arises as a consequence of progressive autoimmune destruction of pancreatic beta-cells (type 1 DM), or as a result of beta-cell dysfunction combined with systemic insulin resistance (type 2 DM). Human cohort studies have provided evidence of genetic and environmental contributions to DM; yet, these studies are mostly restricted to investigating statistical correlations between DM and certain risk factors. Mechanistic studies, on the other hand, aimed at re-creating the clinical picture of human DM in animal models. A translation to human biology is, however, often inadequate owing to significant differences between animal and human physiology, including the species-specific glucose regulation. Thus, there is an urgent need for the development of advanced human in vitro models with the potential to identify novel treatment options for DM. This review provides an overview of the technological advances in research on DM-relevant stem cells and their integration into microphysiological environments as provided by the organ-on-a-chip technology.
Collapse
Affiliation(s)
- Julia Rogal
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| | - Aline Zbinden
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645, Los Angeles, CA, USA.
| | - Peter Loskill
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| |
Collapse
|
27
|
Sandor AM, Lindsay RS, Dyjack N, Whitesell JC, Rios C, Bradley BJ, Haskins K, Serreze DV, Geurts AM, Chen YG, Seibold MA, Jacobelli J, Friedman RS. CD11c + Cells Are Gatekeepers for Lymphocyte Trafficking to Infiltrated Islets During Type 1 Diabetes. Front Immunol 2019; 10:99. [PMID: 30766536 PMCID: PMC6365440 DOI: 10.3389/fimmu.2019.00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease that affects more than 19 million people with incidence increasing rapidly worldwide. For T cells to effectively drive T1D, they must first traffic to the islets and extravasate through the islet vasculature. Understanding the cues that lead to T cell entry into inflamed islets is important because diagnosed T1D patients already have established immune infiltration of their islets. Here we show that CD11c+ cells are a key mediator of T cell trafficking to infiltrated islets in non-obese diabetic (NOD) mice. Using intravital 2-photon islet imaging we show that T cell extravasation into the islets is an extended process, with T cells arresting in the islet vasculature in close proximity to perivascular CD11c+ cells. Antigen is not required for T cell trafficking to infiltrated islets, but T cell chemokine receptor signaling is necessary. Using RNAseq, we show that islet CD11c+ cells express over 20 different chemokines that bind chemokine receptors expressed on islet T cells. One highly expressed chemokine-receptor pair is CXCL16-CXCR6. However, NOD. CXCR6-/- mice progressed normally to T1D and CXCR6 deficient T cells trafficked normally to the islets. Even with CXCR3 and CXCR6 dual deficiency, T cells trafficked to infiltrated islets. These data reinforce that chemokine receptor signaling is highly redundant for T cell trafficking to inflamed islets. Importantly, depletion of CD11c+ cells strongly inhibited T cell trafficking to infiltrated islets of NOD mice. We suggest that targeted depletion of CD11c+ cells associated with the islet vasculature may yield a therapeutic target to inhibit T cell trafficking to inflamed islets to prevent progression of T1D.
Collapse
Affiliation(s)
- Adam M Sandor
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Robin S Lindsay
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Jennifer C Whitesell
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Brenda J Bradley
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
28
|
Christoffersson G, Chodaczek G, Ratliff SS, Coppieters K, von Herrath MG. Suppression of diabetes by accumulation of non-islet-specific CD8 + effector T cells in pancreatic islets. Sci Immunol 2018; 3:3/21/eaam6533. [PMID: 29572238 DOI: 10.1126/sciimmunol.aam6533] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/11/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
The inflammatory lesion at the pancreatic islet in type 1 diabetes (T1D) contains a heterogeneous infiltrate of T cells. In human and mouse studies, a large majority (98 to 99%) of the cytotoxic CD8+ T cells (CTLs) within islets are not specific to any islet antigen and are thought to passively add to tissue damage. We show by intravital confocal microscopy the opposite, immune-regulatory function of this cohort of CTLs. Diabetes did not develop in mice with islets showing high levels of infiltration of non-islet-specific CTLs not recognizing local antigens. Accumulation of such CTLs resulted in lower activation and proliferation of islet-specific CTLs, leading them to enter a state of unresponsiveness due to limited access to antigens at the inflammatory lesion. This nonspecific suppression by nonautoreactive CTLs was recapitulated in a model of viral meningitis, may explain viral interference in autoimmunity, and provides insight into the regulation of organ-specific autoimmune responses.
Collapse
Affiliation(s)
- Gustaf Christoffersson
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Grzegorz Chodaczek
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Wroclaw Research Centre EIT+, Wroclaw, Poland
| | - Sowbarnika S Ratliff
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Ken Coppieters
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Novo Nordisk Diabetes Research and Development Center, Seattle, WA 98109, USA
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. .,Novo Nordisk Diabetes Research and Development Center, Seattle, WA 98109, USA
| |
Collapse
|
29
|
Scott NA, Zhao Y, Krishnamurthy B, Mannering SI, Kay TWH, Thomas HE. IFNγ-Induced MHC Class II Expression on Islet Endothelial Cells Is an Early Marker of Insulitis but Is Not Required for Diabetogenic CD4 + T Cell Migration. Front Immunol 2018; 9:2800. [PMID: 30555479 PMCID: PMC6282031 DOI: 10.3389/fimmu.2018.02800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Diabetogenic T cells infiltrate the pancreatic islets by transmigrating across the microcapillaries residing close to, or within, the pancreatic islets. Deficiency in IFNγ signaling prevents efficient migration of T cells into the pancreatic islets, but the IFNγ-regulated molecules that mediate this are uncertain. Homing of autoreactive T cells into target tissues may require antigen specificity through presentation of cognate antigen by MHC expressed on the vascular endothelium. We investigated the hypothesis that IFNγ promotes the migration of islet antigen-specific CD4+ T cells by upregulating MHC class II on islet endothelial cells (IEC), thereby providing an antigen-specific signal for islet infiltration. Upon IFNγ stimulation, MHC class II, which is not constitutively expressed on IEC, was induced. IFNγ-dependent upregulation of MHC class II was detected in IEC isolated from prediabetic NOD mice at the earliest stages of insulitis, before other markers of inflammation were present. Using a CD4+ T cell-mediated adoptive transfer model of autoimmune diabetes we observed that even though diabetes does not develop in recipient mice lacking IFNγ receptors, mice with MHC class II-deficient IEC were not protected from disease. Thus, IFNγ-regulated molecules, but not MHC class II or antigen presentation by IECs is required for the early migration of antigen-specific CD4+ T cells into the pancreatic islets.
Collapse
Affiliation(s)
- Nicholas A Scott
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Yuxing Zhao
- St. Vincent's Institute, Fitzroy, VIC, Australia
| | - Balasubramanian Krishnamurthy
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Stuart I Mannering
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E Thomas
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
30
|
Zinselmeyer BH, Vomund AN, Saunders BT, Johnson MW, Carrero JA, Unanue ER. The resident macrophages in murine pancreatic islets are constantly probing their local environment, capturing beta cell granules and blood particles. Diabetologia 2018; 61:1374-1383. [PMID: 29589072 PMCID: PMC5938291 DOI: 10.1007/s00125-018-4592-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/26/2018] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS We studied here the interactions between the resident macrophages of pancreatic islets with beta cells and the blood vasculature. We also examined the immunological consequences of such interactions. METHODS Islets were isolated from C57BL/6 mice expressing CX3C motif chemokine receptor 1-green fluorescent protein (CX3CR-GFP) and examined live by two-photon microscopy. Islets were also examined by electron microscopy to study the relationship of the intra-islet macrophages with the beta cells. In NOD.Rag1-/- mice and young (non-diabetic) male mice, the acquisition of beta cell granules was tested functionally by probing with CD4+ T cells directed against insulin epitopes. RESULTS Two-photon microscopy showed that the islet resident macrophages were in close contact with blood vessels and had extensive filopodial activity. Some filopodia had direct access to the vessel lumen and captured microparticles. Addition of glucose at high concentration reduced the degree of filopodia sampling of islets. This finding applied to in vivo injection of glucose or to in vitro cultures. Ultrastructural examination showed the close contacts of macrophages with beta cells. Such macrophages contained intact dense core granules. Functional studies in NOD mice indicated that the macrophages presented insulin peptides to insulin-reactive T cells. Presentation was increased after glucose challenge either ex vivo or after an in vivo pulse. In agreement with the morphological findings, presentation was not affected by insulin receptor blockade. CONCLUSIONS/INTERPRETATION Islet resident macrophages are highly active, sampling large areas of the islets and blood contents and capturing beta cell granules. After such interactions, macrophages present immunogenic insulin to specific autoreactive T cells.
Collapse
Affiliation(s)
- Bernd H Zinselmeyer
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA.
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Brian T Saunders
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Michael W Johnson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Javier A Carrero
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
31
|
Espinosa-Carrasco G, Le Saout C, Fontanaud P, Michau A, Mollard P, Hernandez J, Schaeffer M. Integrin β1 Optimizes Diabetogenic T Cell Migration and Function in the Pancreas. Front Immunol 2018; 9:1156. [PMID: 29904378 PMCID: PMC5990596 DOI: 10.3389/fimmu.2018.01156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
T cell search behavior is dictated by their need to encounter their specific antigen to eliminate target cells. However, mechanisms controlling effector T cell motility are highly tissue-dependent. Specifically, how diabetogenic T cells encounter their target beta cells in dispersed islets throughout the pancreas (PA) during autoimmune diabetes remains unclear. Using intra-vital 2-photon microscopy in a mouse model of diabetes, we found that CXCR3 chemokine downregulated CD8+ T cell motility specifically within islets, promoting effector cell confinement to their target sites. By contrast, T cell velocity and directionality in the exocrine tissue were enhanced along blood vessels and extracellular matrix fibers. This guided migration implicated integrin-dependent interactions, since integrin blockade impaired exocrine T cell motility. In addition, integrin β1 blockade decreased CD4+ T cell effector phenotype specifically in the PA. Thus, we unveil an important role for integrins in the PA during autoimmune diabetes that may have important implications for the design of new therapies.
Collapse
Affiliation(s)
- Gabriel Espinosa-Carrasco
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Montpellier, France.,Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Cécile Le Saout
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Montpellier, France
| | - Pierre Fontanaud
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Aurélien Michau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Patrice Mollard
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Javier Hernandez
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Montpellier, France
| | - Marie Schaeffer
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
32
|
Kaminitz A, Ash S, Askenasy N. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes. Clin Rev Allergy Immunol 2018; 52:460-472. [PMID: 27677500 DOI: 10.1007/s12016-016-8587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Shifra Ash
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202.
| |
Collapse
|
33
|
Espinosa-Carrasco G, Le Saout C, Fontanaud P, Stratmann T, Mollard P, Schaeffer M, Hernandez J. CD4 + T Helper Cells Play a Key Role in Maintaining Diabetogenic CD8 + T Cell Function in the Pancreas. Front Immunol 2018; 8:2001. [PMID: 29403481 PMCID: PMC5778106 DOI: 10.3389/fimmu.2017.02001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/22/2017] [Indexed: 01/07/2023] Open
Abstract
Autoreactive CD8+ and CD4+ T cells have been assigned independent key roles in the destruction of insulin-producing beta cells resulting in type 1 diabetes. Although CD4 help for the generation of efficient CD8+ T cell responses in lymphoid tissue has been extensively described, whether these two cell populations cooperate in islet destruction in situ remains unclear. By using intravital 2-photon microscopy in a mouse model of diabetes, we visualized both effector T cell populations in the pancreas during disease onset. CD4+ T helper cells displayed a much higher arrest in the exocrine tissue than islet-specific CD8+ T cells. This increased arrest was major histocompatibility complex (MHC) class II-dependent and locally correlated with antigen-presenting cell recruitment. CD8+ T cells deprived of continued CD4 help specifically in the pancreas, through blocking MHC class II recognition, failed to maintain optimal effector functions, which contributed to hamper diabetes progression. Thus, we provide novel insight in the cellular mechanisms regulating effector T cell functionality in peripheral tissues with important implications for immunotherapies.
Collapse
Affiliation(s)
- Gabriel Espinosa-Carrasco
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Montpellier, France.,Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Cécile Le Saout
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Montpellier, France
| | - Pierre Fontanaud
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Thomas Stratmann
- Faculty of Biology, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Patrice Mollard
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Marie Schaeffer
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Javier Hernandez
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Montpellier, France
| |
Collapse
|
34
|
Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proc Natl Acad Sci U S A 2017; 114:E10418-E10427. [PMID: 29133420 PMCID: PMC5715775 DOI: 10.1073/pnas.1713543114] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Our studies indicate that the resident macrophages of the pancreatic islets of Langerhans have a seminal role in the initiation and progression of autoimmune diabetes in NOD mice. In this study, islet macrophages were depleted by administration of a monoclonal antibody to the CSF-1 receptor. Macrophage depletion, either at the start of the autoimmune process or when diabetogenesis is active, leads to a significant reduction in diabetes incidence. Depletion of the islet macrophages reduces the entrance of T cells into islets and results in the absence of antigen presentation. Concordantly, a regulatory pathway develops that controls diabetes progression. We conclude that treatments that target the islet macrophages may have important clinical relevance for the control of autoimmune type 1 diabetes. Treatment of C57BL/6 or NOD mice with a monoclonal antibody to the CSF-1 receptor resulted in depletion of the resident macrophages of pancreatic islets of Langerhans that lasted for several weeks. Depletion of macrophages in C57BL/6 mice did not affect multiple parameters of islet function, including glucose response, insulin content, and transcriptional profile. In NOD mice depleted of islet-resident macrophages starting at 3 wk of age, several changes occurred: (i) the early entrance of CD4 T cells and dendritic cells into pancreatic islets was reduced, (ii) presentation of insulin epitopes by dispersed islet cells to T cells was impaired, and (iii) the development of autoimmune diabetes was significantly reduced. Treatment of NOD mice starting at 10 wk of age, when the autoimmune process has progressed, also significantly reduced the incidence of diabetes. Despite the absence of diabetes, NOD mice treated with anti–CSF-1 receptor starting at 3 or 10 wk of age still contained variably elevated leukocytic infiltrates in their islets when examined at 20–40 wk of age. Diabetes occurred in the anti–CSF-1 receptor protected mice after treatment with a blocking antibody directed against PD-1. We conclude that treatment of NOD mice with an antibody against CSF-1 receptor reduced diabetes incidence and led to the development of a regulatory pathway that controlled autoimmune progression.
Collapse
|
35
|
Mohan JF, Kohler RH, Hill JA, Weissleder R, Mathis D, Benoist C. Imaging the emergence and natural progression of spontaneous autoimmune diabetes. Proc Natl Acad Sci U S A 2017; 114:E7776-E7785. [PMID: 28839093 PMCID: PMC5604023 DOI: 10.1073/pnas.1707381114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes in the nonobese diabetic mouse stems from an infiltration of the pancreatic islets by a mixed population of immunocytes, which results in the impairment and eventual destruction of insulin-producing β-cells. Little is known about the dynamics of lymphocyte movement in the pancreas during disease progression. Using advanced intravital imaging approaches and newly created reporter mice (Flt3-BFP2, Mertk-GFP-DTR, Cd4-tdTomato, Cd8a-tdTomato), we show that the autoimmune process initiates first with a T cell infiltration into the islets, where they have restricted mobility but reside and are activated in apposition to CX3CR1+ macrophages. The main expansion then occurs in the connective tissue outside the islet, which remains more or less intact. CD4+ and CD8+ T cells, Tregs, and dendritic cells (DCs) are highly mobile, going along microvascular tracks, while static macrophages (MF) form a more rigid structure, often encasing the islet cell mass. Transient cell-cell interactions are formed between T cells and both MFs and DCs, but also surprisingly between MFs and DCs themselves, possibly denoting antigen transfer. In later stages, extensive islet destruction coincides with preferential antigen presentation to, and activation of, CD8+ T cells. Throughout the process, Tregs patrol the active compartments, consistent with the notion that they control the activation of many cell types.
Collapse
Affiliation(s)
- James F Mohan
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Jonathan A Hill
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114;
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115;
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
36
|
Ferris ST, Zakharov PN, Wan X, Calderon B, Artyomov MN, Unanue ER, Carrero JA. The islet-resident macrophage is in an inflammatory state and senses microbial products in blood. J Exp Med 2017. [PMID: 28630088 PMCID: PMC5551574 DOI: 10.1084/jem.20170074] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ferris et al. show that macrophages in pancreatic islets express a gene signature of activation consistent with barrier macrophages. Macrophages are poised to react to blood inflammatory stimuli. In NOD mice, an additional immune activation signature is observed as early as 3 wk of age. We examined the transcriptional profiles of macrophages that reside in the islets of Langerhans of 3-wk-old non-obese diabetic (NOD), NOD.Rag1−/−, and B6.g7 mice. Islet macrophages expressed an activation signature with high expression of Tnf, Il1b, and MHC-II at both the transcript and protein levels. These features are common with barrier macrophages of the lung and gastrointestinal tract. Moreover, injection of lipopolysaccharide induced rapid inflammatory gene expression, indicating that blood stimulants are accessible to the macrophages and that these macrophages can sense them. In NOD mice, the autoimmune process imparted an increased inflammatory signature, including elevated expression of chemokines and chemokine receptors and an oxidative response. The elevated inflammatory signature indicates that the autoimmune program was active at the time of weaning. Thus, the macrophages of the islets of Langerhans are poised to mount an immune response even at steady state, while the presence of the adaptive immune system elevates their activation state.
Collapse
Affiliation(s)
- Stephen T Ferris
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Pavel N Zakharov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Boris Calderon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
37
|
Trivedi PM, Graham KL, Scott NA, Jenkins MR, Majaw S, Sutherland RM, Fynch S, Lew AM, Burns CJ, Krishnamurthy B, Brodnicki TC, Mannering SI, Kay TW, Thomas HE. Repurposed JAK1/JAK2 Inhibitor Reverses Established Autoimmune Insulitis in NOD Mice. Diabetes 2017; 66:1650-1660. [PMID: 28292965 DOI: 10.2337/db16-1250] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022]
Abstract
Recent advances in immunotherapeutics have not yet changed the routine management of autoimmune type 1 diabetes. There is an opportunity to repurpose therapeutics used to treat other diseases to treat type 1 diabetes, especially when there is evidence for overlapping mechanisms. Janus kinase (JAK) 1/JAK2 inhibitors are in development or clinical use for indications including rheumatoid arthritis. There is good evidence for activation of the JAK1/JAK2 and signal transducer and activator of transcription (STAT) 1 pathway in human type 1 diabetes and in mouse models, especially in β-cells. We tested the hypothesis that using these drugs to block the JAK-STAT pathway would prevent autoimmune diabetes. The JAK1/JAK2 inhibitor AZD1480 blocked the effect of cytokines on mouse and human β-cells by inhibiting MHC class I upregulation. This prevented the direct interaction between CD8+ T cells and β-cells, and reduced immune cell infiltration into islets. NOD mice treated with AZD1480 were protected from autoimmune diabetes, and diabetes was reversed in newly diagnosed NOD mice. This provides mechanistic groundwork for repurposing clinically approved JAK1/JAK2 inhibitors for type 1 diabetes.
Collapse
Affiliation(s)
- Prerak M Trivedi
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Kate L Graham
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Nicholas A Scott
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Misty R Jenkins
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | | | - Robyn M Sutherland
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stacey Fynch
- St. Vincent's Institute, Fitzroy, Victoria, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Balasubramanian Krishnamurthy
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Thomas C Brodnicki
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Stuart I Mannering
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Thomas W Kay
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
38
|
Cognate antigen engagement on parenchymal cells stimulates CD8 + T cell proliferation in situ. Nat Commun 2017; 8:14809. [PMID: 28401883 PMCID: PMC5394288 DOI: 10.1038/ncomms14809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
T-cell responses are initiated upon cognate presentation by professional antigen presenting cells in lymphoid tissue. T cells then migrate to inflamed tissues, but further T-cell stimulation in these parenchymal target sites is not well understood. Here we show that T-cell expansion within inflamed tissues is a distinct phase that is neither a classical primary nor classical secondary response. This response, which we term ‘the mezzanine response', commences within days after initial antigen encounter, unlike the secondary response that usually occurs weeks after priming. A further distinction of this response is that T-cell proliferation is driven by parenchymal cell antigen presentation, without requiring professional antigen presenting cells, but with increased dependence on IL-2. The mezzanine response might, therefore, be a new target for inhibiting T-cell responses in allograft rejection and autoimmunity or for enhancing T-cell responses in the context of microbial or tumour immunity. Professional antigen presenting cells (APC) are the major activator of T cells that then hone to sites of inflammation. Using islet cell grafts, here the authors show that parenchymal cells can present antigen to activate CD8+ T cells at inflammatory sites, coining this a ‘mezzanine response' distinct from primary and secondary responses associated with professional APCs.
Collapse
|
39
|
Bettini ML, Bettini M. Understanding Autoimmune Diabetes through the Prism of the Tri-Molecular Complex. Front Endocrinol (Lausanne) 2017; 8:351. [PMID: 29312143 PMCID: PMC5735072 DOI: 10.3389/fendo.2017.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen (HLA), which supports a central role for T cells as the drivers of autoimmunity. However, the precise mechanisms that allow thymic escape and peripheral activation of beta cell antigen-specific T cells are still largely unknown. Studies performed with the non-obese diabetic (NOD) mouse have challenged several immunological dogmas, and have made the NOD mouse a key experimental system to study the steps of immunodysregulation that lead to autoimmune diabetes. The structural similarities between the NOD I-Ag7 and HLA-DQ8 have revealed the stability of the T cell receptor (TCR)/HLA/peptide tri-molecular complex as an important parameter in the development of autoimmune T cells, as well as afforded insights into the key antigens targeted in T1D. In this review, we will provide a summary of the current understanding with regard to autoimmune T cell development, the significance of the antigens targeted in T1D, and the relationship between TCR affinity and immune regulation.
Collapse
Affiliation(s)
- Matthew L. Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| | - Maria Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| |
Collapse
|
40
|
Boldison J, Wong FS. Immune and Pancreatic β Cell Interactions in Type 1 Diabetes. Trends Endocrinol Metab 2016; 27:856-867. [PMID: 27659143 DOI: 10.1016/j.tem.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
The autoimmune destruction of the pancreatic islet β cells is due to a targeted lymphocyte attack. Different T cell subsets communicate with each other and with the insulin-producing β cells in this process, with evidence not only of damage to the tissue cells but also of lymphocyte regulation. Here we explore the various components of the immune response as well as the cellular interactions that are involved in causing or reducing immune damage to the β cells. We consider these in the light of the possibility that understanding them may help us identify therapeutic targets to reduce the damage and destruction leading to type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
41
|
Martin AJ, Clark M, Gojanovich G, Manzoor F, Miller K, Kline DE, Morillon YM, Wang B, Tisch R. Anti-coreceptor therapy drives selective T cell egress by suppressing inflammation-dependent chemotactic cues. JCI Insight 2016; 1:e87636. [PMID: 27777971 DOI: 10.1172/jci.insight.87636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
There continues to be a need for immunotherapies to treat type 1 diabetes in the clinic. We previously reported that nondepleting anti-CD4 and -CD8 Ab treatment effectively reverses diabetes in new-onset NOD mice. A key feature of the induction of remission is the egress of the majority of islet-resident T cells. How this occurs is undefined. Herein, the effects of coreceptor therapy on islet T cell retention were investigated. Bivalent Ab binding to CD4 and CD8 blocked TCR signaling and T cell cytokine production, while indirectly downregulating islet chemokine expression. These processes were required for T cell retention, as ectopic IFN-γ or CXCL10 inhibited Ab-mediated T cell purging. Importantly, treatment of humanized mice with nondepleting anti-human CD4 and CD8 Ab similarly reduced tissue-infiltrating human CD4+ and CD8+ T cells. These findings demonstrate that Ab binding of CD4 and CD8 interrupts a feed-forward circuit by suppressing T cell-produced cytokines needed for expression of chemotactic cues, leading to rapid T cell egress from the islets. Coreceptor therapy therefore offers a robust approach to suppress T cell-mediated pathology by purging T cells in an inflammation-dependent manner.
Collapse
Affiliation(s)
- Aaron J Martin
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.,Precision BioSciences, Durham, North Carolina, USA
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Gregory Gojanovich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Fatima Manzoor
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Keith Miller
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.,Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio, USA
| | - Douglas E Kline
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.,Committee on Immunology and Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, USA
| | - Y Maurice Morillon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.,Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
Unanue ER, Ferris ST, Carrero JA. The role of islet antigen presenting cells and the presentation of insulin in the initiation of autoimmune diabetes in the NOD mouse. Immunol Rev 2016; 272:183-201. [PMID: 27319351 PMCID: PMC4938008 DOI: 10.1111/imr.12430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have been examining antigen presentation and the antigen presenting cells (APCs) in the islets of Langerhans of the non-obese diabetic (NOD) mouse. The purpose is to identify the earliest events that initiate autoimmunity in this confined tissue. Islets normally have a population of macrophages that is distinct from those that inhabit the exocrine pancreas. Also found in NOD islets is a minor population of dendritic cells (DCs) that bear the CD103 integrin. We find close interactions between beta cells and the two APCs that result in the initiation of the autoimmunity. Even under non-inflammatory conditions, beta cells transfer insulin-containing vesicles to the APCs of the islet. This reaction requires live cells and intimate contact. The autoimmune process starts in islets with the entrance of CD4(+) T cells and an increase in the CD103(+) DCs. Mice deficient in the Batf3 transcription factor never develop diabetes due to the absence of the CD103/CD8α lineage of DCs. We hypothesize that the 12-20 peptide of the beta chain of insulin is responsible for activation of the initial CD4(+) T-cell response during diabetogenesis.
Collapse
Affiliation(s)
- Emil R. Unanue
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, Missouri USA 63110
| | - Stephen T. Ferris
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, Missouri USA 63110
| | - Javier A. Carrero
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, Missouri USA 63110
| |
Collapse
|
43
|
Zhang Q, Dai H, Yatim KM, Abou-Daya K, Williams AL, Oberbarnscheidt MH, Camirand G, Rudd CE, Lakkis FG. CD8+ Effector T Cell Migration to Pancreatic Islet Grafts Is Dependent on Cognate Antigen Presentation by Donor Graft Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1471-6. [PMID: 27357151 DOI: 10.4049/jimmunol.1600832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/30/2016] [Indexed: 11/19/2022]
Abstract
Pancreatic islet transplantation is a promising therapy for diabetes, but acute rejection of the islets by host effector T cells has hindered clinical application. In this study, we addressed the mechanisms of CD8(+) effector T cell migration to islet grafts because interrupting this step is key to preventing rejection. We found that effector T cell migration to revascularized islet transplants in mice is dependent on non-self Ag recognition rather than signaling via Gαi-coupled chemokine receptors. Presentation of non-self Ag by donor cells was necessary for migration, whereas Ag presentation by recipient cells was dispensable. We also observed that deficiency of SKAP1, an immune cell adaptor downstream of the TCR and important for integrin activation, prolongs allograft survival but does not reduce effector T cell migration to the graft. Therefore, effector T cell migration to transplanted islets is Ag driven, not chemokine driven, but SKAP1 does not play a critical role in this process.
Collapse
Affiliation(s)
- Qianqian Zhang
- Tsinghua University School of Medicine, Beijing 100084, China; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hehua Dai
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261
| | - Karim M Yatim
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261
| | - Khodor Abou-Daya
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261
| | - Amanda L Williams
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261
| | - Geoffrey Camirand
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261
| | - Christopher E Rudd
- Cell Signaling Section, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
44
|
Mauvais FX, Diana J, van Endert P. Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets. F1000Res 2016; 5. [PMID: 27158463 PMCID: PMC4847563 DOI: 10.12688/f1000research.7411.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 01/12/2023] Open
Abstract
Research focusing on type 1 diabetes (T1D) autoantigens aims to explore our understanding of these beta cell proteins in order to design assays for monitoring the pathogenic autoimmune response, as well as safe and efficient therapies preventing or stopping it. In this review, we will discuss progress made in the last 5 years with respect to mechanistic understanding, diagnostic monitoring, and therapeutic modulation of the autoantigen-specific cellular immune response in T1D. Some technical progress in monitoring tools has been made; however, the potential of recent technologies for highly multiplexed exploration of human cellular immune responses remains to be exploited in T1D research, as it may be the key to the identification of surrogate markers of disease progression that are still wanting. Detailed analysis of autoantigen recognition by T cells suggests an important role of non-conventional antigen presentation and processing in beta cell-directed autoimmunity, but the impact of this in human T1D has been little explored. Finally, therapeutic administration of autoantigens to T1D patients has produced disappointing results. The application of novel modes of autoantigen administration, careful translation of mechanistic understanding obtained in preclinical studies and
in vitro with human cells, and combination therapies including CD3 antibodies may help to make autoantigen-based immunotherapy for T1D a success story in the future.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| |
Collapse
|
45
|
Ferris ST, Carrero JA, Unanue ER. Antigen presentation events during the initiation of autoimmune diabetes in the NOD mouse. J Autoimmun 2016; 71:19-25. [PMID: 27021276 DOI: 10.1016/j.jaut.2016.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
Abstract
This is a brief summary of our studies of NOD autoimmune diabetes examining the events during the initial stage of the process. Our focus has been on antigen presentation events and the antigen presenting cells (APC) inside islets. Islets of non-diabetic mice contain resident macrophages that are developmentally distinct from those in the inter-acinar stroma. The autoimmune process starts with the entrance of CD4+ T cells together with a burst of a subset of dendritic cells (DC) bearing CD103. The CD103+ DC develop under the influence of the Batf3 transcription factor. Batf3 deficient mice do not develop diabetes and their islets are uninfiltrated throughout life. Thus, the CD103+ DC are necessary for the progression of autoimmune diabetes. The major CD4+ T cell response in NOD are the T cells directed to insulin. In particular, the non-conventional 12-20 segment of the insulin B chain is presented by the class II MHC molecule I-A(g7) and elicits pathogenic CD4+ T cells. We discuss that the diabetic process requires the CD103+ DC, the CD4+ T cells to insulin peptides, and NOD specific I-Ag(7) MHC-II allele. Finally, our initial studies indicate that beta cells transfer insulin containing vesicles to the local APC in a contact-dependent reaction. Live images of beta cells interactions with the APC and electron micrographs of islet APCs also show the transfer of granules.
Collapse
Affiliation(s)
- Stephen T Ferris
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Javier A Carrero
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
46
|
Askenasy N. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation. Immunology 2016; 147:377-88. [PMID: 26749404 DOI: 10.1111/imm.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
47
|
Paterka M, Siffrin V, Voss JO, Werr J, Hoppmann N, Gollan R, Belikan P, Bruttger J, Birkenstock J, Jung S, Esplugues E, Yogev N, Flavell RA, Bopp T, Zipp F. Gatekeeper role of brain antigen-presenting CD11c+ cells in neuroinflammation. EMBO J 2015; 35:89-101. [PMID: 26612827 DOI: 10.15252/embj.201591488] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/07/2015] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis is the most frequent chronic inflammatory disease of the CNS. The entry and survival of pathogenic T cells in the CNS are crucial for the initiation and persistence of autoimmune neuroinflammation. In this respect, contradictory evidence exists on the role of the most potent type of antigen-presenting cells, dendritic cells. Applying intravital two-photon microscopy, we demonstrate the gatekeeper function of CNS professional antigen-presenting CD11c(+) cells, which preferentially interact with Th17 cells. IL-17 expression correlates with expression of GM-CSF by T cells and with accumulation of CNS CD11c(+) cells. These CD11c(+) cells are organized in perivascular clusters, targeted by T cells, and strongly express the inflammatory chemokines Ccl5, Cxcl9, and Cxcl10. Our findings demonstrate a fundamental role of CNS CD11c(+) cells in the attraction of pathogenic T cells into and their survival within the CNS. Depletion of CD11c(+) cells markedly reduced disease severity due to impaired enrichment of pathogenic T cells within the CNS.
Collapse
Affiliation(s)
- Magdalena Paterka
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Volker Siffrin
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jan O Voss
- Molecular Neurology, Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin, Germany
| | - Johannes Werr
- Molecular Neurology, Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin, Germany
| | - Nicola Hoppmann
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - René Gollan
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Patrick Belikan
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Julia Bruttger
- Institute for Molecular Medicine, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jérôme Birkenstock
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Steffen Jung
- Department of Immunology Weizmann Institute of Science, Rehovot, Israel
| | - Enric Esplugues
- Howard Hughes Medical Institute Yale University School of Medicine, New Haven, CT, USA
| | - Nir Yogev
- Institute for Molecular Medicine, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Richard A Flavell
- Howard Hughes Medical Institute Yale University School of Medicine, New Haven, CT, USA
| | - Tobias Bopp
- Institute for Immunology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
48
|
Crossing the Vascular Wall: Common and Unique Mechanisms Exploited by Different Leukocyte Subsets during Extravasation. Mediators Inflamm 2015; 2015:946509. [PMID: 26568666 PMCID: PMC4629053 DOI: 10.1155/2015/946509] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/13/2015] [Indexed: 12/30/2022] Open
Abstract
Leukocyte extravasation is one of the essential and first steps during the initiation of inflammation. Therefore, a better understanding of the key molecules that regulate this process may help to develop novel therapeutics for treatment of inflammation-based diseases such as atherosclerosis or rheumatoid arthritis. The endothelial adhesion molecules ICAM-1 and VCAM-1 are known as the central mediators of leukocyte adhesion to and transmigration across the endothelium. Engagement of these molecules by their leukocyte integrin receptors initiates the activation of several signaling pathways within both leukocytes and endothelium. Several of such events have been described to occur during transendothelial migration of all leukocyte subsets, whereas other mechanisms are known only for a single leukocyte subset. Here, we summarize current knowledge on regulatory mechanisms of leukocyte extravasation from a leukocyte and endothelial point of view, respectively. Specifically, we will focus on highlighting common and unique mechanisms that specific leukocyte subsets exploit to succeed in crossing endothelial monolayers.
Collapse
|
49
|
Abstract
Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review will focus on the mechanisms by which memory T cells migrate to the site where their target antigen is present, with particular emphasis on their migration to transplanted organs. First, we will define the known subsets of memory T cells (central, effector, and tissue resident) and their circulation patterns. Second, we will review the cellular and molecular mechanisms by which memory T cells migrate to inflamed and non-inflamed tissues and highlight the emerging paradigm of antigen-driven, trans-endothelial migration. Third, we will discuss the relevance of this knowledge to organ transplantation and the prevention or treatment of allograft rejection.
Collapse
Affiliation(s)
- Qianqian Zhang
- Tsinghua University School of Medicine , Beijing , China ; University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Fadi G Lakkis
- University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
50
|
Price JD, Hotta-Iwamura C, Zhao Y, Beauchamp NM, Tarbell KV. DCIR2+ cDC2 DCs and Zbtb32 Restore CD4+ T-Cell Tolerance and Inhibit Diabetes. Diabetes 2015; 64:3521-31. [PMID: 26070317 PMCID: PMC4587633 DOI: 10.2337/db14-1880] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/05/2015] [Indexed: 12/15/2022]
Abstract
During autoimmunity, the normal ability of dendritic cells (DCs) to induce T-cell tolerance is disrupted; therefore, autoimmune disease therapies based on cell types and molecular pathways that elicit tolerance in the steady state may not be effective. To determine which DC subsets induce tolerance in the context of chronic autoimmunity, we used chimeric antibodies specific for DC inhibitory receptor 2 (DCIR2) or DEC-205 to target self-antigen to CD11b(+) (cDC2) DCs and CD8(+) (cDC1) DCs, respectively, in autoimmune-prone nonobese diabetic (NOD) mice. Antigen presentation by DCIR2(+) DCs but not DEC-205(+) DCs elicited tolerogenic CD4(+) T-cell responses in NOD mice. β-Cell antigen delivered to DCIR2(+) DCs delayed diabetes induction and induced increased T-cell apoptosis without interferon-γ (IFN-γ) or sustained expansion of autoreactive CD4(+) T cells. These divergent responses were preceded by differential gene expression in T cells early after in vivo stimulation. Zbtb32 was higher in T cells stimulated with DCIR2(+) DCs, and overexpression of Zbtb32 in T cells inhibited diabetes development, T-cell expansion, and IFN-γ production. Therefore, we have identified DCIR2(+) DCs as capable of inducing antigen-specific tolerance in the face of ongoing autoimmunity and have also identified Zbtb32 as a suppressive transcription factor that controls T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Jeffrey D Price
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Yongge Zhao
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Nicole M Beauchamp
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|