1
|
Espinoza S, Navia C, Torres RF, Llontop N, Valladares V, Silva C, Vivero A, Novoa-Padilla E, Soto-Covasich J, Mella J, Kouro R, Valdivia S, Pérez-Bustamante M, Ojeda-Provoste P, Pineda N, Buvinic S, Lee-Liu D, Henríquez JP, Kerr B. Neuronal Plasticity-Dependent Paradigm and Young Plasma Treatment Prevent Synaptic and Motor Deficit in a Rett Syndrome Mouse Model. Biomolecules 2025; 15:748. [PMID: 40427641 PMCID: PMC12109941 DOI: 10.3390/biom15050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Classical Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the MECP2 gene, resulting in a devastating phenotype associated with a lack of gene expression control. Mouse models lacking Mecp2 expression with an RTT-like phenotype have been developed to advance therapeutic alternatives. Environmental enrichment (EE) attenuates RTT symptoms in patients and mouse models. However, the mechanisms underlying the effects of EE on RTT have not been fully elucidated. We housed male hemizygous Mecp2-null (Mecp2-/y) and wild-type mice in specially conditioned cages to enhance sensory, cognitive, social, and motor stimulation. EE attenuated the progression of the RTT phenotype by preserving neuronal cytoarchitecture and neural plasticity markers. Furthermore, EE ameliorated defects in neuromuscular junction organization and restored the motor deficit of Mecp2-/y mice. Treatment with plasma from young WT mice was used to assess whether the increased activity could modify plasma components, mimicking the benefits of EE in Mecp2-/y. Plasma treatment attenuated the RTT phenotype by improving neurological markers, suggesting that peripheral signals of mice with normal motor function have the potential to reactivate dormant neurodevelopment in RTT mice. These findings demonstrate how EE and treatment with young plasma ameliorate RTT-like phenotype in mice, opening new therapeutical approaches for RTT patients.
Collapse
Affiliation(s)
- Sofía Espinoza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile (N.L.); (A.V.)
| | - Camila Navia
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile (R.K.)
- Facultad de Medicina, Universidad Austral de Chile, Valdivia 5091000, Chile
| | - Rodrigo F. Torres
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile (R.K.)
- Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt 5501842, Chile
| | - Nuria Llontop
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile (N.L.); (A.V.)
| | - Verónica Valladares
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile (N.L.); (A.V.)
| | - Cristina Silva
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile (N.L.); (A.V.)
| | - Ariel Vivero
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile (N.L.); (A.V.)
| | - Exequiel Novoa-Padilla
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile (R.K.)
- Facultad de Medicina, Universidad Austral de Chile, Valdivia 5091000, Chile
| | | | - Jessica Mella
- Neuromuscular Studies Laboratory (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5091000, Chile; (J.M.)
- Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile
| | - Ricardo Kouro
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile (R.K.)
- Facultad de Medicina, Universidad Austral de Chile, Valdivia 5091000, Chile
| | - Sharin Valdivia
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile (R.K.)
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5091000, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Concepción 4080870, Chile
| | - Marco Pérez-Bustamante
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile (R.K.)
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5091000, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Concepción 4080870, Chile
| | - Patricia Ojeda-Provoste
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile (R.K.)
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5091000, Chile
| | - Nancy Pineda
- Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile (R.K.)
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5091000, Chile
| | - Sonja Buvinic
- Facultad de Odontología, Universidad de Chile, Santiago 8380000, Chile;
| | - Dasfne Lee-Liu
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Juan Pablo Henríquez
- Neuromuscular Studies Laboratory (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5091000, Chile; (J.M.)
- Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile (N.L.); (A.V.)
| |
Collapse
|
2
|
Gong M, Li J, Qin Z, Machado Bressan Wilke MV, Liu Y, Li Q, Liu H, Liang C, Morales-Rosado JA, Cohen ASA, Hughes SS, Sullivan BR, Waddell V, van den Boogaard MJH, van Jaarsveld RH, van Binsbergen E, van Gassen KL, Wang T, Hiatt SM, Amaral MD, Kelley WV, Zhao J, Feng W, Ren C, Yu Y, Boczek NJ, Ferber MJ, Lahner C, Elliott S, Ruan Y, Mignot C, Keren B, Xie H, Wang X, Popp B, Zweier C, Piard J, Coubes C, Mau-Them FT, Safraou H, Innes AM, Gauthier J, Michaud JL, Koboldt DC, Sylvie O, Willems M, Tan WH, Cogne B, Rieubland C, Braun D, McLean SD, Platzer K, Zacher P, Oppermann H, Evenepoel L, Blanc P, El Khattabi L, Haque N, Dsouza NR, Zimmermann MT, Urrutia R, Klee EW, Shen Y, Du H, Rappaport L, Liu CM, Chen X. MARK2 variants cause autism spectrum disorder via the downregulation of WNT/β-catenin signaling pathway. Am J Hum Genet 2024; 111:2392-2410. [PMID: 39419027 PMCID: PMC11568763 DOI: 10.1016/j.ajhg.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Microtubule affinity-regulating kinase 2 (MARK2) contributes to establishing neuronal polarity and developing dendritic spines. Although large-scale sequencing studies have associated MARK2 variants with autism spectrum disorder (ASD), the clinical features and variant spectrum in affected individuals with MARK2 variants, early developmental phenotypes in mutant human neurons, and the pathogenic mechanism underlying effects on neuronal development have remained unclear. Here, we report 31 individuals with MARK2 variants and presenting with ASD, other neurodevelopmental disorders, and distinctive facial features. Loss-of-function (LoF) variants predominate (81%) in affected individuals, while computational analysis and in vitro expression assay of missense variants supported the effect of MARK2 loss. Using proband-derived and CRISPR-engineered isogenic induced pluripotent stem cells (iPSCs), we show that MARK2 loss leads to early neuronal developmental and functional deficits, including anomalous polarity and dis-organization in neural rosettes, as well as imbalanced proliferation and differentiation in neural progenitor cells (NPCs). Mark2+/- mice showed abnormal cortical formation and partition and ASD-like behavior. Through the use of RNA sequencing (RNA-seq) and lithium treatment, we link MARK2 loss to downregulation of the WNT/β-catenin signaling pathway and identify lithium as a potential drug for treating MARK2-associated ASD.
Collapse
Affiliation(s)
- Maolei Gong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jiayi Li
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | | | - Yijun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Haoran Liu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Chen Liang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Joel A Morales-Rosado
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ana S A Cohen
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children's Mercy-Kansas City, Kansas City, MO, USA; The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Susan S Hughes
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Bonnie R Sullivan
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Valerie Waddell
- Department of Neurology, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Richard H van Jaarsveld
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Koen L van Gassen
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Autism Research Center, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Jianbo Zhao
- Department of Neurology Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Weixing Feng
- Department of Neurology Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Department of Neurology Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yazhen Yu
- Department of Pediatrics, Beijing Tiantan Hospital affiliated with Capital University of Medical Sciences, Beijing, China
| | - Nicole J Boczek
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Ferber
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Carrie Lahner
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Sherr Elliott
- Departments of Neurology and Pediatrics, Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Yiyan Ruan
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière et Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière et Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Hua Xie
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyan Wang
- Department of Children's Nutrition Research Center, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany; Berlin Institute of Health at Charité-Universitäts medizin Berlin, Center of Functional Genomics, Hessische Straße 4A, Berlin, Germany
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliette Piard
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France; UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée Hôpital Arnaud de Villeneuve, 34295 Montpellier Cedex, Dijon, France
| | - Frederic Tran Mau-Them
- UF6254 Innovation en Diagnostic Genomique des Maladies Rares, Dijon, France; Inserm UMR1231 GAD, 21000 Dijon, France
| | - Hana Safraou
- UF6254 Innovation en Diagnostic Genomique des Maladies Rares, Dijon, France; Inserm UMR1231 GAD, 21000 Dijon, France
| | - A Micheil Innes
- Department of Medical Genetics and Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julie Gauthier
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | - Jacques L Michaud
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Daniel C Koboldt
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Odent Sylvie
- Service de Génétique clinique, CHU Rennes, ERN ITHACA, Rennes, France; University Rennes, CNRS, INSERM, IGDR (Institut de Génétique et développement de Rennes), UMR 6290, ERL U1305, Rennes, France
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Inserm U1298, INM, Montpellier University, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Cogne
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Claudine Rieubland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Scott Douglas McLean
- Division of Clinical Genetics, The Children's Hospital of San Antonio, San Antonio, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Pia Zacher
- Epilepsy Center Kleinwachau, Dresden-Radeberg, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Lucie Evenepoel
- Centre de Génétique Humaine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Avenue Hippocrate 10-1200, Brussels, Belgium
| | - Pierre Blanc
- Sorbonne Université, Department of Medical Genetics, APHP, Pitié-Salpêtrière hospital, Paris Brain Institute-ICM, Laboratoire SeqOIA-PFMG2025, Paris, France
| | - Laïla El Khattabi
- Department of Medical Genetics, APHP, Armand Trousseau and Pitié-Salpêtrière hospitals, Brain Development team, Paris Brain Institute-ICM, Sorbonne Université, Paris, France; Laboratoire SeqOIA-PFMG2025, Paris, France
| | - Neshatul Haque
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nikita R Dsouza
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eric W Klee
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Yiping Shen
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; SynerGene Education, Hejun College, Huichang Jiangxi, China
| | - Hongzhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Leonard Rappaport
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Mesci P, LaRock CN, Jeziorski JJ, Nakashima H, Chermont N, Ferrasa A, Herai RH, Ozaki T, Saleh A, Snethlage CE, Sanchez S, Goldberg G, Trujillo CA, Nakashima K, Nizet V, Muotri AR. Human microglial cells as a therapeutic target in a neurodevelopmental disease model. Stem Cell Reports 2024; 19:1074-1091. [PMID: 39059378 PMCID: PMC11368698 DOI: 10.1016/j.stemcr.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Although microglia are macrophages of the central nervous system, their involvement is not limited to immune functions. The roles of microglia during development in humans remain poorly understood due to limited access to fetal tissue. To understand how microglia can impact human neurodevelopment, the methyl-CpG binding protein 2 (MECP2) gene was knocked out in human microglia-like cells (MGLs). Disruption of the MECP2 in MGLs led to transcriptional and functional perturbations, including impaired phagocytosis. The co-culture of healthy MGLs with MECP2-knockout (KO) neurons rescued synaptogenesis defects, suggesting a microglial role in synapse formation. A targeted drug screening identified ADH-503, a CD11b agonist, restored phagocytosis and synapse formation in spheroid-MGL co-cultures, significantly improved disease progression, and increased survival in MeCP2-null mice. These results unveil a MECP2-specific regulation of human microglial phagocytosis and identify a novel therapeutic treatment for MECP2-related conditions.
Collapse
Affiliation(s)
- Pinar Mesci
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA.
| | - Christopher N LaRock
- Department of Pediatrics, University of California San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92037, USA; Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Jacob J Jeziorski
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Natalia Chermont
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Adriano Ferrasa
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Department of Informatics (DEINFO), Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Paraná 84030-900, Brazil
| | - Roberto H Herai
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Research Department, Lico Kaesemodel Institute (ILK), Curitiba, Paraná, Brazil
| | - Tomoka Ozaki
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Aurian Saleh
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Cedric E Snethlage
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Sandra Sanchez
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Gabriela Goldberg
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Cleber A Trujillo
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92037, USA
| | - Alysson R Muotri
- University of California, San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA; University of California, San Diego, Kavli Institute for Brain and Mind, Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Mori M, Yoshii S, Noguchi M, Takagi D, Shimizu T, Ito H, Matsuo-Takasaki M, Nakamura Y, Takahashi S, Hamada H, Ohnuma K, Shiohama T, Hayashi Y. Generation of human induced pluripotent stem cell lines derived from four Rett syndrome patients with MECP2 mutations. Stem Cell Res 2024; 77:103432. [PMID: 38703668 DOI: 10.1016/j.scr.2024.103432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/16/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Rett syndrome is characterized by severe global developmental impairments with autistic features and loss of purposeful hand skills. Here we show that human induced pluripotent stem cell (hiPSC) lines derived from four Japanese female patients with Rett syndrome are generated from peripheral blood mononuclear cells using Sendai virus vectors. The generated hiPSC lines showed self-renewal and pluripotency and carried heterozygous frameshift, missense, or nonsense mutations in the MECP2 gene. Since the molecular pathogenesis caused by MECP2 dysfunction remains unclear, these cell resources are useful tools to establish disease models and develop new therapies for Rett syndrome.
Collapse
Affiliation(s)
- Miyu Mori
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; Department of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kami-Tomioka, Nagaoka, Niigata 940-2188, Japan
| | - Shoko Yoshii
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260-0856, Japan
| | - Michiya Noguchi
- Cell Engineering Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Daigo Takagi
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Tomoya Shimizu
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hidenori Ito
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa City, Hokkaido 078-8510, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260-0856, Japan
| | - Kiyoshi Ohnuma
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kami-Tomioka, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kami-Tomioka, Nagaoka, Niigata 940-2188, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260-0856, Japan.
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.
| |
Collapse
|
5
|
Hong H, Yoon SB, Park JE, Lee JI, Kim HY, Nam HJ, Cho H. MeCP2 dysfunction prevents proper BMP signaling and neural progenitor expansion in brain organoid. Ann Clin Transl Neurol 2023. [PMID: 37302988 DOI: 10.1002/acn3.51799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
OBJECTIVES Sporadic mutations in MeCP2 are a hallmark of Rett syndrome (RTT). Many RTT brain organoid models have exhibited pathogenic phenotypes such as decreased spine density and small size of soma with altered electrophysiological signals. However, previous models are mainly focused on the phenotypes observed in the late phase and rarely provide clues for the defect of neural progenitors which generate different types of neurons and glial cells. METHODS We newly established the RTT brain organoid model derived from MeCP2-truncated iPS cells which were genetically engineered by CRISPR/Cas9 technology. By immunofluorescence imaging, we studied the development of NPC pool and its fate specification into glutamatergic neurons or astrocytes in RTT organoids. By total RNA sequencing, we investigated which signaling pathways were altered during the early brain development in RTT organoids. RESULTS Dysfunction of MeCP2 caused the defect of neural rosette formation in the early phase of cortical development. In total transcriptome analysis, BMP pathway-related genes are highly associated with MeCP2 depletion. Moreover, levels of pSMAD1/5 and BMP target genes are excessively increased, and treatment of BMP inhibitors partially rescues the cell cycle progression of neural progenitors. Subsequently, MeCP2 dysfunction reduced the glutamatergic neurogenesis and induced overproduction of astrocytes. Nevertheless, early inhibition of BMP pathway rescued VGLUT1 expression and suppressed astrocyte maturation. INTERPRETATION Our results demonstrate that MeCP2 is required for the expansion of neural progenitor cells by modulating BMP pathway at early stages of development, and this influence persists during neurogenesis and gliogenesis at later stages of brain organoid development.
Collapse
Affiliation(s)
- Hyowon Hong
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sae-Bom Yoon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung Eun Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung In Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun Young Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hye Jin Nam
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Heeyeong Cho
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Chen J, Huang L, Yang Y, Xu W, Qin Q, Qin R, Liang X, Lai X, Huang X, Xie M, Chen L. Somatic Cell Reprogramming for Nervous System Diseases: Techniques, Mechanisms, Potential Applications, and Challenges. Brain Sci 2023; 13:brainsci13030524. [PMID: 36979334 PMCID: PMC10046178 DOI: 10.3390/brainsci13030524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Nervous system diseases present significant challenges to the neuroscience community due to ethical and practical constraints that limit access to appropriate research materials. Somatic cell reprogramming has been proposed as a novel way to obtain neurons. Various emerging techniques have been used to reprogram mature and differentiated cells into neurons. This review provides an overview of somatic cell reprogramming for neurological research and therapy, focusing on neural reprogramming and generating different neural cell types. We examine the mechanisms involved in reprogramming and the challenges that arise. We herein summarize cell reprogramming strategies to generate neurons, including transcription factors, small molecules, and microRNAs, with a focus on different types of cells.. While reprogramming somatic cells into neurons holds the potential for understanding neurological diseases and developing therapeutic applications, its limitations and risks must be carefully considered. Here, we highlight the potential benefits of somatic cell reprogramming for neurological disease research and therapy. This review contributes to the field by providing a comprehensive overview of the various techniques used to generate neurons by cellular reprogramming and discussing their potential applications.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Rongxing Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinyu Lai
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| |
Collapse
|
7
|
Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells 2023; 12:cells12040538. [PMID: 36831205 PMCID: PMC9954744 DOI: 10.3390/cells12040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) arise from the disruption of highly coordinated mechanisms underlying brain development, which results in impaired sensory, motor and/or cognitive functions. Although rodent models have offered very relevant insights to the field, the translation of findings to clinics, particularly regarding therapeutic approaches for these diseases, remains challenging. Part of the explanation for this failure may be the genetic differences-some targets not being conserved between species-and, most importantly, the differences in regulation of gene expression. This prompts the use of human-derived models to study NDDS. The generation of human induced pluripotent stem cells (hIPSCs) added a new suitable alternative to overcome species limitations, allowing for the study of human neuronal development while maintaining the genetic background of the donor patient. Several hIPSC models of NDDs already proved their worth by mimicking several pathological phenotypes found in humans. In this review, we highlight the utility of hIPSCs to pave new paths for NDD research and development of new therapeutic tools, summarize the challenges and advances of hIPSC-culture and neuronal differentiation protocols and discuss the best way to take advantage of these models, illustrating this with examples of success for some NDDs.
Collapse
|
8
|
Takahashi E, Allan N, Peres R, Ortug A, van der Kouwe AJW, Valli B, Ethier E, Levman J, Baumer N, Tsujimura K, Vargas-Maya NI, McCracken TA, Lee R, Maunakea AK. Integration of structural MRI and epigenetic analyses hint at linked cellular defects of the subventricular zone and insular cortex in autism: Findings from a case study. Front Neurosci 2023; 16:1023665. [PMID: 36817099 PMCID: PMC9935943 DOI: 10.3389/fnins.2022.1023665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, communication and repetitive, restrictive behaviors, features supported by cortical activity. Given the importance of the subventricular zone (SVZ) of the lateral ventrical to cortical development, we compared molecular, cellular, and structural differences in the SVZ and linked cortical regions in specimens of ASD cases and sex and age-matched unaffected brain. Methods We used magnetic resonance imaging (MRI) and diffusion tractography on ex vivo postmortem brain samples, which we further analyzed by Whole Genome Bisulfite Sequencing (WGBS), Flow Cytometry, and RT qPCR. Results Through MRI, we observed decreased tractography pathways from the dorsal SVZ, increased pathways from the posterior ventral SVZ to the insular cortex, and variable cortical thickness within the insular cortex in ASD diagnosed case relative to unaffected controls. Long-range tractography pathways from and to the insula were also reduced in the ASD case. FACS-based cell sorting revealed an increased population of proliferating cells in the SVZ of ASD case relative to the unaffected control. Targeted qPCR assays of SVZ tissue demonstrated significantly reduced expression levels of genes involved in differentiation and migration of neurons in ASD relative to the control counterpart. Finally, using genome-wide DNA methylation analyses, we identified 19 genes relevant to neurological development, function, and disease, 7 of which have not previously been described in ASD, that were significantly differentially methylated in autistic SVZ and insula specimens. Conclusion These findings suggest a hypothesis that epigenetic changes during neurodevelopment alter the trajectory of proliferation, migration, and differentiation in the SVZ, impacting cortical structure and function and resulting in ASD phenotypes.
Collapse
Affiliation(s)
- Emi Takahashi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nina Allan
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Rafael Peres
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Alpen Ortug
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Andre J. W. van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Briana Valli
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Elizabeth Ethier
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Jacob Levman
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Nicole Baumer
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Keita Tsujimura
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nauru Idalia Vargas-Maya
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Trevor A. McCracken
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Rosa Lee
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Alika K. Maunakea
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
9
|
Sun J, Osenberg S, Irwin A, Ma LH, Lee N, Xiang Y, Li F, Wan YW, Park IH, Maletic-Savatic M, Ballas N. Mutations in the transcriptional regulator MeCP2 severely impact key cellular and molecular signatures of human astrocytes during maturation. Cell Rep 2023; 42:111942. [PMID: 36640327 PMCID: PMC10857774 DOI: 10.1016/j.celrep.2022.111942] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/12/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Mutations in the MECP2 gene underlie a spectrum of neurodevelopmental disorders, most commonly Rett syndrome (RTT). We ask whether MECP2 mutations interfere with human astrocyte developmental maturation, thereby affecting their ability to support neurons. Using human-based models, we show that RTT-causing MECP2 mutations greatly impact the key role of astrocytes in regulating overall brain bioenergetics and that these metabolic aberrations are likely mediated by dysfunctional mitochondria. During post-natal maturation, astrocytes rely on neurons to induce their complex stellate morphology and transcriptional changes. While MECP2 mutations cause cell-intrinsic aberrations in the astrocyte transcriptional landscape, surprisingly, they do not affect the neuron-induced astrocyte gene expression. Notably, however, astrocytes are unable to develop complex mature morphology due to cell- and non-cell-autonomous aberrations caused by MECP2 mutations. Thus, MECP2 mutations critically impact key cellular and molecular features of human astrocytes and, hence, their ability to interact and support the structural and functional maturation of neurons.
Collapse
Affiliation(s)
- Jialin Sun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sivan Osenberg
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Departments of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Austin Irwin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Li-Hua Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nigel Lee
- Departments of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Feng Li
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mirjana Maletic-Savatic
- Departments of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| | - Nurit Ballas
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
10
|
Zhu W, Xu L, Li X, Hu H, Lou S, Liu Y. iPSCs-Derived Neurons and Brain Organoids from Patients. Handb Exp Pharmacol 2023; 281:59-81. [PMID: 37306818 DOI: 10.1007/164_2023_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into specific neurons and brain organoids by adding induction factors and small molecules in vitro, which carry human genetic information and recapitulate the development process of human brain as well as physiological, pathological, and pharmacological characteristics. Hence, iPSC-derived neurons and organoids hold great promise for studying human brain development and related nervous system diseases in vitro, and provide a platform for drug screening. In this chapter, we summarize the development of the differentiation techniques for neurons and brain organoids from iPSCs, and their applications in studying brain disease, drug screening, and transplantation.
Collapse
Affiliation(s)
- Wanying Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xinrui Li
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuning Lou
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Xu YJ, Liu PP, Yan ZZ, Mi TW, Wang YY, Li Q, Teng ZQ, Liu CM. KW-2449 and VPA exert therapeutic effects on human neurons and cerebral organoids derived from MECP2-null hESCs. Stem Cell Res Ther 2022; 13:534. [PMID: 36575558 PMCID: PMC9795779 DOI: 10.1186/s13287-022-03216-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MECP2), is one of the most prevalent neurodevelopmental disorders in girls. However, the underlying mechanism of MECP2 remains largely unknown and currently there is no effective treatment available for RTT. METHODS We generated MECP2-KO human embryonic stem cells (hESCs), and differentiated them into neurons and cerebral organoids to investigate phenotypes of MECP2 loss-of-function, potential therapeutic agents, and the underlying mechanism by transcriptome sequencing. RESULTS We found that MECP2 deletion caused reduced number of hESCs-derived neurons and simplified dendritic morphology. Moreover, MECP2-KO cortical organoids exhibited fewer neural progenitor cells and neurons at day 60. Electrophysiological recordings showed that MECP2 deletion altered synaptic activity in organoids. Transcriptome analysis of organoids identified many genes in the PI3K-AKT pathway downregulated following MECP2 deletion. Treatment with either KW-2449 or VPA, small molecules for the activation of PI3K-AKT signaling pathway, alleviated neuronal deficits and transcriptome changes in MECP2-KO human neuronal models. CONCLUSIONS These findings suggest that KW-2449 and VPA might be promising drugs for RTT treatment.
Collapse
Affiliation(s)
- Ya-Jie Xu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Pei-Pei Liu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Zhong-Ze Yan
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Ting-Wei Mi
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ying-Ying Wang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Qian Li
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Zhao-Qian Teng
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Chang-Mei Liu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
12
|
Modeling RTT Syndrome by iPSC-Derived Neurons from Male and Female Patients with Heterogeneously Severe Hot-Spot MECP2 Variants. Int J Mol Sci 2022; 23:ijms232214491. [PMID: 36430969 PMCID: PMC9697612 DOI: 10.3390/ijms232214491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Rett syndrome caused by MECP2 variants is characterized by a heterogenous clinical spectrum accounted for in 60% of cases by hot-spot variants. Focusing on the most frequent variants, we generated in vitro iPSC-neurons from the blood of RTT girls with p.Arg133Cys and p.Arg255*, associated to mild and severe phenotype, respectively, and of an RTT male harboring the close to p.Arg255*, p.Gly252Argfs*7 variant. Truncated MeCP2 proteins were revealed by Western blot and immunofluorescence analysis. We compared the mutant versus control neurons at 42 days for morphological parameters and at 120 days for electrophysiology recordings, including girls' isogenic clones. A precocious reduced morphological complexity was evident in neurons with truncating variants, while in p.Arg133Cys neurons any significant differences were observed in comparison with the isogenic wild-type clones. Reduced nuclear size and branch number show up as the most robust biomarkers. Patch clamp recordings on mature neurons allowed the assessment of cell biophysical properties, V-gated currents, and spiking pattern in the mutant and control cells. Immature spiking, altered cell capacitance, and membrane resistance of RTT neurons, were particularly pronounced in the Arg255* and Gly252Argfs*7 mutants. The overall results indicate that the specific markers of in vitro cellular phenotype mirror the clinical severity and may be amenable to drug testing for translational purposes.
Collapse
|
13
|
Mok RSF, Zhang W, Sheikh TI, Pradeepan K, Fernandes IR, DeJong LC, Benigno G, Hildebrandt MR, Mufteev M, Rodrigues DC, Wei W, Piekna A, Liu J, Muotri AR, Vincent JB, Muller L, Martinez-Trujillo J, Salter MW, Ellis J. Wide spectrum of neuronal and network phenotypes in human stem cell-derived excitatory neurons with Rett syndrome-associated MECP2 mutations. Transl Psychiatry 2022; 12:450. [PMID: 36253345 PMCID: PMC9576700 DOI: 10.1038/s41398-022-02216-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by heterozygous loss-of-function mutations in the X-linked gene MECP2 that is a global transcriptional regulator. Mutations in the methyl-CpG binding domain (MBD) of MECP2 disrupt its interaction with methylated DNA. Here, we investigate the effect of a novel MECP2 L124W missense mutation in the MBD of an atypical RTT patient with preserved speech in comparison to severe MECP2 null mutations. L124W protein had a limited ability to disrupt heterochromatic chromocenters due to decreased binding dynamics. We isolated two pairs of isogenic WT and L124W induced pluripotent stem cells. L124W induced excitatory neurons expressed stable protein, exhibited increased input resistance and decreased voltage-gated Na+ and K+ currents, and their neuronal dysmorphology was limited to decreased dendritic complexity. Three isogenic pairs of MECP2 null neurons had the expected more extreme morphological and electrophysiological phenotypes. We examined development and maturation of L124W and MECP2 null excitatory neural network activity using micro-electrode arrays. Relative to isogenic controls, L124W neurons had an increase in synchronous network burst frequency, in contrast to MECP2 null neurons that suffered a significant decrease in synchronous network burst frequency and a transient extension of network burst duration. A biologically motivated computational neural network model shows the observed changes in network dynamics are explained by changes in intrinsic Na+ and K+ currents in individual neurons. Our multilevel results demonstrate that RTT excitatory neurons show a wide spectrum of morphological, electrophysiological and circuitry phenotypes that are dependent on the severity of the MECP2 mutation.
Collapse
Grants
- R01 MH108528 NIMH NIH HHS
- MOP-133423 CIHR
- R01 MH109885 NIMH NIH HHS
- FDN-154336 CIHR
- R01 MH100175 NIMH NIH HHS
- Col Harland Sanders Rett Syndrome Research Fund at the University of Toronto (to J.E.), SFARI (Research grant #514918 to J.E. and J.M-T), CIHR (MOP-133423 to J.E. and M.W.S.; ERARE Team Grant ERT161303 to J.E.), CIHR foundation grant (FDN-154336 to M.W.S), Ontario Brain Institute (POND Network to J.E.), McLaughlin Centre Accelerator grant (to J.E.), John Evans Leadership Fund & Ontario Research Fund (to J.E), Canada Research Chair in Stem Cell Models of Childhood Disease (to J.E.), Beta Sigma Phi International Endowment Fund (to J.E.).
- BrainsCAN at Western University through the Canada First Research Excellence Fund (CFREF) (to GB, KP, LM, JMT). NSERC Postgraduate Scholarship–Doctoral (PGS-D) Scholarship to KP.
- Trainee support was provided by Restracomp (to LCD).
- National Institutes of Health (NIH) grants # R01MH108528, R01MH109885, and R01MH1000175 to ARM.
- Ontario Rett Syndrome Association to JBV.
- SFARI (Research grant #514918 to J.E. and J.M-T), BrainsCAN at Western University through the Canada First Research Excellence Fund (CFREF) (to GB, KP, LM, JMT)
- CIHR (MOP-133423 to J.E. and M.W.S.; CIHR foundation grant (FDN-154336 to M.W.S),
Collapse
Affiliation(s)
- Rebecca S F Mok
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Wenbo Zhang
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Taimoor I Sheikh
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Kartik Pradeepan
- Department of Physiology and Pharmacology, Department of Psychiatry, Neuroscience Graduate Program, Robarts Research and Brain and Mind Institutes, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
| | - Isabella R Fernandes
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA, 92037-0695, USA
| | - Leah C DeJong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Gabriel Benigno
- Department of Applied Mathematics, Robarts Research Institute, Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada
| | - Matthew R Hildebrandt
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Marat Mufteev
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Deivid C Rodrigues
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Wei Wei
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Alina Piekna
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jiajie Liu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA, 92037-0695, USA
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny, Archealization Center, Kavli Institute, University of California San Diego, La Jolla, CA, 92037, USA
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Lyle Muller
- Department of Applied Mathematics, Robarts Research Institute, Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada
| | - Julio Martinez-Trujillo
- Department of Physiology and Pharmacology, Department of Psychiatry, Neuroscience Graduate Program, Robarts Research and Brain and Mind Institutes, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
| | - Michael W Salter
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - James Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
14
|
Haase F, Singh R, Gloss B, Tam P, Gold W. Meta-Analysis Identifies BDNF and Novel Common Genes Differently Altered in Cross-Species Models of Rett Syndrome. Int J Mol Sci 2022; 23:11125. [PMID: 36232428 PMCID: PMC9570315 DOI: 10.3390/ijms231911125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Rett syndrome (RTT) is a rare disorder and one of the most abundant causes of intellectual disabilities in females. Single mutations in the gene coding for methyl-CpG-binding protein 2 (MeCP2) are responsible for the disorder. MeCP2 regulates gene expression as a transcriptional regulator as well as through epigenetic imprinting and chromatin condensation. Consequently, numerous biological pathways on multiple levels are influenced. However, the exact molecular pathways from genotype to phenotype are currently not fully elucidated. Treatment of RTT is purely symptomatic as no curative options for RTT have yet to reach the clinic. The paucity of this is mainly due to an incomplete understanding of the underlying pathophysiology of the disorder with no clinically useful common disease drivers, biomarkers, or therapeutic targets being identified. With the premise of identifying universal and robust disease drivers and therapeutic targets, here, we interrogated a range of RTT transcriptomic studies spanning different species, models, and MECP2 mutations. A meta-analysis using RNA sequencing data from brains of RTT mouse models, human post-mortem brain tissue, and patient-derived induced pluripotent stem cell (iPSC) neurons was performed using weighted gene correlation network analysis (WGCNA). This study identified a module of genes common to all datasets with the following ten hub genes driving the expression: ATRX, ADCY7, ADCY9, SOD1, CACNA1A, PLCG1, CCT5, RPS9, BDNF, and MECP2. Here, we discuss the potential benefits of these genes as therapeutic targets.
Collapse
Affiliation(s)
- Florencia Haase
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Rachna Singh
- School of Medicine Sydney, The University of Notre Dame, Chippendale, NSW 2007, Australia
| | - Brian Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Patrick Tam
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Embryology Research Unit, Children’s Medical Research Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Wendy Gold
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| |
Collapse
|
15
|
Lu S, Chen Y, Wang Z. Advances in the pathogenesis of Rett syndrome using cell models. Animal Model Exp Med 2022; 5:532-541. [PMID: 35785421 PMCID: PMC9773312 DOI: 10.1002/ame2.12236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 12/30/2022] Open
Abstract
Rett syndrome (RTT) is a progressive neurodevelopmental disorder that occurs mainly in girls with a range of typical symptoms of autism spectrum disorders. MeCP2 protein loss-of-function in neural lineage cells is the main cause of RTT pathogenicity. As it is still hard to understand the mechanism of RTT on the basis of only clinical patients or animal models, cell models cultured in vitro play indispensable roles. Here we reviewed the research progress in the pathogenesis of RTT at the cellular level, summarized the preclinical-research-related applications, and prospected potential future development.
Collapse
Affiliation(s)
- Sijia Lu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina,Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina,Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina,Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| |
Collapse
|
16
|
MeCP2 and transcriptional control of eukaryotic gene expression. Eur J Cell Biol 2022; 101:151237. [DOI: 10.1016/j.ejcb.2022.151237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
|
17
|
Lu X, Yang J, Xiang Y. Modeling human neurodevelopmental diseases with brain organoids. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:1. [PMID: 34982276 PMCID: PMC8727646 DOI: 10.1186/s13619-021-00103-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/24/2021] [Indexed: 04/25/2023]
Abstract
Studying the etiology of human neurodevelopmental diseases has long been a challenging task due to the brain's complexity and its limited accessibility. Human pluripotent stem cells (hPSCs)-derived brain organoids are capable of recapitulating various features and functionalities of the human brain, allowing the investigation of intricate pathogenesis of developmental abnormalities. Over the past years, brain organoids have facilitated identifying disease-associated phenotypes and underlying mechanisms for human neurodevelopmental diseases. Integrating with more cutting-edge technologies, particularly gene editing, brain organoids further empower human disease modeling. Here, we review the latest progress in modeling human neurodevelopmental disorders with brain organoids.
Collapse
Affiliation(s)
- Xiaoxiang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiajie Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
18
|
Chiola S, Edgar NU, Shcheglovitov A. iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Mol Psychiatry 2022; 27:249-258. [PMID: 34497379 PMCID: PMC8901782 DOI: 10.1038/s41380-021-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Over the past decade, tremendous progress has been made in defining autism spectrum disorder (ASD) as a disorder of brain connectivity. Indeed, whole-brain imaging studies revealed altered connectivity in the brains of individuals with ASD, and genetic studies identified rare ASD-associated mutations in genes that regulate synaptic development and function. However, it remains unclear how specific mutations alter the development of neuronal connections in different brain regions and whether altered connections can be restored therapeutically. The main challenge is the lack of preclinical models that recapitulate important aspects of human development for studying connectivity. Through recent technological innovations, it is now possible to generate patient- or mutation-specific human neurons or organoids from induced pluripotent stem cells (iPSCs) and to study altered connectivity in vitro or in vivo upon xenotransplantation into an intact rodent brain. Here, we discuss how deficits in neurodevelopmental processes may lead to abnormal brain connectivity and how iPSC-based models can be used to identify abnormal connections and to gain insights into underlying cellular and molecular mechanisms to develop novel therapeutics.
Collapse
Affiliation(s)
- Simone Chiola
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Nicolas U Edgar
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
19
|
Casalia ML, Casabona JC, García C, Cavaliere Candedo V, Quintá HR, Farías MI, Gonzalez J, Gonzalez Morón D, Córdoba M, Consalvo D, Mostoslavsky G, Urbano FJ, Pasquini J, Murer MG, Rela L, Kauffman MA, Pitossi FJ. A familiar study on self-limited childhood epilepsy patients using hIPSC-derived neurons shows a bias towards immaturity at the morphological, electrophysiological and gene expression levels. Stem Cell Res Ther 2021; 12:590. [PMID: 34823607 PMCID: PMC8620942 DOI: 10.1186/s13287-021-02658-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
Background Self-limited Childhood Epilepsies are the most prevalent epileptic syndrome in children. Its pathogenesis is unknown. In this disease, symptoms resolve spontaneously in approximately 50% of patients when maturity is reached, prompting to a maturation problem. The purpose of this study was to understand the molecular bases of this disease by generating and analyzing induced pluripotent stem cell-derived neurons from a family with 7 siblings, among whom 4 suffer from this disease.
Methods Two affected siblings and, as controls, a healthy sister and the unaffected mother of the family were studied. Using exome sequencing, a homozygous variant in the FYVE, RhoGEF and PH Domain Containing 6 gene was identified in the patients as a putative genetic factor that could contribute to the development of this familial disorder. After informed consent was signed, skin biopsies from the 4 individuals were collected, fibroblasts were derived and reprogrammed and neurons were generated and characterized by markers and electrophysiology. Morphological, electrophysiological and gene expression analyses were performed on these neurons. Results Bona fide induced pluripotent stem cells and derived neurons could be generated in all cases. Overall, there were no major shifts in neuronal marker expression among patient and control-derived neurons. Compared to two familial controls, neurons from patients showed shorter axonal length, a dramatic reduction in synapsin-1 levels and cytoskeleton disorganization. In addition, neurons from patients developed a lower action potential threshold with time of in vitro differentiation and the amount of current needed to elicit an action potential (rheobase) was smaller in cells recorded from NE derived from patients at 12 weeks of differentiation when compared with shorter times in culture. These results indicate an increased excitability in patient cells that emerges with the time in culture. Finally, functional genomic analysis showed a biased towards immaturity in patient-derived neurons. Conclusions We are reporting the first in vitro model of self-limited childhood epilepsy, providing the cellular bases for future in-depth studies to understand its pathogenesis. Our results show patient-specific neuronal features reflecting immaturity, in resonance with the course of the disease and previous imaging studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02658-2.
Collapse
Affiliation(s)
| | | | - Corina García
- Institute Leloir Foundation- IIBBA-CONICET, Buenos Aires, Argentina
| | | | - Héctor Ramiro Quintá
- CONICET and Laboratorio de Medicina Experimental "Dr. J Toblli", Hospital Alemán, Buenos Aires, Argentina
| | | | - Joaquín Gonzalez
- Institute Leloir Foundation- IIBBA-CONICET, Buenos Aires, Argentina
| | - Dolores Gonzalez Morón
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Marta Córdoba
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Damian Consalvo
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Gustavo Mostoslavsky
- Center For Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, USA
| | - Francisco J Urbano
- Department of Physiology, Molecular and Cellular Biology "Dr. Héctor Maldonado", Faculty of Exact and Natural Sciences, University of Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
| | - Juana Pasquini
- Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Buenos Aires, Argentina
| | - Lorena Rela
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Buenos Aires, Argentina
| | - Marcelo A Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina.
| | | |
Collapse
|
20
|
Rodrigues DC, Mufteev M, Ellis J. Regulation, diversity and function of MECP2 exon and 3'UTR isoforms. Hum Mol Genet 2021; 29:R89-R99. [PMID: 32681172 PMCID: PMC7530521 DOI: 10.1093/hmg/ddaa154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
The methyl-CpG-binding protein 2 (MECP2) is a critical global regulator of gene expression. Mutations in MECP2 cause neurodevelopmental disorders including Rett syndrome (RTT). MECP2 exon 2 is spliced into two alternative messenger ribonucleic acid (mRNA) isoforms encoding MECP2-E1 or MECP2-E2 protein isoforms that differ in their N-termini. MECP2-E2, isolated first, was used to define the general roles of MECP2 in methyl-deoxyribonucleic acid (DNA) binding, targeting of transcriptional regulatory complexes, and its disease-causing impact in RTT. It was later found that MECP2-E1 is the most abundant isoform in the brain and its exon 1 is also mutated in RTT. MECP2 transcripts undergo alternative polyadenylation generating mRNAs with four possible 3'untranslated region (UTR) lengths ranging from 130 to 8600 nt. Together, the exon and 3'UTR isoforms display remarkable abundance disparity across cell types and tissues during development. These findings indicate discrete means of regulation and suggest that protein isoforms perform non-overlapping roles. Multiple regulatory programs have been explored to explain these disparities. DNA methylation patterns of the MECP2 promoter and first intron impact MECP2-E1 and E2 isoform levels. Networks of microRNAs and RNA-binding proteins also post-transcriptionally regulate the stability and translation efficiency of MECP2 3'UTR isoforms. Finally, distinctions in biophysical properties in the N-termini between MECP2-E1 and E2 lead to variable protein stabilities and DNA binding dynamics. This review describes the steps taken from the discovery of MECP2, the description of its key functions, and its association with RTT, to the emergence of evidence revealing how MECP2 isoforms are differentially regulated at the transcriptional, post-transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Deivid Carvalho Rodrigues
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada
| | - Marat Mufteev
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| |
Collapse
|
21
|
Haase FD, Coorey B, Riley L, Cantrill LC, Tam PPL, Gold WA. Pre-clinical Investigation of Rett Syndrome Using Human Stem Cell-Based Disease Models. Front Neurosci 2021; 15:698812. [PMID: 34512241 PMCID: PMC8423999 DOI: 10.3389/fnins.2021.698812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, mostly caused by mutations in MECP2. The disorder mainly affects girls and it is associated with severe cognitive and physical disabilities. Modeling RTT in neural and glial cell cultures and brain organoids derived from patient- or mutation-specific human induced pluripotent stem cells (iPSCs) has advanced our understanding of the pathogenesis of RTT, such as disease-causing mechanisms, disease progression, and cellular and molecular pathology enabling the identification of actionable therapeutic targets. Brain organoid models that recapitulate much of the tissue architecture and the complexity of cell types in the developing brain, offer further unprecedented opportunity for elucidating human neural development, without resorting to conventional animal models and the limited resource of human neural tissues. This review focuses on the new knowledge of RTT that has been gleaned from the iPSC-based models as well as limitations of the models and strategies to refine organoid technology in the quest for clinically relevant disease models for RTT and the broader spectrum of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Florencia D. Haase
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, and Children’s Medical Research Institute, Westmead, NSW, Australia
| | - Bronte Coorey
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, and Children’s Medical Research Institute, Westmead, NSW, Australia
| | - Lisa Riley
- Rare Diseases Functional Genomics Laboratory, Kids Research, Children’s Hospital at Westmead, and Children’s Medical Research Institute, Westmead, NSW, Australia
| | - Laurence C. Cantrill
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Kids Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Patrick P. L. Tam
- Embryology Research Unit, Children’s Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Wendy A. Gold
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, and Children’s Medical Research Institute, Westmead, NSW, Australia
- Rare Diseases Functional Genomics Laboratory, Kids Research, Children’s Hospital at Westmead, and Children’s Medical Research Institute, Westmead, NSW, Australia
| |
Collapse
|
22
|
Gomes AR, Fernandes TG, Cabral JM, Diogo MM. Modeling Rett Syndrome with Human Pluripotent Stem Cells: Mechanistic Outcomes and Future Clinical Perspectives. Int J Mol Sci 2021; 22:3751. [PMID: 33916879 PMCID: PMC8038474 DOI: 10.3390/ijms22073751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Among many different roles, MeCP2 has a high phenotypic impact during the different stages of brain development. Thus, it is essential to intensively investigate the function of MeCP2, and its regulated targets, to better understand the mechanisms of the disease and inspire the development of possible therapeutic strategies. Several animal models have greatly contributed to these studies, but more recently human pluripotent stem cells (hPSCs) have been providing a promising alternative for the study of RTT. The rapid evolution in the field of hPSC culture allowed first the development of 2D-based neuronal differentiation protocols, and more recently the generation of 3D human brain organoid models, a more complex approach that better recapitulates human neurodevelopment in vitro. Modeling RTT using these culture platforms, either with patient-specific human induced pluripotent stem cells (hiPSCs) or genetically-modified hPSCs, has certainly contributed to a better understanding of the onset of RTT and the disease phenotype, ultimately allowing the development of high throughput drugs screening tests for potential clinical translation. In this review, we first provide a brief summary of the main neurological features of RTT and the impact of MeCP2 mutations in the neuropathophysiology of this disease. Then, we provide a thorough revision of the more recent advances and future prospects of RTT modeling with human neural cells derived from hPSCs, obtained using both 2D and organoids culture systems, and its contribution for the current and future clinical trials for RTT.
Collapse
Affiliation(s)
- Ana Rita Gomes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
23
|
D'Mello SR. MECP2 and the Biology of MECP2 Duplication Syndrome. J Neurochem 2021; 159:29-60. [PMID: 33638179 DOI: 10.1111/jnc.15331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and complex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Collapse
|
24
|
Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2020; 121:201-219. [PMID: 33370574 DOI: 10.1016/j.neubiorev.2020.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.
Collapse
Affiliation(s)
- K R Sabitha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
25
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
26
|
Nam KH, Yi SA, Jang HJ, Han JW, Lee J. In vitro modeling for inherited neurological diseases using induced pluripotent stem cells: from 2D to organoid. Arch Pharm Res 2020; 43:877-889. [PMID: 32761309 DOI: 10.1007/s12272-020-01260-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Stem cells are characterized by self-renewal and by their ability to differentiate into cells of various organs. With massive progress in 2D and 3D cell culture techniques, in vitro generation of various types of such organoids from patient-derived stem cells is now possible. As in vitro differentiation protocols are usually made to resemble human developmental processes, organogenesis of patient-derived stem cells can provide key information regarding a range of developmental diseases. Human stem cell-based in vitro modeling as opposed to using animal models can particularly benefit the evaluation of neurological diseases because of significant differences in structure and developmental processes between the human and the animal brain. This review focuses on stem cell-based in vitro modeling of neurodevelopmental disorders, more specifically, the fundamentals and technical advancements in monolayer neuron and brain organoid cultures. Furthermore, we discuss the drawbacks of the conventional culture method and explore the advanced, cutting edge 3D organoid models for several neurodevelopmental diseases, including genetic diseases such as Down syndrome, Rett syndrome, and Miller-Dieker syndrome, as well as brain malformations like macrocephaly and microcephaly. Finally, we discuss the limitations of the current organoid techniques and some potential solutions that pave the way for accurate modeling of neurological disorders in a dish.
Collapse
Affiliation(s)
- Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Ji Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Imnewrun Biosciences Inc., Suwon, 16419, Republic of Korea.
| |
Collapse
|
27
|
Xiang Y, Tanaka Y, Patterson B, Hwang SM, Hysolli E, Cakir B, Kim KY, Wang W, Kang YJ, Clement EM, Zhong M, Lee SH, Cho YS, Patra P, Sullivan GJ, Weissman SM, Park IH. Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons. Mol Cell 2020; 79:84-98.e9. [PMID: 32526163 PMCID: PMC7375197 DOI: 10.1016/j.molcel.2020.05.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.
Collapse
Affiliation(s)
- Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sung-Min Hwang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eriona Hysolli
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wanshan Wang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ethan M Clement
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yee Sook Cho
- Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Prabir Patra
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
| | - Gareth J Sullivan
- Department of Molecular Medicine, Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Oslo University Hospital and University of Oslo, Oslo 0424, Norway; Department of Pediatric Research, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
| | - Sherman M Weissman
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
28
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
29
|
Watanabe N, Kitada K, Santostefano KE, Yokoyama A, Waldrop SM, Heldermon CD, Tachibana D, Koyama M, Meacham AM, Pacak CA, Terada N. Generation of Induced Pluripotent Stem Cells from a Female Patient with a Xq27.3-q28 Deletion to Establish Disease Models and Identify Therapies. Cell Reprogram 2020; 22:179-188. [PMID: 32608992 DOI: 10.1089/cell.2020.0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since it is extremely difficult to establish an animal model for human chromosomal abnormalities, induced pluripotent stem cells (iPSCs) provide a powerful alternative to study underlying mechanisms of these disorders and identify potential therapeutic interventions. In this study we established iPSCs from a young girl with a hemizygous deletion of Xq27.3-q28 who exhibited global developmental delay and intellectual disability from early in infancy. The deletion site on the X chromosome includes Fragile X Mental Retardation 1 (FMR1), the gene responsible for fragile X syndrome, which likely contributes to the patient's neurodevelopmental abnormalities. The FMR1 gene was expressed in approximately half of the iPSC clones we generated while it was absent in the other half due to the random inactivation of normal and abnormal X chromosomes. The normal or absent expression pattern of the FMR1 gene was not altered when the iPSCs were differentiated into neural progenitor cells (NPCs). Moreover, chromosome reactivating reagents such as 5-aza-2-deoxycytidine, trichostatin A, and UNC0638, were tested in an attempt to reactivate the suppressed FMR1 gene in affected iPSC-NPCs. The affected and control isogenic iPSCs developed in this study are ideal models with which to identify downstream consequences caused by the Xq27.3-q28 deletion and also to provide tools for high-throughput screening to identify compounds potentially improving the well-being of this patient population.
Collapse
Affiliation(s)
- Noriko Watanabe
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kohei Kitada
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Airi Yokoyama
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Sara M Waldrop
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Coy D Heldermon
- Department of Medicine, and University of Florida College of Medicine, Gainesville, Florida, USA
| | - Daisuke Tachibana
- Depertment of Obstetrics and Gynecology, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Masayasu Koyama
- Depertment of Obstetrics and Gynecology, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Amy M Meacham
- Department of Medicine, and University of Florida College of Medicine, Gainesville, Florida, USA
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Naohiro Terada
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
30
|
Varderidou-Minasian S, Hinz L, Hagemans D, Posthuma D, Altelaar M, Heine VM. Quantitative proteomic analysis of Rett iPSC-derived neuronal progenitors. Mol Autism 2020; 11:38. [PMID: 32460858 PMCID: PMC7251722 DOI: 10.1186/s13229-020-00344-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background Rett syndrome (RTT) is a progressive neurodevelopmental disease that is characterized by abnormalities in cognitive, social, and motor skills. RTT is often caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). The mechanism by which impaired MeCP2 induces the pathological abnormalities in the brain is not understood. Both patients and mouse models have shown abnormalities at molecular and cellular level before typical RTT-associated symptoms appear. This implies that underlying mechanisms are already affected during neurodevelopmental stages. Methods To understand the molecular mechanisms involved in disease onset, we used an RTT patient induced pluripotent stem cell (iPSC)-based model with isogenic controls and performed time-series of proteomic analysis using in-depth high-resolution quantitative mass spectrometry during early stages of neuronal development. Results We provide mass spectrometry-based quantitative proteomic data, depth of about 7000 proteins, at neuronal progenitor developmental stages of RTT patient cells and isogenic controls. Our data gives evidence of proteomic alteration at early neurodevelopmental stages, suggesting alterations long before the phase that symptoms of RTT syndrome become apparent. Significant changes are associated with the GO enrichment analysis in biological processes cell-cell adhesion, actin cytoskeleton organization, neuronal stem cell population maintenance, and pituitary gland development, next to protein changes previously associated with RTT, i.e., dendrite morphology and synaptic deficits. Differential expression increased from early to late neural stem cell phases, although proteins involved in immunity, metabolic processes, and calcium signaling were affected throughout all stages analyzed. Limitations The limitation of our study is the number of RTT patients analyzed. As the aim of our study was to investigate a large number of proteins, only one patient was considered, of which 3 different RTT iPSC clones and 3 isogenic control iPSC clones were included. Even though this approach allowed the study of mutation-induced alterations due to the usage of isogenic controls, results should be validated on different RTT patients to suggest common disease mechanisms. Conclusions During early neuronal differentiation, there are consistent and time-point specific proteomic alterations in RTT patient cells carrying exons 3–4 deletion in MECP2. We found changes in proteins involved in pathway associated with RTT phenotypes, including dendrite morphology and synaptogenesis. Our results provide a valuable resource of proteins and pathways for follow-up studies, investigating common mechanisms involved during early disease stages of RTT syndrome.
Collapse
Affiliation(s)
- Suzy Varderidou-Minasian
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Lisa Hinz
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dominique Hagemans
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Vivi M Heine
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Cordone V, Pecorelli A, Amicarelli F, Hayek J, Valacchi G. The complexity of Rett syndrome models: Primary fibroblasts as a disease-in-a-dish reliable approach. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.ddmod.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Freel BA, Sheets JN, Francis KR. iPSC modeling of rare pediatric disorders. J Neurosci Methods 2019; 332:108533. [PMID: 31811832 DOI: 10.1016/j.jneumeth.2019.108533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Discerning the underlying pathological mechanisms and the identification of therapeutic strategies to treat individuals affected with rare neurological diseases has proven challenging due to a host of factors. For instance, rare diseases affecting the nervous system are inherently lacking in appropriate patient sample availability compared to more common diseases, while animal models often do not accurately recapitulate specific disease phenotypes. These challenges impede research that may otherwise illuminate aspects of disease initiation and progression, leading to the ultimate identification of potential therapeutics. The establishment of induced pluripotent stem cells (iPSCs) as a human cellular model with defined genetics has provided the unique opportunity to study rare diseases within a controlled environment. iPSC models enable researchers to define mutational effects on specific cell types and signaling pathways within increasingly complex systems. Among rare diseases, pediatric diseases affecting neurodevelopment and neurological function highlight the critical need for iPSC-based disease modeling due to the inherent difficulty associated with collecting human neural tissue and the complexity of the mammalian nervous system. Rare neurodevelopmental disorders are therefore ideal candidates for utilization of iPSC-based in vitro studies. In this review, we address both the state of the iPSC field in the context of their utility and limitations for neurodevelopmental studies, as well as speculating about the future applications and unmet uses for iPSCs in rare diseases.
Collapse
Affiliation(s)
- Bethany A Freel
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA
| | - Jordan N Sheets
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA.
| |
Collapse
|
33
|
Ojeda J, Ávila A. Early Actions of Neurotransmitters During Cortex Development and Maturation of Reprogrammed Neurons. Front Synaptic Neurosci 2019; 11:33. [PMID: 31824293 PMCID: PMC6881277 DOI: 10.3389/fnsyn.2019.00033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
The development of the brain is shaped by a myriad of factors among which neurotransmitters play remarkable roles before and during the formation and maturation of synaptic circuits. Cellular processes such as neurogenesis, morphological development, synaptogenesis and maturation of synapses are temporary and spatially regulated by the local or distal influence of neurotransmitters in the developing cortex. Thus, research on this area has contributed to the understanding of fundamental mechanisms of brain development and to shed light on the etiology of various human neurodevelopmental disorders such as autism and Rett syndrome (RTT), among others. Recently, the field of neuroscience has been shaken by an explosive advance of experimental approaches linked to the use of induced pluripotent stem cells and reprogrammed neurons. This new technology has allowed researchers for the first time to model in the lab the unique events that take place during early human brain development and to explore the mechanisms that cause synaptopathies. In this context, the role of neurotransmitters during early stages of cortex development is beginning to be re-evaluated and a revision of the state of the art has become necessary in a time when new protocols are being worked out to differentiate stem cells into functional neurons. New perspectives on reconsidering the function of neurotransmitters include opportunities for methodological advances, a better understanding of the origin of mental disorders and the potential for development of new treatments.
Collapse
Affiliation(s)
- Jorge Ojeda
- Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
34
|
Farhy C, Hariharan S, Ylanko J, Orozco L, Zeng FY, Pass I, Ugarte F, Forsberg EC, Huang CT, Andrews DW, Terskikh AV. Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape. eLife 2019; 8:e49683. [PMID: 31637999 PMCID: PMC6908434 DOI: 10.7554/elife.49683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022] Open
Abstract
High-content phenotypic screening has become the approach of choice for drug discovery due to its ability to extract drug-specific multi-layered data. In the field of epigenetics, such screening methods have suffered from a lack of tools sensitive to selective epigenetic perturbations. Here we describe a novel approach, Microscopic Imaging of Epigenetic Landscapes (MIEL), which captures the nuclear staining patterns of epigenetic marks and employs machine learning to accurately distinguish between such patterns. We validated the MIEL platform across multiple cells lines and using dose-response curves, to insure the fidelity and robustness of this approach for high content high throughput drug discovery. Focusing on noncytotoxic glioblastoma treatments, we demonstrated that MIEL can identify and classify epigenetically active drugs. Furthermore, we show MIEL was able to accurately rank candidate drugs by their ability to produce desired epigenetic alterations consistent with increased sensitivity to chemotherapeutic agents or with induction of glioblastoma differentiation.
Collapse
Affiliation(s)
- Chen Farhy
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Santosh Hariharan
- Biological Sciences Platform, Sunnybrook Research InstituteUniversity of TorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoOntarioCanada
| | - Jarkko Ylanko
- Biological Sciences Platform, Sunnybrook Research InstituteUniversity of TorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoOntarioCanada
| | - Luis Orozco
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Fernando Ugarte
- Department of Biomolecular EngineeringUniversity of California, Santa CruzSanta CruzUnited States
- Institute for the Biology of Stem CellsUniversity of California, Santa CruzSanta CruzUnited States
| | - E Camilla Forsberg
- Department of Biomolecular EngineeringUniversity of California, Santa CruzSanta CruzUnited States
- Institute for the Biology of Stem CellsUniversity of California, Santa CruzSanta CruzUnited States
| | - Chun-Teng Huang
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - David W Andrews
- Biological Sciences Platform, Sunnybrook Research InstituteUniversity of TorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoOntarioCanada
| | - Alexey V Terskikh
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| |
Collapse
|
35
|
Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: An outlook into future diagnostics and drug development. Dev Dyn 2019; 249:6-33. [PMID: 31398277 DOI: 10.1002/dvdy.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a spectrum of neurodevelopmental disorders characterized by impaired social interaction, repetitive or restrictive behaviors, and problems with speech. According to a recent report by the Centers for Disease Control and Prevention, one in 68 children in the US is diagnosed with ASDs. Although ASD-related diagnostics and the knowledge of ASD-associated genetic abnormalities have improved in recent years, our understanding of the cellular and molecular pathways disrupted in ASD remains very limited. As a result, no specific therapies or medications are available for individuals with ASDs. In this review, we describe the neurodevelopmental processes that are likely affected in the brains of individuals with ASDs and discuss how patient-specific stem cell-derived neurons and organoids can be used for investigating these processes at the cellular and molecular levels. Finally, we propose a discovery pipeline to be used in the future for identifying the cellular and molecular deficits and developing novel personalized therapies for individuals with idiopathic ASDs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| | - Alex Shcheglovitov
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
36
|
Lybrand ZR, Goswami S, Hsieh J. Stem cells: A path towards improved epilepsy therapies. Neuropharmacology 2019; 168:107781. [PMID: 31539537 DOI: 10.1016/j.neuropharm.2019.107781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
Despite the immense growth of new anti-seizure drugs (ASDs), approximately one-third of epilepsy patients remain resistant to current treatment options. Advancements in whole genome sequencing technology continues to identify an increasing number of epilepsy-associated genes at a rate that is outpacing the development of in vivo animal models. Patient-derived induced pluripotent stem cells (iPSCs) show promise in providing a platform for modeling genetic epilepsies, high throughput drug screening, and personalized medicine. This is largely due to the ease of collecting donor cells for iPSC reprogramming, and their ability to be maintained in vitro, while preserving the patient's genetic background. In this review, we summarize the current state of iPSC research in epilepsy and closely related syndromes, discuss the growing need for high-throughput drug screening (HTS), and review the use of stem cell technology for the purpose of autologous transplantation for epilepsy stem cell therapy. Although the use of iPSC technology, as it applies to ASD discovery, is in its infancy, we highlight the significant progress that has been made in phenotype and assay development to facilitate systematic HTS for personalized medicine. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Zane R Lybrand
- Department of Biology and Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Sonal Goswami
- Department of Biology and Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jenny Hsieh
- Department of Biology and Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
37
|
Gulmez Karaca K, Brito DV, Oliveira AM. MeCP2: A Critical Regulator of Chromatin in Neurodevelopment and Adult Brain Function. Int J Mol Sci 2019; 20:ijms20184577. [PMID: 31527487 PMCID: PMC6769791 DOI: 10.3390/ijms20184577] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) was first identified as a nuclear protein with a transcriptional repressor role that recognizes DNA methylation marks. MeCP2 has a well-established function in neurodevelopment, as evidenced by the severe neurological impairments characteristic of the Rett syndrome (RTT) pathology and the MeCP2 duplication syndrome (MDS), caused by loss or gain of MeCP2 function, respectively. Research aimed at the underlying pathophysiological mechanisms of RTT and MDS has significantly advanced our understanding of MeCP2 functions in the nervous system. It has revealed, however, that MeCP2 has more varied and complex roles than previously thought. Here we review recent insights into the functions of MeCP2 in neurodevelopment and the less explored requirement for MeCP2 in adult brain function. We focus on the emerging view that MeCP2 is a global chromatin organizer. Finally, we discuss how the individual functions of MeCP2 in neurodevelopment and adulthood are linked to its role as a chromatin regulator.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands
| | - David V.C. Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
| | - Ana M.M. Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
- Correspondence: ; Tel.: +49-(0)6221-5416510
| |
Collapse
|
38
|
Abstract
Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). Almost two decades of research into RTT have greatly advanced our understanding of the function and regulation of the multifunctional protein MeCP2. Here, we review recent advances in understanding how loss of MeCP2 impacts different stages of brain development, discuss recent findings demonstrating the molecular role of MeCP2 as a transcriptional repressor, assess primary and secondary effects of MeCP2 loss and examine how loss of MeCP2 can result in an imbalance of neuronal excitation and inhibition at the circuit level along with dysregulation of activity-dependent mechanisms. These factors present challenges to the search for mechanism-based therapeutics for RTT and suggest specific approaches that may be more effective than others.
Collapse
|
39
|
Belair C, Sim S, Kim KY, Tanaka Y, Park IH, Wolin SL. The RNA exosome nuclease complex regulates human embryonic stem cell differentiation. J Cell Biol 2019; 218:2564-2582. [PMID: 31308215 PMCID: PMC6683745 DOI: 10.1083/jcb.201811148] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
This work shows that the exosome modulates the levels of LINE-1 retrotransposons and specific miRNAs, lncRNAs, and mRNAs that encode developmental regulators or affect their expression. The exosome restrains stem cell differentiation in part by degrading transcripts encoding FOXH1, a transcription factor crucial for mesendoderm formation. A defining feature of embryonic stem cells (ESCs) is the ability to differentiate into all three germ layers. Pluripotency is maintained in part by a unique transcription network that maintains expression of pluripotency-specific transcription factors and represses developmental genes. While the mechanisms that establish this transcription network are well studied, little is known of the posttranscriptional surveillance pathways that degrade differentiation-related RNAs. We report that the surveillance pathway mediated by the RNA exosome nuclease complex represses ESC differentiation. Depletion of the exosome expedites differentiation of human ESCs into all three germ layers. LINE-1 retrotransposons and specific miRNAs, lncRNAs, and mRNAs that encode developmental regulators or affect their expression are all bound by the exosome and increase in level upon exosome depletion. The exosome restrains differentiation in part by degrading transcripts encoding FOXH1, a transcription factor crucial for mesendoderm formation. Our studies establish the exosome as a regulator of human ESC differentiation and reveal the importance of RNA decay in maintaining pluripotency.
Collapse
Affiliation(s)
- Cedric Belair
- Department of Cell Biology, Yale School of Medicine, New Haven, CT.,RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Soyeong Sim
- Department of Cell Biology, Yale School of Medicine, New Haven, CT.,RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | | | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT .,RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| |
Collapse
|
40
|
Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn 2019; 249:56-75. [DOI: 10.1002/dvdy.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wei Niu
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| | - Jack M. Parent
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| |
Collapse
|
41
|
Lozovaya N, Nardou R, Tyzio R, Chiesa M, Pons-Bennaceur A, Eftekhari S, Bui TT, Billon-Grand M, Rasero J, Bonifazi P, Guimond D, Gaiarsa JL, Ferrari DC, Ben-Ari Y. Early alterations in a mouse model of Rett syndrome: the GABA developmental shift is abolished at birth. Sci Rep 2019; 9:9276. [PMID: 31239460 PMCID: PMC6592949 DOI: 10.1038/s41598-019-45635-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic mutations of the Methyl-CpG-binding protein-2 (MECP2) gene underlie Rett syndrome (RTT). Developmental processes are often considered to be irrelevant in RTT pathogenesis but neuronal activity at birth has not been recorded. We report that the GABA developmental shift at birth is abolished in CA3 pyramidal neurons of Mecp2-/y mice and the glutamatergic/GABAergic postsynaptic currents (PSCs) ratio is increased. Two weeks later, GABA exerts strong excitatory actions, the glutamatergic/GABAergic PSCs ratio is enhanced, hyper-synchronized activity is present and metabotropic long-term depression (LTD) is impacted. One day before delivery, maternal administration of the NKCC1 chloride importer antagonist bumetanide restored these parameters but not respiratory or weight deficits, nor the onset of mortality. Results suggest that birth is a critical period in RTT with important alterations that can be attenuated by bumetanide raising the possibility of early treatment of the disorder.
Collapse
Affiliation(s)
- N Lozovaya
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - R Nardou
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - R Tyzio
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - M Chiesa
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - A Pons-Bennaceur
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - S Eftekhari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - T-T Bui
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - M Billon-Grand
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - J Rasero
- Biocruces Health Research Institute, 48903, Barakaldo, Spain
| | - P Bonifazi
- Biocruces Health Research Institute, 48903, Barakaldo, Spain.,IKERBASQUE: The Basque Foundation for Science, 48013, Bilbao, Spain
| | - D Guimond
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - J-L Gaiarsa
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - D C Ferrari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - Y Ben-Ari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.
| |
Collapse
|
42
|
Pacitti D, Privolizzi R, Bax BE. Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Front Cell Neurosci 2019; 13:129. [PMID: 31024259 PMCID: PMC6465581 DOI: 10.3389/fncel.2019.00129] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as "the most complex thing in the universe." The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
- College of Medicine and Health, St Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Riccardo Privolizzi
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, United Kingdom
| | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
| |
Collapse
|
43
|
Hinz L, Hoekstra SD, Watanabe K, Posthuma D, Heine VM. Generation of Isogenic Controls for In Vitro Disease Modelling of X-Chromosomal Disorders. Stem Cell Rev Rep 2019; 15:276-285. [PMID: 30421281 PMCID: PMC6441401 DOI: 10.1007/s12015-018-9851-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Generation of proper controls is crucial in induced pluripotent stem cell (iPSC) studies. X-chromosomal disorders offer the potential to develop isogenic controls due to random X-chromosomal inactivation (XCI). However, the generation of such lines is currently hampered by skewed X-inactivation in fibroblast lines and X-chromosomal reactivation (XCR) after reprogramming. Here we describe a method to generate a pure iPSC population with respect to the specific inactivated X-chromosome (Xi). We used fibroblasts from Rett patients, who all have a causal mutation in the X-linked MeCP2 gene. Pre-sorting these fibroblasts followed by episomal reprogramming, allowed us to overcome skewness in fibroblast lines and to retain the X-chromosomal state, which was unpredictable with lentiviral reprogramming. This means that fibroblast pre-sorting followed by episomal reprogramming can be used to reliably generate iPSC lines with specified X-chromosomal phenotype such as Rett syndrome.
Collapse
Affiliation(s)
- Lisa Hinz
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Stephanie D Hoekstra
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Kyoko Watanabe
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Clinical Genetics, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Kim JJ, Savas JN, Miller MT, Hu X, Carromeu C, Lavallée-Adam M, Freitas BCG, Muotri AR, Yates JR, Ghosh A. Proteomic analyses reveal misregulation of LIN28 expression and delayed timing of glial differentiation in human iPS cells with MECP2 loss-of-function. PLoS One 2019; 14:e0212553. [PMID: 30789962 PMCID: PMC6383942 DOI: 10.1371/journal.pone.0212553] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
Rett syndrome (RTT) is a pervasive developmental disorder caused by mutations in MECP2. Complete loss of MECP2 function in males causes congenital encephalopathy, neurodevelopmental arrest, and early lethality. Induced pluripotent stem cell (iPSC) lines from male patients harboring mutations in MECP2, along with control lines from their unaffected fathers, give us an opportunity to identify some of the earliest cellular and molecular changes associated with MECP2 loss-of-function (LOF). We differentiated iPSC-derived neural progenitor cells (NPCs) using retinoic acid (RA) and found that astrocyte differentiation is perturbed in iPSC lines derived from two different patients. Using highly stringent quantitative proteomic analyses, we found that LIN28, a gene important for cell fate regulation and developmental timing, is upregulated in mutant NPCs compared to WT controls. Overexpression of LIN28 protein in control NPCs suppressed astrocyte differentiation and reduced neuronal synapse density, whereas downregulation of LIN28 expression in mutant NPCs partially rescued this synaptic deficiency. These results indicate that the pathophysiology of RTT may be caused in part by misregulation of developmental timing in neural progenitors, and the subsequent consequences of this disruption on neuronal and glial differentiation.
Collapse
Affiliation(s)
- Jean J. Kim
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Jeffrey N. Savas
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Meghan T. Miller
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Xindao Hu
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Cassiano Carromeu
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Mathieu Lavallée-Adam
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Beatriz C. G. Freitas
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Alysson R. Muotri
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Anirvan Ghosh
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| |
Collapse
|
45
|
Decoding epigenetic cell signaling in neuronal differentiation. Semin Cell Dev Biol 2019; 95:12-24. [PMID: 30578863 DOI: 10.1016/j.semcdb.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
Neurogenesis is the process by which new neurons are generated in the brain. Neural stem cells (NSCs) are differentiated into neurons, which are integrated into the neural network. Nowadays, pluripotent stem cells, multipotent stem cells, and induced pluripotent stem cells can be artificially differentiated into neurons utilizing several techniques. Specific transcriptional profiles from NSCs during differentiation are frequently used to approach and observe phenotype alteration and functional determination of neurons. In this context, the role of non-coding RNA, transcription factors and epigenetic changes in neuronal development and differentiation has gained importance. Epigenetic elucidation has become a field of intense research due to distinct patterns of normal conditions and different neurodegenerative disorders, which can be explored to develop new diagnostic methods or gene therapies. In this review, we discuss the complexity of transcription factors, non-coding RNAs, and extracellular vesicles that are responsible for guiding and coordinating neural development.
Collapse
|
46
|
Müller M. Disturbed redox homeostasis and oxidative stress: Potential players in the developmental regression in Rett syndrome. Neurosci Biobehav Rev 2019; 98:154-163. [PMID: 30639673 DOI: 10.1016/j.neubiorev.2018.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder affecting mostly girls. A seemingly normal initial development is followed by developmental stagnation and regression, leading to severe mental impairment with autistic features, motor dysfunction, irregular breathing and epilepsy. Currently, a cure does not exist. Due to the close association of RTT with mitochondrial alterations, cellular redox-impairment and oxidative stress, compounds stabilizing mitochondrial function, cellular redox-homeostasis, and oxidant detoxification are increasingly considered as treatment concepts. Indeed, antioxidants and free-radical scavengers ameliorate certain aspects of the complex and severe clinical presentation of RTT. To further evaluate these strategies, reliable biosensors are needed to quantify redox-conditions in brain and peripheral organs of mouse models or in patient-derived cells. Genetically-encoded redox-sensors meet these requirements. Expressed in transgenic mouse-models such as our unique Rett-redox indicator mice, they will report for any cell type desired the severity of oxidant stress throughout the various disease stages of RTT. Furthermore, these sensors will be crucial to evaluate in vitro and in vivo the outcome of mitochondria- and redox-balance targeted treatments.
Collapse
Affiliation(s)
- Michael Müller
- Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Humboldtallee 23, D-37073 Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro-und Sinnesphysiologie, Humboldtallee 23, D-37073 Göttingen, Germany.
| |
Collapse
|
47
|
Zhao X, Bhattacharyya A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. Am J Hum Genet 2018; 103:829-857. [PMID: 30526865 DOI: 10.1016/j.ajhg.2018.10.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The analysis of animal models of neurological disease has been instrumental in furthering our understanding of neurodevelopment and brain diseases. However, animal models are limited in revealing some of the most fundamental aspects of development, genetics, pathology, and disease mechanisms that are unique to humans. These shortcomings are exaggerated in disorders that affect the brain, where the most significant differences between humans and animal models exist, and could underscore failures in targeted therapeutic interventions in affected individuals. Human pluripotent stem cells have emerged as a much-needed model system for investigating human-specific biology and disease mechanisms. However, questions remain regarding whether these cell-culture-based models are sufficient or even necessary. In this review, we summarize human-specific features of neurodevelopment and the most common neurodevelopmental disorders, present discrepancies between animal models and human diseases, demonstrate how human stem cell models can provide meaningful information, and discuss the challenges that exist in our pursuit to understand distinctively human aspects of neurodevelopment and brain disease. This information argues for a more thoughtful approach to disease modeling through consideration of the valuable features and limitations of each model system, be they human or animal, to mimic disease characteristics.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| | - Anita Bhattacharyya
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| |
Collapse
|
48
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|
49
|
Linda K, Fiuza C, Nadif Kasri N. The promise of induced pluripotent stem cells for neurodevelopmental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:382-391. [PMID: 29128445 DOI: 10.1016/j.pnpbp.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
A major challenge in clinical genetics and medicine is represented by genetically and phenotypically highly diverse neurodevelopmental disorders, like for example intellectual disability and autism. Intellectual disability is characterized by substantial limitations in cognitive function and adaptive behaviour. At the cellular level, this is reflected by deficits in synaptic structure and plasticity and therefore has been coined as a synaptic disorder or "synaptopathy". In this review, we summarize the findings from recent studies in which iPSCs have been used to model specific neurodevelopmental syndromes, including Fragile X syndrome, Rett syndrome, Williams-Beuren syndrome and Phelan-McDermid syndrome. We discuss what we have learned from these studies and what key issues need to be addressed to move the field forward.
Collapse
Affiliation(s)
- Katrin Linda
- Department of Human Genetics, Department of Cognitive Neuroscience, Radboudumc, 6500 HB, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Carol Fiuza
- Department of Human Genetics, Department of Cognitive Neuroscience, Radboudumc, 6500 HB, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Department of Cognitive Neuroscience, Radboudumc, 6500 HB, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
50
|
Fink JJ, Levine ES. Uncovering True Cellular Phenotypes: Using Induced Pluripotent Stem Cell-Derived Neurons to Study Early Insults in Neurodevelopmental Disorders. Front Neurol 2018; 9:237. [PMID: 29713304 PMCID: PMC5911479 DOI: 10.3389/fneur.2018.00237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
Animal models of neurodevelopmental disorders have provided invaluable insights into the molecular-, cellular-, and circuit-level defects associated with a plethora of genetic disruptions. In many cases, these deficits have been linked to changes in disease-relevant behaviors, but very few of these findings have been translated to treatments for human disease. This may be due to significant species differences and the difficulty in modeling disorders that involve deletion or duplication of multiple genes. The identification of primary underlying pathophysiology in these models is confounded by the accumulation of secondary disease phenotypes in the mature nervous system, as well as potential compensatory mechanisms. The discovery of induced pluripotent stem cell technology now provides a tool to accurately model complex genetic neurogenetic disorders. Using this technique, patient-specific cell lines can be generated and differentiated into specific subtypes of neurons that can be used to identify primary cellular and molecular phenotypes. It is clear that impairments in synaptic structure and function are a common pathophysiology across neurodevelopmental disorders, and electrophysiological analysis at the earliest stages of neuronal development is critical for identifying changes in activity and excitability that can contribute to synaptic dysfunction and identify targets for disease-modifying therapies.
Collapse
Affiliation(s)
- James J Fink
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|