1
|
Bahramiazar P, Abdollahzade N, Tartibian B, Ahmadiasl N, Yaghoob Nezhad F. The Role of Estrogen in Brain MicroRNAs Regulation. Adv Pharm Bull 2024; 14:819-835. [PMID: 40190672 PMCID: PMC11970499 DOI: 10.34172/apb.39216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose This review aims to elucidate the role of estrogen-sensitive microRNAs (miRNAs) in modulating brain functions and disorders, highlighting the protective effects of estrogen on the central nervous system. Methods A comprehensive literature review was conducted, examining the relationship between estrogen, miRNAs, and cognitive health. The study focused on experimental data comparing cognitive impairments between genders and the mechanisms of estrogen's effects on brain function. Results Cognitive impairments are less prevalent in women of reproductive age compared to men, indicating estrogen's neuroprotective role. Estrogen modulates gene expression through specific receptors, while miRNAs regulate approximately 30% of protein-coding genes in mammals. These miRNAs play critical roles in synaptic plasticity and neuronal survival. The review identifies several estrogen-sensitive miRNAs and their potential involvement in brain disorders. Conclusion The interplay between estrogen and miRNAs offers valuable insights into the molecular mechanisms underlying cognitive health and disease. Understanding these relationships may lead to novel therapeutic strategies for addressing various brain disorders, particularly those associated with hormonal changes and aging.
Collapse
Affiliation(s)
- Peyvand Bahramiazar
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Naser Ahmadiasl
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
2
|
Feng Z, Liao M, Zhang L. Sex differences in disease: sex chromosome and immunity. J Transl Med 2024; 22:1150. [PMID: 39731171 DOI: 10.1186/s12967-024-05990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024] Open
Abstract
Sex is a fundamental biological variable that influences immune system function, with sex chromosomes (X and Y) playing a central role in these differences. Despite substantial evidence of disparities in immune responses between males and females, biomedical research has historically overlooked sex as a critical factor. This oversight has contributed to the observed disparities in susceptibility to autoimmune diseases, infectious diseases, and malignancies between the sexes. In this review, we address the phenomena and mechanisms through which aberrant expression of sex chromosome-linked genes contributes to sex-based differences in immune responses. We specifically focus on the implications of X chromosome inactivation (XCI) escape and loss of Y chromosome (LOY). Our review aims to elucidate the molecular mechanisms driving these sex-based differences, with particular emphasis on the interactions between sex chromosome genes and immune cells in both males and females. Additionally, we discuss the potential impact of these differences on disease susceptibility and identify prospective therapeutic targets. As personalized and precision medicine advances, it is crucial to integrate sex differences into immunological research and clinical trials. We advocate for an increased focus on sex-based considerations in fundamental, translational, and clinical research to promote personalized, sex-specific healthcare.
Collapse
Affiliation(s)
- Zuxi Feng
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Medical Research Center for Blood Diseases, Lanzhou, 730000, China
| | - Minjing Liao
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Liansheng Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, 730000, China.
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Clinical Medical Research Center for Blood Diseases, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Muñoz-Galdeano T, Reigada D, Soto A, Barreda-Manso MA, Ruíz-Amezcua P, Nieto-Díaz M, Maza RM. Identification of a New Role of miR-199a-5p as Factor Implied in Neuronal Damage: Decreasing the Expression of Its Target X-Linked Anti-Apoptotic Protein (XIAP) After SCI. Int J Mol Sci 2024; 25:12374. [PMID: 39596440 PMCID: PMC11594351 DOI: 10.3390/ijms252212374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Spinal cord injury (SCI) results in a cascade of primary and secondary damage, with apoptosis being a prominent cause of neuronal cell death. The X-linked inhibitor of apoptosis (XIAP) plays a critical role in inhibiting apoptosis, but its expression is reduced following SCI, contributing to increased neuronal vulnerability. This study investigates the regulatory role of miR-199a-5p on XIAP expression in the context of SCI. Using bioinformatic tools, luciferase reporter assays, and in vitro and in vivo models of SCI, we identified miR-199a-5p as a post-transcriptional regulator of XIAP. Overexpression of miR-199a-5p significantly reduced XIAP protein levels, although no changes were observed at the mRNA level, suggesting translational repression. In vivo, miR-199a-5p expression was upregulated at 3 and 7 days post-injury, while XIAP expression inversely decreased in both neurons and oligodendrocytes, being particularly significant in the latter at 7 dpi. These findings suggest that miR-199a-5p contributes to the downregulation of XIAP and may exacerbate neuronal apoptosis after SCI. Targeting miR-199a-5p could offer a potential therapeutic strategy to modulate XIAP levels and reduce apoptotic cell death in SCI.
Collapse
|
4
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
5
|
Guzenko VV, Bachurin SS, Khaitin AM, Dzreyan VA, Kalyuzhnaya YN, Bin H, Demyanenko SV. Acetylation of p53 in the Cerebral Cortex after Photothrombotic Stroke. Transl Stroke Res 2024; 15:970-985. [PMID: 37580538 DOI: 10.1007/s12975-023-01183-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
p53 expression and acetylation are crucial for the survival and death of neurons in penumbra. At the same time, the outcome of ischemia for penumbra cells depends largely on the histone acetylation status, but the effect of histone acetyltransferases and deacetylases on non-histone proteins like p53 is largely understudied. With combined in silico and in vitro approach, we have identified enzymes capable of acetylation/deacetylation, distribution, stability, and pro-apoptotic activity of p53 in ischemic penumbra in the course of post-stroke recovery, and also detected involved loci of acetylation in p53. The dynamic regulation of the acetylation of p53 at lysine 320 is controlled by acetyltransferase PCAF and histone deacetylases HDAC1 and HDAC6. The in silico simulation have made it possible to suggest the acetylation of p53 at lysine 320 acetylation may facilitate the shuttling of p53 between the nucleus and cytoplasm in penumbra neurons. Acetylation of p53 at lysine 320 is more preferable than acetylation at lysine 373 and probably promotes survival and repair of penumbra neurons after stroke. Strategies to increase p53 acetylation at lysine 320 via increasing PCAF activity, inhibiting HDAC1 or HDAC6, inhibiting p53, or a combination of these interventions may have therapeutic benefits for stroke recovery and would be promising for neuroprotective therapy of stroke.
Collapse
Affiliation(s)
- V V Guzenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - S S Bachurin
- Department of General and Clinical Biochemistry no.2, Rostov State Medical University, Nakhichevansky lane, Rostov-on-Don, 344022, Russia
| | - A M Khaitin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - V A Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - Y N Kalyuzhnaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - He Bin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - S V Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia.
- Department of General and Clinical Biochemistry no.2, Rostov State Medical University, Nakhichevansky lane, Rostov-on-Don, 344022, Russia.
| |
Collapse
|
6
|
Jin F, Jin L, Wei B, Li X, Li R, Liu W, Guo S, Fan H, Duan C. miR-96-5p alleviates cerebral ischemia-reperfusion injury in mice by inhibiting pyroptosis via downregulating caspase 1. Exp Neurol 2024; 374:114676. [PMID: 38190934 DOI: 10.1016/j.expneurol.2024.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Ischemic stroke is one of the leading causes of global mortality and disability. Nevertheless, successful treatment remains limited. In this study, we investigated the efficacy and the mechanism of miR-96-5p in protecting acute ischemic brain injury in adult mice. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice. MiR-96-5p or the negative control was administered via intracerebroventricular injection. The expression of pyroptosis-related genes and activation of various resident cells in the brain was assessed by RT-qPCR, western blot, immunohistochemistry, and immunofluorescence. Modified neurological severity score, rotarod test, cylinder test, brain water content, and cerebral infarction volume were used to evaluate the behavioral deficits and the severity of brain injury after MCAO. Flow cytometry, TUNEL staining, and Nissl staining were employed to assess the neuron damage. MiR-96-5p decreased markedly in the ischemic stroke model in vivo and in vitro. MiR-96-5p mimics suppressed the expression of caspase 1 and alleviated the apoptosis rate in OGD/R treatment N2a cells, however, the miR-96-5p inhibitor caused the opposite results. Intracerebroventricular delivery of miR-96-5p agomir significantly mitigated behavioral deficits, brain water content, and cerebral infarction volume after MCAO. In addition, treatment with miR-96-5p agomir downregulated the expression of caspase 1/cleaved caspase 1 and Gsdmd/Gsdmd-N, while alleviating the neuron damage. In summary, overexpression of miR-96-5p suppresses pyroptosis and reduces brain damage in the acute phase of ischemic stroke, providing new insight into the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Fa Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ran Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Haiyan Fan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
7
|
Geleta U, Prajapati P, Bachstetter A, Nelson PT, Wang WX. Sex-Biased Expression and Response of microRNAs in Neurological Diseases and Neurotrauma. Int J Mol Sci 2024; 25:2648. [PMID: 38473893 PMCID: PMC10931569 DOI: 10.3390/ijms25052648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Neurological diseases and neurotrauma manifest significant sex differences in prevalence, progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflammation, and environmental exposures are among many physiological and pathological factors that impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of gene expression regulator that are extensively involved in mediating biological pathways. Emerging evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various human diseases, including neurological diseases. Understanding the sex differences in miRNA expression and response is believed to have important implications for assessing the risk of neurological disease, defining therapeutic intervention strategies, and advancing both basic research and clinical investigations. However, there is limited research exploring the extent to which miRNAs contribute to the sex disparities observed in various neurological diseases. Here, we review the current state of knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in human diseases and to advocate a gender/sex-balanced science.
Collapse
Affiliation(s)
- Urim Geleta
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Paresh Prajapati
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Adam Bachstetter
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Anika, Arora R, Virendra SA, Chawla PA. Mechanistic Study on the Possible Role of Embelin in Treating Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:55-66. [PMID: 36655531 DOI: 10.2174/1871527322666230119100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 01/20/2023]
Abstract
Embelin (EMB) (2,5-Dihydroxy-3-undecyl-1,4-benzoquinone) is a natural benzoquinone extracted mainly from Embelia ribes (ER) and appear as vivid orange dots beneath the fruit's pericarp. It is being used to treat various diseases since ancient times in India. It has been ascribed as one of the 32 ayurvedic drugs of national importance in the National Medicinal Plant Board set up by the Government of India under the Ministry of Indian System of Medicine and Homeopathy. Embelin prevents neuronal oxidative damage by decreasing the peroxidation of lipids. Along with having antioxidant properties, it also prevents the production of amyloid-protein-related fibrils and blocks the progression of inflammatory cascades. Due to embelin's ability to cross the blood-brain barrier, its neuroprotective effects have been studied in the past using in vitro models of neuronal disorders such as convulsion and epilepsy, Alzheimer's disease, anxiety and depression, traumatic brain injury, cerebral ischemia, Huntington's disease, and multiple sclerosis. In addition to its neuroprotective effects, its role as an antitubercular, anti-cancer, antioxidant, astringent, anti-inflammatory, anti-bacterial, contraceptive, carminative, diuretic, and anthelmintic agent has also been studied. With docking studies and recent advancements in formulations of embelin including polyethylene and embelin micelles and embelin noisome preparations, embelin can prove to be a promising compound for its therapeutic actions in a wide range of diseases and disorders. The findings of docking studies suggest the binding ability of embelin to be similar to the standard drug in their respective disorders. In this review and docking analysis, we bring an outline of scientific evidence concerning the neuroprotective actions of embelin, still, further research is required for its prospective as a chief compound in clinical approaches.
Collapse
Affiliation(s)
- Anika
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rimpi Arora
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sharma A Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
9
|
Gu C, Mo W, Wang K, Gao M, Chen J, Zhang F, Shen J. Exosomal miR-370-3p increases the permeability of blood-brain barrier in ischemia/reperfusion stroke of brain by targeting MPK1. Aging (Albany NY) 2023; 15:1931-1943. [PMID: 37000151 PMCID: PMC10085611 DOI: 10.18632/aging.204573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/23/2023] [Indexed: 04/01/2023]
Abstract
Ischemia/reperfusion (I/R) damage induced by stroke poses a serious hazard to human life, while mechanism of blood-brain barrier (BBB) dysfunction is still unknown. To imitate stroke induced ischemia conditions in vivo, the rat model of cerebral I/R damage was created by middle cerebral artery occlusion (MCAO). In vitro, the rat microvascular endothelial cell line bEND.3 was subjected to oxygen-glucose deprivation/reperfusion (OGD/R). Evans blue was used to evaluate the permeability of the blood-brain barrier (BBB). To evaluate gene expression at the mRNA and protein levels, researchers used real-time PCR and western blotting. Infarct volume and BBB permeability were considerably higher in cerebral (I/R) animals than in the Sham group. Exosomal miR-370-3p expression was shown to be higher in the brains of I/R injured rats and OGD/R treatment bEND.3. The BBB permeability was considerably increased when miR-370-3p was downregulated in OGD/R pretreated bEND.3. miR-370-3p regulates MAPK1 expression by targeting it. In bEND.3, OGD/R therapy increased BBB permeability substantially. OGD/R was inhibited by miR-370-3p mimic transfection, while miR-370-3p mimic was abolished by co-transfection with MAPK1 overexpression lentivirus. In cerebral I/R damage, exosomal miR-370-3p targets MAPK1 and aggregates BBB permeability.
Collapse
Affiliation(s)
- Caifeng Gu
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Weichun Mo
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Kunlun Wang
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Mingqiang Gao
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Junfeng Chen
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Feng Zhang
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jie Shen
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Effect of Butylphthalide Capsules on Smac and XIAP Expression in Rats after Ischemia Reperfusion. J Surg Res 2023; 283:1038-1046. [PMID: 36914994 DOI: 10.1016/j.jss.2022.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Little is known about the protective effects of butylphthalide on cerebral ischemia-reperfusion injury. This study aims to investigate the impact on the second mitochondrial-derived activator of Caspases (Smac) and X-linked inhibitor of apoptosis protein (XIAP) expression in the ischemic semidark area using a rat model of carotid artery stenosis. METHODS Thirty Sprague-Dawley rats were randomly divided into the sham-operated group, carotid stenosis model controls, low-dose (20 mg/kg), medium-dose (40 mg/kg), and high-dose (80 mg/kg) butylphthalide groups. The neurological function was scored by the balance beam test (BBT). The morphological changes of brain tissue were detected by Hematoxylin-eosin (HE) staining, with apoptosis detected by Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling (TUNEL) staining. Smac and XIAP protein expression were detected by immunohistochemistry (IHC). The expressions of Smac and XIAP mRNA were detected by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS HE showed that neuronal loss, nuclear consolidation, and vacuolar degeneration were significantly reduced in the medium and high-dose butylphthalide groups compared with the model controls. The BBT scores and apoptotic index were significantly lower in the medium and high doses of butylphthalide compared with the model controls. RT-qPCR and IHC showed that Smac, XIAP mRNA and protein expressions in the ischemic hemispheric region were significantly reduced in low, medium, and high doses of butylphthalide compared with the model controls (P < 0.05), showing some concentration effect. CONCLUSIONS Butylphthalide can significantly reduce Smac and XIAP mRNA and protein expression, inhibit neuronal apoptosis induced by ischemia-reperfusion injury in rats with carotid stenosis, and exert neuroprotective effects.
Collapse
|
11
|
Potential Regulation of miRNA-29 and miRNA-9 by Estrogens in Neurodegenerative Disorders: An Insightful Perspective. Brain Sci 2023; 13:brainsci13020243. [PMID: 36831786 PMCID: PMC9954655 DOI: 10.3390/brainsci13020243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 02/04/2023] Open
Abstract
Finding a link between a hormone and microRNAs (miRNAs) is of great importance since it enables the adjustment of genetic composition or cellular functions without needing gene-level interventions. The dicer-mediated cleavage of precursor miRNAs is an interface link between miRNA and its regulators; any disruption in this process can affect neurogenesis. Besides, the hormonal regulation of miRNAs can occur at the molecular and cellular levels, both directly, through binding to the promoter elements of miRNAs, and indirectly, via regulation of the signaling effects of the post-transcriptional processing proteins. Estrogenic hormones have many roles in regulating miRNAs in the brain. This review discusses miRNAs, their detailed biogenesis, activities, and both the general and estrogen-dependent regulations. Additionally, we highlight the relationship between miR-29, miR-9, and estrogens in the nervous system. Such a relationship could be a possible etiological route for developing various neurodegenerative disorders.
Collapse
|
12
|
Jia C, Lovins C, Malone HM, Keasey MP, Hagg T. Female-specific neuroprotection after ischemic stroke by vitronectin-focal adhesion kinase inhibition. J Cereb Blood Flow Metab 2022; 42:1961-1974. [PMID: 35702047 PMCID: PMC9536130 DOI: 10.1177/0271678x221107871] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We found that blood vitronectin (VTN) leaks into the brain and exacerbates tissue loss after stroke by increasing pro-inflammatory IL-6 expression in female, but not male, mice. VTN signals through integrins and downstream focal adhesion kinase (FAK). Here, a two day systemic treatment with a small molecule FAK inhibitor starting 6 h after middle cerebral artery occlusion reduced ipsilateral brain injury size by ∼40-45% at 7 and 14 d, as well as inflammation and motor dysfunction in wild-type female, but not male, mice. FAK inhibition also reduced IL-6 expression in the injured female striatum at 24 h by 62%. Inducible selective gene deletion of FAK in astrocytes also reduced acute IL-6 expression by 72% only in females, and mitigated infarct size by ∼80% and inflammation at 14 d after stroke. Lastly, VTN-/- females had better outcomes, but FAK inhibitor treatment had no additional protective or anti-inflammatory effects. Altogether, this suggests that VTN is detrimental in females primarily through FAK and that FAK inhibition provides neuroprotection (cerebroprotection) by reducing VTN-induced IL-6 expression in astrocytes. Thus, VTN signaling can be targeted to mitigate harmful inflammation with relevance to treatments for women with ischemic stroke, who often have worse outcomes than men.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Hannah M Malone
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| |
Collapse
|
13
|
Can U, Marzioglu E, Akdu S. Some miRNA expressions and their targets in ischemic stroke. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1224-1262. [PMID: 35876186 DOI: 10.1080/15257770.2022.2098974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke (IS) is a global health challenge leading to life-long disabilities or the deaths of patients. IS is a complex disease where genetic and environmental factors are both concerned with the pathophysiology of the condition. Here, we aimed to investigate various microRNA (miRNA) expressions and their targets in IS. A rapid and accurate diagnosis of acute IS is important to perform appropriate treatment. Therefore, there is a need for a more rapid and simple tool to carry out an acute diagnosis of IS. miRNAs are small RNA molecules serving as precious biomarkers due to their easy detection and stability in blood samples. The present systematic review aimed to summarize previous studies investigating several miRNA expressions and their targets in IS.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Türkiye
| | - Ebru Marzioglu
- Department of Genetics, Konya Training and Research Hospital, Konya, Türkiye
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| |
Collapse
|
14
|
Sharma V, Gautam DNS, Radu AF, Behl T, Bungau SG, Vesa CM. Reviewing the Traditional/Modern Uses, Phytochemistry, Essential Oils/Extracts and Pharmacology of Embelia ribes Burm. Antioxidants (Basel) 2022; 11:1359. [PMID: 35883850 PMCID: PMC9311956 DOI: 10.3390/antiox11071359] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES Embelia ribes Burm. (E. ribes, Myrsinaceae), also known as Vidanga in Ayurveda, has been shown to have significant therapeutic benefits on several disorders, and its main chemical bioactive constituent, embelin, has the therapeutic potential to be converted into innovative drugs, which is why it has recently received considerable interest. In the present work, we provide a higher level of comprehension, awareness, and extensive knowledge of the traditional uses, phytochemistry, and pharmacological characteristics of E. ribes throughout the last several decades (February 1965 to June 2021), emphasizing the importance of the study of essential oils extracted from E. ribes, which show a major potential for exerting antioxidant and anti-inflammatory activity. MATERIALS AND METHODS Google Scholar, MEDLINE, EMBASE, Scifinder, Scopus, and ScienceDirect were used to conduct a thorough literature search. RESULTS E. ribes is high in essential oils, alkaloids, flavonoids, steroids, and phenolics, all of which have medicinal benefits. The essential oils/extracts and isolated chemical constituents exhibited antioxidant activity, wound healing, antidiabetic, central nervous system (CNS)-related disease, antiviral, antiobesity, cardioprotective, antifungal, antibacterial, and antifertility activity, among other promising pharmacological effects. CONCLUSION The translation between traditional applications and modern medicine may make E. ribes a promising target for the implementation of innovative medication. To investigate the efficacy and safety profile of E. ribes, further high-quality preclinical studies using advanced methodologies are required.
Collapse
Affiliation(s)
- Vineet Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
15
|
Lopez MS, Morris-Blanco KC, Ly N, Maves C, Dempsey RJ, Vemuganti R. MicroRNA miR-21 Decreases Post-stroke Brain Damage in Rodents. Transl Stroke Res 2022; 13:483-493. [PMID: 34796453 PMCID: PMC11846127 DOI: 10.1007/s12975-021-00952-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Due to their role in controlling translation, microRNAs emerged as novel therapeutic targets to modulate post-stroke outcomes. We previously reported that miR-21 is the most abundantly induced microRNA in the brain of rodents subjected to preconditioning-induced cerebral ischemic tolerance. We currently show that intracerebral administration of miR-21 mimic decreased the infarct volume and promoted better motor function recovery in adult male and female C57BL/6 mice subjected to transient middle cerebral artery occlusion. The miR-21 mimic treatment is also efficacious in aged mice of both sexes subjected to focal ischemia. Mechanistically, miR-21 mimic treatment decreased the post-ischemic levels of several pro-apoptotic and pro-inflammatory RNAs, which might be responsible for the observed neuroprotection. We further observed post-ischemic neuroprotection in adult mice administered with miR-21 mimic intravenously. Overall, the results of this study implicate miR-21 as a promising candidate for therapeutic translation after stroke.
Collapse
Affiliation(s)
- Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
- Cell & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, 53792, USA
| | | | - Nancy Ly
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Carly Maves
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA.
- Cell & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
16
|
Arzhanov I, Sintakova K, Romanyuk N. The Role of miR-20 in Health and Disease of the Central Nervous System. Cells 2022; 11:cells11091525. [PMID: 35563833 PMCID: PMC9100679 DOI: 10.3390/cells11091525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022] Open
Abstract
Current understanding of the mechanisms underlying central nervous system (CNS) injury is limited, and traditional therapeutic methods lack a molecular approach either to prevent acute phase or secondary damage, or to support restorative mechanisms in the nervous tissue. microRNAs (miRNAs) are endogenous, non-coding RNA molecules that have recently been discovered as fundamental and post-transcriptional regulators of gene expression. The capacity of microRNAs to regulate the cell state and function through post-transcriptionally silencing hundreds of genes are being acknowledged as an important factor in the pathophysiology of both acute and chronic CNS injuries. In this study, we have summarized the knowledge concerning the pathophysiology of several neurological disorders, and the role of most canonical miRNAs in their development. We have focused on the miR-20, the miR-17~92 family to which miR-20 belongs, and their function in the normal development and disease of the CNS.
Collapse
Affiliation(s)
- Ivan Arzhanov
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (I.A.); (K.S.)
- Department of Neuroscience, 2nd Medical Faculty, Charles University, 150 00 Prague, Czech Republic
| | - Kristyna Sintakova
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (I.A.); (K.S.)
- Department of Neuroscience, 2nd Medical Faculty, Charles University, 150 00 Prague, Czech Republic
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (I.A.); (K.S.)
- Correspondence:
| |
Collapse
|
17
|
Bahatyrevich-Kharitonik B, Medina-Guzman R, Flores-Cortes A, García-Cruzado M, Kavanagh E, Burguillos MA. Cell Death Related Proteins Beyond Apoptosis in the CNS. Front Cell Dev Biol 2022; 9:825747. [PMID: 35096845 PMCID: PMC8794922 DOI: 10.3389/fcell.2021.825747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell death related (CDR) proteins are a diverse group of proteins whose original function was ascribed to apoptotic cell death signaling. Recently, descriptions of non-apoptotic functions for CDR proteins have increased. In this minireview, we comment on recent studies of CDR proteins outside the field of apoptosis in the CNS, encompassing areas such as the inflammasome and non-apoptotic cell death, cytoskeleton reorganization, synaptic plasticity, mitophagy, neurodegeneration and calcium signaling among others. Furthermore, we discuss the evolution of proteomic techniques used to predict caspase substrates that could potentially explain their non-apoptotic roles. Finally, we address new concepts in the field of non-apoptotic functions of CDR proteins that require further research such the effect of sexual dimorphism on non-apoptotic CDR protein function and the emergence of zymogen-specific caspase functions.
Collapse
Affiliation(s)
- Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Alicia Flores-Cortes
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Marta García-Cruzado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Edel Kavanagh
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Miguel Angel Burguillos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| |
Collapse
|
18
|
Abdel-Aziz SM, Rahman MSMA, Shoreit AH, Din MEE, Hamed EA, Gad EF. Outcome of Infants with Hypoxic-Ischemic Encephalopathy Treated by Whole Body Cooling and Magnesium Sulfate. JOURNAL OF CHILD SCIENCE 2021. [DOI: 10.1055/s-0041-1736562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTherapeutic hypothermia (TH) either by selective head cooling or whole-body cooling decreases brain damage and provide neuroprotection and reduced mortality rate in cases of moderate-to-severe hypoxia-ischemia encephalopathy (HIE) of newborns, especially if started at first 6 hours after birth. Also, management with adjuvant therapies like magnesium sulfate (MS) provides more neuroprotection. The interventional randomized controlled research aimed to assess short-term actions of TH as sole therapy and in combination with MS as a neuroprotective agent for the treatment of HIE newborn infants. A total of 36 full-terms and near-term infants delivered at Assiut University Children's Hospital and fulfilled HIE criteria were enrolled. They were divided equally into three groups; Group 1 (n = 12) received whole body cooling during first 6 hours of life as a sole therapy; Group 2 (n = 12) received whole body cooling in addition to MS as adjuvant therapy; Group 3 (n = 12) received supportive intensive care measures as a control. TH plus MS group (group 2) had a significantly good short-term outcomes as short period of respiratory support and mechanical ventilation (p-value =0.001), less in incidence of convulsion (p-value = 0.001) and early in feeding initiation (p-value = 0.009), compared with other groups managed by TH (group 1) or by supportive treatment (group 3). In conclusion, whole body cooling in addition to MS as adjunctive therapy for the treatment of HIE neonates is safe therapy that improves short-term outcome both clinically and radiologically.
Collapse
Affiliation(s)
- Safwat M. Abdel-Aziz
- Department of Pediatrics and Neonatology, Assiut University Children's Hospital, Assiut, Egypt
| | | | - Asmaa H. Shoreit
- Department of Pediatrics and Neonatology, Assiut University Children's Hospital, Assiut, Egypt
| | - Moustafa Ez El Din
- Department of Radiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Enas A. Hamed
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman Fathalla Gad
- Department of Pediatrics and Neonatology, Assiut University Children's Hospital, Assiut, Egypt
| |
Collapse
|
19
|
Du J, Ji Q, Dong L, Meng Y, Xin G. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs)-Derived MicroRNA-378a-3p (miR-378a-3p) Inhibits the Migration of Gestational Trophoblast Cells and Epithelial Mesenchymal Transition via Regulating X-Linked Inhibitor of Apoptosis Protein (XIAP) Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The components of the in vivo microenvironment are BMSCs and miRNAs that have a critical role in the development of pregnancy. Our aim was to further investigate the effect of the miRNAs of BMSC origin on pregnancy injury. Exosomal miR-378a-3p secreted by BMSCs was identified
by electron microscopy and miR-378a-3p expression was measured during gestational injury. Target scan detects the correlation of XIAP and miR-378a-3p which was confirmed by luciferase activity along with analysis of cell growth by MTT assay and cell invasion by Transwell and EMT expression.
Exosomal miR-378a-3p derived from BMSCs promoted proliferation and migration and invasion of trophoblast. miR-378a-3p targeted XIAP and its overexpression could significantly increase EMT switching. The miR-378a-3p/XIAP axis is critical in trophoblastic cell migration and EMT and is involved
in pregnancy injury progression, indicating that it might be a novel potential target for the treatment of pregnancy injury.
Collapse
Affiliation(s)
- Juan Du
- Department of Obstetrics, Women and Children’s Hospital of Jinan, Jinan, Shandong, 250001, China
| | - Qinghong Ji
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, 250031, China
| | - Lihua Dong
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, 250031, China
| | - Yanping Meng
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, 250031, China
| | - Gang Xin
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, 250031, China
| |
Collapse
|
20
|
Patrizz AN, Moruno-Manchon JF, O’Keefe LM, Doran SJ, Patel AR, Venna VR, Tsvetkov AS, Li J, McCullough LD. Sex-Specific Differences in Autophagic Responses to Experimental Ischemic Stroke. Cells 2021; 10:cells10071825. [PMID: 34359998 PMCID: PMC8304137 DOI: 10.3390/cells10071825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke triggers a series of complex pathophysiological processes including autophagy. Differential activation of autophagy occurs in neurons derived from males versus females after stressors such as nutrient deprivation. Whether autophagy displays sexual dimorphism after ischemic stroke is unknown. We used a cerebral ischemia mouse model (middle cerebral artery occlusion, MCAO) to evaluate the effects of inhibiting autophagy in ischemic brain pathology. We observed that inhibiting autophagy reduced infarct volume in males and ovariectomized females. However, autophagy inhibition enhanced infarct size in females and in ovariectomized females supplemented with estrogen compared to control mice. We also observed that males had increased levels of Beclin1 and LC3 and decreased levels of pULK1 and p62 at 24 h, while females had decreased levels of Beclin1 and increased levels of ATG7. Furthermore, the levels of autophagy markers were increased under basal conditions and after oxygen and glucose deprivation in male neurons compared with female neurons in vitro. E2 supplementation significantly inhibited autophagy only in male neurons, and was beneficial for cell survival only in female neurons. This study shows that autophagy in the ischemic brain differs between the sexes, and that autophagy regulators have different effects in a sex-dependent manner in neurons.
Collapse
Affiliation(s)
- Anthony N. Patrizz
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
| | - Jose F. Moruno-Manchon
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
| | - Lena M. O’Keefe
- Department of Neurology, Beth Israel Deaconess Hospital, 330 Brookline Avenue, Boston, MA 02215, USA;
| | - Sarah J. Doran
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA; (S.J.D.); (A.R.P.)
| | - Anita R. Patel
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA; (S.J.D.); (A.R.P.)
| | - Venugopal R. Venna
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
| | - Andrey S. Tsvetkov
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
| | - Jun Li
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; (A.N.P.); (J.F.M.-M.); (V.R.V.); (A.S.T.); (J.L.)
- Correspondence:
| |
Collapse
|
21
|
Bennett C, Green J, Ciancio M, Goral J, Pitstick L, Pytynia M, Meyer A, Kwatra N, Jadavji NM. Dietary folic acid deficiency impacts hippocampal morphology and cortical acetylcholine metabolism in adult male and female mice. Nutr Neurosci 2021; 25:2057-2065. [PMID: 34042561 DOI: 10.1080/1028415x.2021.1932242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE One-carbon (1C) metabolism is a metabolic network that integrates nutritional signals with biosynthesis, redox homeostasis, and epigenetics. There are sex differences in hepatic 1C metabolism, however, it is unclear whether sex differences in 1C impact the brain. The aim of this study was to investigate if sex modulates the effects of dietary folic acid deficiency, the main component of 1C, in brain tissue using a mouse model. METHODS Male and female C57Bl/6J mice were placed on a folic acid deficient (FD) or control diet (CD) at six weeks until six months of aged. After which brain tissue and serum were collected for analysis. In brain tissue, hippocampal volume, morphology, and apoptosis as well as cortical acetylcholine metabolism were measured. RESULTS Male and female FD mice had reduced serum levels of folate. Both males and females maintained on a FD showed a decrease in the thickness of the hippocampal CA1-CA3 region. Interestingly, there was a sex difference in the levels of active caspase-3 within the CA3 region of the hippocampus. In cortical tissue, there were increased levels of neuronal ChAT and reduced levels of AChE in FD females and male mice. CONCLUSIONS The results indicated that FD impacts hippocampal morphology and cortical neuronal acetylcholine metabolism. The data from our study indicate that there was only one sex difference and that was in hippocampal apoptosis. Our study provides little evidence that sex modulates the effects of dietary folate deficiency on hippocampal morphology and cortical neuronal acetylcholine metabolism.
Collapse
Affiliation(s)
- Calli Bennett
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA.,College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Jacalyn Green
- Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Mae Ciancio
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Joanna Goral
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Lenore Pitstick
- Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Matthew Pytynia
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Alice Meyer
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Neha Kwatra
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA.,College of Dental Medicine, Midwestern University, Glendale, AZ, USA
| | - Nafisa M Jadavji
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA.,College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA.,Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|
22
|
Wang X, Guo Y, Wang C, Wang Q, Yan G. Long Noncoding RNA ZEB1-AS1 Downregulates miR-23a, Promotes Tumor Progression, and Predicts the Survival of Oral Squamous Cell Carcinoma Patients. Onco Targets Ther 2021; 14:2699-2710. [PMID: 33888994 PMCID: PMC8057792 DOI: 10.2147/ott.s297209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are implicated in cancer-related biological processes such as cell proliferation, cell cycle progression, cell migration, cell invasion, and chemoresistance. However, the effects of the lncRNA ZEB1-AS1 on oral squamous cell carcinoma (OSCC) have not been adequately demonstrated. The aims of our current study were to explore the roles of lncRNA ZEB1-AS1 in OSCC progression to reveal the potential mechanism. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure relative ZEB1-AS1 expression levels in OSCC tissues and adjacent non-cancerous tissues. The biological functions of ZEB1-AS1 in OSCC growth and progression were identified by cell proliferation, wound healing, and in vitro transwell assays as well as in vivo xenograft model. The underlying mechanism was detected with a dual-luciferase reporter (DLR) assay. Results The up-regulation of ZEB1-AS1 and downregulation of miR-23a-3p (miR-23a) were found in OSCC cancer tissues. A ZEB1-AS1 knockdown remarkably suppressed in vitro cancerous, biological processes of OSCC cell lines such as cell proliferation, invasion, migration, and epithelial–mesenchymal transition (EMT). The tumor growth was also inhibited by silencing ZEB1-AS1 in vivo, and a DLR assay confirmed the association between ZEB1-AS1 and miR-23a. Conclusion The newly identified lncRNA ZEB1-AS1 functions as a tumor promoter in OSCC through regulation of miR-23a. Based on these results, ZEB1-AS1 could be a valid molecular target for treating oral cancer.
Collapse
Affiliation(s)
- Xue Wang
- Department of Orthodontics, School of Stomatology, China Medical University, Shengyang, Liaoning, 110002, People's Republic of China
| | - Yan Guo
- Department of Central Laboratory, School of Stomatology, China Medical University, Shengyang, Liaoning, 110002, People's Republic of China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, and Key Laboratory of Medical Cell Biology, School of Life Sciences, China Medical University, Shengyang, Liaoning, 110002, People's Republic of China
| | - Qiang Wang
- Department of Central Laboratory, School of Stomatology, China Medical University, Shengyang, Liaoning, 110002, People's Republic of China
| | - Guangqi Yan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shengyang, Liaoning, 110002, People's Republic of China
| |
Collapse
|
23
|
Tsamou M, Vrijens K, Wang C, Winckelmans E, Neven KY, Madhloum N, de Kok TM, Nawrot TS. Genome-wide microRNA expression analysis in human placenta reveals sex-specific patterns: an ENVIR ONAGE birth cohort study. Epigenetics 2021; 16:373-388. [PMID: 32892695 PMCID: PMC7993149 DOI: 10.1080/15592294.2020.1803467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 07/03/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
There is an increasing interest in microRNAs (miRNAs) as they are of utmost importance in gene regulation at the posttranscriptional level. Sex-related susceptibility for non-communicable diseases later in life could originate in early life. Until now, no data on sex-specific miRNA expression are available for the placenta. Therefore, we investigated the difference by sex of newborn's miRNA expression in human placental tissue. Within the ENVIRONAGE birth cohort, miRNA and mRNA expression profiling was performed in 60 placentae (50% boys) using Agilent (8 × 60 K) microarrays. The distribution of chromosome locations was studied and pathway analysis of the identified sex-specific miRNAs in the placenta was carried out. Of the total 2558 miRNAs on the array, 597 miRNAs were expressed in over 70% of the samples and were included for further analyses. A total of 142 miRNAs were significantly (FDR<0.05) associated with the newborn's sex. In newborn girls, 76 miRNAs had higher expression (hsa-miR-361-5p as most significant) and 66 miRNAs had lower expression (hsa-miR-4646-5p as most significant) than in newborn boys. In the same study population, placental differentially expressed genes by sex were also identified using a whole genome approach. The placental gene expression revealed 27 differentially expressed genes by comparing girls to boys. Ultimately, we studied the miRNA-RNA interactome and identified 14 miRNA-mRNA interactions as sex-specific. Sex differences in placental m(i)RNA expression may reveal sex-specific patterns already present during pregnancy, which may influence physiological conditions in early or later life. These molecular processes might play a role in sex-specific disease susceptibility in later life.
Collapse
Affiliation(s)
- Maria Tsamou
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karen Vrijens
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Congrong Wang
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ellen Winckelmans
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Kristof Y. Neven
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Narjes Madhloum
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW Institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Tim S. Nawrot
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health, Environment & Health Unit, Leuven University (KU Leuven), Leuven, Belgium
| |
Collapse
|
24
|
Chavda V, Madhwani K. Coding and non-coding nucleotides': The future of stroke gene therapeutics. Genomics 2021; 113:1291-1307. [PMID: 33677059 DOI: 10.1016/j.ygeno.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 01/05/2023]
Abstract
Stroke is the foremost cause of death ranked after heart disease and cancer. It is the fatal life-threatening event that requires immediate medical admissions to overcome following morbidity and mortality. The therapeutic advances in stroke therapy have been manipulated with diverse paths for last 5 years. Recent research and clinical trials have investigated a variety of anti-stroke agents including anti-coagulants, cerebro-protective agents, antiplatelet therapy, stem-cell therapy, and specified gene therapy. In recent advanced studies, genetic therapies including noncoding RNAs (ncRNAs), long non-coding RNAs (LncRNAs), small interfering RNAs (siRNAs), microRNAs (miRNAs), Piwi interacting RNAs (PiWi RNAs) have shown better potential as targeted future therapeutics with a better outcome than conventional stroke therapeutics. The potential of targeted gene therapy is much more advanced in not only the induction of neuroprotection but also safer non-toxic targeted therapeutics. In the current state of the art review, we have focused on the recent advancements made towards the stroke with RNA modifications and targeted gene therapeutics.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, India.
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| |
Collapse
|
25
|
Torres K, Landeros N, Wichmann IA, Polakovicova I, Aguayo F, Corvalan AH. EBV miR-BARTs and human lncRNAs: Shifting the balance in competing endogenous RNA networks in EBV-associated gastric cancer. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166049. [PMID: 33401001 DOI: 10.1016/j.bbadis.2020.166049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) contribute to the regulation of gene expression. By acting as competing endogenous RNA (ceRNA), long non-coding RNAs (lncRNAs) hijack microRNAs (miRNAs) and inhibit their ability to bind their coding targets. Viral miRNAs can compete with and target the same transcripts as human miRNAs, shifting the balance in networks associated with multiple cellular processes and diseases. Epstein-Barr virus (EBV) is an example of how a subset of viral coding RNA and non-coding RNAs can cause deregulation of human transcripts and contribute to the development of EBV-associated malignancies. EBV non-coding transforming genes include lncRNAs (i.e circular RNAs), and small ncRNAs (i.e. miRNAs). Among the latter, most ongoing research has focused on miR-BARTs whereas target many genes associated with apoptosis and epithelial-mesenchymal transition, in EBV-associated gastric cancer (GC). In this review, we propose to include the interactions between EBV ncRNAs human transcripts in the hypothesis known as "competitive viral and host RNAs". These interactions may shift the balance in biological pathways such as apoptosis and epithelial-mesenchymal transition in EBV-associated gastric cancer.
Collapse
Affiliation(s)
- Keila Torres
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aguayo
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile; Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Xie P, Peng Z, Chen Y, Li H, Du M, Tan Y, Zhang X, Lu Z, Cui CP, Liu CH, He F, Zhang L. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res 2020; 31:291-311. [PMID: 33299139 DOI: 10.1038/s41422-020-00443-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
PTEN tumor suppressor opposes the PI3K/Akt signaling pathway in the cytoplasm and maintains chromosomal integrity in the nucleus. Nucleus-cytoplasm shuttling of PTEN is regulated by ubiquitylation, SUMOylation and phosphorylation, and nuclear PTEN has been proposed to exhibit tumor-suppressive functions. Here we show that PTEN is conjugated by Nedd8 under high glucose conditions, which induces PTEN nuclear import without effects on PTEN stability. PTEN neddylation is promoted by the XIAP ligase and removed by the NEDP1 deneddylase. We identify Lys197 and Lys402 as major neddylation sites on PTEN. Neddylated PTEN accumulates predominantly in the nucleus and promotes rather than suppresses cell proliferation and metabolism. The nuclear neddylated PTEN dephosphorylates the fatty acid synthase (FASN) protein, inhibits the TRIM21-mediated ubiquitylation and degradation of FASN, and then promotes de novo fatty acid synthesis. In human breast cancer tissues, neddylated PTEN correlates with tumor progression and poor prognosis. Therefore, we demonstrate a previously unidentified pool of nuclear PTEN in the Nedd8-conjugated form and an unexpected tumor-promoting role of neddylated PTEN.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China.
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Yujiao Chen
- Department of Cell Biology, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Hongchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Mengge Du
- Department of Cell Biology, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Yawen Tan
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong, 518035, China
| | - Xin Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology (Chinese Academy of Sciences), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology (Chinese Academy of Sciences), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.
| |
Collapse
|
27
|
Deng W, Fan C, Zhao Y, Mao Y, Li J, Zhang Y, Teng J. MicroRNA-130a regulates neurological deficit and angiogenesis in rats with ischaemic stroke by targeting XIAP. J Cell Mol Med 2020; 24:10987-11000. [PMID: 32790238 PMCID: PMC7521252 DOI: 10.1111/jcmm.15732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023] Open
Abstract
MicroRNAs (miRNAs) have already been proposed to be implicated in the development of ischaemic stroke. We aim to investigate the role of miR-130a in the neurological deficit and angiogenesis in rats with ischaemic stroke by regulating X-linked inhibitor of apoptosis protein (XIAP). Middle cerebral artery occlusion (MCAO) models were established by suture-occluded method, and MCAO rats were then treated with miR-130a mimics/inhibitors or/and altered XIAP for detection of changes of rats' neurological function, nerve damage and angiogenesis in MCAO rats. The oxygen-glucose deprivation (OGD) cellular models were established and respectively treated to determine the roles of miR-130a and XIAP in neuronal viability and apoptosis. The expression levels of miR-130a and XIAP in brain tissues of MCAO rats and OGD-treated neurons were detected. The binding site between miR-130a and XIAP was verified by luciferase activity assay. MiR-130a was overexpressed while XIAP was down-regulated in MCAO rats and OGD-treated neurons. In animal models, suppressed miR-130a improved neurological function, alleviated nerve damage and increased new vessels in brain tissues of rats with MCAO. In cellular models, miR-130a inhibition promoted neuronal viability and suppressed apoptosis. Inhibited XIAP reversed the effect of inhibited miR-130a in both MCAO rats and OGD-treated neurons. XIAP was identified as a target of miR-130a. Our study reveals that miR-130a regulates neurological deficit and angiogenesis in rats with MCAO by targeting XIAP.
Collapse
Affiliation(s)
- Wenjing Deng
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Chenghe Fan
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Yanan Zhao
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Yuewei Mao
- The Vascular Surgery Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, China
| | - Jiajia Li
- The Neurology Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, China
| | - Yonggan Zhang
- The Vascular Surgery Department, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Junfang Teng
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| |
Collapse
|
28
|
Sehovic E, Spahic L, Smajlovic-Skenderagic L, Pistoljevic N, Dzanko E, Hajdarpasic A. Identification of developmental disorders including autism spectrum disorder using salivary miRNAs in children from Bosnia and Herzegovina. PLoS One 2020; 15:e0232351. [PMID: 32353026 PMCID: PMC7192422 DOI: 10.1371/journal.pone.0232351] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by major social, communication and behavioural challenges. The cause of ASD is still unclear and it is assumed that environmental, genetic and epigenetic factors influence the risk of ASD occurrence. MicroRNAs (miRNAs) are short 21-25 nucleotide long RNA molecules which post-transcriptionally regulate gene expression. MiRNAs play an important role in central nervous system development; therefore, dysregulation of miRNAs is connected to changes in behaviour and cognition observed in many disorders including ASD. Based on previously published work, on diagnosing ASD using miRNAs, we hypothesized that miRNAs can be used as biomarkers in children with suspected developmental disorders (DD) including ASD within Bosnian-Herzegovinian (B&H) population. 14 selected miRNAs were tested on saliva of children with suspected developmental disorders including ASD. The method of choice was qRT-PCR as a relatively cheap method available in most diagnostic laboratories in low to mid-income countries (LMIC). Out of 14 analysed miRNAs, 6 were differentially expressed between typically developing children and children with some type of developmental disorder including autism spectrum disorder. Using the most optimal logistic regression, we were able to distinguish between ASD and typically developing (TD) children. We have found 5 miRNAs as potential biomarkers. From those, 3 were differentially expressed within the ASD cohort. All 5 miRNAs had shown good chi-square statistics within the logistic regression performed on all 14 analysed miRNAs. The accuracy of 5-miRNAs model training set was 90.2%, while the validation set had a 90% accuracy. This study has shown that miRNAs may be considered as biomarkers for ASD detection and may be used to identify children with ASD along with standard developmental screening tests. By combining these methods we may be able to reach a reliable and accessible diagnostic model for children with ASD in LMIC such as B&H.
Collapse
Affiliation(s)
- Emir Sehovic
- Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Lemana Spahic
- Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | | | | | - Eldin Dzanko
- Education for All (EDUS), Sarajevo, Bosnia and Herzegovina
| | - Aida Hajdarpasic
- Department of Medical Biology, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
- * E-mail:
| |
Collapse
|
29
|
Jia C, Malone HM, Keasey MP, Lovins C, Elam J, Hagg T. Blood Vitronectin Induces Detrimental Brain Interleukin-6 and Correlates With Outcomes After Stroke Only in Female Mice. Stroke 2020; 51:1587-1595. [PMID: 32312218 DOI: 10.1161/strokeaha.120.029036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background and Purpose- Women have worse stroke outcomes than men, especially after menopause. Few studies have focused on female-specific mechanisms, other than hormones. We investigated the role of the blood protein VTN (vitronectin) after ischemic stroke in mice. Methods- Adult male and female VTN knockout and wild-type littermates and C57BL/6 mice received a middle cerebral artery occlusion and the injured brain tissue analyzed 24 hours to 3 weeks later for cell loss and inflammation, as well as neurological function. Blood VTN levels were measured before and after stroke. Results- Intravenously injected VTN leaked extensively from bloodstream into brain infarct and penumbra by 24 hours after stroke. Strikingly, VTN was detrimental in female, but not male, mice, as shown by reduced brain injury (26.2±2.6% versus 13.4±3.8%; P=0.018; n=6 and 5) and forelimb dysfunction in female VTN knockout mice. Stroke increased plasma VTN 2- to 8-fold at 24 hours in females (36±4 versus 145±24 μg/mL; P<0.0001; n=10 and 7), but not males (62±8 versus 68±6; P>0.99; n=10 and 7), and returned to control levels by 7 days. Individually variable VTN levels at 24 hours correlated with stroke-induced brain injury at 7 days only in females. VTN promoted stroke-induced microglia/macrophage activation and leukocyte infiltration in females. Proinflammatory IL (interleukin)-6 greatly increased in the striatum at 24 hours in wild-type mice but was increased ≈60% less in female (739±159 versus 268±111; P=0.02; n=7 and 6), but not male (889±178 versus 1179±295; P=0.73; n=10 and 11), knockout mice. In individual wild-type females, plasma VTN levels correlated with striatal IL-6 expression at 24 hours. The female-specific effect of VTN-induced IL-6 expression following stroke was not due to gonadal hormones, as shown by ovariectomy and castration. Lastly, intrastriatal injection of IL-6 in female mice immediately before stroke reversed the VTN knockout phenotypes of reduced brain injury and microglia/macrophage activation. Conclusions- VTN plays a novel sexually dimorphic detrimental pathophysiological role in females and might ultimately be a therapeutic target to improve stroke outcomes in women.
Collapse
Affiliation(s)
- Cuihong Jia
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| | - Hannah M Malone
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| | - Matthew P Keasey
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| | - Chiharu Lovins
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| | - Jacob Elam
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| | - Theo Hagg
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| |
Collapse
|
30
|
Tower J, Pomatto LCD, Davies KJA. Sex differences in the response to oxidative and proteolytic stress. Redox Biol 2020; 31:101488. [PMID: 32201219 PMCID: PMC7212483 DOI: 10.1016/j.redox.2020.101488] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022] Open
Abstract
Sex differences in diseases involving oxidative and proteolytic stress are common, including greater ischemic heart disease, Parkinson disease and stroke in men, and greater Alzheimer disease in women. Sex differences are also observed in stress response of cells and tissues, where female cells are generally more resistant to heat and oxidative stress-induced cell death. Studies implicate beneficial effects of estrogen, as well as cell-autonomous effects including superior mitochondrial function and increased expression of stress response genes in female cells relative to male cells. The p53 and forkhead box (FOX)-family genes, heat shock proteins (HSPs), and the apoptosis and autophagy pathways appear particularly important in mediating sex differences in stress response.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA.
| | - Laura C D Pomatto
- National Institute on General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelvin J A Davies
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, USA
| |
Collapse
|
31
|
Gao S, Gu T, Shi E, Tang R, Liu J, Shi J. Inhibition of long noncoding RNA growth arrest–specific 5 attenuates cerebral injury induced by deep hypothermic circulatory arrest in rats. J Thorac Cardiovasc Surg 2020; 159:50-59. [PMID: 30824348 DOI: 10.1016/j.jtcvs.2019.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/29/2023]
Abstract
OBJECTIVE We sought to investigate cerebroprotection by targeting long noncoding RNA growth arrest-specific 5 in a rat model of prolonged deep hypothermic circulatory arrest. METHODS Deep hypothermic circulatory arrest was conducted for 60 minutes when the pericranial temperature was cooled to 18°C in rats. Dual luciferase assay was used to detect the binding relationship between growth arrest-specific 5 and putative target microRNAs. Adeno-associated viral vectors containing growth arrest-specific 5 small interfering RNA or negative control small interfering RNA were administered by intracerebroventricular injection 14 days before deep hypothermic circulatory arrest. Expressions of growth arrest-specific 5, microRNA-23a, phosphate and tension homology, Bcl-2-associated X protein, Bcl-2, phospho-protein kinase B, protein kinase B, and cleaved caspase-3 in the hippocampus were measured by quantitative reverse transcription polymerase chain reaction and Western blot. Spatial learning and memory functions were evaluated by the Morris water maze test. The hippocampus was harvested for histologic examinations and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining. RESULTS Luciferase assay showed that growth arrest-specific 5 targeted and inhibited microRNA-23a expression. After deep hypothermic circulatory arrest, hippocampal growth arrest-specific 5 expression was significantly enhanced with a robust decrease of hippocampal microRNA-23a expression. Small interfering RNA growth arrest-specific 5 significantly inhibited growth arrest-specific 5 expression and enhanced microRNA-23a expression in the hippocampus, accompanied with decreases of phosphate and tension homology and Bcl-2-associated X protein expression, and increases of Bcl-2 expression and phospho-protein kinase B/protein kinase B ratio. Growth arrest-specific 5 knockdown inhibited neuronal apoptosis, attenuated histologic damages, and increased the number of surviving neurons in the hippocampus. Spatial learning and memory functions after deep hypothermic circulatory arrest were also markedly improved by growth arrest-specific 5 inhibition. CONCLUSIONS Inhibition of large noncoding RNA growth arrest-specific 5 can provide a powerful cerebroprotection against deep hypothermic circulatory arrest, which may be mediated through microRNA-23a/phosphate and tension homology pathway.
Collapse
|
32
|
Distinct, sex-dependent miRNA signatures in piglet hippocampus induced by a clinically relevant isoflurane exposure: a pilot study. J Anesth 2019; 33:670-679. [PMID: 31612349 DOI: 10.1007/s00540-019-02695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To evaluate the effects of sex on miRNA expression in the hippocampus after isoflurane anesthesia in a neonatal piglet model. METHODS Six male and 6 female piglets, aged 3-5 days, were anesthetized with 2% isoflurane in room air for 3 h. Full physiologic monitoring was observed. Untreated animals (6 male, 6 female) served as controls. Expression of miRNAs in hippocampus was assessed. RESULTS In controls, miRNA expression in the hippocampus was highly conserved between males and females. However, 17/326 displayed sex-dependent differences: 10 miRNAs were more highly expressed in males; 7 showed lower expression in males than females. Isoflurane was associated with changes in the expression of distinct subsets of miRNAs in both males and females. In females, 14/326 miRNAs were significantly changed (3 downregulated; 11 upregulated); in males, 17/326 miRNAs were changed (7 downregulated; 10 upregulated). There was no overlap in significantly changed miRNAs between isoflurane-exposed males and females. CONCLUSIONS In the neonatal piglet hippocampus, miRNA expression was highly conserved. There was no overlap in miRNA expression between isoflurane-exposed males and females, suggesting sex differences in isoflurane-induced miRNA expression. These results support the hypothesis that a clinically relevant exposure to isoflurane induces distinct miRNA signatures in the hippocampus of neonatal male and female piglets. Their functional relevance in anesthesia-induced neurotoxicity remains unknown, although changes in specific miRNAs may either contribute to or protect against anesthesia-induced neurotoxicity.
Collapse
|
33
|
Kim T, Chelluboina B, Chokkalla AK, Vemuganti R. Age and sex differences in the pathophysiology of acute CNS injury. Neurochem Int 2019; 127:22-28. [PMID: 30654116 PMCID: PMC6579702 DOI: 10.1016/j.neuint.2019.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
Despite the immeasurable burden on patients and families, no effective therapies to protect the CNS after an acute injury are available yet. Furthermore, the underlying mechanisms that promote neuronal death and functional deficits after injury remain to be poorly understood. The prevalence, age of onset, pathophysiology, and symptomatology of many CNS insults differ significantly between males and females. In the case of stroke, younger males tend to show a higher risk than younger females, while this trend reverses with age. Accumulating evidence from preclinical studies have shown that sex hormones play a crucial role in providing neuroprotection following ischemic stroke and other acute CNS injuries. Estrogen, in particular, exerts a neuroprotective effect by modulating the immune responses after injury. In addition, there exists a sexual dimorphism in cell death pathways between males and females that are independent of hormones. Meanwhile, recent studies suggest that microRNAs are critically involved in the sex-specific mechanisms of cell death. This review discusses the current knowledge on the contribution of sex and age to outcome after stroke. Implication of the interplay between these two factors on other CNS injuries (spinal cord injury and traumatic brain injury) from the experimental evidence were also discussed.
Collapse
Affiliation(s)
- TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Program, University of Wisconsin, Madison, WI, USA; William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
| |
Collapse
|
34
|
Nuthakki VK, Sharma A, Kumar A, Bharate SB. Identification of embelin, a 3-undecyl-1,4-benzoquinone from Embelia ribes as a multitargeted anti-Alzheimer agent. Drug Dev Res 2019; 80:655-665. [PMID: 31050027 DOI: 10.1002/ddr.21544] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
Beta-secreatse (BACE-1) and cholinesterases are clinically validated targets of Alzheimer's disease (AD), for which natural products have provided immense contribution. The multifaceted nature of AD signifies the need of multitargeted agents to tackle this disease. In the search of new natural products as dual BACE-1/cholinesterase inhibitors, a library of pure natural products was screened for inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE-1. The screening efforts have identified 1,4-benzoquinone "embelin," a natural product derived from Embelia ribes displaying inhibition of all three enzymes, with IC50 values of 2.5, 5.4, and 2.1 μM, respectively. This screen has also identified isoquinoline alkaloids papaverine and L-tetrahydropalmatine as AChE inhibitors. Kinetic study has shown that embelin inhibits EeAChE and EqBChE with ki values of 4.59 and 0.57 μM, in an uncompetitive and noncompetitive manner, respectively. The interactions of embelin with allosteric peripheral anionic site of cholinesterases, has further supported the results of kinetic study. Embelin has also enhanced the activity of P-gp in LS-180 cells, the efflux pump which is involved in the clearance of amyloid-β from AD brain. Further, the cell viability study in neuronal cell line has indicated the excellent therapeutic window of embelin. These results are indicative of the fact that embelin is a multitargeted agent playing role in stopping the formation of amyloid-β oligomers (via inhibition of BACE-1), improves cholinergic-transmission (via inhibition of AChE/BChE) and increases amyloid-β clearance (via P-gp induction).
Collapse
Affiliation(s)
- Vijay K Nuthakki
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ankita Sharma
- PK-PD Toxicology & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ajay Kumar
- PK-PD Toxicology & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
35
|
Forouzanfar F, Shojapour M, Asgharzade S, Amini E. Causes and Consequences of MicroRNA Dysregulation Following Cerebral Ischemia-Reperfusion Injury. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:212-221. [DOI: 10.2174/1871527318666190204104629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/31/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
Abstract
Stroke continues to be a major cause of death and disability worldwide. In this respect, the
most important mechanisms underlying stroke pathophysiology are inflammatory pathways, oxidative
stress, as well as apoptosis. Accordingly, miRNAs are considered as non-coding endogenous RNA
molecules interacting with their target mRNAs to inhibit mRNA translation or reduce its transcription.
Studies in this domain have similarly shown that miRNAs are strongly associated with coronary artery
disease and correspondingly contributed to the brain ischemia molecular processes. To retrieve articles
related to the study subject, i.e. the role of miRNAs involved in inflammatory pathways, oxidative
stress, and apoptosis in stroke from the databases of Web of Science, PubMed (NLM), Open Access
Journals, LISTA (EBSCO), and Google Scholar; keywords including cerebral ischemia, microRNA
(miRNA), inflammatory pathway, oxidative stress, along with apoptosis were used. It was consequently
inferred that, miRNAs could be employed as potential biomarkers for diagnosis and prognosis, as
well as therapeutic goals of cerebral ischemia.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mana Shojapour
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Amini
- UKM Medical Centre [HUKM], Department of Medicine, Faculty of Medicine, Malaysia
| |
Collapse
|
36
|
Sarkar SN, Russell AE, Engler-Chiurazzi EB, Porter KN, Simpkins JW. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma. Aging Dis 2019; 10:329-352. [PMID: 31011481 PMCID: PMC6457055 DOI: 10.14336/ad.2018.0409] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex and integrated gradual deterioration of cellular activities in specific organs of the body, which is associated with increased mortality. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, neurovascular disorders, and neurodegenerative diseases. There are nine tentative hallmarks of aging. In addition, several of these hallmarks are increasingly being associated with acute brain injury conditions. In this review, we consider the genes and their functional pathways involved in brain aging as a means of developing new strategies for therapies targeted to the neuropathological processes themselves, but also as targets for many age-related brain diseases. A single microRNA (miR), which is a short, non-coding RNA species, has the potential for targeting many genes simultaneously and, like practically all other cellular processes, genes associated with many features of brain aging and injury are regulated by miRs. We highlight how certain miRs can mediate deregulation of genes involved in neuroinflammation, acute neuronal injury and chronic neurodegenerative diseases. Finally, we review the recent progress in the development of effective strategies to block specific miR functions and discuss future approaches with the prediction that anti-miR drugs may soon be used in the clinic.
Collapse
Affiliation(s)
- Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Keyana N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
37
|
Du E, Cao Y, Feng C, Lu J, Yang H, Zhang Y. The Possible Involvement of miR-371a-5p Regulating XIAP in the Pathogenesis of Recurrent Pregnancy Loss. Reprod Sci 2019; 26:1468-1475. [PMID: 30819044 DOI: 10.1177/1933719119828051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Apoptosis is an interactive and dynamic biological process involved in all phases of embryogenesis. If apoptosis dominates the trophoblast cell growth process, it will result in adverse pregnancy outcomes. X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor and an important barrier to apoptotic cell death. MicroRNAs involve in posttranscriptional gene expression regulation and apoptosis. Online sequence alignment analysis showed that there was a putative binding site of miR-371a-5p on the 3'-untranslated region (UTR) of XIAP. Thirty chorionic villi samples were collected to examine the expression of miR-371a-5p and XIAP. The dual-luciferase reporter assay was applied to determine the relationship between miR-371a-5p and XIAP by human placental choriocarcinoma cells (JEG-3) cells in vitro. After 48-hour transfection of mimics and inhibitor by JEG-3 cells in vitro, Western blotting was used to, respectively, detect the protein expression levels of XIAP and caspase-3. Flow cytometry was used to validate the apoptosis ratio of transfection. The expression of miR-371a-5p and XIAP in recurrent pregnancy loss was greatly decreased. The results from the luciferase reporter assay strongly suggested binding of the XIAP 3'-UTR by miR-371a-5p. Apoptosis percentage of miR-371a-5p mimic was significantly greater than that of normal control. However, apoptosis percentage of miR-371a-5p inhibitor was significantly lower than that of normal control. A significant decrease in luciferase activity was observed in miR-371a-5p mimics-transfected JEG-3 cells compared with controls. These findings provide the evidence that miR-371a-5p is one of the regulating factors according to apoptosis pathway of XIAP-caspase-3 and may be involved in the pathogenesis of recurrent pregnancy loss.
Collapse
Affiliation(s)
- Erqiu Du
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China.,Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yuming Cao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Chun Feng
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Jing Lu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Hanxiao Yang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Rosenkrantz TS, Hussain Z, Fitch RH. Sex Differences in Brain Injury and Repair in Newborn Infants: Clinical Evidence and Biological Mechanisms. Front Pediatr 2019; 7:211. [PMID: 31294000 PMCID: PMC6606734 DOI: 10.3389/fped.2019.00211] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
Differences in the development of the male and female brain are an evolving area of investigation. We are beginning to understand the underpinnings of male and female advantages due to differences in brain development as well as the consequences following hypoxic-ischemic brain injury in the newborn. The two main factors that appear to affect outcomes are gestation age at the time of injury and sex of the subject. This review starts with a summary of differences in the anatomy and physiology of the developing male and female brain. This is followed by a review of the major factors responsible for the observed differences in the face of normal development and hypoxic injury. The last section reviews the response of male and female subjects to various neuroprotective strategies that are currently being used and where there is a need for additional information for more precise therapy based on the sex of the infant.
Collapse
Affiliation(s)
- Ted S Rosenkrantz
- Division of Neonatology, Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Zeenat Hussain
- Department of Volunteer Services, UCONN Health, Farmington, CT, United States.,Department of Anthropology, New York University, New York, NY, United States
| | - Roslyn Holly Fitch
- Department of Psychology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
39
|
Chen F, Qi S, Zhang X, Wu J, Yang X, Wang R. miR-23a-3p suppresses cell proliferation in oral squamous cell carcinomas by targeting FGF2 and correlates with a better prognosis: miR-23a-3p inhibits OSCC growth by targeting FGF2. Pathol Res Pract 2018; 215:660-667. [PMID: 30606659 DOI: 10.1016/j.prp.2018.12.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/06/2018] [Accepted: 12/24/2018] [Indexed: 01/07/2023]
Abstract
Oral squamous cell carcinomas (OSCCs) are one of the most ubiquitous malignancies the world over, and are accompanied by a high mortality. microRNAs (miRNAs) have increasingly garnered attention with regards to the roles they play in initiation and progression of various kinds of cancers, including OSCC. It has been reported, that miR-23a-3p promotes the development of tumors for prostate cancer, gastric cancer and gliomas. The functions of miR-23a-3p in OSCC however, remain unclear. In this study, fibroblast growth factor 2 (FGF2) is revealed as a direct target of miR-23a-3p, based on luciferase assays and immunoblotting. The expression of miR-23a-3p and FGF2 were found to be significantly downregulated and upregulated in OSCC tissues respectively. This indicates a reverse correlation between miR-23a-3p and FGF2 levels. Using in vitro approaches we ascertained that miR-23a-3p might contribute to the inhibition of growth and inhibition through increasing apoptosis in OSCC cells; while an inhibitor of miR-23a-3p could reverse this effect. Examination of a clinical cohort of OSCC patients suggested that reduced expression of miR-23a-3p is correlated with more advanced cancerous stage and poorer differentiation of OSCC cell. Additionally, a survival analysis and the Cox-hazard regression model showed that higher levels of miR-23a-3p can be used reliably for prognosis of OSCC patients. This study indicates that miR-23a-3p might suppress tumor proliferation, invasion and promote apoptosis of OSCC by targeting FGF2. miR-23a-3p has the potential to be used as prognostic indicator, and could be exploited as a therapeutic reagent for OSCC in the future.
Collapse
Affiliation(s)
- Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xu Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinjin Wu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xi Yang
- Department of Oral & MaxillofacialeHead & Neck Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, China.
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
40
|
Bushnell CD, Chaturvedi S, Gage KR, Herson PS, Hurn PD, Jiménez MC, Kittner SJ, Madsen TE, McCullough LD, McDermott M, Reeves MJ, Rundek T. Sex differences in stroke: Challenges and opportunities. J Cereb Blood Flow Metab 2018; 38:2179-2191. [PMID: 30114967 PMCID: PMC6282222 DOI: 10.1177/0271678x18793324] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/25/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Biologic sex influences many variables that are important to brain health in general, and to stroke or cerebral ischemia in particular, such as general health status, cerebrovascular anatomy and function, unique risk factors such as pregnancy and preeclampsia, symptomatology, and therapeutic response. A more complete understanding of the scale and depth of sexual dimorphism in the brain and the role of more general sex-based factors is crucial to reducing the burden of stroke in women and men. This focused review highlights recent findings in stroke, including sex differences in epidemiology, risk factor reduction, comparative use of stroke therapeutics in both sexes, the importance of frailty in women, and the biologic basis for sex differences in stroke. Such findings show tremendous promise for the future of personalized medicine in stroke prevention and treatment.
Collapse
Affiliation(s)
| | - Seemant Chaturvedi
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kathy R Gage
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado, Denver, CO, USA
| | - Patricia D Hurn
- School of Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Monik C Jiménez
- Division of Women’s Health, Brigham and Women’s Hospital, Boston, MA, USA
| | - Steven J Kittner
- Baltimore Veterans Administration Medical Center and Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tracy E Madsen
- Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | - Mathew J Reeves
- Department of Epidemiology and Biostatistics, Michigan State University, Lansing, MI, USA
| | - Tatjana Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
41
|
Choi HG, Lee SW. Hysterectomy does not increase the risk of hemorrhagic or ischemic stroke over a mean follow-up of 6 years: A longitudinal national cohort study. Maturitas 2018; 117:11-16. [DOI: 10.1016/j.maturitas.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/04/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
|
42
|
MiR-539 Targets MMP-9 to Regulate the Permeability of Blood–Brain Barrier in Ischemia/Reperfusion Injury of Brain. Neurochem Res 2018; 43:2260-2267. [DOI: 10.1007/s11064-018-2646-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/15/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
|
43
|
Kaidonis G, Rao AN, Ouyang YB, Stary CM. Elucidating sex differences in response to cerebral ischemia: immunoregulatory mechanisms and the role of microRNAs. Prog Neurobiol 2018; 176:73-85. [PMID: 30121237 DOI: 10.1016/j.pneurobio.2018.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/04/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia remains a major cause of death and disability worldwide, yet therapeutic options remain limited. Differences in sex and age play an important role in the final outcome in response to cerebral ischemia in both experimental and clinical studies: males have a higher risk and worse outcome than females at younger ages and this trend reverses in older ages. Although the molecular mechanisms underlying sex dimorphism are complex and are still not well understood, studies suggest steroid hormones, sex chromosomes, differential cell death and immune pathways, and sex-specific microRNAs may contribute to the outcome following cerebral ischemia. This review focuses on differential effects between males and females on cell death and immunological pathways in response to cerebral ischemia, the central role of innate sex differences in steroid hormone signaling, and upstreamregulation of sexually dimorphic gene expression by microRNAs.
Collapse
Affiliation(s)
- Georgia Kaidonis
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States; Stanford University School of Medicine, Department of Ophthalmology, United States
| | - Anand N Rao
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Yi-Bing Ouyang
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Creed M Stary
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States.
| |
Collapse
|
44
|
Vijayan M, Kumar S, Yin X, Zafer D, Chanana V, Cengiz P, Reddy PH. Identification of novel circulatory microRNA signatures linked to patients with ischemic stroke. Hum Mol Genet 2018; 27:2318-2329. [PMID: 29701837 PMCID: PMC6005038 DOI: 10.1093/hmg/ddy136] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in growth, development, and occurrence and progression of many diseases. MiRNA-mediated post-transcriptional regulation is poorly understood in vascular biology and pathology. The purpose of this is to determine circulatory miRNAs as early detectable peripheral biomarkers in patients with ischemic stroke (IS). MiRNAs expression levels were measured in IS serum samples and healthy controls using Illumina deep sequencing analysis and identified differentially expressed miRNAs. Differentially expressed miRNAs were further validated using SYBR-green-based quantitative real-time PCR (qRT-PCR) assay in postmortem IS brains, lymphoblastoid IS cell lines, oxygen and glucose deprivation/reoxygenation -treated human and mouse neuroblastoma cells, and mouse models of hypoxia and ischemia (HI)-induced stroke. A total of 4656 miRNAs were differentially expressed in IS serum samples relative to healthy controls. Out of 4656 miRNAs, 272 were found to be significantly deregulated in IS patients. Interestingly, we found several novel and previously unreported miRNAs in IS patients relative to healthy controls. Further analyses revealed that some candidate miRNAs and its target genes were involved in the regulation of the stroke. To the best of our knowledge, this is the first study identified potential novel candidate miRNAs in IS serum samples from the residents of rural West Texas. MiRNAs identified in this study could potentially be used as a biomarker and the development of novel therapeutic approaches for stroke. Further studies are necessary to better understand miRNAs-regulated stroke cellular changes.
Collapse
Affiliation(s)
- Murali Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Subodh Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dila Zafer
- Waisman Center and Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Vishal Chanana
- Waisman Center and Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Pelin Cengiz
- Waisman Center and Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA and
- Department of Public Health, Graduate School of Biomedical Sciences, Lubbock, TX, USA
| |
Collapse
|
45
|
Jhelum P, Karisetty BC, Kumar A, Chakravarty S. Implications of Epigenetic Mechanisms and their Targets in Cerebral Ischemia Models. Curr Neuropharmacol 2018; 15:815-830. [PMID: 27964703 PMCID: PMC5652028 DOI: 10.2174/1570159x14666161213143907] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/07/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Understanding the complexities associated with the ischemic condition and identifying therapeutic targets in ischemia is a continued challenge in stroke biology. Emerging evidence reveals the potential involvement of epigenetic mechanisms in the incident and outcome of stroke, suggesting novel therapeutic options of targeting different molecules related to epigenetic regulation. OBJECTIVE This review summarizes our current understanding of ischemic pathophysiology, describes various in vivo and in vitro models of ischemia, and examines epigenetic modifications associated with the ischemic condition. METHOD We focus on microRNAs, DNA methylation, and histone modifying enzymes, and present how epigenetic studies are revealing novel drug target candidates in stroke. CONCLUSION Finally, we discuss emerging approaches for the prevention and treatment of stroke and post-stroke effects using pharmacological interventions with a wide therapeutic window.
Collapse
Affiliation(s)
- Priya Jhelum
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Bhanu C Karisetty
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Arvind Kumar
- CSIR, Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Sumana Chakravarty
- Chemical Biology, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, India
| |
Collapse
|
46
|
Pérez-Cremades D, Mompeón A, Vidal-Gómez X, Hermenegildo C, Novella S. miRNA as a New Regulatory Mechanism of Estrogen Vascular Action. Int J Mol Sci 2018; 19:ijms19020473. [PMID: 29415433 PMCID: PMC5855695 DOI: 10.3390/ijms19020473] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
The beneficial effects of estrogen on the cardiovascular system have been reported extensively. In fact, the incidence of cardiovascular diseases in women is lower than in age-matched men during their fertile stage of life, a benefit that disappears after menopause. These sex-related differences point to sexual hormones, mainly estrogen, as possible cardiovascular protective factors. The regulation of vascular function by estrogen is mainly related to the maintenance of normal endothelial function and is mediated by both direct and indirect gene transcription through the activity of specific estrogen receptors. Some of these mechanisms are known, but many remain to be elucidated. In recent years, microRNAs have been established as non-coding RNAs that regulate the expression of a high percentage of protein-coding genes in mammals and are related to the correct function of human physiology. Moreover, within the cardiovascular system, miRNAs have been related to physiological and pathological conditions. In this review, we address what is known about the role of estrogen-regulated miRNAs and their emerging involvement in vascular biology.
Collapse
Affiliation(s)
- Daniel Pérez-Cremades
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Ana Mompeón
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Xavier Vidal-Gómez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Carlos Hermenegildo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| |
Collapse
|
47
|
Pan Z, Shan Q, Gu P, Wang XM, Tai LW, Sun M, Luo X, Sun L, Cheung CW. miRNA-23a/CXCR4 regulates neuropathic pain via directly targeting TXNIP/NLRP3 inflammasome axis. J Neuroinflammation 2018; 15:29. [PMID: 29386025 PMCID: PMC5791181 DOI: 10.1186/s12974-018-1073-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chemokine CXC receptor 4 (CXCR4) in spinal glial cells has been implicated in neuropathic pain. However, the regulatory cascades of CXCR4 in neuropathic pain remain elusive. Here, we investigated the functional regulatory role of miRNAs in the pain process and its interplay with CXCR4 and its downstream signaling. METHODS miRNAs and CXCR4 and its downstream signaling molecules were measured in the spinal cords of mice with sciatic nerve injury via partial sciatic nerve ligation (pSNL). Immunoblotting, immunofluorescence, immunoprecipitation, and mammal two-hybrid and behavioral tests were used to explore the downstream CXCR4-dependent signaling pathway. RESULTS CXCR4 expression increased in spinal glial cells of mice with pSNL-induced neuropathic pain. Blocking CXCR4 alleviated the pain behavior; contrarily, overexpressing CXCR4 induced pain hypersensitivity. MicroRNA-23a-3p (miR-23a) directly bounds to 3' UTR of CXCR4 mRNA. pSNL-induced neuropathic pain significantly reduced mRNA expression of miR-23a. Overexpression of miR-23a by intrathecal injection of miR-23a mimics or lentivirus reduced spinal CXCR4 and prevented pSNL-induced neuropathic pain. In contrast, knockdown of miR-23a by intrathecal injection of miR-23a inhibitor or lentivirus induced pain-like behavior, which was reduced by CXCR4 inhibition. Additionally, miR-23a knockdown or CXCR4 overexpression in naïve mice could increase the thioredoxin-interacting protein (TXNIP), which was associated with induction of NOD-like receptor protein 3 (NLRP3) inflammasome. Indeed, CXCR4 and TXNIP were co-expressed. The mammal two-hybrid assay revealed the direct interaction between CXCR4 and TXNIP, which was increased in the spinal cord of pSNL mice. In particular, inhibition of TXNIP reversed pain behavior elicited by pSNL, miR-23a knockdown, or CXCR4 overexpression. Moreover, miR-23a overexpression or CXCR4 knockdown inhibited the increase of TXNIP and NLRP3 inflammasome in pSNL mice. CONCLUSIONS miR-23a, by directly targeting CXCR4, regulates neuropathic pain via TXNIP/NLRP3 inflammasome axis in spinal glial cells. Epigenetic interventions against miR-23a, CXCR4, or TXNIP may potentially serve as novel therapeutic avenues in treating peripheral nerve injury-induced nociceptive hypersensitivity.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China. .,Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China. .,Department of Anaesthesiology, Queen Mary Hospital, The University of Hong Kong, Rm 424, 4/F, Block K, 102 Pokfulam, Hong Kong, China.
| | - Qun Shan
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China.,School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Pan Gu
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Xiao Min Wang
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Lydia Wai Tai
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Menglan Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Xin Luo
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Liting Sun
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China. .,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China. .,Department of Anaesthesiology, Queen Mary Hospital, The University of Hong Kong, Rm 424, 4/F, Block K, 102 Pokfulam, Hong Kong, China.
| |
Collapse
|
48
|
Wu J, Cai H, Xiang YB, Matthews CE, Ye F, Zheng W, Cai Q, Shu XO. Intra-individual variation of miRNA expression levels in human plasma samples. Biomarkers 2018; 23:339-346. [PMID: 29378466 DOI: 10.1080/1354750x.2018.1427794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Circulating miRNAs as potential non-invasive biomarkers for disease risk assessment and cancer early diagnosis have attracted increasing interest. Little information, however, is available regarding the intra-individual variation of circulating miRNA levels. METHODS We measured expression levels of a panel of 800 miRNAs in repeated plasma samples from 51 healthy individuals that were collected 6 to 12 months apart and evaluated the intra-individual variation by the intra-class correlation coefficient (ICC). RESULTS After background correction, a total of 185 miRNAs were detected in at least 10% of the plasma samples, with 69 and 28 miRNAs being detected in 50% and 90% of samples, respectively. The median ICC was 0.46 for these 185 miRNAs. Among them, 41% (75 miRNAs) had an ICC ≥ 0.5, and 23% (42 miRNAs) had an ICC ≥ 0.6. The ICC is higher for miRNAs with higher expression levels or higher detection rates, when compared to those with lower expression levels or lower detection rates. CONCLUSIONS These results suggest that common circulating miRNAs are stable over a relatively long period and can serve as reliable biomarkers for epidemiological and clinical research.
Collapse
Affiliation(s)
- Jie Wu
- a Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Hui Cai
- a Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Yong-Bing Xiang
- b Department of Epidemiology , Shanghai Cancer Institute , Shanghai , China
| | - Charles E Matthews
- c Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics , National Cancer Institute , Bethesda , MD , USA
| | - Fei Ye
- d Department of Biostatistics , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Wei Zheng
- a Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Qiuyin Cai
- a Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Xiao-Ou Shu
- a Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
49
|
Carè A, Bellenghi M, Matarrese P, Gabriele L, Salvioli S, Malorni W. Sex disparity in cancer: roles of microRNAs and related functional players. Cell Death Differ 2018; 25:477-485. [PMID: 29352271 PMCID: PMC5864217 DOI: 10.1038/s41418-017-0051-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 01/08/2023] Open
Abstract
A sexual dimorphism at the cellular level has been suggested to play a role in cancer onset and progression. In particular, very recent studies have unraveled striking differences between cells carrying XX or XY chromosomes in terms of response to stressful stimuli, indicating the presence of genetic and epigenetic differences determining sex-specific metabolic or phenotypic traits. Although this field of investigation is still in its infancy, available data suggest a key role of sexual chromosomes in determining cell life or death. In particular, cells carrying XX chromosomes exhibit a higher adaptive potential and survival behavior in response to microenvironmental variations with respect to XY cells. Cells from females also appear to be equipped with more efficient epigenetic machinery than the male counterpart. In particular, the X chromosome contains an unexpected high number of microRNAs (miRs), at present 118, in comparison with only two miRs localized on chromosome Y, and an average of 40-50 on the autosomes. The regulatory power of these small non-coding RNAs is well recognized, as 30-50% of all protein-coding genes are targeted by miRs and their role in cell fate has been well demonstrated. In addition, several further insights, including DNA methylation patterns that are different in males and females, claim for a significant gender disparity in cancer and in the immune system activity against tumors. In this brief paper, we analyze the state of the art of our knowledge on the implication of miRs encoded on sex chromosomes, and their related functional paths, in the regulation of cell homeostasis and depict possible perspectives for the epigenetic research in the field.
Collapse
Affiliation(s)
- Alessandra Carè
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Maria Bellenghi
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Paola Matarrese
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Lucia Gabriele
- Immunotherapy Unit, Department of Oncology and Molecular Medicine, Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Walter Malorni
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy.
| |
Collapse
|
50
|
Pomatto LCD, Tower J, Davies KJA. Sexual Dimorphism and Aging Differentially Regulate Adaptive Homeostasis. J Gerontol A Biol Sci Med Sci 2018; 73:141-149. [PMID: 28525535 PMCID: PMC5861879 DOI: 10.1093/gerona/glx083] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/26/2017] [Indexed: 11/13/2022] Open
Abstract
External and internal stimuli cause modifications to gene and biochemical pathways. In turn, demonstrating that biological systems continuously make short-term adaptations both to set-points, and to the range of "normal" capacity, due to mild conditional changes, or to subtoxic, nondamaging levels of chemical agents. This is termed as "Adaptive Homeostasis," defined with the following: "The transient expansion or contraction of the homeostatic range in response to exposure to sub-toxic, nondamaging, signaling molecules or events, or the removal or cessation of such molecules or events." Research from several laboratories, including our own, found that adaptive homeostasis declines with age in organisms as diverse as worms, flies, and mammals, and decreases with senescence in mammalian cell cultures. We suggest that diminishing adaptive homeostasis may play a causal role as a factor responsible for the aging phenotype. Furthermore, although studies of humans, animals, and model organisms are often limited to a single sex, and cell culture studies may even be conducted with lines whose donor's sex was unknown, studies reveal distinct sexual dimorphism in adaptive homeostasis. Interestingly, although young males and females may exhibit dramatic differences in adaptive capacities and/or preferences, these distinctions are lost with age as adaptive homeostasis patterns converge.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center
| | - John Tower
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|