1
|
Xu FF, Shang Y, Wei HQ, Zhang WY, Wang LX, Hu T, Zhang SQ, Li YL, Shang HH, Hou WB, Gou WF, Fan SJ, Li YL. Ursolic acid derivative UA312 ameliorates ionizing radiation-induced cardiotoxicity and neurodevelopmental toxicity in zebrafish via targeting chrna3 and grik5. Acta Pharmacol Sin 2025:10.1038/s41401-025-01564-0. [PMID: 40295836 DOI: 10.1038/s41401-025-01564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
The biological damage caused by ionizing radiation (IR) depends not only on the time and doses of exposure to tissue components but also on the developmental state of the cells. Currently, amifostine is the only radiation-protective agent used for clinical indications related to radiation therapy, but this compound has multiple drawbacks including high toxicity, short half-life and no protective effect on the nervous system. Ursolic acid (UA), a natural pentacyclic triterpenoid that exhibits multiple protective effects including anti-inflammatory, anticarcinogenic, and antioxidant effects. Due to its poor solubility and bioavailability, UA is mostly administered with liposomes. In this study we investigated the impact of UA312, an optimized derivative of UA, on radiation-induced developmental toxicity in zebrafish embryos and larvae. Embryo and larvae survival were observed at 4, 24, 48, and 72 hpf. UA312 was administered at 3 hpf, while embryos were irradiated with 6 Gy of γ-irradiation (dose rate: 0.88 Gy/min) at 4 hpf, then the embryos were moved to a fresh buffer. We determined that 40 µM of UA312 was a safe concentration for zebrafish embryos and larvae. We found that treatment with UA312 (40 µM) restored IR-induced early developmental dysplasia of the zebrafish embryos and larvae. Transcriptomic analysis revealed that exposure to IR inhibited multiple pathways related to neurodevelopment and cardiomyocyte function in zebrafish, which were validated by assessing abnormal cardiac morphology, variations in neurotransmitter levels and alterations in locomotor behavior; and that UA312 treatment ameliorated these alterations. We demonstrated that UA312 treatment significantly reversed the related signaling pathways by targeting chrna3 and grik5. In conclusion, this study identified a promising radioprotective drug, UA312, which alleviates IR-induced cardiotoxicity and neurodevelopmental toxicity in zebrafish by targeting chrna3 and grik5. UA312 may be developed as a novel radioprotective agent against acute IR damage in humans.
Collapse
Affiliation(s)
- Fei-Fei Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yue Shang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hui-Qiang Wei
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wei-Ying Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, 300071, China
| | - Li-Xing Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tong Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shu-Qin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yan-Li Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hai-Hua Shang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wen-Bin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wen-Feng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Yi-Liang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
2
|
Karampelias C, Liu KC, Tengholm A, Andersson O. Mechanistic insights and approaches for beta cell regeneration. Nat Chem Biol 2025:10.1038/s41589-024-01822-y. [PMID: 39881214 DOI: 10.1038/s41589-024-01822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms. We group the pathways according to the cellular processes they affect, that is, proliferation, conversion of other mature cell types to beta cells and beta cell differentiation from progenitor-like populations. We also suggest assays for assessing the functionality of the regenerated beta cells. Although regeneration processes differ between animal models, such as zebrafish, mice and pigs, regenerative mechanisms identified in any one animal model may be translatable to humans. Overall, chemical biology-based approaches in beta cell regeneration give hope that specific molecular pathways can be targeted to enhance beta cell regeneration.
Collapse
Affiliation(s)
- Christos Karampelias
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ka-Cheuk Liu
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
3
|
Bandesh K, Motakis E, Nargund S, Kursawe R, Selvam V, Bhuiyan RM, Eryilmaz GN, Krishnan SN, Spracklen CN, Ucar D, Stitzel ML. Single-cell decoding of human islet cell type-specific alterations in type 2 diabetes reveals converging genetic- and state-driven β -cell gene expression defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633590. [PMID: 39896672 PMCID: PMC11785113 DOI: 10.1101/2025.01.17.633590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pancreatic islets maintain glucose homeostasis through coordinated action of their constituent endocrine and affiliate cell types and are central to type 2 diabetes (T2D) genetics and pathophysiology. Our understanding of robust human islet cell type-specific alterations in T2D remains limited. Here, we report comprehensive single cell transcriptome profiling of 245,878 human islet cells from a 48-donor cohort spanning non-diabetic (ND), pre-diabetic (PD), and T2D states, identifying 14 distinct cell types detected in every donor from each glycemic state. Cohort analysis reveals ~25-30% loss of functional beta cell mass in T2D vs. ND or PD donors resulting from (1) reduced total beta cell numbers/proportions and (2) reciprocal loss of 'high function' and gain of senescent β -cell subpopulations. We identify in T2D β -cells 511 differentially expressed genes (DEGs), including new (66.5%) and validated genes (e.g., FXYD2, SLC2A2, SYT1), and significant neuronal transmission and vitamin A metabolism pathway alterations. Importantly, we demonstrate newly identified DEG roles in human β -cell viability and/or insulin secretion and link 47 DEGs to diabetes-relevant phenotypes in knockout mice, implicating them as potential causal islet dysfunction genes. Additionally, we nominate as candidate T2D causal genes and therapeutic targets 27 DEGs for which T2D genetic risk variants (GWAS SNPs) and pathophysiology (T2D vs. ND) exert concordant expression effects. We provide this freely accessible atlas for data exploration, analysis, and hypothesis testing. Together, this study provides new genomic resources for and insights into T2D pathophysiology and human islet dysfunction.
Collapse
Affiliation(s)
- Khushdeep Bandesh
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Siddhi Nargund
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Vijay Selvam
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Redwan M Bhuiyan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
| | - Giray Naim Eryilmaz
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
| | - Sai Nivedita Krishnan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
| | - Cassandra N. Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
- Institute for Systems Genomics, UConn, Farmington, CT 06032 USA
| | - Michael L. Stitzel
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06032 USA
- Institute for Systems Genomics, UConn, Farmington, CT 06032 USA
| |
Collapse
|
4
|
Mi J, Ren L, Andersson O. Leveraging zebrafish to investigate pancreatic development, regeneration, and diabetes. Trends Mol Med 2024; 30:932-949. [PMID: 38825440 DOI: 10.1016/j.molmed.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
The zebrafish has become an outstanding model for studying organ development and tissue regeneration, which is prominently leveraged for studies of pancreatic development, insulin-producing β-cells, and diabetes. Although studied for more than two decades, many aspects remain elusive and it has only recently been possible to investigate these due to technical advances in transcriptomics, chemical-genetics, genome editing, drug screening, and in vivo imaging. Here, we review recent findings on zebrafish pancreas development, β-cell regeneration, and how zebrafish can be used to provide novel insights into gene functions, disease mechanisms, and therapeutic targets in diabetes, inspiring further use of zebrafish for the development of novel therapies for diabetes.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
5
|
Arroyave F, Uscátegui Y, Lizcano F. From iPSCs to Pancreatic β Cells: Unveiling Molecular Pathways and Enhancements with Vitamin C and Retinoic Acid in Diabetes Research. Int J Mol Sci 2024; 25:9654. [PMID: 39273600 PMCID: PMC11395045 DOI: 10.3390/ijms25179654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetes mellitus, a chronic and non-transmissible disease, triggers a wide range of micro- and macrovascular complications. The differentiation of pancreatic β-like cells (PβLCs) from induced pluripotent stem cells (iPSCs) offers a promising avenue for regenerative medicine aimed at treating diabetes. Current differentiation protocols strive to emulate pancreatic embryonic development by utilizing cytokines and small molecules at specific doses to activate and inhibit distinct molecular signaling pathways, directing the differentiation of iPSCs into pancreatic β cells. Despite significant progress and improved protocols, the full spectrum of molecular signaling pathways governing pancreatic development and the physiological characteristics of the differentiated cells are not yet fully understood. Here, we report a specific combination of cofactors and small molecules that successfully differentiate iPSCs into PβLCs. Our protocol has shown to be effective, with the resulting cells exhibiting key functional properties of pancreatic β cells, including the expression of crucial molecular markers (pdx1, nkx6.1, ngn3) and the capability to secrete insulin in response to glucose. Furthermore, the addition of vitamin C and retinoic acid in the final stages of differentiation led to the overexpression of specific β cell genes.
Collapse
Affiliation(s)
- Felipe Arroyave
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
- Doctoral Program in Biociencias, Universidad de La Sabana, Chia 250008, Colombia
| | - Yomaira Uscátegui
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
- Doctoral Program in Biociencias, Universidad de La Sabana, Chia 250008, Colombia
- School of Medicine, Universidad de La Sabana, Chia 250008, Colombia
| |
Collapse
|
6
|
Li J, Bode K, Lee YC, Morrow N, Ma A, Wei S, da Silva Pereira J, Stewart T, Lee-Papastavros A, Hollister-Lock J, Sullivan B, Bonner-Weir S, Yi P. Loss-of-function of ALDH3B2 transdifferentiates human pancreatic duct cells into beta-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593941. [PMID: 38798376 PMCID: PMC11118503 DOI: 10.1101/2024.05.13.593941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Replenishment of pancreatic beta cells is a key to the cure for diabetes. Beta cells regeneration is achieved predominantly by self-replication especially in rodents, but it was also shown that pancreatic duct cells can transdifferentiate into beta cells. How pancreatic duct cells undergo transdifferentiated and whether we could manipulate the transdifferentiation to replenish beta cell mass is not well understood. Using a genome-wide CRISPR screen, we discovered that loss-of-function of ALDH3B2 is sufficient to transdifferentiate human pancreatic duct cells into functional beta-like cells. The transdifferentiated cells have significant increase in beta cell marker genes expression, secrete insulin in response to glucose, and reduce blood glucose when transplanted into diabetic mice. Our study identifies a novel gene that could potentially be targeted in human pancreatic duct cells to replenish beta cell mass for diabetes therapy.
Collapse
|
7
|
Martínez-López A, Candel S, Tyrkalska SD. Animal models of silicosis: fishing for new therapeutic targets and treatments. Eur Respir Rev 2023; 32:230078. [PMID: 37558264 PMCID: PMC10424253 DOI: 10.1183/16000617.0078-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023] Open
Abstract
Silicosis as an occupational lung disease has been present in our lives for centuries. Research studies have already developed and implemented many animal models to study the pathogenesis and molecular basis of the disease and enabled the search for treatments. As all experimental animal models used to date have their advantages and disadvantages, there is a continuous search for a better model, which will not only accelerate basic research, but also contribute to clinical aspects and drug development. We review here, for the first time, the main animal models developed to date to study silicosis and the unique advantages of the zebrafish model that make it an optimal complement to other models. Among the main advantages of zebrafish for modelling human diseases are its ease of husbandry, low maintenance cost, external fertilisation and development, its transparency from early life, and its amenability to chemical and genetic screening. We discuss the use of zebrafish as a model of silicosis, its similarities to other animal models and the characteristics of patients at molecular and clinical levels, and show the current state of the art of inflammatory and fibrotic zebrafish models that could be used in silicosis research.
Collapse
Affiliation(s)
- Alicia Martínez-López
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- These authors contributed equally to this work
| | - Sergio Candel
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- These authors contributed equally to this work
| | - Sylwia D Tyrkalska
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
8
|
Tyrkalska SD, Candel S, Pedoto A, García-Moreno D, Alcaraz-Pérez F, Sánchez-Ferrer Á, Cayuela ML, Mulero V. Zebrafish models of COVID-19. FEMS Microbiol Rev 2023; 47:fuac042. [PMID: 36323404 PMCID: PMC9841970 DOI: 10.1093/femsre/fuac042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Although COVID-19 has only recently appeared, research studies have already developed and implemented many animal models for deciphering the secrets of the disease and provided insights into the biology of SARS-CoV-2. However, there are several major factors that complicate the study of this virus in model organisms, such as the poor infectivity of clinical isolates of SARS-CoV-2 in some model species, and the absence of persistent infection, immunopathology, severe acute respiratory distress syndrome, and, in general, all the systemic complications which characterize COVID-19 clinically. Another important limitation is that SARS-CoV-2 mainly causes severe COVID-19 in older people with comorbidities, which represents a serious problem when attempting to use young and immunologically naïve laboratory animals in COVID-19 testing. We review here the main animal models developed so far to study COVID-19 and the unique advantages of the zebrafish model that may help to contribute to understand this disease, in particular to the identification and repurposing of drugs to treat COVID-19, to reveal the mechanism of action and side-effects of Spike-based vaccines, and to decipher the high susceptibility of aged people to COVID-19.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Candel
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Annamaria Pedoto
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisca Alcaraz-Pérez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Departmento de Bioloquímica y Biología Molecular A, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
MNK2 deficiency potentiates β-cell regeneration via translational regulation. Nat Chem Biol 2022; 18:942-953. [PMID: 35697798 PMCID: PMC7613404 DOI: 10.1038/s41589-022-01047-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/26/2022] [Indexed: 02/08/2023]
Abstract
Regenerating pancreatic β-cells is a potential curative approach for diabetes. We previously identified the small molecule CID661578 as a potent inducer of β-cell regeneration, but its target and mechanism of action have remained unknown. We now screened 257 million yeast clones and determined that CID661578 targets MAP kinase-interacting serine/threonine kinase 2 (MNK2), an interaction we genetically validated in vivo. CID661578 increased β-cell neogenesis from ductal cells in zebrafish, neonatal pig islet aggregates and human pancreatic ductal organoids. Mechanistically, we found that CID661578 boosts protein synthesis and regeneration by blocking MNK2 from binding eIF4G in the translation initiation complex at the mRNA cap. Unexpectedly, this blocking activity augmented eIF4E phosphorylation depending on MNK1 and bolstered the interaction between eIF4E and eIF4G, which is necessary for both hypertranslation and β-cell regeneration. Taken together, our findings demonstrate a targetable role of MNK2-controlled translation in β-cell regeneration, a role that warrants further investigation in diabetes.
Collapse
|
10
|
Mittal N, Mittal R. Repurposing old molecules for new indications: Defining pillars of success from lessons in the past. Eur J Pharmacol 2021; 912:174569. [PMID: 34653378 DOI: 10.1016/j.ejphar.2021.174569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Drug repurposing or studying existing drugs for potential therapeutic utility in newer indications has been identified as an attractive option for treating a number of diseases. Various strategies of drug repurposing include serendipitous observation of drug's unexpected effects, directing the failed investigational drugs to new indications and currently adopted systematic approach to identify, screen and develop existing drug molecules for new off-label indications. Drug repurposing is able to constructively overcome the bottleneck restraints encountered during traditional de novo drug development process in grounds of timelines, cost and resources. However, success rates of drug repurposing programs are not very impressive. Through a meticulous examination of some failed repurposing attempts we aimed to identify key factors leading to high attrition rate in such studies. Based on the fundamental elements of knowledge and evaluation, we have defined four pillars toward improving success rate in drug repurposing programs viz. sound knowledge of the repurposed drug's pharmacological characteristics (pillar 1: drug pharmacology); drug formulation considerations in new indication (pillar 2: drug formulation); evaluation in representative biological assays with translational potential (pillar 3: evaluation in biological assays); and robust clinical trial methodologies including biomarker driven approach to provide conclusive evidence of repurposed drug's efficacy in new indication (pillar 4: clinical evaluation). In addition to the pharmacological challenges, certain regulatory concerns, including lack of clear guidelines for evaluation and market exclusivity pose hurdles in the application of drug repurposing, which may however be overcome to a great extent by adopting some strategies as discussed in this review.
Collapse
Affiliation(s)
- Niti Mittal
- Dept. of Pharmacology, Postgraduate Institute of Medical Sciences, Rohtak, 124001, India.
| | - Rakesh Mittal
- Dept. of Pharmacology, Postgraduate Institute of Medical Sciences, Rohtak, 124001, India
| |
Collapse
|
11
|
Karampelias C, Rezanejad H, Rosko M, Duan L, Lu J, Pazzagli L, Bertolino P, Cesta CE, Liu X, Korbutt GS, Andersson O. Reinforcing one-carbon metabolism via folic acid/Folr1 promotes β-cell differentiation. Nat Commun 2021; 12:3362. [PMID: 34099692 PMCID: PMC8184927 DOI: 10.1038/s41467-021-23673-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Diabetes can be caused by an insufficiency in β-cell mass. Here, we performed a genetic screen in a zebrafish model of β-cell loss to identify pathways promoting β-cell regeneration. We found that both folate receptor 1 (folr1) overexpression and treatment with folinic acid, stimulated β-cell differentiation in zebrafish. Treatment with folinic acid also stimulated β-cell differentiation in cultures of neonatal pig islets, showing that the effect could be translated to a mammalian system. In both zebrafish and neonatal pig islets, the increased β-cell differentiation originated from ductal cells. Mechanistically, comparative metabolomic analysis of zebrafish with/without β-cell ablation and with/without folinic acid treatment indicated β-cell regeneration could be attributed to changes in the pyrimidine, carnitine, and serine pathways. Overall, our results suggest evolutionarily conserved and previously unknown roles for folic acid and one-carbon metabolism in the generation of β-cells.
Collapse
Affiliation(s)
- Christos Karampelias
- grid.4714.60000 0004 1937 0626Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Habib Rezanejad
- grid.17089.37Department of Surgery and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta Canada
| | - Mandy Rosko
- grid.17089.37Department of Surgery and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta Canada
| | - Likun Duan
- grid.40803.3f0000 0001 2173 6074Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC USA
| | - Jing Lu
- grid.4714.60000 0004 1937 0626Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Pazzagli
- grid.4714.60000 0004 1937 0626Centre for Pharmacoepidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Philippe Bertolino
- grid.7849.20000 0001 2150 7757Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Carolyn E. Cesta
- grid.4714.60000 0004 1937 0626Centre for Pharmacoepidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Xiaojing Liu
- grid.40803.3f0000 0001 2173 6074Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC USA
| | - Gregory S. Korbutt
- grid.17089.37Department of Surgery and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta Canada
| | - Olov Andersson
- grid.4714.60000 0004 1937 0626Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
de Boer P, Giepmans BN. State-of-the-art microscopy to understand islets of Langerhans: what to expect next? Immunol Cell Biol 2021; 99:509-520. [PMID: 33667022 PMCID: PMC8252556 DOI: 10.1111/imcb.12450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The discovery of Langerhans and microscopic description of islets in the pancreas were crucial steps in the discovery of insulin. Over the past 150 years, many discoveries in islet biology and type 1 diabetes have been made using powerful microscopic techniques. In the past decade, combination of new probes, animal and tissue models, application of new biosensors and automation of light and electron microscopic methods and other (sub)cellular imaging modalities have proven their potential in understanding the beta cell under (patho)physiological conditions. The imaging evolution, from fluorescent jellyfish to real‐time intravital functional imaging, the revolution in automation and data handling and the increased resolving power of analytical imaging techniques are now converging. Here, we review innovative approaches that address islet biology from new angles by studying cells and molecules at high spatiotemporal resolution and in live models. Broad implementation of these cellular imaging techniques will shed new light on cause/consequence of (mal)function in islets of Langerhans in the years to come.
Collapse
Affiliation(s)
- Pascal de Boer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ben Ng Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
MacDonald AJ, Yang YHC, Cruz AM, Beall C, Ellacott KLJ. Brain-Body Control of Glucose Homeostasis-Insights From Model Organisms. Front Endocrinol (Lausanne) 2021; 12:662769. [PMID: 33868184 PMCID: PMC8044781 DOI: 10.3389/fendo.2021.662769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Tight regulation of blood glucose is essential for long term health. Blood glucose levels are defended by the correct function of, and communication between, internal organs including the gastrointestinal tract, pancreas, liver, and brain. Critically, the brain is sensitive to acute changes in blood glucose level and can modulate peripheral processes to defend against these deviations. In this mini-review we highlight select key findings showcasing the utility, strengths, and limitations of model organisms to study brain-body interactions that sense and control blood glucose levels. First, we discuss the large platform of genetic tools available to investigators studying mice and how this field may yet reveal new modes of communication between peripheral organs and the brain. Second, we discuss how rats, by virtue of their size, have unique advantages for the study of CNS control of glucose homeostasis and note that they may more closely model some aspects of human (patho)physiology. Third, we discuss the nascent field of studying the CNS control of blood glucose in the zebrafish which permits ease of genetic modification, large-scale measurements of neural activity and live imaging in addition to high-throughput screening. Finally, we briefly discuss glucose homeostasis in drosophila, which have a distinct physiology and glucoregulatory systems to vertebrates.
Collapse
Affiliation(s)
| | | | | | | | - Kate L. J. Ellacott
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
14
|
Hwang HY, Shim JS, Kim D, Kwon HJ. Antidepressant drug sertraline modulates AMPK-MTOR signaling-mediated autophagy via targeting mitochondrial VDAC1 protein. Autophagy 2020; 17:2783-2799. [PMID: 33124469 PMCID: PMC8525979 DOI: 10.1080/15548627.2020.1841953] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macroautophagy/autophagy (hereafter autophagy), the process of mass degradation of unnecessary elements within the cell, is often dysregulated in many diseases such as cancer, atherosclerosis, and neurodegenerative diseases. Hence, autophagy modulating agents have a great potential to be therapeutic agents for the autophagy-related diseases. Here we report that an anti-depressant drug sertraline (Sert) is an autophagy-inducing agent. Mechanistically, Sert potentially binds to and antagonizes the mitochondrial VDAC1 (voltage dependent anion channel 1), resulting in reduced cellular ATP (adenosine triphosphate) level, activation of AMP-activated protein kinase (AMPK) and inhibition of its downstream, MTOR (mechanistic target of rapamycin kinase)-RPS6KB1 (ribosomal protein S6 kinase B1) signaling pathway. Cells lacking VDAC1 expression completely abrogate the modulatory effect of Sert on AMPK-MTOR pathway and autophagy-inducing activity. We further show that Sert suppresses tauopathy by promoting the autophagic degradation of MAPT (microtubule associated protein tau) protein via inducing autophagy. Our study demonstrates the potential of Sert as a novel small molecule autophagy-inducing agent and provides a new drug candidate to treat autophagy related diseases by targeting VDAC1. Abbreviations: AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; Baf: bafilomycin A1; BiFC: biomolecular fluorescence complementation; CAMKK2/CAMKKB: calcium/calmodulin dependent protein kinase kinase 2; CC: compound C; DARTS: drug affinity responsive target stability; HUVECs: human umbilical vein endothelial cells; Inda: indatraline; STK11/LKB1: serine/threonine kinase 11; MAPT: microtubule associated protein tau; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; 3-MA: 3-methyladenine; MEFs: mouse embryonic fibroblasts; MTOR: mechanistic target of rapamycin kinase; PI3K: phosphoinositide 3-kinase; Rapa: rapamycin; Sert: sertraline; RPS6KB1: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; SLC6A4/SERT1: solute carrier family 6 member 4; TFEB: transcription factor EB; VDAC1: voltage dependent anion channel 1; WT: wild-type; WM: wortmannin.
Collapse
Affiliation(s)
- Hui-Yun Hwang
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Dasol Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Gan Q, Lin C, Lu C, Chang Y, Che Q, Zhang G, Zhu T, Gu Q, Wu Z, Li M, Li D. Staprexanthones, Xanthone-Type Stimulators of Pancreatic β-Cell Proliferation from a Mangrove Endophytic Fungus. JOURNAL OF NATURAL PRODUCTS 2020; 83:2996-3003. [PMID: 32966070 DOI: 10.1021/acs.jnatprod.0c00535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This project was focused on the discovery of novel compounds that promote endogenous β-cell regeneration. Screening of extracts identified the fungus Stachybotrys chartarum as a promising candidate. After fermentation and extraction of S. chartarum, we isolated five new prenylated xanthones, namely, staprexanthones A-E (1-5), with staprexanthone A (1) being the first natural xanthone bearing a rare 4,5-dimethyl-1,3-dioxolane moiety. Compounds 1, 2, and 5 significantly increased β-cell numbers in vivo in a zebrafish model. Further analysis revealed that 2 and 5 promoted β-cell mass expansion by increasing proliferation of existing β-cells though promotion of cell-cycle progression at the G1/S transition. These findings indicate that prenylated xanthones are potential new drug leads for antidiabetes therapy by stimulating β-cell regeneration.
Collapse
Affiliation(s)
- Qi Gan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chunyu Lin
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian 361102, People's Republic of China
- School of Marine Life Science, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Changjun Lu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yimin Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhiqiang Wu
- School of Marine Life Science, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mingyu Li
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian 361102, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
16
|
Yang B, Covington BA, Chen W. In vivo generation and regeneration of β cells in zebrafish. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:9. [PMID: 32613468 PMCID: PMC7329966 DOI: 10.1186/s13619-020-00052-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
The pathological feature of diabetes, hyperglycemia, is a result of an inadequate number and/or function of insulin producing β cells. Replenishing functional β cells is a strategy to cure the disease. Although β-cell regeneration occurs in animal models under certain conditions, human β cells are refractory to proliferation. A better understanding of both the positive and the negative regulatory mechanisms of β-cell regeneration in animal models is essential to develop novel strategies capable of inducing functional β cells in patients. Zebrafish are an attractive model system for studying β-cell regeneration due to the ease to which genetic and chemical-genetic approaches can be used as well as their high regenerative capacity. Here, we highlight the current state of β-cell regeneration studies in zebrafish with an emphasis on cell signaling mechanisms.
Collapse
Affiliation(s)
- Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN, 37232, USA
| | - Brittney A Covington
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN, 37232, USA
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
17
|
Lorberbaum DS, Kishore S, Rosselot C, Sarbaugh D, Brooks EP, Aragon E, Xuan S, Simon O, Ghosh D, Mendelsohn C, Gadue P, Sussel L. Retinoic acid signaling within pancreatic endocrine progenitors regulates mouse and human β cell specification. Development 2020; 147:dev.189977. [PMID: 32467243 DOI: 10.1242/dev.189977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Retinoic acid (RA) signaling is essential for multiple developmental processes, including appropriate pancreas formation from the foregut endoderm. RA is also required to generate pancreatic progenitors from human pluripotent stem cells. However, the role of RA signaling during endocrine specification has not been fully explored. In this study, we demonstrate that the disruption of RA signaling within the NEUROG3-expressing endocrine progenitor population impairs mouse β cell differentiation and induces ectopic expression of crucial δ cell genes, including somatostatin. In addition, the inhibition of the RA pathway in hESC-derived pancreatic progenitors downstream of NEUROG3 induction impairs insulin expression. We further determine that RA-mediated regulation of endocrine cell differentiation occurs through Wnt pathway components. Together, these data demonstrate the importance of RA signaling in endocrine specification and identify conserved mechanisms by which RA signaling directs pancreatic endocrine cell fate.
Collapse
Affiliation(s)
- David S Lorberbaum
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Siddharth Kishore
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19102, USA.,Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolina Rosselot
- Division of Endocrinology, Diabetes and Bone Diseases, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dylan Sarbaugh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elliott P Brooks
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eloise Aragon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shouhong Xuan
- Department of Medicine Hematology and Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Olivier Simon
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cathy Mendelsohn
- Department of Urology, Columbia University, New York, NY 10032, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19102, USA.,Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Zhang T, Peterson RT. Modeling Lysosomal Storage Diseases in the Zebrafish. Front Mol Biosci 2020; 7:82. [PMID: 32435656 PMCID: PMC7218095 DOI: 10.3389/fmolb.2020.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a family of 70 metabolic disorders characterized by mutations in lysosomal proteins that lead to storage material accumulation, multiple-organ pathologies that often involve neurodegeneration, and early mortality in a significant number of patients. Along with the necessity for more effective therapies, there exists an unmet need for further understanding of disease etiology, which could uncover novel pathways and drug targets. Over the past few decades, the growth in knowledge of disease-associated pathways has been facilitated by studies in model organisms, as advancements in mutagenesis techniques markedly improved the efficiency of model generation in mammalian and non-mammalian systems. In this review we highlight non-mammalian models of LSDs, focusing specifically on the zebrafish, a vertebrate model organism that shares remarkable genetic and metabolic similarities with mammals while also conferring unique advantages such as optical transparency and amenability toward high-throughput applications. We examine published zebrafish LSD models and their reported phenotypes, address organism-specific advantages and limitations, and discuss recent technological innovations that could provide potential solutions.
Collapse
Affiliation(s)
- T Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - R T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
19
|
Chawla P, Delgadillo Silva LF, Ninov N. Insights on β-cell regeneration from the zebrafish shoal: from generation of cells to functional integration. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Zhang T, Trauger SA, Vidoudez C, Doane KP, Pluimer BR, Peterson RT. Parallel Reaction Monitoring reveals structure-specific ceramide alterations in the zebrafish. Sci Rep 2019; 9:19939. [PMID: 31882772 PMCID: PMC6934720 DOI: 10.1038/s41598-019-56466-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Extensive characterisations of the zebrafish genome and proteome have established a foundation for the use of the zebrafish as a model organism; however, characterisation of the zebrafish lipidome has not been as comprehensive. In an effort to expand current knowledge of the zebrafish sphingolipidome, a Parallel Reaction Monitoring (PRM)-based liquid chromatography-mass spectrometry (LC-MS) method was developed to comprehensively quantify zebrafish ceramides. Comparison between zebrafish and a human cell line demonstrated remarkable overlap in ceramide composition, but also revealed a surprising lack of most sphingadiene-containing ceramides in the zebrafish. PRM analysis of zebrafish embryogenesis identified developmental stage-specific ceramide changes based on long chain base (LCB) length. A CRISPR-Cas9-generated zebrafish model of Farber disease exhibited reduced size, early mortality, and severe ceramide accumulation where the amplitude of ceramide change depended on both acyl chain and LCB lengths. Our method adds an additional level of detail to current understanding of the zebrafish lipidome, and could aid in the elucidation of structure-function associations in the context of lipid-related diseases.
Collapse
Affiliation(s)
- Tejia Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Sunia A Trauger
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Kim P Doane
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Brock R Pluimer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
21
|
Beyens M, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Resistance to targeted treatment of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 2019; 26:R109-R130. [PMID: 32022503 DOI: 10.1530/erc-18-0420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) is part of the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mTOR signaling. The PI3K/Akt/mTOR pathway has a pivotal role in the oncogenesis of neuroendocrine tumors (NETs). In addition, vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) drive angiogenesis in NETs and therefore contributes to neuroendocrine tumor development. Hence, mTOR and angiogenesis inhibitors have been developed. Everolimus, a first-generation mTOR inhibitor, has shown significant survival benefit in advanced gastroenteropancreatic NETs. Sunitinib, a pan-tyrosine kinase inhibitor that targets the VEGF receptor, has proven to increase progression-free survival in advanced pancreatic NETs. Nevertheless, primary and acquired resistance to rapalogs and sunitinib has limited the clinical benefit for NET patients. Despite the identification of multiple molecular mechanisms of resistance, no predictive biomarker has made it to the clinic. This review is focused on the mTOR signaling and angiogenesis in NET, the molecular mechanisms of primary and acquired resistance to everolimus and sunitinib and how to overcome this resistance by alternative drug compounds.
Collapse
Affiliation(s)
- Matthias Beyens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Timon Vandamme
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
- Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marc Peeters
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
22
|
Krishnan J, Rohner N. Sweet fish: Fish models for the study of hyperglycemia and diabetes. J Diabetes 2019; 11:193-203. [PMID: 30264455 DOI: 10.1111/1753-0407.12860] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/01/2018] [Accepted: 09/09/2018] [Indexed: 01/15/2023] Open
Abstract
Fish are good for your health in more ways than you may expect. For one, eating fish is a common dietary recommendation for a healthy diet. However, fish have much more to provide than omega-3 fatty acids to your circulatory system. Some fish species now serve as important and innovative model systems for diabetes research, providing novel and unique advantages compared with classical research models. Not surprisingly, the largest share of diabetes research in fish occurs in the laboratory workhorse among fish, the zebrafish (Danio rerio). Established as a genetic model system to study development, these small cyprinid fish have eventually conquered almost every scientific discipline and, over the past decade, have emerged as an important model system for metabolic diseases, including diabetes mellitus. In this review we highlight the practicability of using zebrafish to study diabetes and hyperglycemia, and summarize some of the recent research and breakthroughs made using this model. Equally exciting is the appearance of another emerging discipline, one that is taking advantage of evolution by studying cases of naturally occurring insulin resistance in fish species. We briefly discuss two such models in this review, namely the rainbow trout (Oncorhynchus mykiss) and the cavefish (Astyanax mexicanus).
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
23
|
Seda M, Geerlings M, Lim P, Jeyabalan-Srikaran J, Cichon AC, Scambler PJ, Beales PL, Hernandez-Hernandez V, Stoker AW, Jenkins D. An FDA-Approved Drug Screen for Compounds Influencing Craniofacial Skeletal Development and Craniosynostosis. Mol Syndromol 2019; 10:98-114. [PMID: 30976283 PMCID: PMC6422125 DOI: 10.1159/000491567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neural crest stem/progenitor cells (NCSCs) populate a variety of tissues, and their dysregulation is implicated in several human diseases including craniosynostosis and neuroblastoma. We hypothesised that small molecules that inhibit NCSC induction or differentiation may represent potential therapeutically relevant drugs in these disorders. We screened 640 FDA-approved compounds currently in clinical use for other conditions to identify those which disrupt development of NCSC-derived skeletal elements that form the zebrafish jaw. In the primary screen, we used heterozygous transgenic sox10:gfp zebrafish to directly visualise NCSC-derived jaw cartilage. We noted partial toxicity of this transgene in relation to jaw patterning, suggesting that our primary screen was sensitised for NCSC defects, and we confirmed 10 novel, 4 previously reported, and 2 functional analogue drug hits in wild-type embryos. Of these drugs, 9/14 and 7/14, respectively, are known to target pathways implicated in osteoarthritis pathogenesis or to cause reduced bone mineral density/increased fracture risk as side effects in patients treated for other conditions, suggesting that our screen enriched for pathways targeting skeletal tissue homeostasis. We selected one drug that inhibited NCSC induction and one drug that inhibits bone mineralisation for further detailed analyses which reflect our initial hypotheses. These drugs were leflunomide and cyclosporin A, respectively, and their functional analogues, teriflunomide and FK506 (tacrolimus). We identified their critical developmental windows of activity, showing that the severity of defects observed related to the timing, duration, and dose of treatment. While leflunomide has previously been shown to inhibit NCSC induction, we demonstrate additional later roles in cartilage remodelling. Both drugs altered expression of extracellular matrix metalloproteinases. As proof-of-concept, we also tested drug treatment of disease-relevant mammalian cells. While leflunomide treatment inhibited the viability of several human NCSC-derived neuroblastoma cell lines coincident with altered expression of genes involved in ribosome biogenesis and transcription, FK506 enhanced murine calvarial osteoblast differentiation and prevented fusion of the coronal suture in calvarial explants taken from Crouzon syndrome mice.
Collapse
Affiliation(s)
- Marian Seda
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Maartje Geerlings
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Peggy Lim
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | | | - Ann-Christin Cichon
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Peter J. Scambler
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Philip L. Beales
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | | | - Andrew W. Stoker
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Dagan Jenkins
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| |
Collapse
|
24
|
Matsuda H, Mullapudi ST, Yang YHC, Masaki H, Hesselson D, Stainier DYR. Whole-Organism Chemical Screening Identifies Modulators of Pancreatic β-Cell Function. Diabetes 2018; 67:2268-2279. [PMID: 30115653 DOI: 10.2337/db17-1223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 08/07/2018] [Indexed: 11/13/2022]
Abstract
β-Cell loss and dysfunction play a critical role in the progression of type 1 and type 2 diabetes. Identifying new molecules and/or molecular pathways that improve β-cell function and/or increase β-cell mass should significantly contribute to the development of new therapies for diabetes. Using the zebrafish model, we screened 4,640 small molecules to identify modulators of β-cell function. This in vivo strategy identified 84 stimulators of insulin expression, which simultaneously reduced glucose levels. The insulin promoter activation kinetics for 32 of these stimulators were consistent with a direct mode of action. A subset of insulin stimulators, including the antidiabetic drug pioglitazone, induced the coordinated upregulation of gluconeogenic pck1 expression, suggesting functional response to increased insulin action in peripheral tissues. Notably, Kv1.3 inhibitors increased β-cell mass in larval zebrafish and stimulated β-cell function in adult zebrafish and in the streptozotocin-induced hyperglycemic mouse model. In addition, our data indicate that cytoplasmic Kv1.3 regulates β-cell function. Thus, using whole-organism screening, we have identified new small-molecule modulators of β-cell function and glucose metabolism.
Collapse
Affiliation(s)
- Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hideki Masaki
- Division of Stem Cell Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
25
|
How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases. Genetics 2018; 208:833-851. [PMID: 29487144 PMCID: PMC5844338 DOI: 10.1534/genetics.117.300124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases.
Collapse
|
26
|
Timme-Laragy AR, Hahn ME, Hansen JM, Rastogi A, Roy MA. Redox stress and signaling during vertebrate embryonic development: Regulation and responses. Semin Cell Dev Biol 2018; 80:17-28. [PMID: 28927759 PMCID: PMC5650060 DOI: 10.1016/j.semcdb.2017.09.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022]
Abstract
Vertebrate embryonic development requires specific signaling events that regulate cell proliferation and differentiation to occur at the correct place and the correct time in order to build a healthy embryo. Signaling pathways are sensitive to perturbations of the endogenous redox state, and are also susceptible to modulation by reactive species and antioxidant defenses, contributing to a spectrum of passive vs. active effects that can affect redox signaling and redox stress. Here we take a multi-level, integrative approach to discuss the importance of redox status for vertebrate developmental signaling pathways and cell fate decisions, with a focus on glutathione/glutathione disulfide, thioredoxin, and cysteine/cystine redox potentials and the implications for protein function in development. We present a tissue-specific example of the important role that reactive species play in pancreatic development and metabolic regulation. We discuss NFE2L2 (also known as NRF2) and related proteins, their roles in redox signaling, and their regulation of glutathione during development. Finally, we provide examples of xenobiotic compounds that disrupt redox signaling in the context of vertebrate embryonic development. Collectively, this review provides a systems-level perspective on the innate and inducible antioxidant defenses, as well as their roles in maintaining redox balance during chemical exposures that occur in critical windows of development.
Collapse
Affiliation(s)
- Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Archit Rastogi
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Monika A Roy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
27
|
Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 2018; 14:140-162. [PMID: 29348476 DOI: 10.1038/nrendo.2017.161] [Citation(s) in RCA: 569] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Mary C Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Simone Renner
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Stephen C Woods
- University of Cincinnati College of Medicine, Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | - Peter Huypens
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, D-85354 Freising, Germany
- Institute for Food & Health, Technische Universität München, D-85354 Freising, Germany
| | - Mark Heiman
- MicroBiome Therapeutics, 1316 Jefferson Ave, New Orleans, Louisiana 70115, USA
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, CH-8603 Zurich-Schwerzenbach, Switzerland
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, 3135 Meyer Hall, University of California, Davis, California 95616-5270, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
28
|
Jacobs HM, Sant KE, Basnet A, Williams LM, Moss JB, Timme-Laragy AR. Embryonic exposure to Mono(2-ethylhexyl) phthalate (MEHP) disrupts pancreatic organogenesis in zebrafish (Danio rerio). CHEMOSPHERE 2018; 195:498-507. [PMID: 29277029 PMCID: PMC5788038 DOI: 10.1016/j.chemosphere.2017.12.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 05/22/2023]
Abstract
Mono(2-ethylhexyl) phthalate (MEHP) is the bioactive metabolite of di(2-ethylhexyl) phthalate, a plasticizing agent and persistent environmental contaminant associated with obesity, developmental abnormalities, and oxidative stress. Nrf2 (Nfe2l2) is a transcription factor that regulates cytoprotective genes as part of the adaptive antioxidant response. We previously identified the pancreas as a sensitive target of oxidative stress during embryonic development. The goals of this study were to 1) characterize the effects of MEHP exposure on pancreatic development, and 2) determine whether oxidative stress contributes to MEHP embryotoxicity. Zebrafish (Danio rerio) embryos from AB wildtype and Tg(ins:GFP;nrf2afh318/fh318) were exposed to 0 or 200 μg/L MEHP at 3 h post fertilization (hpf) through 168 hpf to assess pancreatic organogenesis. MEHP exposure significantly decreased β-cell area at all timepoints (48, 72, 96, 168 hpf), but Nrf2a did not significantly protect against islet hypomorphism. Tg(gcga:GFP) embryos exposed to MEHP showed a decrease in α-cell area in the islet across the same timepoints. Tg(ptf1a:GFP) embryos were assessed at 80 and 168 hpf for exocrine pancreas length. MEHP exposure decreased growth of the exocrine pancreas. Expression of pancreas genes insa, sst2 and ptf1a was significantly reduced by MEHP exposure compared to controls. Glutathione (GSH) concentrations and redox potentials were quantified at 72 hpf by HPLC, but no significant changes were observed. However, expression of the GSH-related genes gstp1 and gsr were significantly altered by MEHP exposure. These data indicate that the developing pancreas is a sensitive target tissue of embryonic exposure to MEHP.
Collapse
Affiliation(s)
- Haydee M Jacobs
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, MA 01003, USA
| | - Karilyn E Sant
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, MA 01003, USA
| | - Aviraj Basnet
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, MA 01003, USA
| | | | - Jennifer B Moss
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27701, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
29
|
Freudenblum J, Iglesias JA, Hermann M, Walsen T, Wilfinger A, Meyer D, Kimmel RA. In vivo imaging of emerging endocrine cells reveals a requirement for PI3K-regulated motility in pancreatic islet morphogenesis. Development 2018; 145:dev158477. [PMID: 29386244 PMCID: PMC5818004 DOI: 10.1242/dev.158477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
Abstract
The three-dimensional architecture of the pancreatic islet is integral to beta cell function, but the process of islet formation remains poorly understood due to the difficulties of imaging internal organs with cellular resolution. Within transparent zebrafish larvae, the developing pancreas is relatively superficial and thus amenable to live imaging approaches. We performed in vivo time-lapse and longitudinal imaging studies to follow islet development, visualizing both naturally occurring islet cells and cells arising with an accelerated timecourse following an induction approach. These studies revealed previously unappreciated fine dynamic protrusions projecting between neighboring and distant endocrine cells. Using pharmacological compound and toxin interference approaches, and single-cell analysis of morphology and cell dynamics, we determined that endocrine cell motility is regulated by phosphoinositide 3-kinase (PI3K) and G-protein-coupled receptor (GPCR) signaling. Linking cell dynamics to islet formation, perturbation of protrusion formation disrupted endocrine cell coalescence, and correlated with decreased islet cell differentiation. These studies identified novel cell behaviors contributing to islet morphogenesis, and suggest a model in which dynamic exploratory filopodia establish cell-cell contacts that subsequently promote cell clustering.
Collapse
Affiliation(s)
- Julia Freudenblum
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - José A Iglesias
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Tanja Walsen
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck Austria
| | - Armin Wilfinger
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
30
|
Kamel M, Ninov N. Catching new targets in metabolic disease with a zebrafish. Curr Opin Pharmacol 2017; 37:41-50. [DOI: 10.1016/j.coph.2017.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
|
31
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
32
|
Abstract
In the last 30 years, the zebrafish has become a widely used model organism for research on vertebrate development and disease. Through a powerful combination of genetics and experimental embryology, significant inroads have been made into the regulation of embryonic axis formation, organogenesis, and the development of neural networks. Research with this model has also expanded into other areas, including the genetic regulation of aging, regeneration, and animal behavior. Zebrafish are a popular model because of the ease with which they can be maintained, their small size and low cost, the ability to obtain hundreds of embryos on a daily basis, and the accessibility, translucency, and rapidity of early developmental stages. This primer describes the swift progress of genetic approaches in zebrafish and highlights recent advances that have led to new insights into vertebrate biology.
Collapse
|
33
|
Maddison LA, Chen W. Modeling Pancreatic Endocrine Cell Adaptation and Diabetes in the Zebrafish. Front Endocrinol (Lausanne) 2017; 8:9. [PMID: 28184214 PMCID: PMC5266698 DOI: 10.3389/fendo.2017.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Glucose homeostasis is an important element of energy balance and is conserved in organisms from fruit fly to mammals. Central to the control of circulating glucose levels in vertebrates are the endocrine cells of the pancreas, particularly the insulin-producing β-cells and the glucagon producing α-cells. A feature of α- and β-cells is their plasticity, an ability to adapt, in function and number as a response to physiological and pathophysiological conditions of increased hormone demand. The molecular mechanisms underlying these adaptive responses that maintain glucose homeostasis are incompletely defined. The zebrafish is an attractive model due to the low cost, high fecundity, and amenability to genetic and compound screens, and mechanisms governing the development of the pancreatic endocrine cells are conserved between zebrafish and mammals. Post development, both β- and α-cells of zebrafish display plasticity as in mammals. Here, we summarize the studies of pancreatic endocrine cell adaptation in zebrafish. We further explore the utility of the zebrafish as a model for diabetes, a relevant topic considering the increase in diabetes in the human population.
Collapse
Affiliation(s)
- Lisette A. Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
34
|
Wiley DS, Redfield SE, Zon LI. Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods Cell Biol 2016; 138:651-679. [PMID: 28129862 DOI: 10.1016/bs.mcb.2016.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Zebrafish chemical screening allows for an in vivo assessment of small molecule modulation of biological processes. Compound toxicities, chemical alterations by metabolism, pharmacokinetic and pharmacodynamic properties, and modulation of cell niches can be studied with this method. Furthermore, zebrafish screening is straightforward and cost effective. Zebrafish provide an invaluable platform for novel therapeutic discovery through chemical screening.
Collapse
Affiliation(s)
- D S Wiley
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| | - S E Redfield
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| | - L I Zon
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
36
|
Abstract
The zebrafish pancreas shares its basic organization and cell types with the mammalian pancreas. In addition, the developmental pathways that lead to the establishment of the pancreatic islets of Langherhans are generally conserved from fish to mammals. Zebrafish provides a powerful tool to probe the mechanisms controlling establishment of the pancreatic endocrine cell types from early embryonic progenitor cells, as well as the regeneration of endocrine cells after damage. This knowledge is, in turn, applicable to refining protocols to generate renewable sources of human pancreatic islet cells that are critical for regulation of blood sugar levels. Here, we review how previous and ongoing studies in zebrafish and beyond are influencing the understanding of molecular mechanisms underlying various forms of diabetes and efforts to develop cell-based approaches to cure this increasingly widespread disease.
Collapse
|
37
|
White DT, Eroglu AU, Wang G, Zhang L, Sengupta S, Ding D, Rajpurohit SK, Walker SL, Ji H, Qian J, Mumm JS. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates. Nat Protoc 2016; 11:2432-2453. [PMID: 27831568 DOI: 10.1038/nprot.2016.142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The zebrafish has emerged as an important model for whole-organism small-molecule screening. However, most zebrafish-based chemical screens have achieved only mid-throughput rates. Here we describe a versatile whole-organism drug discovery platform that can achieve true high-throughput screening (HTS) capacities. This system combines our automated reporter quantification in vivo (ARQiv) system with customized robotics, and is termed 'ARQiv-HTS'. We detail the process of establishing and implementing ARQiv-HTS: (i) assay design and optimization, (ii) calculation of sample size and hit criteria, (iii) large-scale egg production, (iv) automated compound titration, (v) dispensing of embryos into microtiter plates, and (vi) reporter quantification. We also outline what we see as best practice strategies for leveraging the power of ARQiv-HTS for zebrafish-based drug discovery, and address technical challenges of applying zebrafish to large-scale chemical screens. Finally, we provide a detailed protocol for a recently completed inaugural ARQiv-HTS effort, which involved the identification of compounds that elevate insulin reporter activity. Compounds that increased the number of insulin-producing pancreatic beta cells represent potential new therapeutics for diabetic patients. For this effort, individual screening sessions took 1 week to conclude, and sessions were performed iteratively approximately every other day to increase throughput. At the conclusion of the screen, more than a half million drug-treated larvae had been evaluated. Beyond this initial example, however, the ARQiv-HTS platform is adaptable to almost any reporter-based assay designed to evaluate the effects of chemical compounds in living small-animal models. ARQiv-HTS thus enables large-scale whole-organism drug discovery for a variety of model species and from numerous disease-oriented perspectives.
Collapse
Affiliation(s)
- David T White
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Arife Unal Eroglu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guohua Wang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liyun Zhang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sumitra Sengupta
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Surendra K Rajpurohit
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Steven L Walker
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff S Mumm
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
38
|
Antidepressant indatraline induces autophagy and inhibits restenosis via suppression of mTOR/S6 kinase signaling pathway. Sci Rep 2016; 6:34655. [PMID: 27694974 PMCID: PMC5046148 DOI: 10.1038/srep34655] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/16/2016] [Indexed: 12/15/2022] Open
Abstract
Indatraline is an antidepressive agent and a non-selective monoamine transporter inhibitor that blocks the reuptake of neurotransmitters (dopamine, serotonin, and norepinephrine). In this study, we report that indatraline induces autophagy via the suppression of mTOR/S6 kinase signaling. Autophagy induction was examined by a cell-based high content screening system using LysoTracker, which was followed by monodansylcadaverine staining and transmission electron microscope observation. Indatraline increased the number of EGFP-LC3 cells expressing autophagosomes in the cytoplasm. Conversion of LC3 was further validated by immunoblotting. Indatraline induced autophagy by affecting the AMPK/mTOR/S6K signaling axis and had no influence on the PI3K/AKT/ERK signaling. Moreover, indatraline induced autophagy in smooth muscle cells (SMCs); further, it exhibited therapeutic potential for restenosis by inhibiting SMC accumulation in a rat restenosis model. These results provide new insights into the role of monoamine transporters in autophagy regulation and identify indatraline as a novel agent for inducing autophagy.
Collapse
|
39
|
Sant KE, Jacobs HM, Xu J, Borofski KA, Moss LG, Moss JB, Timme-Laragy AR. Assessment of Toxicological Perturbations and Variants of Pancreatic Islet Development in the Zebrafish Model. TOXICS 2016; 4. [PMID: 28393070 PMCID: PMC5380372 DOI: 10.3390/toxics4030020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of chemical exposures. However, this endpoint, as well as the integrity of the surrounding exocrine pancreas, is often overlooked in studies of developmental toxicology. Disruption of development by toxicants can alter cell fate and migration, resulting in structural alterations that are difficult to detect in mammalian embryo systems, but that are easily observed in the zebrafish embryo model (Danio rerio). Using endogenously expressed fluorescent protein markers for developing zebrafish beta cells and exocrine pancreas tissue, we documented differences in islet area and incidence rates of islet morphological variants in zebrafish embryos between 48 and 96 h post fertilization (hpf), raised under control conditions commonly used in embryotoxicity assays. We identified critical windows for chemical exposures during which increased incidences of endocrine pancreas abnormalities were observed following exposure to cyclopamine (2–12 hpf), Mono-2-ethylhexyl phthalate (MEHP) (3–48 hpf), and Perfluorooctanesulfonic acid (PFOS) (3–48 hpf). Both islet area and length of the exocrine pancreas were sensitive to oxidative stress from exposure to the oxidant tert-butyl hydroperoxide during a highly proliferative critical window (72 hpf). Finally, pancreatic dysmorphogenesis following developmental exposures is discussed with respect to human disease.
Collapse
Affiliation(s)
- Karilyn E. Sant
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; (K.E.S.); (H.M.J.); (J.X.); (K.A.B.)
| | - Haydee M. Jacobs
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; (K.E.S.); (H.M.J.); (J.X.); (K.A.B.)
| | - Jiali Xu
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; (K.E.S.); (H.M.J.); (J.X.); (K.A.B.)
| | - Katrina A. Borofski
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; (K.E.S.); (H.M.J.); (J.X.); (K.A.B.)
| | - Larry G. Moss
- Duke Molecular Physiology Institute, Endocrine Division, Duke University Medical Center, Durham, NC 27701, USA; (L.G.M.); (J.B.M.)
| | - Jennifer B. Moss
- Duke Molecular Physiology Institute, Endocrine Division, Duke University Medical Center, Durham, NC 27701, USA; (L.G.M.); (J.B.M.)
| | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; (K.E.S.); (H.M.J.); (J.X.); (K.A.B.)
- Correspondence: ; Tel.: +1-413-545-7423
| |
Collapse
|
40
|
Huang W, Beer RL, Delaspre F, Wang G, Edelman HE, Park H, Azuma M, Parsons MJ. Sox9b is a mediator of retinoic acid signaling restricting endocrine progenitor differentiation. Dev Biol 2016; 418:28-39. [PMID: 27565026 DOI: 10.1016/j.ydbio.2016.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
Centroacinar cells (CACs) are ductal Notch-responsive progenitors that in the larval zebrafish pancreas differentiate to form new islets and ultimately contribute to the majority of the adult endocrine mass. Uncovering the mechanisms regulating CAC differentiation will facilitate understanding how insulin-producing β cells are formed. Previously we reported retinoic acid (RA) signaling and Notch signaling both regulate larval CAC differentiation, suggesting a shared downstream intermediate. Sox9b is a transcription factor important for islet formation whose expression is upregulated by Notch signaling in larval CACs. Here we report that sox9b expression in larval CACs is also regulated by RA signaling. Therefore, we hypothesized that Sox9b is an intermediate between both RA- and Notch-signaling pathways. In order to study the role of Sox9b in larval CACs, we generated two cre/lox based transgenic tools, which allowed us to express full-length or truncated Sox9b in larval CACs. In this way we were able to perform spatiotemporal-controlled Sox9b gain- and loss-of-function studies and observe the subsequent effect on progenitor differentiation. Our results are consistent with Sox9b regulating CAC differentiation by being a downstream intermediate of both RA- and Notch-signaling pathways. We also demonstrate that adult zebrafish with only one functional allele of sox9b undergo accelerated β-cell regeneration, an observation consistent with sox9b regulating CAC differentiation in adults.
Collapse
Affiliation(s)
- Wei Huang
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Rebecca L Beer
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Fabien Delaspre
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Guangliang Wang
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Hannah E Edelman
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Hyewon Park
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Mizuki Azuma
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Michael J Parsons
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA; Department of Surgery, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Beer RL, Parsons MJ, Rovira M. Centroacinar cells: At the center of pancreas regeneration. Dev Biol 2016; 413:8-15. [PMID: 26963675 DOI: 10.1016/j.ydbio.2016.02.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing β cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace β cells in the zebrafish. However, whether CACs contribute to β-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals.
Collapse
Affiliation(s)
- Rebecca L Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States.
| | - Michael J Parsons
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Meritxell Rovira
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
42
|
Abstract
Phenotypic small molecule screens in zebrafish have gained popularity as an unbiased approach to probe biological processes. In this chapter we outline basic methods for performing chemical screens with larval zebrafish including breeding large numbers of embryos, plating larval fish into multi-well dishes, and adding small molecules to these wells. We also highlight important considerations when designing and interpreting the results of a phenotypic screen and possible follow-up approaches, including popular methods used to identify the mechanism of action of a chemical compound.
Collapse
Affiliation(s)
- Colleen A Brady
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA.,Broad Institute, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Andrew J Rennekamp
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA.,Broad Institute, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Randall T Peterson
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA. .,Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA. .,Broad Institute, 7 Cambridge Center, Cambridge, MA, 02142, USA.
| |
Collapse
|
43
|
|
44
|
Dang M, Fogley R, Zon LI. Identifying Novel Cancer Therapies Using Chemical Genetics and Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:103-24. [PMID: 27165351 DOI: 10.1007/978-3-319-30654-4_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemical genetics is the use of small molecules to perturb biological pathways. This technique is a powerful tool for implicating genes and pathways in developmental programs and disease, and simultaneously provides a platform for the discovery of novel therapeutics. The zebrafish is an advantageous model for in vivo high-throughput small molecule screening due to translational appeal, high fecundity, and a unique set of developmental characteristics that support genetic manipulation, chemical treatment, and phenotype detection. Chemical genetic screens in zebrafish can identify hit compounds that target oncogenic processes-including cancer initiation and maintenance, metastasis, and angiogenesis-and may serve as cancer therapies. Notably, by combining drug discovery and animal testing, in vivo screening of small molecules in zebrafish has enabled rapid translation of hit anti-cancer compounds to the clinic, especially through the repurposing of FDA-approved drugs. Future technological advancements in automation and high-powered imaging, as well as the development and characterization of new mutant and transgenic lines, will expand the scope of chemical genetics in zebrafish.
Collapse
Affiliation(s)
- Michelle Dang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA.,Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA
| | - Rachel Fogley
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA.,Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
45
|
Tabassum N, Tai H, Jung DW, Williams DR. Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:287847. [PMID: 26681965 PMCID: PMC4670909 DOI: 10.1155/2015/287847] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus affects millions of people worldwide and significantly impacts their quality of life. Moreover, life threatening diseases, such as myocardial infarction, blindness, and renal disorders, increase the morbidity rate associated with diabetes. Various natural products from medicinal plants have shown potential as antidiabetes agents in cell-based screening systems. However, many of these potential "hits" fail in mammalian tests, due to issues such as poor pharmacokinetics and/or toxic side effects. To address this problem, the zebrafish (Danio rerio) model has been developed as a "bridge" to provide an experimentally convenient animal-based screening system to identify drug candidates that are active in vivo. In this review, we discuss the application of zebrafish to drug screening technologies for diabetes research. Specifically, the discovery of natural product-based antidiabetes compounds using zebrafish will be described. For example, it has recently been demonstrated that antidiabetic natural compounds can be identified in zebrafish using activity guided fractionation of crude plant extracts. Moreover, the development of fluorescent-tagged glucose bioprobes has allowed the screening of natural product-based modulators of glucose homeostasis in zebrafish. We hope that the discussion of these advances will illustrate the value and simplicity of establishing zebrafish-based assays for antidiabetic compounds in natural products-based laboratories.
Collapse
Affiliation(s)
- Nadia Tabassum
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Hongmei Tai
- Department of Endocrinology, Yanji Hospital, Jilin 133000, China
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Darren R. Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| |
Collapse
|
46
|
Nakashima R, Morooka M, Shiraki N, Sakano D, Ogaki S, Kume K, Kume S. Neural cells play an inhibitory role in pancreatic differentiation of pluripotent stem cells. Genes Cells 2015; 20:1028-45. [PMID: 26514269 PMCID: PMC4738370 DOI: 10.1111/gtc.12308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/06/2023]
Abstract
Pancreatic endocrine β-cells derived from embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have received attention as screening systems for therapeutic drugs and as the basis for cell-based therapies. Here, we used a 12-day β-cell differentiation protocol for mouse ES cells and obtained several hit compounds that promoted β-cell differentiation. One of these compounds, mycophenolic acid (MPA), effectively promoted ES cell differentiation with a concomitant reduction of neuronal cells. The existence of neural cell-derived inhibitory humoral factors for β-cell differentiation was suggested using a co-culture system. Based on gene array analysis, we focused on the Wnt/β-catenin pathway and showed that the Wnt pathway inhibitor reversed MPA-induced β-cell differentiation. Wnt pathway activation promoted β-cell differentiation also in human iPS cells. Our results showed that Wnt signaling activation positively regulates β-cell differentiation, and represent a downstream target of the neural inhibitory factor.
Collapse
Affiliation(s)
- Ryutaro Nakashima
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | - Mayu Morooka
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | - Nobuaki Shiraki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Daisuke Sakano
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Soichiro Ogaki
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe Street, Mizuho, Nagoya, 467-8603, Japan
| | - Shoen Kume
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Program for Leading Graduate Schools, Health life science: Interdisciplinary and Glocal Oriented (HIGO), Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| |
Collapse
|
47
|
Abstract
Regeneration involves interactions between multiple signaling pathways acting in a spatially and temporally complex manner. As signaling pathways are highly conserved, understanding how regeneration is controlled in animal models exhibiting robust regenerative capacities should aid efforts to stimulate repair in humans. One way to discover molecular regulators of regeneration is to alter gene/protein function and quantify effect(s) on the regenerative process: dedifferentiation/reprograming, stem/progenitor proliferation, migration/remodeling, progenitor cell differentiation and resolution. A powerful approach for applying this strategy to regenerative biology is chemical genetics, the use of small-molecule modulators of specific targets or signaling pathways. Here, we review advances that have been made using chemical genetics for hypothesis-focused and discovery-driven studies aimed at furthering understanding of how regeneration is controlled.
Collapse
|
48
|
Abstract
The zebrafish has become a prominent vertebrate model for disease and has already contributed to several examples of successful phenotype-based drug discovery. For the zebrafish to become useful in drug development more broadly, key hurdles must be overcome, including a more comprehensive elucidation of the similarities and differences between human and zebrafish biology. Recent studies have begun to establish the capabilities and limitations of zebrafish for disease modelling, drug screening, target identification, pharmacology, and toxicology. As our understanding increases and as the technologies for manipulating zebrafish improve, it is hoped that the zebrafish will have a key role in accelerating the emergence of precision medicine.
Collapse
Affiliation(s)
- Calum A MacRae
- Cardiovascular Medicine and Network Medicine Divisions, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Randall T Peterson
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
49
|
Gomez DL, O’Driscoll M, Sheets TP, Hruban RH, Oberholzer J, McGarrigle JJ, Shamblott MJ. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate. PLoS One 2015; 10:e0133862. [PMID: 26288179 PMCID: PMC4545947 DOI: 10.1371/journal.pone.0133862] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/02/2015] [Indexed: 01/01/2023] Open
Abstract
Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment.
Collapse
Affiliation(s)
- Danielle L. Gomez
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
| | - Marci O’Driscoll
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
| | - Timothy P. Sheets
- Department of Gynecology and Obstetrics, John Hopkins University, Baltimore, MD, United States of America
| | - Ralph H. Hruban
- Departments of Pathology and Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jose Oberholzer
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - James J. McGarrigle
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Michael J. Shamblott
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
- Department of Gynecology and Obstetrics, John Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
50
|
Wang G, Rajpurohit SK, Delaspre F, Walker SL, White DT, Ceasrine A, Kuruvilla R, Li RJ, Shim JS, Liu JO, Parsons MJ, Mumm JS. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass. eLife 2015; 4:e08261. [PMID: 26218223 PMCID: PMC4534842 DOI: 10.7554/elife.08261] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/24/2015] [Indexed: 12/26/2022] Open
Abstract
Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes.
Collapse
Affiliation(s)
- Guangliang Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Surgery, Johns Hopkins University, Baltimore, United States
| | - Surendra K Rajpurohit
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| | - Fabien Delaspre
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Surgery, Johns Hopkins University, Baltimore, United States
| | - Steven L Walker
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| | - David T White
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| | - Alexis Ceasrine
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Ruo-jing Li
- Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
| | - Joong S Shim
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Jun O Liu
- Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
- Department of Oncology, Johns Hopkins University, Baltimore, United States
| | - Michael J Parsons
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Surgery, Johns Hopkins University, Baltimore, United States
| | - Jeff S Mumm
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
| |
Collapse
|