1
|
Lee J, Son S, Lee M, Park SB. Development of potential immunomodulatory ligands targeting natural killer T cells inspired by gut symbiont-derived glycolipids. Commun Chem 2025; 8:98. [PMID: 40169880 PMCID: PMC11961698 DOI: 10.1038/s42004-025-01497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
α-Galactosylceramide (α-GalCer) is a prototypical antigen recognized by natural killer T (NKT) cells, a subset of T cells crucial for immune regulation. Despite its significance, the complex structure-activity relationship of α-GalCer and its analogs remains poorly understood, particularly in defining the structural determinants of NKT cell responses. In this study, we designed and synthesized potential immunomodulatory ligands targeting NKT cells, inspired by glycolipids derived from the gut symbiont Bacteroides fragilis. A series of α-GalCer analogs with terminal iso-branched sphinganine backbones was developed through rational modification of the acyl chain. Our results identified the C3' hydroxyl group as a structural element that impairs glycolipid presentation by CD1d, as evidenced by reduced IL-2 secretion and weak competition with a potent CD1d ligand. Notably, among C3'-deoxy α-GalCer analogs, those containing an α-chloroacetamide group exhibited robust NKT cell activation with Th2 selectivity. Computational docking and mass spectrometry analyses further confirmed the substantial interaction of α-chloroacetamide analogs to CD1d. These findings underscore the potential of leveraging microbiota-derived glycolipid structures to selectively modulate NKT cell functions for therapeutic purposes.
Collapse
Affiliation(s)
- Jesang Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sumin Son
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Minha Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Palacios PA, Flores I, Cereceda L, Otero FF, Müller M, Brebi P, Contreras HR, Carreño LJ. Patient-Derived Organoid Models for NKT Cell-Based Cancer Immunotherapy. Cancers (Basel) 2025; 17:406. [PMID: 39941775 PMCID: PMC11815936 DOI: 10.3390/cancers17030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Invariant Natural Killer T (iNKT) cells are a unique subset of T cells that bridge innate and adaptive immunity, displaying potent anti-tumor properties through cytokine secretion, direct cytotoxicity, and recruitment of immune effector cells such as CD8+ T cells and NK cells. Despite their therapeutic potential, the immunosuppressive tumor microenvironment (TME), characterized by regulatory T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs), limits iNKT cell efficacy. Patient-derived organoid (PDO) platforms provide an innovative model for dissecting these complex interactions and evaluating strategies to reinvigorate iNKT cell functionality within the TME. PDOs closely mimic the genetic, phenotypic, and structural characteristics of primary tumors, enabling the study of tumor-immune dynamics. Integrating iNKT cells into PDOs offers a robust platform for investigating CD1d-mediated interactions, Th1-biased immune responses driven by glycolipid analogs like α-GalCer, and combination therapies such as immune checkpoint inhibitors. Additionally, PDO systems can assess the effects of metabolic modulation, including reducing lactic acid accumulation or targeting glutamine pathways, on enhancing iNKT cell activity. Emerging innovations, such as organoid-on-a-chip systems, CRISPR-Cas9 gene editing, and multi-omics approaches, further expand the potential of PDO-iNKT platforms for personalized immunotherapy research. Although the application of iNKT cells in PDOs is still undeveloped, these systems hold immense promise for bridging preclinical studies and clinical translation. By addressing the challenges of the TME and optimizing therapeutic strategies, PDO-iNKT platforms offer a transformative avenue for advancing cancer immunotherapy and personalized medicine.
Collapse
Affiliation(s)
- Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Iván Flores
- Department of Basic and Clinical Oncology, Faculty of Medicine, Universidad de Chile, Santiago 8350499, Chile
| | - Lucas Cereceda
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Francisco F. Otero
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Biomedical Research Consortium (BMRC), Santiago 8331150, Chile
| | - Héctor R. Contreras
- Department of Basic and Clinical Oncology, Faculty of Medicine, Universidad de Chile, Santiago 8350499, Chile
- Center for Cancer Prevention and Control (CECAN), Santiago 8350499, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Research Consortium (BMRC), Santiago 8331150, Chile
| |
Collapse
|
3
|
Hung JT, Chiou SP, Tang YH, Huang JR, Lo FY, Yu AL. Bioactivities and Anti-Cancer Activities of NKT-Stimulatory Phenyl-Glycolipid Formulated with a PEGylated Lipid Nanocarrier. Drug Des Devel Ther 2024; 18:5323-5332. [PMID: 39583633 PMCID: PMC11586003 DOI: 10.2147/dddt.s484130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose The glycolipid α-galactosylceramide (α-GalCer), when presented by CD1d, can modulate the immune system through the activation of natural killer T (NKT) cells. Previously, we synthesized over 30 analogs of α-GalCer and identified a compound, C34, which features two phenyl rings on the acyl chain. C34 exhibited the most potent NKT-stimulating activities, characterized by strong Th1-biased cytokines and potent anti-tumor effects in several murine tumor models. Importantly, unlike α-GalCer, C34 did not induce NKT cell anergy. Despite these promising results, the clinical application of C34 is limited by its poor aqueous solubility. PEGylation enhances the solubility of hydrophobic drugs, and numerous PEGylated drugs have received clinical approval. Consequently, we assessed the biological activity of PEGylated C34 in this study. Methods Murine NK1.2 cells were cultured with A20-CD1d cells in the presence of either PEGylated lipid nanocarriers encapsulating C34 (PLN-C34) or C34 dissolved in DMSO to determine IL-2 production via ELISA. C57BL/6 mice were i.v. injected with C34 or PLN-C34 to examine cytokine profiles and immune cell populations using luminex and flow cytometry, respectively. The anticancer effects of C34 and PLN-C34 were evaluated in mice bearing TC-1 lung cancer and B16 melanoma tumors. Additionally, human PBMCs were cultured with C34 or PLN-C34 to measure cytokine production through luminex. Results PLN-C34 demonstrated a comparable capacity to C34 in activating the NKT cell line in vitro and inducing various cytokines in vivo. Furthermore, treatment with either PLN-C34 or C34 significantly prolonged the survival of TC-1- and B16F10-bearing mice to a similar extent. Additionally, PLN-C34 effectively stimulated cytokine responses in human NKT cells, comparable to those induced by C34. Conclusion These findings demonstrate that the newly formulated PLN-C34 retains NKT-stimulatory activity and anti-cancer efficacy of C34, supporting the potential of PLN as a solvent for C34 for further development in cancer therapy.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Pin Chiou
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Hsin Tang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Jing-Rong Huang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Fei-Yun Lo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, California, USA
| |
Collapse
|
4
|
Wu TN, Hung JT, Hung TH, Wang YH, Wu JC, Yu AL. Effective suppression of tumor growth and hepatic metastasis of neuroblastoma by NKT-stimulatory phenyl glycolipid. Biomed Pharmacother 2024; 177:117040. [PMID: 38959605 DOI: 10.1016/j.biopha.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Invariant natural killer T cell (iNKT) cells produce large amounts of cytokines in response to α-Galactosylceramide (α-GalCer) stimulation. An analog containing two phenyl rings on the acyl chain, C34, was previously found to be more Th1-biased than α-GalCer and triggered greater anticancer activities against breast cancer, melanoma and lung cancer in mice. Since liver is enriched in iNKT cells, we investigated anticancer efficacy of C34 on neuroblastoma with hepatic metastasis. C34 induced Th1-biased cytokine secretions in the liver, significantly suppressed neuroblastoma growth/metastasis and prolonged mouse survival. The anti-tumor efficacy might be attributed to greater expansions of hepatic NKT, NK, CD4+ T, and CD8+ T cells as well as reduction of the number of SSCloGr1intCD11b+ subset of myeloid-derived suppressor cells (MDSCs) in the liver of tumor-bearing mice, as compared to DMSO control group. C34 also upregulated expression of CD1d and CD11c, especially in the SSCloGr1intCD11b+ subset of MDSCs, which might be killed by C34-activated NKT cells, attributing to their reduced number. In addition, C34 also induced expansion of CD4+ T, CD8+ T, and NK cells, which might eliminate neuroblastoma cells. These immune-modulating effects of C34 might act in concert in the local milieu of liver to suppress the tumor growth. Further analysis of database of neuroblastoma revealed that patients with high CD11c expression in the monocytic MDSCs in the tumor had longer survival, suggesting the potential clinical application of C34 for treatment of neuroblastoma.
Collapse
Affiliation(s)
- Tai-Na Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biotechnology, National Taiwan University, Taipei 115, Taiwan.
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Chine Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, University of California in San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Hao T, Mi T, Chu Q, Ma W, Cheng X, Zang Y, Li J, Li T. Stereospecific Synthesis and Biological Evaluation of KRN7000 Analogues with Thio-modifications at the Acyl Moiety. ACS Med Chem Lett 2024; 15:1102-1108. [PMID: 39015265 PMCID: PMC11247626 DOI: 10.1021/acsmedchemlett.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
α-Galactosylceramide (KRN7000 or α-GalCer) analogues terminated with phenyl (Ph) groups at the acyl moiety possess more potency than KRN7000 to activate invariant natural killer T (iNKT) cells for inducing a T helper 1 (Th1)-biased immune response. However, biological activities of phenyl glycolipids with thio-modifications at the acyl moiety remain unknown, and facile approaches for highly stereoselective synthesis of KRN7000 and its analogues are rather scarce. Herein, we exploited 4,6-di-O-tert-butylsilylene (DTBS)-directed stereospecific galactosylation to efficiently synthesize various α-GalCer analogues bearing thioamide, terminal thiophenyl and dual modifications at the acyl moiety. Biological evaluations suggest that a new analogue S34 featuring a terminal Ph-S-Ph-F group exhibits a more superior Th1-biased immune response in mice. Molecular docking analysis revealed that the introduction of a sulfur atom influences vital hydrogen bonding interactions between glycolipids and the cluster of differentiation 1d (CDld), thus adjusting the stability of the glycolipid-CDld complex.
Collapse
Affiliation(s)
- Tianhui Hao
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Mi
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qinyu Chu
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou 310024, China
| | - Wenjing Ma
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Cheng
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou 310024, China
| | - Yi Zang
- Lingang
Laboratory, Shanghai 200031, China
| | - Jia Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou 310024, China
| | - Tiehai Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Hsu SC, Lin KH, Tseng YC, Cheng YY, Ma HH, Chen YC, Jan JT, Wu CY, Ma C. An Adjuvanted Vaccine-Induced Pathogenesis Following Influenza Virus Infection. Vaccines (Basel) 2024; 12:569. [PMID: 38932298 PMCID: PMC11209567 DOI: 10.3390/vaccines12060569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
An incomplete Freund's adjuvant elicited an overt pathogenesis in vaccinated mice following the intranasal challenge of A/California/07/2009 (H1N1) virus despite the induction of a higher specific antibody titer than other adjuvanted formulations. Aluminum hydroxide adjuvants have not induced any pathogenic signs in a variety of formulations with glycolipids. A glycolipid, α-galactosyl ceramide, improved a stimulatory effect of distinct adjuvanted formulations on an anti-influenza A antibody response. In contrast to α-galactosyl ceramide, its synthetic analogue C34 was antagonistic toward a stimulatory effect of an aluminum hydroxide adjuvant on a specific antibody response. The aluminum hydroxide adjuvant alone could confer complete vaccine-induced protection against mortality as well as morbidity caused by a lethal challenge of the same strain of an influenza A virus. The research results indicated that adjuvants could reshape immune responses either to improve vaccine-induced immunity or to provoke an unexpected pathogenic consequence. On the basis of these observations, this research connotes the prominence to develop a precision adjuvant for innocuous vaccination aimed at generating a protective immunity without aberrant responses.
Collapse
Affiliation(s)
- Shiou-Chih Hsu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Kun-Hsien Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Yung-Chieh Tseng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Ying-Chun Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan;
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Che Ma
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| |
Collapse
|
7
|
Nishio K, Pasquet L, Camara K, DiSapio J, Hsu KS, Kato S, Bloom A, Richardson SK, Welsh JA, Jiang T, Jones JC, Cardell S, Watarai H, Terabe M, Olkhanud PB, Howell AR, Berzofsky JA. Lysosomal processing of sulfatide analogs alters target NKT cell specificity and immune responses in cancer. J Clin Invest 2023; 134:e165281. [PMID: 38127463 PMCID: PMC10866642 DOI: 10.1172/jci165281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In a structure-function study of sulfatides that typically stimulate type II NKT cells, we made an unexpected discovery. We compared analogs with sphingosine or phytosphingosine chains and 24-carbon acyl chains with 0-1-2 double bonds (C or pC24:0, 24:1, or 24:2). C24:1 and C24:2 sulfatide presented by the CD1d monomer on plastic stimulated type II, not type I, NKT cell hybridomas, as expected. Unexpectedly, when presented by bone marrow-derived DCs (BMDCs), C24:2 reversed specificity to stimulate type I, not type II, NKT cell hybridomas, mimicking the corresponding β-galactosylceramide (βGalCer) without sulfate. C24:2 induced IFN-γ-dependent immunoprotection against CT26 colon cancer lung metastases, skewed the cytokine profile, and activated conventional DC subset 1 cells (cDC1s). This was abrogated by blocking lysosomal processing with bafilomycin A1, or by sulfite blocking of arylsulfatase or deletion of this enyzme that cleaves off sulfate. Thus, C24:2 was unexpectedly processed in BMDCs from a type II to a type I NKT cell-stimulating ligand, promoting tumor immunity. We believe this is the first discovery showing that antigen processing of glycosylceramides alters the specificity for the target cell, reversing the glycolipid's function from stimulating type II NKT cells to stimulating type I NKT cells, thereby introducing protective functional activity in cancer. We also believe our study uncovers a new role for antigen processing that does not involve MHC loading but rather alteration of which type of cell is responding.
Collapse
Affiliation(s)
- Kumiko Nishio
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Lise Pasquet
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Kaddy Camara
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Julia DiSapio
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Kevin S. Hsu
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Shingo Kato
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Anja Bloom
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | | | - Joshua A. Welsh
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Tianbo Jiang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jennifer C. Jones
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Susanna Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hiroshi Watarai
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Purevdorj B. Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
9
|
Romanò C, Clausen MH. Chemical Biology of αGalCer: a Chemist’s Toolbox for the Stimulation of Invariant Natural Killer T (iNKT) Cells. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cecilia Romanò
- Technical University of Denmark: Danmarks Tekniske Universitet Department of Chemisty Kemitorvet 207 2800 Kgs. Lyngby DENMARK
| | - Mads Hartvig Clausen
- Technical University of Denmark Department of Chemistry Kemitorvet, Building 201 2800 Kgs. Lyngby DENMARK
| |
Collapse
|
10
|
Gao Y, Guo J, Bao X, Xiong F, Ma Y, Tan B, Yu L, Zhao Y, Lu J. Adoptive Transfer of Autologous Invariant Natural Killer T Cells as Immunotherapy for Advanced Hepatocellular Carcinoma: A Phase I Clinical Trial. Oncologist 2021; 26:e1919-e1930. [PMID: 34255901 PMCID: PMC8571770 DOI: 10.1002/onco.13899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Lessons Learned Administration of autologous invariant natural killer T (iNKT) cells was safe and well‐tolerated in patients with hepatocellular carcinoma (Barcelona Clinic Liver Cancer stage B/C). Expanded iNKT cells produced T‐helper 1–like responses with possible antitumor activity. No severe adverse events were observed in any of the enrolled patients, including one patient who received 1010 in vitro–expanded autologous iNKT cells as a single infusion.
Background Invariant natural killer T cells co‐express T‐cell antigen receptor and natural killer (NK) cell receptors. Invariant natural killer T (iNKT) cells exhibit antitumor activity, but their numbers and functions are impaired in patients with hepatocellular carcinoma (HCC). The adoptive transfer of iNKT cells might treat advanced HCC. Methods This phase I study (NCT03175679) enrolled 10 patients with HCC (Barcelona Clinic Liver Cancer [BCLC] stage B/C) at Beijing YouAn Hospital (April 2017 to May 2018). iNKT cells isolated from peripheral blood mononuclear cells (PBMCs) were expanded and alpha‐galactosylceramide (α‐GalCer)–pulsed. Dosage escalated from 3 × 107 to 6 × 107 to 9 × 107 cells/m2 (3+3 design). An exploratory dose trial (1 × 1010 cells/m2) was conducted in one patient. Results Expanded iNKT cells produced greater quantities of T‐helper 1 (Th1) cytokines (e.g., interferon‐gamma, perforin, and granzyme B) but less interleukin‐4 than nonexpanded iNKT cells. Circulating numbers of iNKT cells and activated NK cells were increased after iNKT cell infusion. Most treatment‐related adverse events were grade 1–2, and three grade 3 adverse events were reported; all resolved without treatment. Four patients were progression‐free at 5.5, 6, 7, and 11 months after therapy, and one patient was alive and without tumor recurrence at the last follow‐up. Five patients died at 1.5 to 11 months after treatment. Conclusion Autologous iNKT cell treatment is safe and well‐tolerated. Expanded iNKT cells produce Th1‐like responses with possible antitumor activity. The antitumor effects of iNKT cell infusion in patients with advanced HCC merit further investigation.
Collapse
Affiliation(s)
- Yao Gao
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jia Guo
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xuli Bao
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Fang Xiong
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yanpin Ma
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Bingqin Tan
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lele Yu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yong Zhao
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Lu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Brettschneider EES, Terabe M. The Role of NKT Cells in Glioblastoma. Cells 2021; 10:cells10071641. [PMID: 34208864 PMCID: PMC8307781 DOI: 10.3390/cells10071641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is an aggressive and deadly cancer, but to date, immunotherapies have failed to make significant strides in improving prognoses for glioblastoma patients. One of the current challenges to developing immunological interventions for glioblastoma is our incomplete understanding of the numerous immunoregulatory mechanisms at play in the glioblastoma tumor microenvironment. We propose that Natural Killer T (NKT) cells, which are unconventional T lymphocytes that recognize lipid antigens presented by CD1d molecules, may play a key immunoregulatory role in glioblastoma. For example, evidence suggests that the activation of type I NKT cells can facilitate anti-glioblastoma immune responses. On the other hand, type II NKT cells are known to play an immunosuppressive role in other cancers, as well as to cross-regulate type I NKT cell activity, although their specific role in glioblastoma remains largely unclear. This review provides a summary of our current understanding of NKT cells in the immunoregulation of glioblastoma as well as highlights the involvement of NKT cells in other cancers and central nervous system diseases.
Collapse
Affiliation(s)
- Emily E. S. Brettschneider
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
- Correspondence: ; Tel.: +1-240-760-6731
| |
Collapse
|
12
|
Ma J, He P, Zhao C, Ren Q, Dong Z, Qiu J, Jing Y, Liu S, Du Y. A Designed α-GalCer Analog Promotes Considerable Th1 Cytokine Response by Activating the CD1d-iNKT Axis and CD11b-Positive Monocytes/Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000609. [PMID: 32714765 PMCID: PMC7375225 DOI: 10.1002/advs.202000609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Selective helper T cell 1 (Th1) priming agonists are a promising area of investigation for immunotherapeutic treatment of various diseases. α-galactosylceramide (α-GalCer, KRN7000), a well-studied Th1-polarizer, simultaneously induces helper T cell 2 (Th2)-type responses, which is a major drawback for its clinical applications. Based on surflex-docking computation, α-GalCer-diol, with added hydroxyl groups in the acyl chain, is designed and synthesized. Structural analyses reveal stronger affinity between α-GalCer-diol and cluster of differentiation 1d (CD1d), leading to enhanced antigen presentation by dendritic cells (DCs) and self-activation, as reflected by tight binding of the T-cell receptor (TCR)/KRN7000/CD1d ternary complex and elevated production of interleukin 12 (IL-12) and interferon-γ (IFN-γ). Consequently, invariant natural killer T cells (iNKTs) are activated and exhibit an improved Th1-type cytokine profile ex vivo and in vivo. Different from KRN7000, α-GalCer-diol markedly boosts the expansion of the CD11b+ subpopulation and enhances IFN-γ content in CD11b+ cells. These reinforced Th1-type responses collectively endow α-GalCer-diol more robust antitumor activity in a xenograft animal model using B16-F10 melanoma cells. Together, the data demonstrate a new mechanism through which α-GalCer-diol induces stronger Th1-type responses by stimulating CD11b+ leukocyte expansion and DC-conducted CD1d-restricted and TCR-mediated iNKT activation. Hence, this study may facilitate the development of novel Th1 priming agonists.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Peng He
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yang Jing
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- National Engineering Research Center for Carbohydrate SynthesisJiangxi Normal UniversityNanchangJiangxi330022China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
13
|
Ma W, Bi J, Zhao C, Zhang Z, Liu T, Zhang G. Synthesis and biological activities of amino acids functionalized α-GalCer analogues. Bioorg Med Chem 2020; 28:115141. [PMID: 31786009 DOI: 10.1016/j.bmc.2019.115141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023]
Abstract
Invariant natural killer T-cells (iNKT-cells) are promising targets for manipulating the immune system, which can rapidly release a large amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipid antigens presented by CD1d. In this paper, we wish to report a novel series of α-GalCer analogues which were synthesized by incorporation of l-amino acid methyl esters in the C-6' position of glycolipid. The evaluation of these synthetic analogues for their capacities to stimulate iNKT-cells into producing Th1 and Th2 cytokines both in vitro and in vivo indicated that they were potent CD1d ligands and could stimulate murine spleen cells into a higher release of the Th1 cytokine IFN-γ in vitro. In vivo, Gly-α-GalCer (1) and Lys-α-GalCer (3) showed more Th1-biased responses than α-GalCer, especially analogue 3 showed the highest selectivity for IFN-γ production (IFN-γ/IL-4 = 5.32) compared with α-GalCer (IFN-γ/IL-4 = 2.5) in vivo. These novel α-GalCer analogues might be used as efficient X-ray crystallographic probes to reveal the relationship between glycolipids and CD1d proteins in α-GalCer/CD1d complexes and pave the way for developing new potent immunostimulating agents.
Collapse
Affiliation(s)
- Weiwei Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingjing Bi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Chuanfang Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tongxin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
14
|
3,4-Dideoxy-3,3,4,4-tetrafluoro- and 4-OH epimeric 3-deoxy-3,3-difluoro-α-GalCer analogues: Synthesis and biological evaluation on human iNKT cells stimulation. Eur J Med Chem 2019; 178:195-213. [PMID: 31185411 DOI: 10.1016/j.ejmech.2019.05.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
iNKT cells recognize CD1d/α-galactosylceramide (α-GalCer) complexes via their invariant TCR receptor and stimulate the immune response. Many α-GalCer analogues have been investigated to interrogate this interaction. Following our previous work related to the modification of the hydrogen bond network between α-GalCer and CD1d, we have now focused our attention on the synthesis of 3-deoxy-3,3-difluoro- and 3,4-dideoxy-3,3,4,4-tetrafluoro-α-GalCer analogues, and studied their ability to stimulate human iNKT cells. In each case, deoxygenation at the indicated positions was accompanied by difluoro introduction in order to evaluate the resulting electronic effect on the stability of the ternary CD1d/Galcer/TCR complex which has been rationalized by modeling study. With deoxy-difluorination at the 3-position, the two epimeric 4-OH analogues were investigated to establish their capacity to compensate for the lack of the hydrogen bond donating group at the 3-position. The 3,4-dideoxytetrafluoro analogue was of interest to highlight the amide NH-bond hydrogen bond properties.
Collapse
|
15
|
Song C, Zheng XJ, Guo H, Cao Y, Zhang F, Li Q, Ye XS, Zhou Y. Fluorine-modified sialyl-Tn-CRM197 vaccine elicits a robust immune response. Glycoconj J 2019; 36:399-408. [PMID: 31267246 DOI: 10.1007/s10719-019-09884-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 01/28/2023]
Abstract
Even though a vaccine that targets tumor-associated carbohydrate antigens on epithelial carcinoma cells presents an attractive therapeutic approach, relatively poor immunogenicity limits its development. In this study, we investigated the immunological activity of a fluoro-substituted Sialyl-Tn (F-STn) analogue coupled to the non-toxic cross-reactive material of diphtheria toxin197 (CRM197). Our results indicate that F-STn-CRM197 promotes a greater immunogenicity than non-fluorinated STn-CRM197. In the presence or absence of adjuvant, F-STn-CRM197 remarkably enhances both cellular and humoral immunity against STn by increasing antigen-specific lymphocyte proliferation and inducing a mixed Th1/Th2 response leading to production of IFN-γ and IL-4 cytokines, as well as STn-specific antibodies. Furthermore, antisera produced from F-STn-CRM197 immunization significantly recognizes STn-positive tumor cells and increases cancer cell lysis induced by antibody-dependent cell-mediated cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) pathways. Our data suggest that this F-STn vaccine may be useful for cancer immunotherapy and possibly for prophylactic prevention of cancer.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neoplasm/isolation & purification
- Antibodies, Neoplasm/pharmacology
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Bacterial Proteins/chemistry
- Bacterial Proteins/immunology
- Bacterial Proteins/pharmacology
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Cell Line, Tumor
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Female
- Gene Expression
- Glycoconjugates/chemical synthesis
- Glycoconjugates/immunology
- Glycoconjugates/pharmacology
- Halogenation
- Humans
- Immune Sera/chemistry
- Immune Sera/pharmacology
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunization
- Immunogenicity, Vaccine
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-4/genetics
- Interleukin-4/immunology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Mice
- Mice, Inbred BALB C
- Spleen/drug effects
- Spleen/immunology
- Th1-Th2 Balance
Collapse
Affiliation(s)
- Chengcheng Song
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haili Guo
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yafei Cao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fan Zhang
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Qin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
16
|
Fereidouni M, Derakhshani A, Exley MA. iNKT cells and hematopoietic stem cell transplantation: Two-phase activation of iNKT cells may improve outcome. Clin Immunol 2019; 207:43-48. [PMID: 31128279 DOI: 10.1016/j.clim.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/22/2023]
Abstract
Invariant natural killer T cells (iNKT) produce large amounts of different cytokines which can influence differentiation, polarization and activation of immune cells, particularly NK and T cells. iNKT have been shown to suppress GvHD and promote anti-tumor and anti-pathogen immunity. There are highly specific and safe synthetic ligands such as alpha-galactosylceramide (α-GalCer) and C20:2 which activate iNKT cells toward relatively Th1 and Th2 pathways, respectively. Bone marrow transplantation (BMT) or 'hematopoietic stem cell transplantation' (HSCT) is effective for leukemia and lymphoma through 'graft-versus-leukemia' (GVL) immunity. However, frequent serious complications include graft-versus-host-disease (GVHD), opportunistic infections and relapse. Both GVHD and GVL are mediated by T cells. Manipulating iNKT by different lipid analogues in early and late phases after transplantation may suppress GVHD and graft rejection and enhance GVL effect, as well as resistance to opportunistic infections and so, could be a novel and effective strategy for improving HSCT outcome.
Collapse
Affiliation(s)
- Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Asthma, Allergy & Immunology Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Afshin Derakhshani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Asthma, Allergy & Immunology Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mark A Exley
- Division of Gastroenterology, Endoscopy, and Hepatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK.
| |
Collapse
|
17
|
Wang SC, Liao HY, Zhang JY, Cheng TJR, Wong CH. Development of a universal influenza vaccine using hemagglutinin stem protein produced from Pichia pastoris. Virology 2018; 526:125-137. [PMID: 30388628 DOI: 10.1016/j.virol.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022]
Abstract
The development of a universal influenza vaccine has become a major effort to combat the high mutation rate of influenza. To explore the use of the highly conserved stem region of hemagglutinin (HA) as a universal vaccine, we produced HA-stem-based protein using yeast expression systems. The glycosylation effects on the immunogenicity and protection activities were investigated. The yield of the A/Brisbane/59/2007 HA stem produced from Pichia pastoris reached 100 mg/l. The immunogenicity of HA stem proteins in various glycoforms was further investigated and compared. All glycoforms of the HA stem protein can induce cross-reactive antibody responses, antibody-dependent cellular cytotoxicity (ADCC)-mediated protection as well as T-cell responses, with broad protection in mice. The monoglycosylated form of the A/Brisbane/59/2007 HA stem produced in yeast, together with the glycolipid C34 as the adjuvant, can elicit greater ADCC responses, better neutralizing activities against heterologous strains, and broader protection in mice.
Collapse
Affiliation(s)
- Shih-Chi Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Hsin-Yu Liao
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Jia-Yan Zhang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Ting-Jen Rachel Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
| | - Chi-Huey Wong
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
| |
Collapse
|
18
|
Terabe M, Berzofsky JA. Tissue-Specific Roles of NKT Cells in Tumor Immunity. Front Immunol 2018; 9:1838. [PMID: 30158927 PMCID: PMC6104122 DOI: 10.3389/fimmu.2018.01838] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023] Open
Abstract
NKT cells are an unusual population of T cells recognizing lipids presented by CD1d, a non-classical class-I-like molecule, rather than peptides presented by conventional MHC molecules. Type I NKT cells use a semi-invariant T cell receptor and almost all recognize a common prototype lipid, α-galactosylceramide (α-GalCer). Type II NKT cells are any lipid-specific CD1d-restricted T cells that use other receptors and generally don't recognize α-GalCer. They play important regulatory roles in immunity, including tumor immunity. In contrast to type I NKT cells that most have found to promote antitumor immunity, type II NKT cells suppress tumor immunity and the two subsets cross-regulate each other, forming an immunoregulatory axis. They also can promote other regulatory cells including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and can induce MDSCs to secrete TGF-β, one of the most immunosuppressive cytokines known. In some tumors, both Tregs and type II NKT cells can suppress immunosurveillance, and the balance between these is determined by a type I NKT cell. We have also seen that regulation of tumor immunity can depend on the tissue microenvironment, so the same tumor in the same animal in different tissues may be regulated by different cells, such as type II NKT cells in the lung vs Tregs in the skin. Also, the effector T cells that protect those sites when Tregs are removed do not always act between tissues even in the same animal. Thus, metastases may require different immunotherapy from primary tumors. Newly improved sulfatide-CD1d tetramers are starting to allow better characterization of the elusive type II NKT cells to better understand their function and control it to overcome immunosuppression.
Collapse
Affiliation(s)
- Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Liu Z, Guo J. NKT-cell glycolipid agonist as adjuvant in synthetic vaccine. Carbohydr Res 2017; 452:78-90. [DOI: 10.1016/j.carres.2017.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 01/07/2023]
|
20
|
Clancy-Thompson E, Chen GZ, Tyler PM, Servos MM, Barisa M, Brennan PJ, Ploegh HL, Dougan SK. Monoclonal Invariant NKT (iNKT) Cell Mice Reveal a Role for Both Tissue of Origin and the TCR in Development of iNKT Functional Subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:159-171. [PMID: 28576977 PMCID: PMC5518629 DOI: 10.4049/jimmunol.1700214] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023]
Abstract
Invariant NKT (iNKT) cell functional subsets are defined by key transcription factors and output of cytokines, such as IL-4, IFN-γ, IL-17, and IL-10. To examine how TCR specificity determines iNKT function, we used somatic cell nuclear transfer to generate three lines of mice cloned from iNKT nuclei. Each line uses the invariant Vα14Jα18 TCRα paired with unique Vβ7 or Vβ8.2 subunits. We examined tissue homing, expression of PLZF, T-bet, and RORγt, and cytokine profiles and found that, although monoclonal iNKT cells differentiated into all functional subsets, the NKT17 lineage was reduced or expanded depending on the TCR expressed. We examined iNKT thymic development in limited-dilution bone marrow chimeras and show that higher TCR avidity correlates with higher PLZF and reduced T-bet expression. iNKT functional subsets showed distinct tissue distribution patterns. Although each individual monoclonal TCR showed an inherent subset distribution preference that was evident across all tissues examined, the iNKT cytokine profile differed more by tissue of origin than by TCR specificity.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/physiology
- Cell Differentiation
- Cytokines/genetics
- Cytokines/immunology
- Cytotoxicity, Immunologic/immunology
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Kruppel-Like Transcription Factors/genetics
- Mice
- Mice, Inbred C57BL
- Natural Killer T-Cells/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Transfer Techniques
- Organ Specificity
- Promyelocytic Leukemia Zinc Finger Protein
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Eleanor Clancy-Thompson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Gui Zhen Chen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Paul M Tyler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Mariah M Servos
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Marta Barisa
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| | - Patrick J Brennan
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02215
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215;
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| |
Collapse
|
21
|
Altiti AS, Ma X, Zhang L, Ban Y, Franck RW, Mootoo DR. Synthesis and biological activities of C-glycosides of KRN 7000 with novel ceramide residues. Carbohydr Res 2017; 443-444:73-77. [PMID: 28365448 PMCID: PMC5499692 DOI: 10.1016/j.carres.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 11/28/2022]
Abstract
The identification of immunoactive agents for clinical and mechanistic applications is a very active area of research. In this vein, analogues of the potent immunostimulant KRN 7000 with diverse cytokine profiles have attracted considerable attention. These compounds have been shown to activate iNKT cells via presentation by CD1d. Herein, we report on the synthesis and activity for four new C-glycosides of KRN 7000, 11-phenylundecanoyl and 11-p-fluorophenylundecanoyl derivatives of C-KRN 7000, 2,3-bis-epi-C-KRN 7000 and the reverse amide of C-KRN 7000. In mice, compared to C-KRN 7000, 2,3-bis-epi-C-KRN 7000 stimulated higher release of the anti-inflammatory cytokine IL-4 and lower release of the inflammatory cytokines IFN-γ and IL-12. The phenyl terminated alkanoyl and reverse amide analogues were inactive. These data suggest that structure activity effects for KRN 7000 are not necessarily additive and their use in the design of new analogues will require an improved understanding of how subtle structural changes impact on cytokine activity.
Collapse
Affiliation(s)
- Ahmad S Altiti
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA; The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Lixing Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Yi Ban
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Richard W Franck
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA; The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY, 10016, USA
| | - David R Mootoo
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA; The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
22
|
Hung JT, Huang JR, Yu AL. Tailored design of NKT-stimulatory glycolipids for polarization of immune responses. J Biomed Sci 2017; 24:22. [PMID: 28335781 PMCID: PMC5364570 DOI: 10.1186/s12929-017-0325-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Natural killer T (NKT) cell is a distinct population of T lymphocytes that can rapidly release massive amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipids presented by CD1d. The secreted cytokines can promote cell-mediated immunity to kill tumor cells and intracellular pathogens, or suppress autoreactive immune cells in autoimmune diseases. Thus, NKT cell is an attractive target for developing new therapeutics to manipulate immune system. The best-known glycolipid to activate NKT cells is α-galactosylceramide (α-GalCer), which has been used as a prototype for designing new NKT stimulatory glycolipids. Many analogues have been generated by modification of the galactosyl moiety, the acyl chain or the phytosphingosine chain of α-GalCer. Some of the analogues showed greater abilities than α-GalCer in polarizing immune responses toward Th1 or Th2 dominance. Among them, several analogues containing phenyl groups in the lipid tails were more potent in inducing Th1-skewed cytokines and exhibited greater anticancer efficacy than α-GalCer. Analyses of the correlation between structure and activity of various α-GalCer analogues on the activation of iNKT cell revealed that CD1d–glycolipid complexes interacted with the same population of iNKT cell expressing similar T-cell receptor Vβ as α-GalCer. On the other hand, those phenyl glycolipids with propensity for Th1 dominant responses showed greater binding avidity and stability than α-GalCer for iNKT T-cell receptor when complexed with CD1d. Thus, it is the avidity and stability of the ternary complexes of CD1d-glycolipid-iNKT TCR that dictate the polarity and potency of immune responses. These findings provide a key to the rationale design of immune modulating glycolipids with desirable Th1/Th2 polarity for clinical application. In addition, elucidation of α-GalCer-induced anergy, liver damage and accumulation of myeloid derived suppressor cells has offered explanation for its lacklustre anti-cancer activities in clinical trials. On other hand, the lack of such drawbacks in glycolipid analogues containing phenyl groups in the lipid tails of α-GalCer coupled with the greater binding avidity and stability of CD1d-glycolipid complex for iNKT T-cell receptor, account for their superior anti-cancer efficacy in tumor bearing mice. Further clinical development of these phenyl glycolipids is warranted.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Jing-Rong Huang
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, No. 5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan. .,Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
23
|
Wu TN, Lin KH, Wu YT, Huang JR, Hung JT, Wu JC, Chen CY, Chu KC, Lin NH, Yu AL, Wong CH. Phenyl Glycolipids with Different Glycosyl Groups Exhibit Marked Differences in Murine and Human iNKT Cell Activation. ACS Chem Biol 2016; 11:3431-3441. [PMID: 27782396 DOI: 10.1021/acschembio.6b00650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycosphingolipids (GSLs) bearing the α-galactosyl headgroup and the acyl chain terminated with a phenyl derivative were found to be more potent than α-galactosyl ceramide (αGalCer) to stimulate both murine and human invariant natural killer T (iNKT) cells and to induce an antibody isotope switch to IgG. In this study, we replaced the galactosyl group with glucose (αGlc) and its fluoro-analogs and found that phenyl GSLs with αGlc (C34-Glc) and its fluoro-analog 6F-C34-Glc were stronger than those with αGal in stimulating human iNKT cells but weaker in mice. Their activities have a strong correlation with the binding avidities of the ternary interaction between the iNKT-cell receptor (iNKTCR) and CD1d-GSL complex. It was the iNKTCR rather than CD1d that dictated the species-specific responses. C34-Glc was further used as an adjuvant for a SSEA4-crm-197 vaccine, and after immunization in mice, the vaccine was highly effective against Lewis lung carcinoma.
Collapse
Affiliation(s)
- Tai-Na Wu
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Lin
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Ying-Ta Wu
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
| | - Jing-Rong Huang
- Institute
of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute
of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jen-Chine Wu
- Institute
of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | | | | | | | - Alice L. Yu
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Institute
of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung University, Taoyuan, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan
- Department
of Chemistry, the Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
24
|
Hung JT, Sawant RC, Wang SH, Huang JR, Huang CL, Yang SA, Shelke GB, Yu J, Yu AL, Luo SY. Structure-Based Design of NH-modified α-Galactosyl Ceramide (KRN7000) Analogues and Their Biological Activities. ChemistrySelect 2016. [DOI: 10.1002/slct.201600854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research; Chang Gung Memorial Hospital at Linkou; Taoyuan 333 Taiwan
| | - Ratnnadeep C. Sawant
- Chemistry Research Laboratory; Dr. Ambedkar College, Deeksha Bhoomi; Nagpur- 440010, Maharashtra State India
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research; Chang Gung Memorial Hospital at Linkou; Taoyuan 333 Taiwan
| | - Jing-Rong Huang
- Institute of Stem Cell and Translational Cancer Research; Chang Gung Memorial Hospital at Linkou; Taoyuan 333 Taiwan
| | - Chung-Li Huang
- Department of Chemistry; National Chung Hsing University; Taichung 402 Taiwan
| | - Shih-An Yang
- Department of Chemistry; National Chung Hsing University; Taichung 402 Taiwan
| | - Ganesh B. Shelke
- Department of Chemistry; National Chung Hsing University; Taichung 402 Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research; Chang Gung Memorial Hospital at Linkou; Taoyuan 333 Taiwan
| | - Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research; Chang Gung Memorial Hospital at Linkou; Taoyuan 333 Taiwan
| | - Shun-Yuan Luo
- Department of Chemistry; National Chung Hsing University; Taichung 402 Taiwan
| |
Collapse
|
25
|
Song C, Sun S, Huo CX, Li Q, Zheng XJ, Tai G, Zhou Y, Ye XS. Synthesis and immunological evaluation of N-acyl modified Tn analogues as anticancer vaccine candidates. Bioorg Med Chem 2016; 24:915-20. [PMID: 26787275 DOI: 10.1016/j.bmc.2016.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
Tumor-associated carbohydrate antigens (TACAs), which are aberrantly expressed on the surface of tumor cells, are important targets for anticancer vaccine development. Herein, several N-acyl modified Tn analogues were synthesized and conjugated with carrier protein CRM197. The immunological results of these glycoconjugates indicated that 6-CRM197 elicited higher titers of antibodies which cross-reacted with native Tn antigen than the unmodified 2-CRM197 did. The IFN-γ-producing frequency of lymphocytes in mice treated with 6-CRM197 was obviously increased, compared to that of mice vaccinated with 2-CRM197 (p=0.016), which was typically associated with the Th1 response. Moreover, the elicited antisera against antigen 6-CRM197 reacted strongly with the Tn-positive tumor cells, implying the potential of this glycoconjugate as an anticancer vaccine.
Collapse
Affiliation(s)
- Chengcheng Song
- School of Life Sciences, Northeast Normal University, Changchun 130024, PR China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, PR China
| | - Shuang Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, PR China
| | - Chang-Xin Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, PR China
| | - Qin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, PR China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, PR China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, PR China.
| |
Collapse
|
26
|
Xiao A, Zheng XJ, Song C, Gui Y, Huo CX, Ye XS. Synthesis and immunological evaluation of MUC1 glycopeptide conjugates bearing N-acetyl modified STn derivatives as anticancer vaccines. Org Biomol Chem 2016; 14:7226-37. [DOI: 10.1039/c6ob01092j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Unnatural STn disaccharides with N-acetyl modifications were incorporated into a 20-amino acid MUC1 tandem repeat sequence. The modified STn-MUC1 glycopeptide–protein conjugates showed high immunogenicity.
Collapse
Affiliation(s)
- An Xiao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Chengcheng Song
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yue Gui
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Chang-Xin Huo
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
27
|
Robertson FC, Berzofsky JA, Terabe M. NKT cell networks in the regulation of tumor immunity. Front Immunol 2014; 5:543. [PMID: 25389427 PMCID: PMC4211539 DOI: 10.3389/fimmu.2014.00543] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022] Open
Abstract
CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.
Collapse
Affiliation(s)
- Faith C Robertson
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
28
|
Venkataswamy MM, Ng TW, Kharkwal SS, Carreño LJ, Johnson AJ, Kunnath-Velayudhan S, Liu Z, Bittman R, Jervis PJ, Cox LR, Besra GS, Wen X, Yuan W, Tsuji M, Li X, Ho DD, Chan J, Lee S, Frothingham R, Haynes BF, Panas MW, Gillard GO, Sixsmith JD, Korioth-Schmitz B, Schmitz JE, Larsen MH, Jacobs WR, Porcelli SA. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells. PLoS One 2014; 9:e108383. [PMID: 25255287 PMCID: PMC4177913 DOI: 10.1371/journal.pone.0108383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/20/2014] [Indexed: 01/13/2023] Open
Abstract
Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.
Collapse
Affiliation(s)
- Manjunatha M. Venkataswamy
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- National Institute of Mental Health and Neuroscience, Bangalore, Karnataka, India
| | - Tony W. Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shalu S. Kharkwal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Leandro J. Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alison J. Johnson
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shajo Kunnath-Velayudhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Zheng Liu
- Department of Chemistry and Biochemistry, Queens College of City University of New York, Flushing, New York, United States of America
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of City University of New York, Flushing, New York, United States of America
| | - Peter J. Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Liam R. Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Xiangming Li
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sunhee Lee
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard Frothingham
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael W. Panas
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Geoffrey O. Gillard
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jaimie D. Sixsmith
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Birgit Korioth-Schmitz
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joern E. Schmitz
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Hung JT, Tsai YC, Lin WD, Jan JT, Lin KH, Huang JR, Cheng JY, Chen MW, Wong CH, Yu AL. Potent adjuvant effects of novel NKT stimulatory glycolipids on hemagglutinin based DNA vaccine for H5N1 influenza virus. Antiviral Res 2014; 107:110-8. [PMID: 24786174 DOI: 10.1016/j.antiviral.2014.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 11/28/2022]
Abstract
H5N1 influenza virus is a highly pathogenic virus, posing a pandemic threat. Previously, we showed that phenyl analogs of α-galactosylceramide (α-GalCer) displayed greater NKT stimulation than α-GalCer. Here, we examined the adjuvant effects of one of the most potent analogs, C34, on consensus hemagglutinin based DNA vaccine (pCHA5) for H5N1 virus. Upon intramuscular electroporation of mice with pCHA5 with/without various α-GalCer analogs, C34-adjuvanted group developed the highest titer against consensus H5 and more HA-specific IFN-γ secreting CD8 cells (203±13.5) than pCHA5 alone (152.6±13.7, p<0.05). Upon lethal challenge of NIBRG-14 virus, C34-adjuvanted group (84.6%) displayed higher survival rate than pCHA5 only group (46.1%). In the presence of C34 as adjuvant, the antisera displayed broader and greater neutralizing activities against virions pseudotyped with HA of clade 1, and 2.2 than pCHA5 only group. Moreover, to simulate an emergency response to a sudden H5N1 outbreak, we injected mice intramuscularly with single dose of a new consensus H5 (pCHA5-II) based on 1192 full-length H5 sequences, with C34 as adjuvant. The latter not only enhanced the humoral immune response and protection against virus challenge, but also broadened the spectrum of neutralization against pseudotyped HA viruses. Our vaccine strategy can be easily implemented for any H5N1 virus outbreak by single IM injection of a consensus H5 DNA vaccine based on updated HA sequences using C34 as an adjuvant.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Yi-Chieh Tsai
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Der Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kun-Hsien Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jing-Rong Huang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute and Department of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Jing-Yan Cheng
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Wei Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Chi-Huey Wong
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Alice L Yu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan.
| |
Collapse
|
30
|
Laurent X, Bertin B, Renault N, Farce A, Speca S, Milhomme O, Millet R, Desreumaux P, Hénon E, Chavatte P. Switching Invariant Natural Killer T (iNKT) Cell Response from Anticancerous to Anti-Inflammatory Effect: Molecular Bases. J Med Chem 2014; 57:5489-508. [DOI: 10.1021/jm4010863] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xavier Laurent
- Faculté
de Médecine, Intestinal Biotech Development, Amphis J et K, Boulevard du Professeur Jules Leclerc, 59045 Lille Cedex, France
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Benjamin Bertin
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Nicolas Renault
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Amaury Farce
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Silvia Speca
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Ophélie Milhomme
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Régis Millet
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Pierre Desreumaux
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Eric Hénon
- Université
de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles,
BSMA-ICMR, UMR CNRS 6229, Moulin de
la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Philippe Chavatte
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| |
Collapse
|
31
|
De Spiegeleer A, Wynendaele E, Vandekerckhove M, Stalmans S, Boucart M, Van Den Noortgate N, Venken K, Van Calenbergh S, Aspeslagh S, Elewaut D. An in silico approach for modelling T-helper polarizing iNKT cell agonists. PLoS One 2014; 9:e87000. [PMID: 24498010 PMCID: PMC3909045 DOI: 10.1371/journal.pone.0087000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/16/2013] [Indexed: 11/23/2022] Open
Abstract
Many analogues of the glycolipid alpha-galactosylceramide (α-GalCer) are known to activate iNKT cells through their interaction with CD1d-expressing antigen-presenting cells, inducing the release of Th1 and Th2 cytokines. Because of iNKT cell involvement and associated Th1/Th2 cytokine changes in a broad spectrum of human diseases, the design of iNKT cell ligands with selective Th1 and Th2 properties has been the subject of extensive research. This search for novel iNKT cell ligands requires refined structural insights. Here we will visualize the chemical space of 333 currently known iNKT cell activators, including several newly tested analogues, by more than 3000 chemical descriptors which were calculated for each individual analogue. To evaluate the immunological responses we analyzed five different cytokines in five different test-systems. We linked the chemical space to the immunological space using a system biology computational approach resulting in highly sensitive and specific predictive models. Moreover, these models correspond with the current insights of iNKT cell activation by α-GalCer analogues, explaining the Th1 and Th2 biased responses, downstream of iNKT cell activation. We anticipate that such models will be of great value for the future design of iNKT cell agonists.
Collapse
Affiliation(s)
- Anton De Spiegeleer
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Matthias Vandekerckhove
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sofie Stalmans
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Maxime Boucart
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Nele Van Den Noortgate
- Geriatrics Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Koen Venken
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory of Medicinal Chemistry, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sandrine Aspeslagh
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
32
|
Huang JR, Tsai YC, Chang YJ, Wu JC, Hung JT, Lin KH, Wong CH, Yu AL. α-Galactosylceramide but Not Phenyl-Glycolipids Induced NKT Cell Anergy and IL-33–Mediated Myeloid-Derived Suppressor Cell Accumulation via Upregulation of egr2/3. THE JOURNAL OF IMMUNOLOGY 2014; 192:1972-81. [DOI: 10.4049/jimmunol.1302623] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Arora P, Baena A, Yu KOA, Saini NK, Kharkwal SS, Goldberg MF, Kunnath-Velayudhan S, Carreño LJ, Venkataswamy MM, Kim J, Lazar-Molnar E, Lauvau G, Chang YT, Liu Z, Bittman R, Al-Shamkhani A, Cox LR, Jervis PJ, Veerapen N, Besra GS, Porcelli SA. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens. Immunity 2014; 40:105-16. [PMID: 24412610 PMCID: PMC3895174 DOI: 10.1016/j.immuni.2013.12.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/16/2013] [Indexed: 11/28/2022]
Abstract
Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. Complexes of antigenic glycolipids bound to CD1d have been visualized in situ A single DC subset predominates in presentation of a variety of glycolipids Antigen presentation to iNKT cells rapidly alters accessory molecules on APCs Reciprocal induction of CD70 and PD-L2 controls cytokine bias of iNKT cell responses
Collapse
Affiliation(s)
- Pooja Arora
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética GICIG, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No.52-21, Medellin 05001000, Colombia
| | - Karl O A Yu
- Pediatric Infectious Diseases, Comer Children's Hospital, University of Chicago, Chicago, IL 60637, USA
| | - Neeraj K Saini
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shalu S Kharkwal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael F Goldberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shajo Kunnath-Velayudhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leandro J Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | | | - John Kim
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eszter Lazar-Molnar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gregoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Young-tae Chang
- Department of Chemistry and Medicinal Chemistry Programme, National University of Singapore, and Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A(∗)STAR), Biopolis 117543, Singapore
| | - Zheng Liu
- Department of Chemistry and Biochemistry, Queens College of CUNY, Flushing, NY 11367, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of CUNY, Flushing, NY 11367, USA
| | - Aymen Al-Shamkhani
- Faculty of Medicine, Cancer Sciences Academic Unit, University of Southampton, Southampton SO16 6YD, UK
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Peter J Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
34
|
Hung JT, Sawant RC, Chen JC, Yen YF, Chen WS, Yu AL, Luo SY. Design and synthesis of galactose-6-OH-modified α-galactosyl ceramide analogues with Th2-biased immune responses. RSC Adv 2014. [DOI: 10.1039/c4ra08602c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a simple type of O-6 analogue of KRN7000 was synthesized starting from galactosyl iodide and d-lyxose.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Genomics Research Center
- Academia Sinica
- Taipei 115, Taiwan
- Institute of Stem Cell & Translational Cancer Research
- Chang Gung Memorial Hospital at Linkou
| | | | - Ji-Chuan Chen
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| | - Yu-Fen Yen
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| | - Wan-Shin Chen
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| | - Alice L. Yu
- Genomics Research Center
- Academia Sinica
- Taipei 115, Taiwan
- Institute of Stem Cell & Translational Cancer Research
- Chang Gung Memorial Hospital at Linkou
| | - Shun-Yuan Luo
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| |
Collapse
|
35
|
Baek DJ, Park JS, Lee JY, Lim C, Kang CY, Bittman R. Synthesis and bioactivity of α-galactosylceramide analogues bearing an aryl group within the fatty amide chain. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.09.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Aspeslagh S, Nemčovič M, Pauwels N, Venken K, Wang J, Calenbergh SV, Zajonc DM, Elewaut D. Enhanced TCR footprint by a novel glycolipid increases NKT-dependent tumor protection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2916-25. [PMID: 23960235 PMCID: PMC3817951 DOI: 10.4049/jimmunol.1203134] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells, a unique type of regulatory T cells, respond to structurally diverse glycolipids presented by CD1d. Although it was previously thought that recognition of glycolipids such as α-galactosylceramide (α-GalCer) by the NKT cell TCR (NKTCR) obeys a key-lock principle, it is now clear this interaction is much more flexible. In this article, we report the structure-function analysis of a series of novel 6''-OH analogs of α-GalCer with more potent antitumor characteristics. Surprisingly, one of the novel carbamate analogs, α-GalCer-6''-(pyridin-4-yl)carbamate, formed novel interactions with the NKTCR. This interaction was associated with an extremely high level of Th1 polarization and superior antitumor responses. These data highlight the in vivo relevance of adding aromatic moieties to the 6''-OH position of the sugar and additionally show that judiciously chosen linkers are a promising strategy to generate strong Th1-polarizing glycolipids through increased binding either to CD1d or to NKTCR.
Collapse
Affiliation(s)
- Sandrine Aspeslagh
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Marek Nemčovič
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Nora Pauwels
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Koen Venken
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jing Wang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Chuang HY, Ren CT, Chao CA, Wu CY, Shivatare SS, Cheng TJR, Wu CY, Wong CH. Synthesis and Vaccine Evaluation of the Tumor-Associated Carbohydrate Antigen RM2 from Prostate Cancer. J Am Chem Soc 2013; 135:11140-50. [DOI: 10.1021/ja403609x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hong-Yang Chuang
- Genomics Research
Center, Academia Sinica, 128
Academia Road, Section 2, Nankang, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, 1 Roosevelt
Road, Section 4, Taipei 106, Taiwan
| | - Chien-Tai Ren
- Genomics Research
Center, Academia Sinica, 128
Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chung-An Chao
- Genomics Research
Center, Academia Sinica, 128
Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research
Center, Academia Sinica, 128
Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Sachin S. Shivatare
- Genomics Research
Center, Academia Sinica, 128
Academia Road, Section 2, Nankang, Taipei 115, Taiwan
- Chemical Biology and
Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical
Sciences, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan
| | - Ting-Jen R. Cheng
- Genomics Research
Center, Academia Sinica, 128
Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research
Center, Academia Sinica, 128
Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research
Center, Academia Sinica, 128
Academia Road, Section 2, Nankang, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, 1 Roosevelt
Road, Section 4, Taipei 106, Taiwan
- Institute of Biochemical
Sciences, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan
| |
Collapse
|
38
|
East JE, Kennedy AJ, Webb TJ. Raising the roof: the preferential pharmacological stimulation of Th1 and th2 responses mediated by NKT cells. Med Res Rev 2012; 34:45-76. [PMID: 23239102 DOI: 10.1002/med.21276] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Natural killer T (NKT) cells serve as a bridge between the innate and adaptive immune systems, and manipulating their effector functions can have therapeutic significances in the treatment of autoimmunity, transplant biology, infectious disease, and cancer. NKT cells are a subset of T cells that express cell-surface markers characteristic of both natural killer cells and T cells. These unique immunologic cells have been demonstrated to serve as a link between the innate and adaptive immune systems through their potent cytokine production following the recognition of a range of lipid antigens, mediated through presentation of the major histocompatibility complex (MHC) class I like CD1d molecule, in addition to the NKT cell's cytotoxic capabilities upon activation. Although a number of glycolipid antigens have been shown to complex with CD1d molecules, most notably the marine sponge derived glycolipid alpha-galactosylceramide (α-GalCer), there has been debate as to the identity of the endogenous activating lipid presented to the T-cell receptor (TCR) via the CD1d molecule on antigen-presenting cells (APCs). This review aims to survey the use of pharmacological agents and subsequent structure-activity relationships (SAR) that have given insight into the binding interaction of glycolipids with both the CD1d molecules as well as the TCR and the subsequent immunologic response of NKT cells. These studies not only elucidate basic binding interactions but also pave the way for future pharmacological modulation of NKT cell responses.
Collapse
Affiliation(s)
- James E East
- Department of Microbiology and Immunology, The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | | |
Collapse
|
39
|
Lawson V. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells. Immunology 2012; 137:20-7. [PMID: 22734667 DOI: 10.1111/j.1365-2567.2012.03612.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)-antigen-CD1d complex show how docking between CD1d-antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand-CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR-self-antigen-CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity.
Collapse
|
40
|
Sun W, Subrahmanyam PB, East JE, Webb TJ. Connecting the dots: artificial antigen presenting cell-mediated modulation of natural killer T cells. J Interferon Cytokine Res 2012; 32:505-16. [PMID: 23050947 DOI: 10.1089/jir.2012.0045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural killer T (NKT) cells constitute an important subset of T cells that can both directly and indirectly mediate antitumor immunity. However, we and others have reported that cancer patients have a reduction in both NKT cell number and function. NKT cells can be stimulated and expanded with α-GalCer and cytokines and these expanded NKT cells retain their phenotype, remain responsive to antigenic stimulation, and display cytotoxic function against tumor cell lines. These data strongly favor the use of ex vivo expanded NKT cells in adoptive immunotherapy. NKT cell based-immunotherapy has been limited by the use of autologous antigen-presenting cells, which can vary substantially in their quantity and quality. A standardized system that relies on artificial antigen-presenting cells (aAPCs) could produce the stimulating effects of dendritic cell (DC) without the pitfalls of allo- or xenogeneic cells. In this review, we discuss the progress that has been made using CD1d-based aAPC and how this acellular antigen presenting system can be used in the future to enhance our understanding of NKT cell biology and to develop NKT cell-specific adoptive immunotherapeutic strategies.
Collapse
Affiliation(s)
- Wenji Sun
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
41
|
Tashiro T, Shigeura T, Watarai H, Taniguchi M, Mori K. RCAI-84, 91, and 105-108, ureido and thioureido analogs of KRN7000: Their synthesis and bioactivity for mouse lymphocytes to produce Th1-biased cytokines. Bioorg Med Chem 2012; 20:4540-8. [DOI: 10.1016/j.bmc.2012.05.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
42
|
Hsieh MH, Hung JT, Liw YW, Lu YJ, Wong CH, Yu AL, Liang PH. Synthesis and evaluation of acyl-chain- and galactose-6''-modified analogues of α-GalCer for NKT cell activation. Chembiochem 2012; 13:1689-97. [PMID: 22730199 DOI: 10.1002/cbic.201200004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 12/25/2022]
Abstract
α-GalCer is an immunostimulating glycolipid that binds to CD1d molecules and activates invariant natural killer T (iNKT) cells. Here we report a scaled-up synthesis of α-GalCer analogues with modifications in the acyl side chain and/or at the galactose 6''-position, together with their evaluation in vitro and in vivo. Analogues containing 11-phenylundecanoyl acyl side chains with aromatic substitutions (14, 16-21) and Gal-6''-phenylacetamide-substituted α-GalCer analogues bearing p-nitro- (32), p-tert-butyl (34), or o-, m-, or p-methyl groups (40-42) displayed higher IFN-γ/IL-4 secretion ratios than α-GalCer in vitro. In mice, compound 16, with an 11-(3,4-difluorophenyl)undecanoyl acyl chain, induced significant proliferation of NK and DC cells, which should be beneficial in killing tumors and priming the immune response. These new glycolipids might prove useful as adjuvants or anticancer agents.
Collapse
Affiliation(s)
- Ming-Han Hsieh
- School of Pharmacy, College of Medicine, National Taiwan University, 1, Jen-Ai Road, Section 1, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Liu Z, Bittman R. Synthesis of C-glycoside analogues of α-galactosylceramide via linear allylic C-H oxidation and allyl cyanate to isocyanate rearrangement. Org Lett 2012; 14:620-3. [PMID: 22233351 DOI: 10.1021/ol2032448] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-Glycoside analogues of α-galactosylceramide were synthesized in which several significant modifications known to promote Th-1 cytokine production were included. The key transformations include C-H oxidation, Sharpless asymmetric epoxidation, olefin cross metathesis, and an allyl cyanate to isocyanate rearrangement.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York 11367-1597, USA
| | | |
Collapse
|