1
|
Kim Y, Lee KT, Kim HB, Jung H, Ko JY, Kweon TH, Yadavalli HC, Seo J, Ji S, Kim YJ, Shin D, Yang SW, Lee MM, Cho JW, Yi EC, Nam JW, Yang WH. O-GlcNAcylation of NONO regulates paraspeckle component assembly and contributes to colon cancer cell proliferation. Cell Death Discov 2025; 11:234. [PMID: 40360465 PMCID: PMC12075841 DOI: 10.1038/s41420-025-02405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 05/15/2025] Open
Abstract
Non-POU domain-containing octamer-binding protein (NONO) is a multifunctional member of the Drosophila behavior/human splicing (DBHS) protein family with DNA- and RNA-binding activity. NONO is highly expressed in various types of cancer, and excessive O-GlcNAcylation has also been implicated in tumorigenesis. Although recent studies revealed that NONO is O-GlcNAcylated and that this modification is involved in DNA damage repair, it remains unknown whether O-GlcNAcylation of NONO regulates cancer cell proliferation. Additionally, little is known about the effect of O-GlcNAcylation on other biological properties of NONO. In this study, we identify Thr440 as the primary NONO O-GlcNAcylation site and demonstrates its crucial role in the assembly of paraspeckles, an important subnuclear compartment that facilitates NONO-dependent transcriptional regulation in mammalian cells. Moreover, we found that O-GlcNAcylation of NONO is required to maintain the expression of genes related to microtubule cytoskeleton organization involved in mitosis and to suppress the expression of genes related to cellular response to type I interferon. Regarding the regulation of these genes, depletion of NONO O-GlcNAcylation at Thr440 significantly inhibited the proliferation of colon cancer cells. Collectively, our findings highlight NONO O-GlcNAcylation as a key regulator modulating paraspeckle formation and as a candidate therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Yeolhoe Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Han Byeol Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jeong Yeon Ko
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Tae Hyun Kweon
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hari Chandana Yadavalli
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Junghwa Seo
- Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea
| | - Suena Ji
- Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea
| | - Yun Ju Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Donghyuk Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Myeong Min Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jin Won Cho
- Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea.
| | - Won Ho Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
- Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Koning H, Lai J, Marshall A, Stroeher E, Monahan G, Pullakhandam A, Knott G, Ryan T, Fox A, Whitten A, Lee M, Bond C. Structural plasticity of the coiled-coil interactions in human SFPQ. Nucleic Acids Res 2025; 53:gkae1198. [PMID: 39698821 PMCID: PMC11754644 DOI: 10.1093/nar/gkae1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
The proteins SFPQ (splicing Factor Proline/Glutamine rich) and NONO (non-POU domain-containing octamer-binding protein) are mammalian members of the Drosophila Behaviour/Human Splicing (DBHS) protein family, which share 76% sequence identity in their conserved 320 amino acid DBHS domain. SFPQ and NONO are involved in all steps of post-transcriptional regulation and are primarily located in mammalian paraspeckles: liquid phase-separated, ribonucleoprotein sub-nuclear bodies templated by NEAT1 long non-coding RNA. A combination of structured and low-complexity regions provide polyvalent interaction interfaces that facilitate homo- and heterodimerisation, polymerisation, interactions with oligonucleotides, mRNA, long non-coding RNA, and liquid phase-separation, all of which have been implicated in cellular homeostasis and neurological diseases including neuroblastoma. The strength and competition of these interaction modes define the ability of DBHS proteins to dissociate from paraspeckles to fulfil functional roles throughout the nucleus or the cytoplasm. In this study, we define and dissect the coiled-coil interactions which promote the polymerisation of DBHS proteins, using a crystal structure of an SFPQ/NONO heterodimer which reveals a flexible coiled-coil interaction interface which differs from previous studies. We support this through extensive solution small-angle X-ray scattering experiments using a panel of SFPQ/NONO heterodimer variants which are capable of tetramerisation to varying extents. The QM mutant displayed a negligible amount of tetramerisation (quadruple loss of function coiled-coil mutant L535A/L539A/L546A/M549A), the Charged Single Alpha Helix (ΔCSAH) variant displayed a dimer-tetramer equilibrium interaction, and the disulfide-forming variant displayed constitutive tetramerisation (R542C which mimics the pathological Drosophila nonAdiss allele). We demonstrate that newly characterised coiled-coil interfaces play a role in the polymerisation of DBHS proteins in addition to the previously described canonical coiled-coil interface. The detail of these interactions provides insight into a process critical for the assembly of paraspeckles as well as the behaviour of SFPQ as a transcription factor, and general multipurpose auxiliary protein with functions essential to mammalian life. Our understanding of the coiled coil behaviour of SFPQ also enhances the explanatory power of mutations (often disease-associated) observed in the DBHS family, potentially allowing for the development of future medical options such as targeted gene therapy.
Collapse
Affiliation(s)
- Heidar J Koning
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Jia Y Lai
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Andrew C Marshall
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Elke Stroeher
- WA Proteomics Facility, School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Gavin Monahan
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands WA 6009, Australia
| | - Anuradha Pullakhandam
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Gavin J Knott
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy M Ryan
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Andrew Whitten
- ANSTONew Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Mihwa Lee
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
3
|
Knutson SD, Pan CR, Bisballe N, Bloomer BJ, Raftopolous P, Saridakis I, MacMillan DWC. Parallel Proteomic and Transcriptomic Microenvironment Mapping (μMap) of Nuclear Condensates in Living Cells. J Am Chem Soc 2025; 147:488-497. [PMID: 39707993 PMCID: PMC11792175 DOI: 10.1021/jacs.4c11612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cellular activity is spatially organized across different organelles. While several structures are well-characterized, many organelles have unknown roles. Profiling biomolecular composition is key to understanding function but is difficult to achieve in the context of small, dynamic structures. Photoproximity labeling has emerged as a powerful tool for mapping these interaction networks, yet maximizing catalyst localization and reducing toxicity remains challenging in live cell applications. Here, we disclose a new intracellular photocatalyst with minimal cytotoxicity and off-target binding, and we utilize this catalyst for HaloTag-based microenvironment-mapping (μMap) to spatially catalog subnuclear condensates in living cells. We also specifically develop a novel RNA-focused workflow (μMap-seq) to enable parallel transcriptomic and proteomic profiling of these structures. After validating the accuracy of our approach, we generate a spatial map across the nucleolus, nuclear lamina, Cajal bodies, paraspeckles, and PML bodies. These results provide potential new insights into RNA metabolism and gene regulation while significantly expanding the μMap platform for improved live-cell proximity labeling in biological systems.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Chenmengxiao Roderick Pan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Niels Bisballe
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Brandon J Bloomer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Philip Raftopolous
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Iakovos Saridakis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Yuan H, Luo Y, Zou J, Zhang J, Zhang J, Cao G, Cao S, Chen H, Song Y. Cellular NONO protein binds to the flavivirus replication complex and promotes positive-strand RNA synthesis. J Virol 2024; 98:e0029724. [PMID: 39499073 PMCID: PMC11650977 DOI: 10.1128/jvi.00297-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
A cellular protein, non-POU-domain-containing octamer binding protein (NONO), bound to the replication complex of Japanese encephalitis virus (JEV) by directly interacting with the viral 3' UTR RNA and NS3 protein. These interactions were also identified in West Nile virus (WNV) and Zika virus (ZIKV). The infection of JEV or the expression of JEV NS3 protein in cells could induce relocation of NONO protein from the nucleus to the cytoplasm. In JEV-infected cells, the NS3, NS5, and viral RNA could be concurrently detected in the immunoprecipitation by the NONO-specific antibody, suggesting that NONO could integrate into the replication complex of JEV. Further results of co-immunoprecipitation assays showed that NONO protein interacted with NS3 helicase domains 1 and 2 by its two RNA recognize motifs (RRMs). The knockdown and knockout of NONO in cells could significantly reduce the replication of JEV and ZIKV but had no effect on the replication of vesicular stomatitis virus (VSV). The effect of NONO protein on JEV proliferation occurred during the replication stage, rather than the attachment and entry stages. The level of viral positive-strand RNA in NONO knockout cells was significantly reduced than that in wild-type cells at 12-48 h post-JEV infection. However, the level of negative-strand virus RNA had no difference between NONO knockout and wild-type cells at 12-24 h post-infection. In summary, our study identified a cellular protein that bound to the replication complex of flavivirus and facilitated the synthesis of positive-strand RNA.IMPORTANCEOver half of the world's population is at risk of flaviviruses infection, posing a serious global health concern. To date, there are no antiviral drugs or treatments for the severe symptoms caused by the infection of flaviviruses. Some cellular proteins could participate in the replication of virus, and these cellular proteins were also ideal targets in antiviral strategy. Here, we identified cellular NONO protein was recruited by flavivirus NS3 protein to the cytoplasm, serving as a "scaffold" for viral replication complex. Our findings also revealed that NONO protein was critical for flavivirus positive-strand RNA synthesis. Specific areas where NONO interacted with flavivirus NS3 proteins and viral UTRs have also been identified. These results propose a new mechanism for cellular protein to participate in flavivirus replication and also raise a new potential anti-flavivirus strategy.
Collapse
Affiliation(s)
- Honggen Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yun Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junmei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jinhua Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Liu HL, Nan H, Zhao WW, Wan XB, Fan XJ. Phase separation in DNA double-strand break response. Nucleus 2024; 15:2296243. [PMID: 38146123 PMCID: PMC10761171 DOI: 10.1080/19491034.2023.2296243] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023] Open
Abstract
DNA double-strand break (DSB) is the most dangerous type of DNA damage, which may lead to cell death or oncogenic mutations. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are two typical DSB repair mechanisms. Recently, many studies have revealed that liquid-liquid phase separation (LLPS) plays a pivotal role in DSB repair and response. Through LLPS, the crucial biomolecules are quickly recruited to damaged sites with a high concentration to ensure DNA repair is conducted quickly and efficiently, which facilitates DSB repair factors activating downstream proteins or transmitting signals. In addition, the dysregulation of the DSB repair factor's phase separation has been reported to promote the development of a variety of diseases. This review not only provides a comprehensive overview of the emerging roles of LLPS in the repair of DSB but also sheds light on the regulatory patterns of phase separation in relation to the DNA damage response (DDR).
Collapse
Affiliation(s)
- Huan-Lei Liu
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, P.R. China
- College of Life Sciences, Northwest AF University, Yangling, Shaanxi, China
| | - Hao Nan
- College of Life Sciences, Northwest AF University, Yangling, Shaanxi, China
| | - Wan-Wen Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
6
|
Liu R, Wang X, Zhou M, Zhai J, Sun J. PSF-lncRNA interaction as a target for novel targeted anticancer therapies. Biomed Pharmacother 2024; 180:117491. [PMID: 39332189 DOI: 10.1016/j.biopha.2024.117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
The Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF), a component of the Drosophila Behavior/Human Splicing (DBHS) complex, plays a pivotal role in cancer pathogenesis. The epigenetic regulation mediated by PSF and long noncoding RNA (lncRNA), along with PSF's alternative splicing activity, has been implicated in promoting cancer cell proliferation, migration, invasion, metastasis, and drug resistance in various human cancers. Recent research highlights the therapeutic promise of targeting the PSF-lncRNA interaction to combat aggressive malignancies, making it a compelling target for cancer therapy. This review offers a detailed synthesis of the current understanding of PSF's role in oncogenic pathways and recent progress in identifying inhibitors of PSF-lncRNA interactions. Furthermore, it discusses the potential of using these inhibitors in cancer treatment strategies, especially as adjuncts to immune checkpoint blockade therapies to improve the efficacy of anti-PD-(L)1 treatments in Glioblastoma Multiforme (GBM). By outlining the interaction patterns of existing PSF-lncRNA inhibitors, this article aims to guide the development and refinement of future pharmacological interventions.
Collapse
Affiliation(s)
- Ren Liu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Min Zhou
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Jingfang Zhai
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
7
|
Payen SH, Andrada K, Tara E, Petereit J, Verma SC, Rossetto CC. The cellular paraspeckle component SFPQ associates with the viral processivity factor ORF59 during lytic replication of Kaposi's Sarcoma-associated herpesvirus (KSHV). Virus Res 2024; 349:199456. [PMID: 39214388 PMCID: PMC11406446 DOI: 10.1016/j.virusres.2024.199456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) relies on many cellular proteins to complete replication and generate new virions. Paraspeckle nuclear bodies consisting of core ribonucleoproteins splicing factor proline/glutamine-rich (SFPQ), Non-POU domain-containing octamer-binding protein (NONO), and paraspeckle protein component 1 (PSPC1) along with the long non-coding RNA NEAT1, form a complex that has been speculated to play an important role in viral replication. Paraspeckle bodies are multifunctional and involved in various processes including gene expression, mRNA splicing, and anti-viral defenses. To better understand the role of SFPQ during KSHV replication, we performed SFPQ immunoprecipitation followed by mass spectrometry from KSHV-infected cells. Proteomic analysis showed that during lytic reactivation, SFPQ associates with viral proteins, including ORF10, ORF59, and ORF61. These results are consistent with a previously reported ORF59 proteomics assay identifying SFPQ. To test if the association between ORF59 and SFPQ is important for replication, we first identified the region of ORF59 that associates with SFPQ using a series of 50 amino acid deletion mutants of ORF59 in the KSHV BACmid system. By performing co-immunoprecipitations, we identified the region spanning amino acids 101-150 of ORF59 as the association domain with SFPQ. Using this information, we generated a dominant negative polypeptide of ORF59 encompassing amino acids 101-150, that disrupted the association between SFPQ and full-length ORF59, and decreased virus production. Interestingly, when we tested other human herpesvirus processivity factors (EBV BMRF1, HSV-1 UL42, and HCMV UL44) by transfection of each expression plasmid followed by co-immunoprecipitation, we found a conserved association with SFPQ. These are limited studies that remain to be done in the context of infection but suggest a potential association of SFPQ with processivity factors across multiple herpesviruses.
Collapse
Affiliation(s)
- Shannon Harger Payen
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Kayla Andrada
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Evelyn Tara
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Juli Petereit
- University of Nevada, Reno, Nevada Bioinformatics Center (RRID: SCR_017802), Reno, NV 89557, USA
| | - Subhash C Verma
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Cyprian C Rossetto
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA.
| |
Collapse
|
8
|
Li Y, Wang Y, Tan YQ, Yue Q, Guo Y, Yan R, Meng L, Zhai H, Tong L, Yuan Z, Li W, Wang C, Han S, Ren S, Yan Y, Wang W, Gao L, Tan C, Hu T, Zhang H, Liu L, Yang P, Jiang W, Ye Y, Tan H, Wang Y, Lu C, Li X, Xie J, Yuan G, Cui Y, Shen B, Wang C, Guan Y, Li W, Shi Q, Lin G, Ni T, Sun Z, Ye L, Vourekas A, Guo X, Lin M, Zheng K. The landscape of RNA binding proteins in mammalian spermatogenesis. Science 2024; 386:eadj8172. [PMID: 39208083 DOI: 10.1126/science.adj8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Despite continuous expansion of the RNA binding protein (RBP) world, there is a lack of systematic understanding of RBPs in the mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-cross-linked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University, Nanjing 210008, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Weixu Wang
- Institute of Computational Biology, Helmholtz Center Munich, Munich 85764, Germany
| | - Lei Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanyin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenyu Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, Fuzhou 350014, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
9
|
Jiang D, Sui C, Wu X, Jiang P, Bai J, Hu Y, Cong X, Li J, Yoo D, Miller LC, Lee C, Du Y, Qi J. Swine NONO promotes IRF3-mediated antiviral immune response by Detecting PRRSV N protein. PLoS Pathog 2024; 20:e1012622. [PMID: 39413144 PMCID: PMC11482726 DOI: 10.1371/journal.ppat.1012622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Non-POU domain-containing octamer-binding protein (NONO) is a multi-functional nuclear protein which belongs to the Drosophila behavior/human splicing (DBHS) protein family. NONO is known to regulate multiple important biological processes including host antiviral immune response. However, whether NONO can inhibit porcine reproductive and respiratory syndrome virus (PRRSV) replication is less well understood. In this study, we demonstrated that swine NONO (sNONO) inhibited PRRSV replication, via increasing expression of IFN-β, whereas NONO knockdown or knockout in PAM-KNU cells was more susceptible to PRRSV infection. As an IRF3 positive regulation factor, NONO promoted IFN-β expression by enhancing activation of IRF3. During PRRSV infection, NONO further up-regulated IRF3-mediated IFN-β expression by interacting with PRRSV N protein. Mechanistically, NONO functioned as a scaffold protein to detect PRRSV N protein and formed N-NONO-IRF3 complex in the nucleus. Interestingly, it was found that the NONO protein reversed the inhibitory effect of PRRSV N protein on type I IFN signaling pathway. Taken together, our study provides a novel mechanism for NONO to increase the IRF3-mediated IFN-β activation by interacting with the viral N protein to inhibit PRRSV infection.
Collapse
Affiliation(s)
- Dandan Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chao Sui
- Laboratory Animal Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yue Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Juntong Li
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Laura C. Miller
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
10
|
Peng D, Wei C, Jing B, Yu R, Zhang Z, Han L. A novel protein encoded by circCOPA inhibits the malignant phenotype of glioblastoma cells and increases their sensitivity to temozolomide by disrupting the NONO-SFPQ complex. Cell Death Dis 2024; 15:616. [PMID: 39183343 PMCID: PMC11345445 DOI: 10.1038/s41419-024-07010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Glioblastoma (GBM) represents a primary malignant brain tumor. Temozolomide resistance is a major hurdle in GBM treatment. Proteins encoded by circular RNAs (circRNAs) can modulate the sensitivity of multiple tumor chemotherapies. However, the impact of circRNA-encoded proteins on GBM sensitivity to temozolomide remains unknown. Herein, we discover a circRNA (circCOPA) through the circRNA microarray profile in GBM samples, which can encode a novel 99 amino acid protein (COPA-99aa) through its internal ribosome entry site. Functionally, circCOPA overexpression in GBM cells inhibits cell proliferation, migration, and invasion in vitro and growth in vivo. Rather than itself, circCOPA mainly functions as a suppressive effector by encoding COPA-99aa. Moreover, we reveal that circCOPA is downregulated in GBM tissues and high expression of circCOPA is related to a better prognosis in GBM patients. Mechanistically, a heteromer of SFPQ and NONO is required for double-strand DNA break repair. COPA-99aa disrupts the dimerization of NONO and SFPQ by separately binding with the NONO and SFPQ proteins, thus resulting in the inhibition of proliferation or invasion and the increase of temozolomide-induced DNA damage in GBM cells. Collectively, our data suggest that circCOPA mainly contributes to inhibiting the GBM malignant phenotype through its encoded COPA-99aa and that COPA-99aa increases temozolomide-induced DNA damage by interfering with the dimerization of NONO and SFPQ. Restoring circCOPA or COPA-99aa may increase the sensitivity of patients to temozolomide.
Collapse
Affiliation(s)
- Dazhao Peng
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Boyuan Jing
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Runze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
11
|
Chakraborty S, Mishra J, Roy A, Niharika, Manna S, Baral T, Nandi P, Patra S, Patra SK. Liquid-liquid phase separation in subcellular assemblages and signaling pathways: Chromatin modifications induced gene regulation for cellular physiology and functions including carcinogenesis. Biochimie 2024; 223:74-97. [PMID: 38723938 DOI: 10.1016/j.biochi.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024]
Abstract
Liquid-liquid phase separation (LLPS) describes many biochemical processes, including hydrogel formation, in the integrity of macromolecular assemblages and existence of membraneless organelles, including ribosome, nucleolus, nuclear speckles, paraspeckles, promyelocytic leukemia (PML) bodies, Cajal bodies (all exert crucial roles in cellular physiology), and evidence are emerging day by day. Also, phase separation is well documented in generation of plasma membrane subdomains and interplay between membranous and membraneless organelles. Intrinsically disordered regions (IDRs) of biopolymers/proteins are the most critical sticking regions that aggravate the formation of such condensates. Remarkably, phase separated condensates are also involved in epigenetic regulation of gene expression, chromatin remodeling, and heterochromatinization. Epigenetic marks on DNA and histones cooperate with RNA-binding proteins through their IDRs to trigger LLPS for facilitating transcription. How phase separation coalesces mutant oncoproteins, orchestrate tumor suppressor genes expression, and facilitated cancer-associated signaling pathways are unravelling. That autophagosome formation and DYRK3-mediated cancer stem cell modification also depend on phase separation is deciphered in part. In view of this, and to linchpin insight into the subcellular membraneless organelle assembly, gene activation and biological reactions catalyzed by enzymes, and the downstream physiological functions, and how all these events are precisely facilitated by LLPS inducing organelle function, epigenetic modulation of gene expression in this scenario, and how it goes awry in cancer progression are summarized and presented in this article.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Subhajit Patra
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
12
|
Murray-Nerger LA, Lozano C, Burton EM, Liao Y, Ungerleider NA, Guo R, Gewurz BE. The nucleic acid binding protein SFPQ represses EBV lytic reactivation by promoting histone H1 expression. Nat Commun 2024; 15:4156. [PMID: 38755141 PMCID: PMC11099029 DOI: 10.1038/s41467-024-48333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Epstein-Barr virus (EBV) uses a biphasic lifecycle of latency and lytic reactivation to infect >95% of adults worldwide. Despite its central role in EBV persistence and oncogenesis, much remains unknown about how EBV latency is maintained. We used a human genome-wide CRISPR/Cas9 screen to identify that the nuclear protein SFPQ was critical for latency. SFPQ supported expression of linker histone H1, which stabilizes nucleosomes and regulates nuclear architecture, but has not been previously implicated in EBV gene regulation. H1 occupied latent EBV genomes, including the immediate early gene BZLF1 promoter. Upon reactivation, SFPQ was sequestered into sub-nuclear puncta, and EBV genomic H1 occupancy diminished. Enforced H1 expression blocked EBV reactivation upon SFPQ knockout, confirming it as necessary downstream of SFPQ. SFPQ knockout triggered reactivation of EBV in B and epithelial cells, as well as of Kaposi's sarcoma-associated herpesvirus in B cells, suggesting a conserved gamma-herpesvirus role. These findings highlight SFPQ as a major regulator of H1 expression and EBV latency.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Clarisel Lozano
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Eric M Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Yifei Liao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University, Medford, MA, 02155, USA
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Program in Virology, Boston, MA, 02115, USA.
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
13
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
14
|
Wang S, Sun H, Chen G, Wu C, Sun B, Lin J, Lin D, Zeng D, Lin B, Huang G, Lu X, Lin H, Liang Y. RNA-binding proteins in breast cancer: Biological implications and therapeutic opportunities. Crit Rev Oncol Hematol 2024; 195:104271. [PMID: 38272151 DOI: 10.1016/j.critrevonc.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) refer to a class of proteins that participate in alternative splicing, RNA stability, polyadenylation, localization and translation of RNAs, thus regulating gene expression in post-transcriptional manner. Dysregulation of RNA-RBP interaction contributes to various diseases, including cancer. In breast cancer, disorders in RBP expression and function influence the biological characteristics of tumor cells. Targeting RBPs has fostered the development of innovative therapies for breast cancer. However, the RBP-related mechanisms in breast cancer are not completely clear. In this review, we summarize the regulatory mechanisms of RBPs and their signaling crosstalk in breast cancer. Specifically, we emphasize the potential of certain RBPs as prognostic factors due to their effects on proliferation, invasion, apoptosis, and therapy resistance of breast cancer cells. Most importantly, we present a comprehensive overview of the latest RBP-related therapeutic strategies and novel therapeutic targets that have proven to be useful in the treatment of breast cancer.
Collapse
Affiliation(s)
- Shimeng Wang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Hexing Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Guanyuan Chen
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Chengyu Wu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Bingmei Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Jiajia Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Danping Lin
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - Baohang Lin
- Department of Thyroid, Breast and Vascular Surgery, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xiaofeng Lu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| | - Yuanke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| |
Collapse
|
15
|
Xie X, Moon PJ, Crossley SWM, Bischoff AJ, He D, Li G, Dao N, Gonzalez-Valero A, Reeves AG, McKenna JM, Elledge SK, Wells JA, Toste FD, Chang CJ. Oxidative cyclization reagents reveal tryptophan cation-π interactions. Nature 2024; 627:680-687. [PMID: 38448587 PMCID: PMC11198740 DOI: 10.1038/s41586-024-07140-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics1-3. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity3,4. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling. We establish the broad use of this method, termed tryptophan chemical ligation by cyclization (Trp-CLiC), for selectively appending payloads to tryptophan residues on peptides and proteins with reaction rates that rival traditional click reactions and enabling global profiling of hyper-reactive tryptophan sites across whole proteomes. Notably, these reagents reveal a systematic map of tryptophan residues that participate in cation-π interactions, including functional sites that can regulate protein-mediated phase-separation processes.
Collapse
Affiliation(s)
- Xiao Xie
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Patrick J Moon
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Amanda J Bischoff
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dan He
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gen Li
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Nam Dao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Audrey G Reeves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | | | - Susanna K Elledge
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Yu D, Huang CJ, Tucker HO. Established and Evolving Roles of the Multifunctional Non-POU Domain-Containing Octamer-Binding Protein (NonO) and Splicing Factor Proline- and Glutamine-Rich (SFPQ). J Dev Biol 2024; 12:3. [PMID: 38248868 PMCID: PMC10801543 DOI: 10.3390/jdb12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
It has been more than three decades since the discovery of multifunctional factors, the Non-POU-Domain-Containing Octamer-Binding Protein, NonO, and the Splicing Factor Proline- and Glutamine-Rich, SFPQ. Some of their functions, including their participation in transcriptional and posttranscriptional regulation as well as their contribution to paraspeckle subnuclear body organization, have been well documented. In this review, we focus on several other established roles of NonO and SFPQ, including their participation in the cell cycle, nonhomologous end-joining (NHEJ), homologous recombination (HR), telomere stability, childhood birth defects and cancer. In each of these contexts, the absence or malfunction of either or both NonO and SFPQ leads to either genome instability, tumor development or mental impairment.
Collapse
Affiliation(s)
- Danyang Yu
- Department of Biology, New York University in Shanghai, Shanghai 200122, China;
| | - Ching-Jung Huang
- Department of Biology, New York University in Shanghai, Shanghai 200122, China;
| | - Haley O. Tucker
- Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA
| |
Collapse
|
17
|
Takeiwa T, Ikeda K, Horie K, Inoue S. Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer. RNA Biol 2024; 21:1-17. [PMID: 38551131 PMCID: PMC10984136 DOI: 10.1080/15476286.2024.2332855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
18
|
Yoshimoto R, Nakayama Y, Nomura I, Yamamoto I, Nakagawa Y, Tanaka S, Kurihara M, Suzuki Y, Kobayashi T, Kozuka-Hata H, Oyama M, Mito M, Iwasaki S, Yamazaki T, Hirose T, Araki K, Nakagawa S. 4.5SH RNA counteracts deleterious exonization of SINE B1 in mice. Mol Cell 2023; 83:4479-4493.e6. [PMID: 38096826 DOI: 10.1016/j.molcel.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
4.5SH RNA is a highly abundant, small rodent-specific noncoding RNA that localizes to nuclear speckles enriched in pre-mRNA-splicing regulators. To investigate the physiological functions of 4.5SH RNA, we have created mutant mice that lack the expression of 4.5SH RNA. The mutant mice exhibited embryonic lethality, suggesting that 4.5SH RNA is an essential species-specific noncoding RNA in mice. RNA-sequencing analyses revealed that 4.5SH RNA protects the transcriptome from abnormal exonizations of the antisense insertions of the retrotransposon SINE B1 (asB1), which would otherwise introduce deleterious premature stop codons or frameshift mutations. Mechanistically, 4.5SH RNA base pairs with complementary asB1-containing exons via the target recognition region and recruits effector proteins including Hnrnpm via its 5' stem loop region. The modular organization of 4.5SH RNA allows us to engineer a programmable splicing regulator to induce the skipping of target exons of interest. Our results also suggest the general existence of splicing regulatory noncoding RNAs.
Collapse
Affiliation(s)
- Rei Yoshimoto
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan.
| | - Yuta Nakayama
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ikuko Nomura
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ikuko Yamamoto
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yumeka Nakagawa
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Shigeyuki Tanaka
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Misuzu Kurihara
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yu Suzuki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Tomohiro Yamazaki
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuro Hirose
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
19
|
Marshall AC, Cummins J, Kobelke S, Zhu T, Widagdo J, Anggono V, Hyman A, Fox AH, Bond CS, Lee M. Different Low-complexity Regions of SFPQ Play Distinct Roles in the Formation of Biomolecular Condensates. J Mol Biol 2023; 435:168364. [PMID: 37952770 DOI: 10.1016/j.jmb.2023.168364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Demixing of proteins and nucleic acids into condensed liquid phases is rapidly emerging as a ubiquitous mechanism underlying the complex spatiotemporal organisation of molecules within the cell. Long disordered regions of low sequence complexity (LCRs) are a common feature of proteins that form liquid-like microscopic biomolecular condensates. In particular, RNA-binding proteins with prion-like regions have emerged as key drivers of liquid demixing to form condensates such as nucleoli, paraspeckles and stress granules. Splicing factor proline- and glutamine-rich (SFPQ) is an RNA- and DNA-binding protein essential for DNA repair and paraspeckle formation. SFPQ contains two LCRs of different length and composition. Here, we show that the shorter C-terminal LCR of SFPQ is the main region responsible for the condensation of SFPQ in vitro and in the cell nucleus. In contrast, we find that the longer N-terminal prion-like LCR of SFPQ attenuates condensation of the full-length protein, suggesting a more regulatory role in preventing aberrant condensate formation in the cell. The compositions of these respective LCRs are discussed with reference to current literature. Our data add nuance to the emerging understanding of biomolecular condensation, by providing the first example of a common multifunctional nucleic acid-binding protein with an extensive prion-like region that serves to regulate rather than drive condensate formation.
Collapse
Affiliation(s)
- Andrew C Marshall
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jerry Cummins
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Simon Kobelke
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Tianyi Zhu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anthony Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Mihwa Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
20
|
Liu J, Chen Y, Nong B, Luo X, Cui K, Li Z, Zhang P, Tan W, Yang Y, Ma W, Liang P, Songyang Z. CRISPR-assisted transcription activation by phase-separation proteins. Protein Cell 2023; 14:874-887. [PMID: 36905356 PMCID: PMC10691850 DOI: 10.1093/procel/pwad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 03/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used for genome engineering and transcriptional regulation in many different organisms. Current CRISPR-activation (CRISPRa) platforms often require multiple components because of inefficient transcriptional activation. Here, we fused different phase-separation proteins to dCas9-VPR (dCas9-VP64-P65-RTA) and observed robust increases in transcriptional activation efficiency. Notably, human NUP98 (nucleoporin 98) and FUS (fused in sarcoma) IDR domains were best at enhancing dCas9-VPR activity, with dCas9-VPR-FUS IDR (VPRF) outperforming the other CRISPRa systems tested in this study in both activation efficiency and system simplicity. dCas9-VPRF overcomes the target strand bias and widens gRNA designing windows without affecting the off-target effect of dCas9-VPR. These findings demonstrate the feasibility of using phase-separation proteins to assist in the regulation of gene expression and support the broad appeal of the dCas9-VPRF system in basic and clinical applications.
Collapse
Affiliation(s)
- Jiaqi Liu
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuxi Chen
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Baoting Nong
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao Luo
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kaixin Cui
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhan Li
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Pengfei Zhang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | - Yue Yang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbin Ma
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Puping Liang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Xiao CD, Jia MH, Zhong MQ, Xu Y, Yu ZT, He ZY, Lu X, Zhang Y, Zhou X, Fu LY, Shen XC. Unveiling the role of G-quadruplex structure in promoter region: Regulation of ABCA1 expression in macrophages possibly via NONO protein recruitment. Int J Biol Macromol 2023; 245:125443. [PMID: 37353131 DOI: 10.1016/j.ijbiomac.2023.125443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
ABCA1 has been found to be critical for cholesterol efflux in macrophages. Understanding the mechanism regulating ABCA1 expression is important for the prevention and treatment of atherosclerosis. In the present study, a G-quadruplex (G4) structure was identified in the ABCA1 promoter region. This G4 was shown to be essential for ABCA1 transcription. Stabilizing the G4 by ligands surprisingly upregulated ABCA1 expression in macrophages. Knocking out the G4 remarkably reduced ABCA1 expression, and abolished the increase of ABCA1 expression induced by the G4 ligand. By pull-down assays, the protein NONO was identified as an ABCA1 G4 binder. Overexpression or repression of NONO significantly induced upregulation and downregulation of ABCA1 expression, respectively. ChIP and EMSA experiments showed that the G4 ligand promoted the binding between the ABCA1 G4 and NONO, which led to more recruitment of NONO to the promoter region and enhanced ABCA1 transcription. Finally, the G4 ligand was shown to significantly reduce the accumulation of cholesterol in macrophages. This study showed a new insight into the regulation of gene expression by G4, and provided a new molecular mechanism regulating ABCA1 expression in macrophages. Furthermore, the study showed a possible novel application of the G4 ligand: preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| | - Meng-Hao Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| | - Ming-Qing Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Zu-Tao Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zhi-Yong He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Xu Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yan Zhang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Xue Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Lin-Yun Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| |
Collapse
|
22
|
Kathman SG, Koo SJ, Lindsey GL, Her HL, Blue SM, Li H, Jaensch S, Remsberg JR, Ahn K, Yeo GW, Ghosh B, Cravatt BF. Remodeling oncogenic transcriptomes by small molecules targeting NONO. Nat Chem Biol 2023; 19:825-836. [PMID: 36864190 PMCID: PMC10337234 DOI: 10.1038/s41589-023-01270-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/20/2023] [Indexed: 03/04/2023]
Abstract
Much of the human proteome is involved in mRNA homeostasis, but most RNA-binding proteins lack chemical probes. Here we identify electrophilic small molecules that rapidly and stereoselectively decrease the expression of transcripts encoding the androgen receptor and its splice variants in prostate cancer cells. We show by chemical proteomics that the compounds engage C145 of the RNA-binding protein NONO. Broader profiling revealed that covalent NONO ligands suppress an array of cancer-relevant genes and impair cancer cell proliferation. Surprisingly, these effects were not observed in cells genetically disrupted for NONO, which were instead resistant to NONO ligands. Reintroduction of wild-type NONO, but not a C145S mutant, restored ligand sensitivity in NONO-disrupted cells. The ligands promoted NONO accumulation in nuclear foci and stabilized NONO-RNA interactions, supporting a trapping mechanism that may prevent compensatory action of paralog proteins PSPC1 and SFPQ. These findings show that NONO can be co-opted by covalent small molecules to suppress protumorigenic transcriptional networks.
Collapse
Affiliation(s)
- Stefan G Kathman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| | - Seong Joo Koo
- Molecular and Cellular Pharmacology, Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, Beerse, Belgium
| | - Garrett L Lindsey
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Hsuan-Lin Her
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Haoxin Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Steffen Jaensch
- High Dimensional and Computational Biology, Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, Beerse, Belgium
| | - Jarrett R Remsberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Kay Ahn
- Molecular and Cellular Pharmacology, Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, Spring House, PA, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Brahma Ghosh
- Discovery Chemistry, Janssen Research and Development, Spring House, PA, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
23
|
Watts ME, Oksanen M, Lejerkrans S, Mastropasqua F, Gorospe M, Tammimies K. Circular RNAs arising from synaptic host genes during human neuronal differentiation are modulated by SFPQ RNA-binding protein. BMC Biol 2023; 21:127. [PMID: 37237280 DOI: 10.1186/s12915-023-01627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Circular RNA (circRNA) molecules, generated through non-canonical back-splicing of exon-exon junctions, have recently been implicated in diverse biological functions including transcriptional regulation and modulation of protein interactions. CircRNAs are emerging as a key component of the complex neural transcriptome implicated in brain development. However, the specific expression patterns and functions of circRNAs in human neuronal differentiation have not been explored. RESULTS Using total RNA sequencing analysis, we identified expressed circRNAs during the differentiation of human neuroepithelial stem (NES) cells into developing neurons and discovered that many circRNAs originated from host genes associated with synaptic function. Interestingly, when assessing population data, exons giving rise to circRNAs in our dataset had a higher frequency of genetic variants. Additionally, screening for RNA-binding protein sites identified enrichment of Splicing Factor Proline and Glutamine Rich (SFPQ) motifs in increased circRNAs, several of which were reduced by SFPQ knockdown and enriched in SFPQ ribonucleoprotein complexes. CONCLUSIONS Our study provides an in-depth characterisation of circRNAs in a human neuronal differentiation model and highlights SFPQ as both a regulator and binding partner of circRNAs elevated during neuronal maturation.
Collapse
Affiliation(s)
- Michelle E Watts
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Marika Oksanen
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA
| | - Sanna Lejerkrans
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Francesca Mastropasqua
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.
- Karolinska Institutet, BioClinicum J9:30, Visionsgatan 4, 171 56, Solna, Sweden.
| |
Collapse
|
24
|
Zhang Y, Cui D, Huang M, Zheng Y, Zheng B, Chen L, Chen Q. NONO regulates B-cell development and B-cell receptor signaling. FASEB J 2023; 37:e22862. [PMID: 36906291 DOI: 10.1096/fj.202201909rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/13/2023]
Abstract
The paraspeckle protein NONO is a multifunctional nuclear protein participating in the regulation of transcriptional regulation, mRNA splicing and DNA repair. However, whether NONO plays a role in lymphopoiesis is not known. In this study, we generated mice with global deletion of NONO and bone marrow (BM) chimeric mice in which NONO is deleted in all of mature B cells. We found that the global deletion of NONO in mice did not affect T-cell development but impaired early B-cell development in BM at pro- to pre-B-cell transition stage and B-cell maturation in the spleen. Studies of BM chimeric mice demonstrated that the impaired B-cell development in NONO-deficient mice is B-cell-intrinsic. NONO-deficient B cells displayed normal BCR-induced cell proliferation but increased BCR-induced cell apoptosis. Moreover, we found that NONO deficiency impaired BCR-induced activation of ERK, AKT, and NF-κB pathways in B cells, and altered BCR-induced gene expression profile. Thus, NONO plays a critical role in B-cell development and BCR-induced B-cell activation.
Collapse
Affiliation(s)
- Yongguang Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Dongya Cui
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Miaohui Huang
- Department of Reproductive Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yongwei Zheng
- Guangzhou Bio-Gene Technology Co., Ltd, Guangzhou, China
| | - Baijiao Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Liling Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| |
Collapse
|
25
|
Che X, Wu J, Liu H, Su J, Chen X. Cellular liquid-liquid phase separation: Concept, functions, regulations, and detections. J Cell Physiol 2023; 238:847-865. [PMID: 36870067 DOI: 10.1002/jcp.30980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023]
Abstract
Liquid-liquid phase separation is a multicomponent system separated into phases with different compositions and structures. It has been identified and explored in organisms after being introduced from the thermodynamic field. Condensate, the product of phase separation, exists in different scales of cellular structures, such as nucleolus, stress granules, and other organelles in nuclei or cytoplasm. And also play critical roles in different cellular behaviors. Here, we review the concept, thermodynamical and biochemical principles of phase separation. We summarized the main functions including the adjustment of biochemical reaction rates, the regulation of macromolecule folding state, subcellular structural support, the mediation of subcellular location, and intimately linked to different kinds of diseases, such as cancer and neurodegeneration. Advanced detection methods to investigate phase separation are collected and analyzed. We conclude with the discussion of anxiety of phase separation, and thought about how progress can be made to develop precise detection methods and disclose the potential application of condensates.
Collapse
Affiliation(s)
- Xuanlin Che
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Jiajun Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Zhang S, Cooper JAL, Chong YS, Naveed A, Mayoh C, Jayatilleke N, Liu T, Amos S, Kobelke S, Marshall AC, Meers O, Choi YS, Bond CS, Fox AH. NONO enhances mRNA processing of super-enhancer-associated GATA2 and HAND2 genes in neuroblastoma. EMBO Rep 2023; 24:e54977. [PMID: 36416237 PMCID: PMC9900351 DOI: 10.15252/embr.202254977] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
High-risk neuroblastoma patients have poor survival rates and require better therapeutic options. High expression of a multifunctional DNA and RNA-binding protein, NONO, in neuroblastoma is associated with poor patient outcome; however, there is little understanding of the mechanism of NONO-dependent oncogenic gene regulatory activity in neuroblastoma. Here, we used cell imaging, biochemical and genome-wide molecular analysis to reveal complex NONO-dependent regulation of gene expression. NONO forms RNA- and DNA-tethered condensates throughout the nucleus and undergoes phase separation in vitro, modulated by nucleic acid binding. CLIP analyses show that NONO mainly binds to the 5' end of pre-mRNAs and modulates pre-mRNA processing, dependent on its RNA-binding activity. NONO regulates super-enhancer-associated genes, including HAND2 and GATA2. Abrogating NONO RNA binding, or phase separation activity, results in decreased expression of HAND2 and GATA2. Thus, future development of agents that target RNA-binding activity of NONO may have therapeutic potential in this cancer context.
Collapse
Affiliation(s)
- Song Zhang
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Jack AL Cooper
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Yee Seng Chong
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Alina Naveed
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Chelsea Mayoh
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
- School of Women's and Children's HealthUNSW SydneyKensingtonNSWAustralia
| | - Nisitha Jayatilleke
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
| | - Tao Liu
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
| | - Sebastian Amos
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Simon Kobelke
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Andrew C Marshall
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Oliver Meers
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Yu Suk Choi
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Charles S Bond
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Archa H Fox
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
27
|
Roessler F, Beck AE, Susie B, Tobias B, Begtrup A, Biskup S, Caluseriu O, Delanty N, Fröhlich C, Greally MT, Karnstedt M, Klöckner C, Kurtzberg J, Schubert S, Schulze M, Weidenbach M, Westphal DS, White M, Wolf CM, Zyskind J, Popp B, Strehlow V. Genetic and phenotypic spectrum in the NONO-associated syndromic disorder. Am J Med Genet A 2023; 191:469-478. [PMID: 36426740 DOI: 10.1002/ajmg.a.63044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
The non-POU domain-containing octamer-binding (NONO) protein is involved in multiple steps of gene regulation such as RNA metabolism and DNA repair. Hemizygous pathogenic variants in the NONO gene were confirmed to cause a rare X-linked syndromic disorder. Through our in-house diagnostics and subsequent matchmaking, we identified six unrelated male individuals with pathogenic or likely pathogenic NONO variants. For a detailed comparison, we reviewed all published characterizations of the NONO-associated disorder. The combined cohort consists of 16 live-born males showing developmental delay, corpus callosum anomalies, non-compaction cardiomyopathy and relative macrocephaly as leading symptoms. Seven prenatal literature cases were characterized by cardiac malformations. In this study, we extend the phenotypic spectrum through two more cases with epilepsy as well as two more cases with hematologic anomalies. By RNA expression analysis and structural modeling of a new in-frame splice deletion, we reinforce loss-of-function as the pathomechanism for the NONO-associated syndromic disorder.
Collapse
Affiliation(s)
- Franziska Roessler
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Anita E Beck
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Seattle Children's Hospital, Seattle, Washington, USA
| | - Ball Susie
- Central Washington Genetics Program, Yakima Valley Memorial, Yakima, Washington, USA
| | - Bartolomaeus Tobias
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | | | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Norman Delanty
- FutureNeuro SFI Research Centre, The Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | | | - Marie T Greally
- FutureNeuro SFI Research Centre, The Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Maike Karnstedt
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, North Carolina, USA
| | - Susanna Schubert
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Michael Weidenbach
- Department for Pediatric Cardiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, Klinikum Rechts der Isar, School of Medicine, Technical University Munich, Germany.,Department of Internal Medicine I, Klinikum Rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Maire White
- FutureNeuro SFI Research Centre, The Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cordula M Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine and Health, DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | | | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
28
|
Yamazaki T, Yamamoto T, Hirose T. Micellization: A new principle in the formation of biomolecular condensates. Front Mol Biosci 2022; 9:974772. [PMID: 36106018 PMCID: PMC9465675 DOI: 10.3389/fmolb.2022.974772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Phase separation is a fundamental mechanism for compartmentalization in cells and leads to the formation of biomolecular condensates, generally containing various RNA molecules. RNAs are biomolecules that can serve as suitable scaffolds for biomolecular condensates and determine their forms and functions. Many studies have focused on biomolecular condensates formed by liquid-liquid phase separation (LLPS), one type of intracellular phase separation mechanism. We recently identified that paraspeckle nuclear bodies use an intracellular phase separation mechanism called micellization of block copolymers in their formation. The paraspeckles are scaffolded by NEAT1_2 long non-coding RNAs (lncRNAs) and their partner RNA-binding proteins (NEAT1_2 RNA-protein complexes [RNPs]). The NEAT1_2 RNPs act as block copolymers and the paraspeckles assemble through micellization. In LLPS, condensates grow without bound as long as components are available and typically have spherical shapes to minimize surface tension. In contrast, the size, shape, and internal morphology of the condensates are more strictly controlled in micellization. Here, we discuss the potential importance and future perspectives of micellization of block copolymers of RNPs in cells, including the construction of designer condensates with optimal internal organization, shape, and size according to design guidelines of block copolymers.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| |
Collapse
|
29
|
Wang J, Sachpatzidis A, Christian TD, Lomakin IB, Garen A, Konigsberg WH. Insight into the Tumor Suppression Mechanism from the Structure of Human Polypyrimidine Splicing Factor (PSF/SFPQ) Complexed with a 30mer RNA from Murine Virus-like 30S Transcript-1. Biochemistry 2022; 61:1723-1734. [PMID: 35998361 DOI: 10.1021/acs.biochem.2c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human polypyrimidine-binding splicing factor (PSF/SFPQ) is a tumor suppressor protein that regulates the gene expression of several proto-oncogenes and binds to the 5'-polyuridine negative-sense template (5'-PUN) of some RNA viruses. The activity of PSF is negatively regulated by long-noncoding RNAs, human metastasis associated in lung adenocarcinoma transcript-1 and murine virus-like 30S transcript-1 (VL30-1). PSF is a 707-amino acid protein that has a DNA-binding domain and two RNA recognition motifs (RRMs). Although the structure of the apo-truncated PSF is known, how PSF recognizes RNA remains elusive. Here, we report the 2.8 Å and 3.5 Å resolution crystal structures of a biologically active truncated construct of PSF (sPSF, consisting of residues 214-598) alone and in a complex with a 30mer fragment of VL30-1 RNA, respectively. The structure of the complex reveals how the 30mer RNA is recognized at two U-specific induced-fit binding pockets, located at the previously unrecognized domain-swapped, inter-subunit RRM1 (of the first subunit)-RRM2 (of the second subunit) interfaces that do not exist in the apo structure. Thus, the sPSF dimer appears to have two conformations in solution: one in a low-affinity state for RNA binding, as seen in the apo-structure, and the other in a high-affinity state for RNA binding, as seen in the sPSF-RNA complex. PSF undergoes an all or nothing transition between having two or no RNA-binding pockets. We predict that the RNA binds with a high degree of positive cooperativity. These structures provide an insight into a new regulatory mechanism that is likely involved in promoting malignancies and other human diseases.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| | - Aristidis Sachpatzidis
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| | - Thomas D Christian
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| | - Ivan B Lomakin
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| | - Alan Garen
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| | - William H Konigsberg
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
30
|
Laurenzi T, Palazzolo L, Taiana E, Saporiti S, Ben Mariem O, Guerrini U, Neri A, Eberini I. Molecular Modelling of NONO and SFPQ Dimerization Process and RNA Recognition Mechanism. Int J Mol Sci 2022; 23:ijms23147626. [PMID: 35886974 PMCID: PMC9324803 DOI: 10.3390/ijms23147626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
NONO and SFPQ are involved in multiple nuclear processes (e.g., pre-mRNA splicing, DNA repair, and transcriptional regulation). These proteins, along with NEAT1, enable paraspeckle formation, thus promoting multiple myeloma cell survival. In this paper, we investigate NONO and SFPQ dimer stability, highlighting the hetero- and homodimer structural differences, and model their interactions with RNA, simulating their binding to a polyG probe mimicking NEAT1guanine-rich regions. We demonstrated in silico that NONO::SFPQ heterodimerization is a more favorable process than homodimer formation. We also show that NONO and SFPQ RRM2 subunits are primarily required for protein–protein interactions with the other DBHS protomer. Simulation of RNA binding to NONO and SFPQ, beside validating RRM1 RNP signature importance, highlighted the role of β2 and β4 strand residues for RNA specific recognition. Moreover, we demonstrated the role of the NOPS region and other protomer’s RRM2 β2/β3 loop in strengthening the interaction with RNA. Our results, having deepened RNA and DBHS dimer interactions, could contribute to the design of small molecules to modulate the activity of these proteins. RNA-mimetics, able to selectively bind to NONO and/or SFPQ RNA-recognition site, could impair paraspeckle formation, thus representing a first step towards the discovery of drugs for multiple myeloma treatment.
Collapse
Affiliation(s)
- Tommaso Laurenzi
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (T.L.); (E.T.); (A.N.)
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (L.P.); (S.S.); (O.B.M.); (U.G.)
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (T.L.); (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Simona Saporiti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (L.P.); (S.S.); (O.B.M.); (U.G.)
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (L.P.); (S.S.); (O.B.M.); (U.G.)
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (L.P.); (S.S.); (O.B.M.); (U.G.)
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (T.L.); (E.T.); (A.N.)
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (L.P.); (S.S.); (O.B.M.); (U.G.)
- Data Science Research Center (DSRC), Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-50318256
| |
Collapse
|
31
|
Bufton JC, Powers KT, Szeto JYA, Toelzer C, Berger I, Schaffitzel C. Structures of nonsense-mediated mRNA decay factors UPF3B and UPF3A in complex with UPF2 reveal molecular basis for competitive binding and for neurodevelopmental disorder-causing mutation. Nucleic Acids Res 2022; 50:5934-5947. [PMID: 35640974 PMCID: PMC9177958 DOI: 10.1093/nar/gkac421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
UPF3 is a key nonsense-mediated mRNA decay (NMD) factor required for mRNA surveillance and eukaryotic gene expression regulation. UPF3 exists as two paralogs (A and B) which are differentially expressed depending on cell type and developmental stage and believed to regulate NMD activity based on cellular requirements. UPF3B mutations cause intellectual disability. The underlying molecular mechanisms remain elusive, as many of the mutations lie in the poorly characterized middle-domain of UPF3B. Here, we show that UPF3A and UPF3B share structural and functional homology to paraspeckle proteins comprising an RNA-recognition motif-like domain (RRM-L), a NONA/paraspeckle-like domain (NOPS-L), and extended α-helical domain. These domains are essential for RNA/ribosome-binding, RNA-induced oligomerization and UPF2 interaction. Structures of UPF2's third middle-domain of eukaryotic initiation factor 4G (MIF4GIII) in complex with either UPF3B or UPF3A reveal unexpectedly intimate binding interfaces. UPF3B's disease-causing mutation Y160D in the NOPS-L domain displaces Y160 from a hydrophobic cleft in UPF2 reducing the binding affinity ∼40-fold compared to wildtype. UPF3A, which is upregulated in patients with the UPF3B-Y160D mutation, binds UPF2 with ∼10-fold higher affinity than UPF3B reliant mainly on NOPS-L residues. Our characterization of RNA- and UPF2-binding by UPF3's middle-domain elucidates its essential role in NMD.
Collapse
Affiliation(s)
- Joshua C Bufton
- School of Biochemistry, University of Bristol; University Walk, Bristol BS8 1TD, UK
| | - Kyle T Powers
- School of Biochemistry, University of Bristol; University Walk, Bristol BS8 1TD, UK
| | - Jenn-Yeu A Szeto
- School of Biochemistry, University of Bristol; University Walk, Bristol BS8 1TD, UK
| | - Christine Toelzer
- School of Biochemistry, University of Bristol; University Walk, Bristol BS8 1TD, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol; University Walk, Bristol BS8 1TD, UK.,Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | | |
Collapse
|
32
|
Zhao J, Xie W, Yang Z, Zhao M, Ke T, Xu C, Li H, Chen Q, Wang QK. Identification and characterization of a special type of subnuclear structure: AGGF1-coated paraspeckles. FASEB J 2022; 36:e22366. [PMID: 35608889 DOI: 10.1096/fj.202101690rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
AGGF1 is an angiogenic factor with G-Patch and FHA domains 1 described by our group. Gain-of-function mutations in AGGF1 cause Klippel-Trenaunay syndrome, whereas somatic loss-of-function mutations cause cancer. Paraspeckles are small membraneless subnuclear structures with a diameter of 0.5-1 μm, and composed of lncRNA NEAT1 as the scaffold and three core RNA-binding proteins NONO, PSPC1, and PSF. Here, we show that AGGF1 is a key regulatory and structural component of paraspeckles that induces paraspeckle formation, forms an outside rim of paraspeckles, wraps around the NONO/PSF/PSPC1/NEAT1 core, and regulates the size and number of paraspeckles. AGGF1-paraspeckles are larger (>1 μm) than conventional paraspeckles. RNA-FISH in combination with immunostaining shows that AGGF1, NONO, and NEAT1_2 co-localize in 20.58% of NEAT1_2-positive paraspeckles. Mechanistically, AGGF1 interacts with NONO, PSF, and HNRNPK, and upregulates NEAT1_2, a longer, 23 kb NEAT1 transcript with a key role in regulation of paraspeckle size and number. RNA-immunoprecipitation shows that AGGF1 interacts with NEAT1, which may be another possible mechanism underlying the formation of AGGF1-paraspeckles. NEAT1_2 knockdown reduces the number and size of AGGF1-paraspeckles. Functionally, AGGF1 regulates alternative RNA splicing as it decreases the exon skipping/inclusion ratio in a CD44 model. AGGF1 is also localized in some nuclear foci without NEAT1 or NONO, suggesting that AGGF1 is an important liquid-liquid phase separation (LLPS) driver for other types of AGGF1-positive nuclear condensates (referred to as AGGF1-bodies). Our results identify a special type of AGGF1-coated paraspeckles and provide important insights into the formation, structure, and function of paraspeckles.
Collapse
Affiliation(s)
- Jinyan Zhao
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wen Xie
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhongcheng Yang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Miao Zhao
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Tie Ke
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Chengqi Xu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hui Li
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qiuyun Chen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Qing K Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
33
|
Shadrina OA, Kikhay TF, Agapkina YY, Gottikh MB. SFPQ and NONO Proteins and Long Non-Coding NEAT1 RNA: Cellular Functions and Role in the HIV-1 Life Cycle. Mol Biol 2022. [DOI: 10.1134/s0026893322020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Schell B, Legrand P, Fribourg S. Crystal structure of SFPQ-NONO heterodimer. Biochimie 2022; 198:1-7. [PMID: 35245601 DOI: 10.1016/j.biochi.2022.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022]
Abstract
The Drosophila behavior/human splicing (DBHS) protein family is composed of the three members SFPQ, NONO and PSPC1. These proteins share a strong sequence and structural homology within the core-structured domains forming obligate homo- and heterodimers. This feature may lead to the simultaneous existence of six different dimeric complexes that sustain their function in many cellular processes such as pre-mRNA splicing, innate immunity, transcriptional regulation. In order to perform a complete structural analysis of all possible DBHS dimers, we have solved the crystal structure of the missing DBHS heterodimer SFPQ-NONO at 3.0 Å resolution. We identify subtle changes in amino acid composition and local secondary structure of the NOPS region orientation that may modulate affinity between complexes. Interestingly this area is found mutated in aggressive skin cancers and adenocarcinomas.
Collapse
Affiliation(s)
- Bianca Schell
- INSERM U1212 - CNRS 5320 & Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France; Universität Konstanz, 78457, Konstanz, Germany
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, 91192, France
| | - Sébastien Fribourg
- INSERM U1212 - CNRS 5320 & Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France.
| |
Collapse
|
35
|
Szabó AL, Sánta A, Pancsa R, Gáspári Z. Charged sequence motifs increase the propensity towards liquid‐liquid phase separation. FEBS Lett 2022; 596:1013-1028. [DOI: 10.1002/1873-3468.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- András László Szabó
- Pázmány Péter Catholic University Faculty of Information Technology and Bionics Práter utca 50/A 1083 Budapest Hungary
| | - Anna Sánta
- Pázmány Péter Catholic University Faculty of Information Technology and Bionics Práter utca 50/A 1083 Budapest Hungary
| | - Rita Pancsa
- Institute of Enzymology Research Centre for Natural Sciences 1117 Budapest Hungary
| | - Zoltán Gáspári
- Pázmány Péter Catholic University Faculty of Information Technology and Bionics Práter utca 50/A 1083 Budapest Hungary
| |
Collapse
|
36
|
Godet AC, Roussel E, David F, Hantelys F, Morfoisse F, Alves J, Pujol F, Ader I, Bertrand E, Burlet-Schiltz O, Froment C, Henras AK, Vitali P, Lacazette E, Tatin F, Garmy-Susini B, Prats AC. Long non-coding RNA Neat1 and paraspeckle components are translational regulators in hypoxia. eLife 2022; 11:69162. [PMID: 36546462 PMCID: PMC9799981 DOI: 10.7554/elife.69162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Internal ribosome entry sites (IRESs) drive translation initiation during stress. In response to hypoxia, (lymph)angiogenic factors responsible for tissue revascularization in ischemic diseases are induced by the IRES-dependent mechanism. Here, we searched for IRES trans-acting factors (ITAFs) active in early hypoxia in mouse cardiomyocytes. Using knock-down and proteomics approaches, we show a link between a stressed-induced nuclear body, the paraspeckle, and IRES-dependent translation. Furthermore, smiFISH experiments demonstrate the recruitment of IRES-containing mRNA into paraspeckle during hypoxia. Our data reveal that the long non-coding RNA Neat1, an essential paraspeckle component, is a key translational regulator, active on IRESs of (lymph)angiogenic and cardioprotective factor mRNAs. In addition, paraspeckle proteins p54nrb and PSPC1 as well as nucleolin and RPS2, two p54nrb-interacting proteins identified by mass spectrometry, are ITAFs for IRES subgroups. Paraspeckle thus appears as a platform to recruit IRES-containing mRNAs and possibly host IRESome assembly. Polysome PCR array shows that Neat1 isoforms regulate IRES-dependent translation and, more widely, translation of mRNAs involved in stress response.
Collapse
Affiliation(s)
| | - Emilie Roussel
- UMR 1297-I2MC, Inserm, Université de ToulouseToulouseFrance
| | - Florian David
- UMR 1297-I2MC, Inserm, Université de ToulouseToulouseFrance
| | | | | | - Joffrey Alves
- UMR 1297-I2MC, Inserm, Université de ToulouseToulouseFrance
| | | | - Isabelle Ader
- UMR 1301-RESTORE, Inserm, CNRS 5070, Etablissement Français du Sang-Occitanie (EFS), National Veterinary School of Toulouse (ENVT), Université de ToulouseToulouseFrance
| | | | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRSToulouseFrance
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRSToulouseFrance
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de ToulouseToulouseFrance
| | - Patrice Vitali
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de ToulouseToulouseFrance
| | - Eric Lacazette
- UMR 1297-I2MC, Inserm, Université de ToulouseToulouseFrance
| | - Florence Tatin
- UMR 1297-I2MC, Inserm, Université de ToulouseToulouseFrance
| | | | | |
Collapse
|
37
|
Knott GJ, Chong YS, Passon DM, Liang XH, Deplazes E, Conte MR, Marshall AC, Lee M, Fox AH, Bond CS. Structural basis of dimerization and nucleic acid binding of human DBHS proteins NONO and PSPC1. Nucleic Acids Res 2021; 50:522-535. [PMID: 34904671 PMCID: PMC8754649 DOI: 10.1093/nar/gkab1216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022] Open
Abstract
The Drosophila behaviour/human splicing (DBHS) proteins are a family of RNA/DNA binding cofactors liable for a range of cellular processes. DBHS proteins include the non-POU domain-containing octamer-binding protein (NONO) and paraspeckle protein component 1 (PSPC1), proteins capable of forming combinatorial dimers. Here, we describe the crystal structures of the human NONO and PSPC1 homodimers, representing uncharacterized DBHS dimerization states. The structures reveal a set of conserved contacts and structural plasticity within the dimerization interface that provide a rationale for dimer selectivity between DBHS paralogues. In addition, solution X-ray scattering and accompanying biochemical experiments describe a mechanism of cooperative RNA recognition by the NONO homodimer. Nucleic acid binding is reliant on RRM1, and appears to be affected by the orientation of RRM1, influenced by a newly identified 'β-clasp' structure. Our structures shed light on the molecular determinants for DBHS homo- and heterodimerization and provide a basis for understanding how DBHS proteins cooperatively recognize a broad spectrum of RNA targets.
Collapse
Affiliation(s)
- Gavin J Knott
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Yee Seng Chong
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel M Passon
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Xue-Hai Liang
- Department of Core Antisense Research, IONIS Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Andrew C Marshall
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Mihwa Lee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic 3086, Australia
| | - Archa H Fox
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
38
|
Fijen C, Rothenberg E. The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 2021; 105:103170. [PMID: 34256335 DOI: 10.1016/j.dnarep.2021.103170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Formation of biomolecular condensates is increasingly recognized as a mechanism employed by cells to deal with stress and to optimize enzymatic reactions. Recent studies have characterized several DNA repair foci as phase-separated condensates, behaving like liquid droplets. Concomitantly, the apparent importance of long non-coding RNAs and RNA-binding proteins for the repair of double-strand breaks has raised many questions about their exact contribution to the repair process. Here we discuss how RNA molecules can participate in condensate formation and how RNA-binding proteins can act as molecular scaffolds. We furthermore summarize our current knowledge about how properties of condensates can influence the choice of repair pathway (homologous recombination or non-homologous end joining) and identify the open questions in this field of emerging importance.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
39
|
Yamazaki T, Yamamoto T, Yoshino H, Souquere S, Nakagawa S, Pierron G, Hirose T. Paraspeckles are constructed as block copolymer micelles. EMBO J 2021; 40:e107270. [PMID: 33885174 PMCID: PMC8204865 DOI: 10.15252/embj.2020107270] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/20/2023] Open
Abstract
Paraspeckles are constructed by NEAT1_2 architectural long noncoding RNAs. Their characteristic cylindrical shapes, with highly ordered internal organization, distinguish them from typical liquid-liquid phase-separated condensates. We experimentally and theoretically investigated how the shape and organization of paraspeckles are determined. We identified the NEAT1_2 RNA domains responsible for shell localization of the NEAT1_2 ends, which determine the characteristic internal organization. Using the soft matter physics, we then applied a theoretical framework to understand the principles that determine NEAT1_2 organization as well as shape, number, and size of paraspeckles. By treating paraspeckles as amphipathic block copolymer micelles, we could explain and predict the experimentally observed behaviors of paraspeckles upon NEAT1_2 domain deletions or transcriptional modulation. Thus, we propose that paraspeckles are block copolymer micelles assembled through a type of microphase separation, micellization. This work provides an experiment-based theoretical framework for the concept that ribonucleoprotein complexes (RNPs) can act as block copolymers to form RNA-scaffolding biomolecular condensates with optimal sizes and structures in cells.
Collapse
Affiliation(s)
| | - Tetsuya Yamamoto
- Institute for Chemical Reaction Design and DiscoveryHokkaido UniversitySapporoJapan
| | - Hyura Yoshino
- Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | | | | | - Gerard Pierron
- Centre National de la Recherche ScientifiqueUMR‐9196Gustave RoussyVillejuifFrance
| | - Tetsuro Hirose
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
40
|
Gabriel L, Srinivasan B, Kuś K, Mata JF, João Amorim M, Jansen LET, Athanasiadis A. Enrichment of Zα domains at cytoplasmic stress granules is due to their innate ability to bind to nucleic acids. J Cell Sci 2021; 134:268376. [PMID: 34037233 DOI: 10.1242/jcs.258446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
Zα domains recognize the left-handed helical Z conformation of double-stranded nucleic acids. They are found in proteins involved in the nucleic acid sensory pathway of the vertebrate innate immune system and host evasion by viral pathogens. Previously, it has been demonstrated that ADAR1 (encoded by ADAR in humans) and DAI (also known as ZBP1) localize to cytoplasmic stress granules (SGs), and this localization is mediated by their Zα domains. To investigate the mechanism, we determined the interactions and localization pattern for the N-terminal region of human DAI (ZαβDAI), which harbours two Zα domains, and for a ZαβDAI mutant deficient in nucleic acid binding. Electrophoretic mobility shift assays demonstrated the ability of ZαβDAI to bind to hyperedited nucleic acids, which are enriched in SGs. Furthermore, using immunofluorescence and immunoprecipitation coupled with mass spectrometry, we identified several interacting partners of the ZαβDAI-RNA complex in vivo under conditions of arsenite-induced stress. These interactions are lost upon loss of nucleic acid-binding ability or upon RNase treatment. Thus, we posit that the mechanism for the translocation of Zα domain-containing proteins to SGs is mainly mediated by the nucleic acid-binding ability of their Zα domains. This article has an associated First Person interview with Bharath Srinivasan, joint first author of the paper.
Collapse
Affiliation(s)
- Luisa Gabriel
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Bharath Srinivasan
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Krzysztof Kuś
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - João F Mata
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Maria João Amorim
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Lars E T Jansen
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| | - Alekos Athanasiadis
- Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras 2781-156, Portugal
| |
Collapse
|
41
|
Sas-Nowosielska H, Magalska A. Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus. Int J Mol Sci 2021; 22:ijms22073478. [PMID: 33801737 PMCID: PMC8037058 DOI: 10.3390/ijms22073478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to regulate chromatin organization is particularly important in neurons, which dynamically respond to external stimuli. Accumulating evidence shows that lncRNAs play important architectural roles in organizing different nuclear domains like inactive chromosome X, splicing speckles, paraspeckles, and Gomafu nuclear bodies. LncRNAs are abundantly expressed in the nervous system where they may play important roles in compartmentalization of the cell nucleus. In this review we will describe the architectural role of lncRNAs in the nuclei of neuronal cells.
Collapse
|
42
|
Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, Bishayee A. Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach. Cancers (Basel) 2021; 13:cancers13061274. [PMID: 33805687 PMCID: PMC8001769 DOI: 10.3390/cancers13061274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is caused by the rapid and uncontrolled growth of cells that eventually lead to tumor formation. Genetic and epigenetic alterations are among the most critical factors in the onset of carcinoma. Phytochemicals are a group of natural compounds that play an essential role in cancer prevention and treatment. Long non-coding RNAs (lncRNAs) are potential therapeutic targets of bioactive phytochemicals, and these compounds could regulate the expression of lncRNAs directly and indirectly. Here, we critically evaluate in vitro and in vivo anticancer effects of phytochemicals in numerous human cancers via regulation of lncRNA expression and their downstream target genes. Abstract Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play an essential role in various cellular activities, such as differentiation, proliferation, and apoptosis. Dysregulation of lncRNAs serves a fundamental role in the progression and initiation of various diseases, including cancer. Precision medicine is a suitable and optimal treatment method for cancer so that based on each patient’s genetic content, a specific treatment or drug is prescribed. The rapid advancement of science and technology in recent years has led to many successes in this particular treatment. Phytochemicals are a group of natural compounds extracted from fruits, vegetables, and plants. Through the downregulation of oncogenic lncRNAs or upregulation of tumor suppressor lncRNAs, these bioactive compounds can inhibit metastasis, proliferation, invasion, migration, and cancer cells. These natural products can be a novel and alternative strategy for cancer treatment and improve tumor cells’ sensitivity to standard adjuvant therapies. This review will discuss the antineoplastic effects of bioactive plant secondary metabolites (phytochemicals) via regulation of expression of lncRNAs in various human cancers and their potential for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Hamid Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Saeed Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gloria Jackson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|
43
|
Liang S, Takahashi H, Hirose T, Kuramitsu Y, Hatakeyama S, Yoshiyama H, Wang R, Hamada JI, Iizasa H. NONO Is a Negative Regulator of SOX2 Promoter. Cancer Genomics Proteomics 2021; 17:359-367. [PMID: 32576581 DOI: 10.21873/cgp.20195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIM Sex determining region Y (SRY)-box 2 (SOX2) is a transcription factor essential for the maintenance of proliferation and self-renewal of cancer stem cells and is associated with breast cancer initiation. Regulation of cancer stem cell plasticity by SOX2 requires both positive and negative SOX2 transcription factors, but the negative regulator is still largely unknown. MATERIALS AND METHODS SOX2 promoter-binding proteins were identified by liquid chromatography-mass spectrometry/mass spectrometry, luciferase assay, and chromatin immunoprecipitation. The effects of one such transcription factor on SOX2 expression was investigated by knockdown and overexpression experiments. RESULTS Non-POU domain-containing octamer-binding protein (NONO) (also known as 54-kDa nuclear RNA-binding protein, P54NRB) was identified as a SOX2 promoter-binding protein and a negative regulator of SOX2 expression. Its activity was controlled by its coiled-coil domain and the C-terminal domain. CONCLUSION These results suggest that NONO acts as a key regulator of SOX2 transcription through the repression of SOX2 promoter activity in breast cancer cells.
Collapse
Affiliation(s)
- Shanshan Liang
- The Key Laboratory of Biomarker High-throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Oncology Department, Affiliated Zhongshan Hospital of Dalian University, Dalian, P.R. China.,Department of Microbiology, Faculty of Medicine, Shimane University, Shimane, Japan.,Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Tetsuro Hirose
- Division of RNA Bio-function, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kuramitsu
- Health Science University of Hokkaido School of Nursing & Social Services, Hokkaido, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Ruoyu Wang
- The Key Laboratory of Biomarker High-throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Oncology Department, Affiliated Zhongshan Hospital of Dalian University, Dalian, P.R. China
| | - Jun-Ichi Hamada
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan .,Health Science University of Hokkaido School of Nursing & Social Services, Hokkaido, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane, Japan .,Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
44
|
Stagsted LVW, O'Leary ET, Ebbesen KK, Hansen TB. The RNA-binding protein SFPQ preserves long-intron splicing and regulates circRNA biogenesis in mammals. eLife 2021; 10:e63088. [PMID: 33476259 PMCID: PMC7819710 DOI: 10.7554/elife.63088] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) represent an abundant and conserved entity of non-coding RNAs; however, the principles of biogenesis are currently not fully understood. Here, we identify two factors, splicing factor proline/glutamine rich (SFPQ) and non-POU domain-containing octamer-binding protein (NONO), to be enriched around circRNA loci. We observe a subclass of circRNAs, coined DALI circRNAs, with distal inverted Alu elements and long flanking introns to be highly deregulated upon SFPQ knockdown. Moreover, SFPQ depletion leads to increased intron retention with concomitant induction of cryptic splicing, premature transcription termination, and polyadenylation, particularly prevalent for long introns. Aberrant splicing in the upstream and downstream regions of circRNA producing exons are critical for shaping the circRNAome, and specifically, we identify missplicing in the immediate upstream region to be a conserved driver of circRNA biogenesis. Collectively, our data show that SFPQ plays an important role in maintaining intron integrity by ensuring accurate splicing of long introns, and disclose novel features governing Alu-independent circRNA production.
Collapse
|
45
|
Kalman ZE, Mészáros B, Gáspári Z, Dobson L. Distribution of disease-causing germline mutations in coiled-coils implies an important role of their N-terminal region. Sci Rep 2020; 10:17333. [PMID: 33060664 PMCID: PMC7562717 DOI: 10.1038/s41598-020-74354-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/21/2020] [Indexed: 11/08/2022] Open
Abstract
Next-generation sequencing resulted in the identification of a huge number of naturally occurring variations in human proteins. The correct interpretation of the functional effects of these variations necessitates the understanding of how they modulate protein structure. Coiled-coils are α-helical structures responsible for a diverse range of functions, but most importantly, they facilitate the structural organization of macromolecular scaffolds via oligomerization. In this study, we analyzed a comprehensive set of disease-associated germline mutations in coiled-coil structures. Our results suggest an important role of residues near the N-terminal part of coiled-coil regions, possibly critical for superhelix assembly and folding in some cases. We also show that coiled-coils of different oligomerization states exhibit characteristically distinct patterns of disease-causing mutations. Our study provides structural and functional explanations on how disease emerges through the mutation of these structural motifs.
Collapse
Affiliation(s)
- Zsofia E Kalman
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary
- 3in-PPCU Research Group, 2500, Esztergom, Hungary
| | - Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary.
| | - Laszlo Dobson
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary.
- Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
46
|
Jarnot P, Ziemska-Legiecka J, Dobson L, Merski M, Mier P, Andrade-Navarro MA, Hancock JM, Dosztányi Z, Paladin L, Necci M, Piovesan D, Tosatto SCE, Promponas VJ, Grynberg M, Gruca A. PlaToLoCo: the first web meta-server for visualization and annotation of low complexity regions in proteins. Nucleic Acids Res 2020; 48:W77-W84. [PMID: 32421769 PMCID: PMC7319588 DOI: 10.1093/nar/gkaa339] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Low complexity regions (LCRs) in protein sequences are characterized by a less diverse amino acid composition compared to typically observed sequence diversity. Recent studies have shown that LCRs may co-occur with intrinsically disordered regions, are highly conserved in many organisms, and often play important roles in protein functions and in diseases. In previous decades, several methods have been developed to identify regions with LCRs or amino acid bias, but most of them as stand-alone applications and currently there is no web-based tool which allows users to explore LCRs in protein sequences with additional functional annotations. We aim to fill this gap by providing PlaToLoCo - PLAtform of TOols for LOw COmplexity-a meta-server that integrates and collects the output of five different state-of-the-art tools for discovering LCRs and provides functional annotations such as domain detection, transmembrane segment prediction, and calculation of amino acid frequencies. In addition, the union or intersection of the results of the search on a query sequence can be obtained. By developing the PlaToLoCo meta-server, we provide the community with a fast and easily accessible tool for the analysis of LCRs with additional information included to aid the interpretation of the results. The PlaToLoCo platform is available at: http://platoloco.aei.polsl.pl/.
Collapse
Affiliation(s)
- Patryk Jarnot
- Department of Computer Networks and Systems, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | | | - Laszlo Dobson
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083 Budapest, Hungary.,Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
| | - Matthew Merski
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Pablo Mier
- Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - John M Hancock
- ELIXIR, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös LorándUniversity, Budapest, Pázmány Péter stny 1/c 1117, Budapest, Hungary
| | - Lisanna Paladin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Marco Necci
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, P.O. Box 20537, Nicosia, CY 1678, Cyprus
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Aleksandra Gruca
- Department of Computer Networks and Systems, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
47
|
The Emerging Role of the RNA-Binding Protein SFPQ in Neuronal Function and Neurodegeneration. Int J Mol Sci 2020; 21:ijms21197151. [PMID: 32998269 PMCID: PMC7582472 DOI: 10.3390/ijms21197151] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) are a class of proteins known for their diverse roles in RNA biogenesis, from regulating transcriptional processes in the nucleus to facilitating translation in the cytoplasm. With higher demand for RNA metabolism in the nervous system, RBP misregulation has been linked to a wide range of neurological and neurodegenerative diseases. One of the emerging RBPs implicated in neuronal function and neurodegeneration is splicing factor proline- and glutamine-rich (SFPQ). SFPQ is a ubiquitous and abundant RBP that plays multiple regulatory roles in the nucleus such as paraspeckle formation, DNA damage repair, and various transcriptional regulation processes. An increasing number of studies have demonstrated the nuclear and also cytoplasmic roles of SFPQ in neurons, particularly in post-transcriptional regulation and RNA granule formation. Not surprisingly, the misregulation of SFPQ has been linked to pathological features shown by other neurodegenerative disease-associated RBPs such as aberrant RNA splicing, cytoplasmic mislocalization, and aggregation. In this review, we discuss recent findings on the roles of SFPQ with a particular focus on those in neuronal development and homeostasis as well as its implications in neurodegenerative diseases.
Collapse
|
48
|
Ding H, Liu J, Wang C, Su Y. NONO promotes hepatocellular carcinoma progression by enhancing fatty acids biosynthesis through interacting with ACLY mRNA. Cancer Cell Int 2020; 20:425. [PMID: 32884448 PMCID: PMC7461318 DOI: 10.1186/s12935-020-01520-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background Dysregulation of fatty acid (FA) metabolism is involved in hepatocellular carcinoma (HCC) development. Non-POU domain-containing octamer binding protein (NONO), known as the component of nuclear paraspeckles, has recently been found to promote HCC progression. In this study, we investigated the functions of NONO in regulating de novo FA synthesis and its underling mechanism during HCC development. Methods The roles of NONO in HCC development by applying gene function loss analysis in HCC cells were detected by quantitative real-time polymerase chain reaction, cell proliferation, and cell invasion assays. The underlying mechanism of NONO in HCC development was examined by western blotting, subcellular fractionation, RNA-binding protein immunoprecipitation-sequencing, chromatin immunoprecipitation, co-immunoprecipitation and mass spectrometry. The effect of NONO on tumorigenesis in vivo was performed with a subcutaneous xenograft mouse model of HCC. Results NONO promotes HCC progression by interacting with and increasing ATP-citrate lyase (ACLY) mRNA to enhance FA biosynthesis. Furthermore, NONO promotes ACLY expression through enhancing nuclear ACLY mRNA stability in Diethylnitrosamine-stimulated HCC cells, not related to nuclear paraspeckles. Moreover, we find that NONO/SFPQ (Splicing factor proline and glutamine rich) heterodimer is essential for NONO interacting with ACLY mRNA in DEN stimulated HCC cells. In addition, NONO, Insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) and ACLY expressions contribute HCC development in mice and are related to poor survival. Conclusion NONO promotes HCC progression by enhancing FA biosynthesis through interacting with ACLY mRNA and provide a novel potential target for HCC therapy.
Collapse
Affiliation(s)
- Hongda Ding
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| | - Junpeng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| | - Caibin Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| | - Yang Su
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| |
Collapse
|
49
|
Girbes Minguez M, Wolters-Eisfeld G, Lutz D, Buck F, Schachner M, Kleene R. The cell adhesion molecule L1 interacts with nuclear proteins via its intracellular domain. FASEB J 2020; 34:9869-9883. [PMID: 32533745 DOI: 10.1096/fj.201902242r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023]
Abstract
Proteolytic cleavage of the cell adhesion molecule L1 (L1) in brain tissue and in cultured cerebellar neurons results in the generation and nuclear import of a 30 kDa fragment comprising most of L1's C-terminal, intracellular domain. In search of molecules that interact with this domain, we performed affinity chromatography with the recombinant intracellular L1 domain and a nuclear extract from mouse brains, and identified potential nuclear L1 binding partners involved in transcriptional regulation, RNA processing and transport, DNA repair, chromatin remodeling, and nucleocytoplasmic transport. By co-immunoprecipitation and enzyme-linked immunosorbent assay using recombinant proteins, we verified the direct interaction between L1 and the nuclear binding partners non-POU domain containing octamer-binding protein and splicing factor proline/glutamine-rich. The proximity ligation assay confirmed this close interaction in cultures of cerebellar granule cells. Our findings suggest that L1 fragments regulate multiple nuclear functions in the nervous system. We discuss possible physiological and pathological roles of these interactions in regulation of chromatin structure, gene expression, RNA processing, and DNA repair.
Collapse
Affiliation(s)
- Maria Girbes Minguez
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - David Lutz
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Buck
- Zentrum für Diagnostik, Institut für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
Simko EAJ, Liu H, Zhang T, Velasquez A, Teli S, Haeusler AR, Wang J. G-quadruplexes offer a conserved structural motif for NONO recruitment to NEAT1 architectural lncRNA. Nucleic Acids Res 2020; 48:7421-7438. [PMID: 32496517 PMCID: PMC7367201 DOI: 10.1093/nar/gkaa475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
The long non-coding RNA NEAT1 serves as a scaffold for the assembly of paraspeckles, membraneless nuclear organelles involved in gene regulation. Paraspeckle assembly requires NEAT1 recruitment of the RNA-binding protein NONO, however the NEAT1 elements responsible for recruitment are unknown. Herein we present evidence that previously unrecognized structural features of NEAT1 serve an important role in these interactions. Led by the initial observation that NONO preferentially binds the G-quadruplex conformation of G-rich C9orf72 repeat RNA, we find that G-quadruplex motifs are abundant and conserved features of NEAT1. Furthermore, we determine that NONO binds NEAT1 G-quadruplexes with structural specificity and provide evidence that G-quadruplex motifs mediate NONO-NEAT1 association, with NONO binding sites on NEAT1 corresponding largely to G-quadruplex motifs, and treatment with a G-quadruplex-disrupting small molecule causing dissociation of native NONO-NEAT1 complexes. Together, these findings position G-quadruplexes as a primary candidate for the NONO-recruiting elements of NEAT1 and provide a framework for further investigation into the role of G-quadruplexes in paraspeckle formation and function.
Collapse
Affiliation(s)
- Eric A J Simko
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Honghe Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adan Velasquez
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shraddha Teli
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron R Haeusler
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|