1
|
Anand S, Elgeti J, Gompper G. Viscotaxis of beating flagella. SOFT MATTER 2025; 21:3228-3239. [PMID: 40127247 DOI: 10.1039/d4sm01328j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Many biological microorganisms and artificial microswimmers react to external cues of environmental gradients by changing their swimming directions. We study here the behavior of eukaryotic flagellated microswimmers in linear viscosity gradients. Motivated by the near-surface motion of many microswimmers, we consider flagellar swimming in two spatial dimensions. We employ a model of flagellum consisting of a semi-flexible filament with a travelling wave of spontaneous curvature to study generic aspects of viscotaxis of actively beating flagella. The propulsion of the flagellum in a fluid due to a hydrodynamic friction anisotropy is described by resistive-force theory. Using numerical simulations and analytical theory, we show that beating flagella exhibit positive viscotaxis, reorienting themselves toward higher viscosity areas. We quantify this behavior by characterization of the dependence of the rotational velocity on gradient strength, beat amplitude, swimming speed, and wave length. We also examine the effects of asymmetric flagellar wave forms, which imply circular trajectories in the absence of viscosity gradients; here, large asymmetry leads to trochoid-like trajectories perpendicular to the gradient in the form of drifting circles. Flagellar deformability strongly reduce the beat amplitude and the viscotatic response. The viscotatic response is shown to be captured by a universal function of the sperm number.
Collapse
Affiliation(s)
- Shubham Anand
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Jens Elgeti
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Advanced Simulation and Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
2
|
Uemura NA, Nakane D. Type IV Pili in Thermophilic Bacteria: Mechanisms and Ecological Implications. Biomolecules 2025; 15:459. [PMID: 40305182 PMCID: PMC12024867 DOI: 10.3390/biom15040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Type IV pili (T4P) machinery is critical for bacterial surface motility, protein secretion, and DNA uptake. This review highlights the ecological significance of T4P-dependent motility in Thermus thermophilus, a thermophilic bacterium isolated from hot springs. Unlike swimming motility, the T4P machinery enables bacteria to move over two-dimensional surfaces through repeated cycles of extension and retraction of pilus filaments. Notably, T. thermophilus exhibits upstream-directed migration under shear stress, known as rheotaxis, which appears to represent an adaptive strategy unique to thermophilic bacteria thriving in rapid water flows. Furthermore, T4P contributes to the capture of DNA and phages, indicating their multifunctionality in natural environments. Understanding the T4P dynamics provides insights into bacterial survival and evolution in extreme habitats.
Collapse
Affiliation(s)
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan;
| |
Collapse
|
3
|
Nishiguchi D, Shiratani S, Takeuchi KA, Aranson IS. Vortex reversal is a precursor of confined bacterial turbulence. Proc Natl Acad Sci U S A 2025; 122:e2414446122. [PMID: 40085657 PMCID: PMC11929451 DOI: 10.1073/pnas.2414446122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
Active turbulence, or chaotic self-organized collective motion, is often observed in concentrated suspensions of motile bacteria and other systems of self-propelled interacting agents. To date, there is no fundamental understanding of how geometrical confinement orchestrates active turbulence and alters its physical properties. Here, by combining large-scale experiments, computer modeling, and analytical theory, we have identified a generic sequence of transitions occurring in bacterial suspensions confined in cylindrical wells of varying radii. With increasing the well's radius, we observed that persistent vortex motion gives way to periodic vortex reversals, four-vortex pulsations, and then well-developed active turbulence. Using computational modeling and analytical theory, we have shown that vortex reversal results from the nonlinear interaction of the first three azimuthal modes that become unstable with the radius increase. The analytical results account for our key experimental findings. To further validate our approach, we reconstructed equations of motion from experimental data. Our findings shed light on the universal properties of confined bacterial active matter and can be applied to various biological and synthetic active systems.
Collapse
Affiliation(s)
- Daiki Nishiguchi
- Department of Physics, School of Science, Institute of Science Tokyo, Meguro-ku, Tokyo152–8551, Japan
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
| | - Sora Shiratani
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
| | - Kazumasa A. Takeuchi
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
- Institute for Physics of Intelligence, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
| | - Igor S. Aranson
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Mathematics, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
4
|
Wang Y, Chen H, Xie L, Liu J, Zhang L, Yu J. Swarm Autonomy: From Agent Functionalization to Machine Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312956. [PMID: 38653192 PMCID: PMC11733729 DOI: 10.1002/adma.202312956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Swarm behaviors are common in nature, where individual organisms collaborate via perception, communication, and adaptation. Emulating these dynamics, large groups of active agents can self-organize through localized interactions, giving rise to complex swarm behaviors, which exhibit potential for applications across various domains. This review presents a comprehensive summary and perspective of synthetic swarms, to bridge the gap between the microscale individual agents and potential applications of synthetic swarms. It is begun by examining active agents, the fundamental units of synthetic swarms, to understand the origins of their motility and functionality in the presence of external stimuli. Then inter-agent communications and agent-environment communications that contribute to the swarm generation are summarized. Furthermore, the swarm behaviors reported to date and the emergence of machine intelligence within these behaviors are reviewed. Eventually, the applications enabled by distinct synthetic swarms are summarized. By discussing the emergent machine intelligence in swarm behaviors, insights are offered into the design and deployment of autonomous synthetic swarms for real-world applications.
Collapse
Affiliation(s)
- Yibin Wang
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Hui Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Leiming Xie
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Jinbo Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong999077China
| | - Jiangfan Yu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| |
Collapse
|
5
|
Torres Maldonado BO, Théry A, Tao R, Brosseau Q, Mathijssen AJTM, Arratia PE. Enhancement of bacterial rheotaxis in non-Newtonian fluids. Proc Natl Acad Sci U S A 2024; 121:e2417614121. [PMID: 39636863 DOI: 10.1073/pnas.2417614121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Many microorganisms exhibit upstream swimming, which is important to many biological processes and can cause contamination of biomedical devices and the infection of organs. This process, called rheotaxis, has been studied extensively in Newtonian fluids. However, most microorganisms thrive in non-Newtonian fluids that contain suspended polymers such as mucus and biofilms. Here, we investigate the rheotactic behavior of Escherichia coli near walls in non-Newtonian fluids. Our experiments demonstrate that bacterial upstream swimming is enhanced by an order of magnitude in shear-thinning (ST) polymeric fluids relative to Newtonian fluids. This result is explained by direct numerical simulations, revealing a torque that promotes the alignment of bacteria against the flow. From this analysis, we develop a theoretical model that accurately describes experimental rheotactic data in both Newtonian and ST fluids.
Collapse
Affiliation(s)
- Bryan O Torres Maldonado
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104
| | - Albane Théry
- Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104
| | - Ran Tao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Quentin Brosseau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
6
|
Valani RN, Harding B, Stokes YM. Active particle motion in Poiseuille flow through rectangular channels. Phys Rev E 2024; 110:034603. [PMID: 39425343 DOI: 10.1103/physreve.110.034603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/01/2024] [Indexed: 10/21/2024]
Abstract
We investigate the dynamics of a pointlike active particle suspended in fluid flow through a straight channel. For this particle-fluid system, we derive a constant of motion for a general unidirectional fluid flow and apply it to an approximation of Poiseuille flow through channels with rectangular cross- sections. We obtain a 4D nonlinear conservative dynamical system with one constant of motion and a dimensionless parameter describing the ratio of maximum flow speed to intrinsic active particle speed. Applied to square channels, we observe a diverse set of active particle trajectories with variations in system parameters and initial conditions which we classify into different types of swinging, trapping, tumbling, and wandering motion. Regular (periodic and quasiperiodic) motion as well as chaotic active particle motion are observed for these trajectories and quantified using largest Lyapunov exponents. We explore the transition to chaotic motion using Poincaré maps and show "sticky" chaotic tumbling trajectories that have long transients near a periodic state. We briefly illustrate how these results extend to rectangular cross-sections with a width-to-height ratio larger than one. Outcomes of this paper may have implications for dynamics of natural and artificial microswimmers in experimental microfluidic channels that typically have rectangular cross sections.
Collapse
|
7
|
Mofadel HA, Hussein HA, Abd-Elhafee HH, El-Sherry TM. Impact of various cryo-preservation steps on sperm rheotaxis and sperm kinematics in bull. Sci Rep 2024; 14:11403. [PMID: 38762581 PMCID: PMC11636841 DOI: 10.1038/s41598-024-61617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Semen cryopreservation is an important tool that has massively contributed to the progression of animal reproduction, especially in cattle. Nonetheless, a large part of the sperm population suffers from cryostress and loses fertility during the process. Although bovine semen cryopreservation is more advanced than any other species, there are still some missing links in the technology knowledge. The aim of the current study was to detect the effect of cryopreservation steps on sperm rheotaxis. Semen samples were collected from sex bulls and analyzed inside a microfluidic platform with CASA after each step of cryopreservation, including control, dilution with yolk citrate, cryoprotectant addition, and cooling or freezing. The results showed that positive rheotaxis % (PR) was not affected during cryopreservation. On the contrary, the sperm kinematics of the positive rheotactic sperm undergo significant changes, as velocity parameters (VCL, VSL, and VAP) were lower in both the cryoprotectant adding and cooling/freezing steps than in the control and yolk citrate dilution steps, while progression parameters (LIN and BCF) were higher in the cryoprotectant and cooling/freezing steps than in the control and yolk citrate dilution steps. Beside these results, an interesting phenomenon of sperm backward positive rheotaxis has been observed. The results of backward sperm rheotaxis samples revealed a significant decrease in PR%, while all sperm kinematics except BCF were significantly higher than normal rheotaxis samples. Based on these results, we conclude that positive rheotactic sperm cells are the elite of the sperm population; however, they still get some sublethal cryodamage, as shown by alterations in sperm kinematics. We also suggest that the sperm-positive rheotaxis mechanism is a mixture of an active and passive process rather than a passive physical one.
Collapse
Affiliation(s)
- Haitham A Mofadel
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Hassan A Hussein
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Hanan H Abd-Elhafee
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Taymour M El-Sherry
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
8
|
Jin C, Sengupta A. Microbes in porous environments: from active interactions to emergent feedback. Biophys Rev 2024; 16:173-188. [PMID: 38737203 PMCID: PMC11078916 DOI: 10.1007/s12551-024-01185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Microbes thrive in diverse porous environments-from soil and riverbeds to human lungs and cancer tissues-spanning multiple scales and conditions. Short- to long-term fluctuations in local factors induce spatio-temporal heterogeneities, often leading to physiologically stressful settings. How microbes respond and adapt to such biophysical constraints is an active field of research where considerable insight has been gained over the last decades. With a focus on bacteria, here we review recent advances in self-organization and dispersal in inorganic and organic porous settings, highlighting the role of active interactions and feedback that mediates microbial survival and fitness. We discuss open questions and opportunities for using integrative approaches to advance our understanding of the biophysical strategies which microbes employ at various scales to make porous settings habitable.
Collapse
Affiliation(s)
- Chenyu Jin
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, Luxembourg City, L-1511 Luxembourg
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, Luxembourg City, L-1511 Luxembourg
- Institute for Advanced Studies, University of Luxembourg, 2 Avenue de l’Université, Esch-sur-Alzette, L-4365 Luxembourg
| |
Collapse
|
9
|
Hu X, Chen W, Lin J, Nie D, Zhu Z, Lin P. The motion of micro-swimmers over a cavity in a micro-channel. SOFT MATTER 2024; 20:2789-2803. [PMID: 38445957 DOI: 10.1039/d3sm01589k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This article combines the lattice Boltzmann method (LBM) with the squirmer model to investigate the motion of micro-swimmers in a channel-cavity system. The study analyses various influential factors, including the value of the squirmer-type factor (β), the swimming Reynolds number (Rep), the size of the cavity, initial position and particle size on the movement of micro-swimmers within the channel-cavity system. We simultaneously studied three types of squirmer models, Puller (β > 0), Pusher (β < 0), and Neutral (β = 0) swimmers. The findings reveal that the motion of micro-swimmers is determined by the value of β and Rep, which can be classified into six distinct motion modes. For Puller and Pusher, when the β value is constant, an increase in Rep will lead to transition in the motion mode. Moreover, the appropriate depth of cavity within the channel-cavity system plays a crucial role in capturing and separating Neutral swimmers. This study, for the first time, explores the effect of complex channel-cavity systems on the behaviour of micro-swimmers and highlights their separation and capture ability. These findings offer novel insights for the design and enhancement of micro-channel structures in achieving efficient separation and capture of micro-swimmers.
Collapse
Affiliation(s)
- Xiao Hu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Weijin Chen
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jianzhong Lin
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Deming Nie
- Institute of Fluid Mechanics, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Zuchao Zhu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Peifeng Lin
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
10
|
Marchello R, Colombi A, Preziosi L, Giverso C. A non local model for cell migration in response to mechanical stimuli. Math Biosci 2024; 368:109124. [PMID: 38072125 DOI: 10.1016/j.mbs.2023.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Cell migration is one of the most studied phenomena in biology since it plays a fundamental role in many physiological and pathological processes such as morphogenesis, wound healing and tumorigenesis. In recent years, researchers have performed experiments showing that cells can migrate in response to mechanical stimuli of the substrate they adhere to. Motion towards regions of the substrate with higher stiffness is called durotaxis, while motion guided by the stress or the deformation of the substrate itself is called tensotaxis. Unlike chemotaxis (i.e. the motion in response to a chemical stimulus), these migratory processes are not yet fully understood from a biological point of view. In this respect, we present a mathematical model of single-cell migration in response to mechanical stimuli, in order to simulate these two processes. Specifically, the cell moves by changing its direction of polarization and its motility according to material properties of the substrate (e.g., stiffness) or in response to proper scalar measures of the substrate strain or stress. The equations of motion of the cell are non-local integro-differential equations, with the addition of a stochastic term to account for random Brownian motion. The mechanical stimulus to be integrated in the equations of motion is defined according to experimental measurements found in literature, in the case of durotaxis. Conversely, in the case of tensotaxis, substrate strain and stress are given by the solution of the mechanical problem, assuming that the extracellular matrix behaves as a hyperelastic Yeoh's solid. In both cases, the proposed model is validated through numerical simulations that qualitatively reproduce different experimental scenarios.
Collapse
Affiliation(s)
- Roberto Marchello
- Mathematics Area, SISSA (International School for Advanced Studies), Via Bonomea 265, Trieste, 34136, Italy
| | - Annachiara Colombi
- Department of Mathematical Sciences G. L. Lagrange, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Luigi Preziosi
- Department of Mathematical Sciences G. L. Lagrange, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Chiara Giverso
- Department of Mathematical Sciences G. L. Lagrange, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|
11
|
Zhou T, Wan X, Huang DZ, Li Z, Peng Z, Anandkumar A, Brady JF, Sternberg PW, Daraio C. AI-aided geometric design of anti-infection catheters. SCIENCE ADVANCES 2024; 10:eadj1741. [PMID: 38170782 PMCID: PMC10776022 DOI: 10.1126/sciadv.adj1741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Bacteria can swim upstream in a narrow tube and pose a clinical threat of urinary tract infection to patients implanted with catheters. Coatings and structured surfaces have been proposed to repel bacteria, but no such approach thoroughly addresses the contamination problem in catheters. Here, on the basis of the physical mechanism of upstream swimming, we propose a novel geometric design, optimized by an artificial intelligence model. Using Escherichia coli, we demonstrate the anti-infection mechanism in microfluidic experiments and evaluate the effectiveness of the design in three-dimensionally printed prototype catheters under clinical flow rates. Our catheter design shows that one to two orders of magnitude improved suppression of bacterial contamination at the upstream end, potentially prolonging the in-dwelling time for catheter use and reducing the overall risk of catheter-associated urinary tract infection.
Collapse
Affiliation(s)
- Tingtao Zhou
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xuan Wan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daniel Zhengyu Huang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
| | - Zongyi Li
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhiwei Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anima Anandkumar
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - John F. Brady
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chiara Daraio
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Meta Platforms Inc., Reality Labs, 322 Airport Blvd., Burlingame, CA 94010, USA
| |
Collapse
|
12
|
Kamdar S, Ghosh D, Lee W, Tătulea-Codrean M, Kim Y, Ghosh S, Kim Y, Cheepuru T, Lauga E, Lim S, Cheng X. Multiflagellarity leads to the size-independent swimming speed of peritrichous bacteria. Proc Natl Acad Sci U S A 2023; 120:e2310952120. [PMID: 37991946 PMCID: PMC10691209 DOI: 10.1073/pnas.2310952120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
To swim through a viscous fluid, a flagellated bacterium must overcome the fluid drag on its body by rotating a flagellum or a bundle of multiple flagella. Because the drag increases with the size of bacteria, it is expected theoretically that the swimming speed of a bacterium inversely correlates with its body length. Nevertheless, despite extensive research, the fundamental size-speed relation of flagellated bacteria remains unclear with different experiments reporting conflicting results. Here, by critically reviewing the existing evidence and synergizing our own experiments of large sample sizes, hydrodynamic modeling, and simulations, we demonstrate that the average swimming speed of Escherichia coli, a premier model of peritrichous bacteria, is independent of their body length. Our quantitative analysis shows that such a counterintuitive relation is the consequence of the collective flagellar dynamics dictated by the linear correlation between the body length and the number of flagella of bacteria. Notably, our study reveals how bacteria utilize the increasing number of flagella to regulate the flagellar motor load. The collective load sharing among multiple flagella results in a lower load on each flagellar motor and therefore faster flagellar rotation, which compensates for the higher fluid drag on the longer bodies of bacteria. Without this balancing mechanism, the swimming speed of monotrichous bacteria generically decreases with increasing body length, a feature limiting the size variation of the bacteria. Altogether, our study resolves a long-standing controversy over the size-speed relation of flagellated bacteria and provides insights into the functional benefit of multiflagellarity in bacteria.
Collapse
Affiliation(s)
- Shashank Kamdar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Dipanjan Ghosh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Wanho Lee
- National Institute for Mathematical Sciences, Daejeon34047, Republic of Korea
| | - Maria Tătulea-Codrean
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - Yongsam Kim
- Department of Mathematics, Chung-Ang University, Seoul06974, Republic of Korea
| | - Supriya Ghosh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Youngjun Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Tejesh Cheepuru
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH45221
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
13
|
Zöttl A, Tesser F, Matsunaga D, Laurent J, du Roure O, Lindner A. Asymmetric bistability of chiral particle orientation in viscous shear flows. Proc Natl Acad Sci U S A 2023; 120:e2310939120. [PMID: 37906645 PMCID: PMC10636314 DOI: 10.1073/pnas.2310939120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023] Open
Abstract
The migration of helical particles in viscous shear flows plays a crucial role in chiral particle sorting. Attaching a nonchiral head to a helical particle leads to a rheotactic torque inducing particle reorientation. This phenomenon is responsible for bacterial rheotaxis observed for flagellated bacteria as Escherichia coli in shear flows. Here, we use a high-resolution microprinting technique to fabricate microparticles with controlled and tunable chiral shape consisting of a spherical head and helical tails of various pitch and handedness. By observing the fully time-resolved dynamics of these microparticles in microfluidic channel flow, we gain valuable insights into chirality-induced orientation dynamics. Our experimental model system allows us to examine the effects of particle elongation, chirality, and head heaviness for different flow rates on the orientation dynamics, while minimizing the influence of Brownian noise. Through our model experiments, we demonstrate the existence of asymmetric bistability of the particle orientation perpendicular to the flow direction. We quantitatively explain the particle equilibrium orientations as a function of particle properties, initial conditions and flow rates, as well as the time-dependence of the reorientation dynamics through a theoretical model. The model parameters are determined using boundary element simulations, and excellent agreement with experiments is obtained without any adjustable parameters. Our findings lead to a better understanding of chiral particle transport and bacterial rheotaxis and might allow the development of targeted delivery applications.
Collapse
Affiliation(s)
- Andreas Zöttl
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, CNRS, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Université Paris Cité, Paris75005, France
- Sorbonne Université, Université Paris Cité, Paris75005, France
- Faculty of Physics, University of Vienna, Wien1090, Austria
- Institute for Theoretical Physics, Technische Universität Wien, Wien1040, Austria
| | - Francesca Tesser
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, CNRS, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Université Paris Cité, Paris75005, France
- Sorbonne Université, Université Paris Cité, Paris75005, France
| | - Daiki Matsunaga
- Graduate School of Engineering Science, Osaka University, Osaka5608531, Japan
| | - Justine Laurent
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, CNRS, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Université Paris Cité, Paris75005, France
- Sorbonne Université, Université Paris Cité, Paris75005, France
| | - Olivia du Roure
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, CNRS, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Université Paris Cité, Paris75005, France
- Sorbonne Université, Université Paris Cité, Paris75005, France
| | - Anke Lindner
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, CNRS, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Université Paris Cité, Paris75005, France
- Sorbonne Université, Université Paris Cité, Paris75005, France
| |
Collapse
|
14
|
Lohrmann C, Holm C. A novel model for biofilm initiation in porous media flow. SOFT MATTER 2023; 19:6920-6928. [PMID: 37664878 DOI: 10.1039/d3sm00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Bacteria often form biofilms in porous environments where an external flow is present, such as soil or filtration systems. To understand the initial stages of biofilm formation, one needs to study the interactions between cells, the fluid and the confining geometries. Here, we present an agent based numerical model for bacteria that takes into account the planktonic stage of motile cells as well as surface attachment and biofilm growth in a lattice Boltzmann fluid. In the planktonic stage we show the importance of the interplay between complex flow and cell motility when determining positions of surface attachment. In the growth stage we show the applicability of our model by investigating how external flow and biofilm stiffness determine qualitative colony morphologies as well as quantitative measurements of, e.g., permeability.
Collapse
Affiliation(s)
- Christoph Lohrmann
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany.
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany.
| |
Collapse
|
15
|
Nakane D. Rheotaxis in Mycoplasma gliding. Microbiol Immunol 2023; 67:389-395. [PMID: 37430383 DOI: 10.1111/1348-0421.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
This review describes the upstream-directed movement in the small parasitic bacterium Mycoplasma. Many Mycoplasma species exhibit gliding motility, a form of biological motion over surfaces without the aid of general surface appendages such as flagella. The gliding motility is characterized by a constant unidirectional movement without changes in direction or backward motion. Unlike flagellated bacteria, Mycoplasma lacks the general chemotactic signaling system to control their moving direction. Therefore, the physiological role of directionless travel in Mycoplasma gliding remains unclear. Recently, high-precision measurements under an optical microscope have revealed that three species of Mycoplasma exhibited rheotaxis, that is, the direction of gliding motility is lead upstream by the water flow. This intriguing response appears to be optimized for the flow patterns encountered at host surfaces. This review provides a comprehensive overview of the morphology, behavior, and habitat of Mycoplasma gliding, and discusses the possibility that the rheotaxis is ubiquitous among them.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, Tokyo, Japan
| |
Collapse
|
16
|
Abstract
Bacteria thrive in environments rich in fluid flow, such as the gastrointestinal tract, bloodstream, aquatic systems, and the urinary tract. Despite the importance of flow, how flow affects bacterial life is underappreciated. In recent years, the combination of approaches from biology, physics, and engineering has led to a deeper understanding of how bacteria interact with flow. Here, we highlight the wide range of bacterial responses to flow, including changes in surface adhesion, motility, surface colonization, quorum sensing, virulence factor production, and gene expression. To emphasize the diversity of flow responses, we focus our review on how flow affects four ecologically distinct bacterial species: Escherichia coli, Staphylococcus aureus, Caulobacter crescentus, and Pseudomonas aeruginosa. Additionally, we present experimental approaches to precisely study bacteria in flow, discuss how only some flow responses are triggered by shear force, and provide perspective on flow-sensitive bacterial signaling.
Collapse
Affiliation(s)
- Gilberto C. Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alexander M. Shuppara
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jessica-Jae S. Palalay
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anuradha Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joseph E. Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
17
|
Zheng H, Yan N, Feng W, Liu Y, Luo H, Jing G. Swimming of Buoyant Bacteria in Quiescent Medium and Shear Flows. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4224-4232. [PMID: 36926901 DOI: 10.1021/acs.langmuir.2c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Gravity has an unavoidable effect on all living organisms inhabiting fluidic surroundings. To investigate the spatial distribution of bacteria in quiescent fluids and their rheotactic behavior in shear flows under buoyancy, we adjust the buoyant force to regulate bacterial swimming in a microfluidic channel. It is found that swimming bacteria of Escherichia coli exhibit an obvious vertical separation when exposed to a medium with high density and gradually gather close to the up wall within minutes. The bacterial population presents a net upward number flux, which enhances the trapping of motile bacteria onto the up surface as a result of buoyancy force apart from the hydrodynamic and kinematic interactions in quiescent fluids. When flow is imposed into the channel, the buoyancy effect is however significantly suppressed. Additionally, the drift velocity perpendicular to the buoyancy vector as a result of chirality-induced transverse swimming decreases with buoyancy force. However, this transverse drift capability is recovered after excluding the intrinsic swimming motility in a quiescent medium. Failing to escape from the trapping as a result of buoyant force allows for a facile separation of bacteria along the vertical direction. The findings also offer a controllable way to redisperse and homogenize the bacteria distribution close to walls by imposing a weak shear flow.
Collapse
Affiliation(s)
- Huan Zheng
- School of Physics, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Ningzhe Yan
- School of Physics, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Wei Feng
- School of Physics, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Yanan Liu
- School of Physics, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Hao Luo
- School of Physics, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Guangyin Jing
- School of Physics, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| |
Collapse
|
18
|
Gao B, Wang X, Ford RM. Chemotaxis along local chemical gradients enhanced bacteria dispersion and PAH bioavailability in a heterogenous porous medium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160004. [PMID: 36368405 DOI: 10.1016/j.scitotenv.2022.160004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, EPA-designated priority pollutants for soil and groundwater, remaining recalcitrant to bioremediation because of limited bioavailability. In this work, we used naphthalene as a model PAH and soil bacteria Pseudomonas putida G7 to investigate the potential role of chemotaxis to enhance access to PAHs in heterogenous porous media. To this aim, we conducted transport experiments and numerical simulations with chemotactic bacteria and naphthalene trapped within a non-aqueous phase liquid (NAPL) mainly in low permeable areas of a dual-permeability microfluidic device. Microscopic imaging showed higher accumulations of chemotactic bacteria, about eight times that of nonchemotactic bacteria, at the junctures between high and low permeability regions. Pore-scale simulations for fluid flow and naphthalene revealed that the junctures are stagnant areas of fluid flow, which generated strong and temporally persistent naphthalene gradients. The landscape and densities of bacterial accumulation at the junctures were strongly regulated by flow profiles and naphthalene gradients especially those transverse to flow. We conducted macroscale simulations using convective dispersion equations with an added chemotactic velocity to account for directed migration toward naphthalene. Simulated results showed good consistency with experiments and pore-scale simulation as normalized bacterial accumulation per mm of NAPL was 7.80, 7.84 and 7.71 mm-1 for experiments, pore-scale and macroscale simulations, respectively. Macroscale simulations indicated that in the absence of grain-boundary restrictions associated with the pore structure bacterial dispersion needed to be increased by 50 % to account for the interplay between chemotactic response and naphthalene gradients at the pore-scale level. Our work details the mechanism of pore-scale chemotaxis in enhancing bioavailability of PAHs and its impact on biomass retention at the system level, which provides a potential solution toward more efficient bioremediation for contaminants such as PAHs with limited bioavailability.
Collapse
Affiliation(s)
- Beibei Gao
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, United States
| | - Xiaopu Wang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| | - Roseanne M Ford
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, United States.
| |
Collapse
|
19
|
Ji F, Wu Y, Pumera M, Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203959. [PMID: 35986637 DOI: 10.1002/adma.202203959] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Taxis orientation is common in microorganisms, and it provides feasible strategies to operate active colloids as small-scale robots. Collective taxes involve numerous units that collectively perform taxis motion, whereby the collective cooperation between individuals enables the group to perform efficiently, adaptively, and robustly. Hence, analyzing and designing collectives is crucial for developing and advancing microswarm toward practical or clinical applications. In this review, natural taxis behaviors are categorized and synthetic microrobotic collectives are discussed as bio-inspired realizations, aiming at closing the gap between taxis strategies of living creatures and those of functional active microswarms. As collective behaviors emerge within a group, the global taxis to external stimuli guides the group to conduct overall tasks, whereas the local taxis between individuals induces synchronization and global patterns. By encoding the local orientations and programming the global stimuli, various paradigms can be introduced for coordinating and controlling such collective microrobots, from the viewpoints of fundamental science and practical applications. Therefore, by discussing the key points and difficulties associated with collective taxes of different paradigms, this review potentially offers insights into mimicking natural collective behaviors and constructing intelligent microrobotic systems for on-demand control and preassigned tasks.
Collapse
Affiliation(s)
- Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Martin Pumera
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
20
|
Qin B, Arratia PE. Confinement, chaotic transport, and trapping of active swimmers in time-periodic flows. SCIENCE ADVANCES 2022; 8:eadd6196. [PMID: 36475804 PMCID: PMC9728977 DOI: 10.1126/sciadv.add6196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Microorganisms encounter complex unsteady flows, including algal blooms in marine settings, microbial infections in airways, and bioreactors for vaccine and biofuel production. Here, we study the transport of active swimmers in two-dimensional time-periodic flows using Langevin simulations and experiments with swimming bacteria. We find that long-term swimmer transport is controlled by two parameters, the pathlength of the unsteady flow and the normalized swimmer speed. The pathlength nonmonotonically controls swimmer dispersion dynamics, giving rise to three distinct dispersion regimes. Weak flows hinder swimmer transport by confining cells toward flow manifolds. As pathlength increases, chaotic transport along flow manifolds initiates, maximizing the number of unique flow cells traveled. Last, strong flows trap swimmers at the vortex core, suppressing dispersal. Experiments with Vibrio cholerae showed qualitative agreement with model dispersion patterns. Our results reveal that nontrivial chaotic transport can arise in simple unsteady flows and suggest a potentially optimal dispersal strategy for microswimmers in nature.
Collapse
Affiliation(s)
- Boyang Qin
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Paulo E. Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Tanasijević I, Lauga E. Microswimmers in vortices: dynamics and trapping. SOFT MATTER 2022; 18:8931-8944. [PMID: 36408908 PMCID: PMC9727827 DOI: 10.1039/d2sm00907b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Biological and artificial microswimmers often self-propel in external flows of vortical nature; relevant examples include algae in small-scale ocean eddies, spermatozoa in uterine peristaltic flows and bacteria in microfluidic devices. A recent experiment has shown that swimming bacteria in model vortices are expelled from the vortex all the way to a well-defined depletion zone (A. Sokolov and I. S. Aranson, Rapid expulsion of microswimmers by a vortical flow. Nat. Commun., 2016, 7, 11114). In this paper, we propose a theoretical model to investigate the dynamics of elongated microswimmers in elementary vortices, namely active particles in two- and three-dimensional rotlets. A deterministic model first reveals the existence of bounded orbits near the centre of the vortex and unbounded orbits elsewhere. We further discover a conserved quantity of motion that allows us to map the phase space according to the type of the orbit (bounded vs unbounded). We next introduce translational and rotational noise into the system. Using a Fokker-Planck formalism, we quantify the quality of trapping near the centre of the vortex by examining the probability of escape and the mean time of escape from the region of deterministically bounded orbits. We finally show how to use these findings to formulate a prediction for the radius of the depletion zone, which compares favourably with the experiments (A. Sokolov and I. S. Aranson, Rapid expulsion of microswimmers by a vortical flow. Nat. Commun., 2016, 7, 11114).
Collapse
Affiliation(s)
- Ivan Tanasijević
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
| |
Collapse
|
22
|
Wang X, Blumenfeld R, Feng XQ, Weitz DA. 'Phase transitions' in bacteria - From structural transitions in free living bacteria to phenotypic transitions in bacteria within biofilms. Phys Life Rev 2022; 43:98-138. [PMID: 36252408 DOI: 10.1016/j.plrev.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022]
Abstract
Phase transitions are common in inanimate systems and have been studied extensively in natural sciences. Less explored are the rich transitions that take place at the micro- and nano-scales in biological systems. In conventional phase transitions, large-scale properties of the media change discontinuously in response to continuous changes in external conditions. Such changes play a significant role in the dynamic behaviours of organisms. In this review, we focus on some transitions in both free-living and biofilms of bacteria. Particular attention is paid to the transitions in the flagellar motors and filaments of free-living bacteria, in cellular gene expression during the biofilm growth, in the biofilm morphology transitions during biofilm expansion, and in the cell motion pattern transitions during the biofilm formation. We analyse the dynamic characteristics and biophysical mechanisms of these phase transition phenomena and point out the parallels between these transitions and conventional phase transitions. We also discuss the applications of some theoretical and numerical methods, established for conventional phase transitions in inanimate systems, in bacterial biofilms.
Collapse
Affiliation(s)
- Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA.
| | - Raphael Blumenfeld
- Gonville & Caius College, University of Cambridge, Trinity St., Cambridge CB2 1TA, UK
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA; Department of Physics, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA
| |
Collapse
|
23
|
Shave MK, Santore MM. Motility Increases the Numbers and Durations of Cell-Surface Engagements for Escherichia coli Flowing near Poly(ethylene glycol)-Functionalized Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34342-34353. [PMID: 35857760 PMCID: PMC9674025 DOI: 10.1021/acsami.2c05936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bacteria are keenly sensitive to properties of the surfaces they contact, regulating their ability to form biofilms and initiate infections. This study examines how the presence of flagella, interactions between the cell body and the surface, or motility itself guides the dynamic contact between bacterial cells and a surface in flow, potentially enabling cells to sense physicochemical and mechanical properties of surfaces. This work focuses on a poly(ethylene glycol) biomaterial coating, which does not retain cells. In a comparison of four Escherichia coli strains with different flagellar expressions and motilities, cells with substantial run-and-tumble swimming motility exhibited increased flux to the interface (3 times the calculated transport-limited rate which adequately described the non-motile cells), greater proportions of cells engaging in dynamic nanometer-scale surface associations, extended times of contact with the surface, increased probability of return to the surface after escape and, as evidenced by slow velocities during near-surface travel, closer cellular approach. All these metrics, reported here as distributions of cell populations, point to a greater ability of motile cells, compared with nonmotile cells, to interact more closely, forcefully, and for greater periods of time with interfaces in flow. With contact durations of individual cells exceeding 10 s in the window of observation and trends suggesting further interactions beyond the field of view, the dynamic contact of individual cells may approach the minute timescales reported for mechanosensing and other cell recognition pathways. Thus, despite cell translation and the dynamic nature of contact, flow past a surface, even one rendered non-cell arresting by use of an engineered coating, may produce a subpopulation of cells already upregulating virulence factors before they arrest on a downstream surface and formally initiate biofilm formation.
Collapse
Affiliation(s)
| | - Maria M. Santore
- corresponding author: Maria Santore, Department of Polymer Science and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, 413-577-1417,
| |
Collapse
|
24
|
|
25
|
Nakane D, Kabata Y, Nishizaka T. Cell shape controls rheotaxis in small parasitic bacteria. PLoS Pathog 2022; 18:e1010648. [PMID: 35834494 PMCID: PMC9282661 DOI: 10.1371/journal.ppat.1010648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Mycoplasmas, a group of small parasitic bacteria, adhere to and move across host cell surfaces. The role of motility across host cell surfaces in pathogenesis remains unclear. Here, we used optical microscopy to visualize rheotactic behavior in three phylogenetically distant species of Mycoplasma using a microfluidic chamber that enabled the application of precisely controlled fluid flow. We show that directional movements against fluid flow occur synchronously with the polarized cell orienting itself to be parallel against the direction of flow. Analysis of depolarized cells revealed that morphology itself functions as a sensor to recognize rheological properties that mimic those found on host-cell surfaces. These results demonstrate the vital role of cell morphology and motility in responding to mechanical forces encountered in the native environment. The small, parasitic bacterium Mycoplasma pneumoniae attaches to, and moves over, host cell surfaces. Adherence to host surfaces and motility are critical for the pathogenicity of M. pneumoniae. The role of motility by M. pneumoniae in vivo, however, is poorly understood. Host airways generate constant fluid flow toward the mouth as part of their defense against pathogens and irritants. Consequently, pulmonary invaders must counter the rheological forces found in host airways in order to successfully colonize the host. Here, we demonstrate that M. pneumoniae exhibits directional movement against fluid flow. These findings suggest there is a vital role for rheotactic motility that has evolved in order to overcome host defense mechanisms such as mucociliary clearance.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
- * E-mail: (DN); (TN)
| | - Yoshiki Kabata
- Department of Physics, Gakushuin University, Tokyo, Japan
| | - Takayuki Nishizaka
- Department of Physics, Gakushuin University, Tokyo, Japan
- * E-mail: (DN); (TN)
| |
Collapse
|
26
|
Wang W, Wu Z, Yang L, Si T, He Q. Rational Design of Polymer Conical Nanoswimmers with Upstream Motility. ACS NANO 2022; 16:9317-9328. [PMID: 35576530 DOI: 10.1021/acsnano.2c01979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Utilizing bottom-up controllable molecular assembly, the bio-inspired polyelectrolyte multilayer conical nanoswimmers with gold-nanoshell functionalization on different segments are presented to achieve the optimal upstream propulsion performance. The experimental investigation reveals that the presence of the gold nanoshells on the big openings of the nanoswimmers could not only bestow efficient directional propulsion but could also minimize the impact from the external flow. The gold nanoshells at the big openings of nanoswimmers facilitate the acoustically powered propulsion against a flow velocity of up to 2.00 mm s-1, which is higher than the blood velocity in capillaries and thus provides a proof-of-concept design for upstream nanoswimmers.
Collapse
Affiliation(s)
- Wei Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
| | - Zhiguang Wu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150080, China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
| | - Tieyan Si
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150080, China
| | - Qiang He
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150080, China
| |
Collapse
|
27
|
Lazzini G, Romoli L, Fuso F. Fluid-driven bacterial accumulation in proximity of laser-textured surfaces. Colloids Surf B Biointerfaces 2022; 217:112654. [PMID: 35816878 DOI: 10.1016/j.colsurfb.2022.112654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
In this work we investigated the role of fluid in the initial phase of bacterial adhesion on textured surfaces, focusing onto the approach of the bacterial cells towards the surface. In particular, stainless steel surfaces textured via femtosecond laser interaction have been considered. The method combined a simulation routine, based on the numerical solution of Navier-Stokes equations, and the use of a theoretical model, based on the Smoluchowski's equation. Results highlighted a slowdown of the fluid velocity field in correspondence of the surface dales. In addition, a shear induced accumulation on the top of the surface protrusions was predicted for motile bacterial species, E. coli. In particular, we observed a role of the surface protrusions in increasing the range over which motile bacterial species are attracted towards the surface through a rheotactic mechanism. In other words, we found that, in certain conditions of fluid flow and textured surface morphology, surface protrusions act as a sort of "rheotactic antennas".
Collapse
Affiliation(s)
- Gianmarco Lazzini
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy.
| | - Luca Romoli
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy
| | - Francesco Fuso
- Dipartimento di Fisica "Enrico Fermi", Universitá di Pisa, 56127 Pisa, Italy
| |
Collapse
|
28
|
Aranson IS. Bacterial active matter. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:076601. [PMID: 35605446 DOI: 10.1088/1361-6633/ac723d] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Bacteria are among the oldest and most abundant species on Earth. Bacteria successfully colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. They also form human and animal microbiota and may become sources of pathogens and a cause of many infectious diseases. Suspensions of motile bacteria constitute one of the most studied examples of active matter: a broad class of non-equilibrium systems converting energy from the environment (e.g., chemical energy of the nutrient) into mechanical motion. Concentrated bacterial suspensions, often termed active fluids, exhibit complex collective behavior, such as large-scale turbulent-like motion (so-called bacterial turbulence) and swarming. The activity of bacteria also affects the effective viscosity and diffusivity of the suspension. This work reports on the progress in bacterial active matter from the physics viewpoint. It covers the key experimental results, provides a critical assessment of major theoretical approaches, and addresses the effects of visco-elasticity, liquid crystallinity, and external confinement on collective behavior in bacterial suspensions.
Collapse
Affiliation(s)
- Igor S Aranson
- Departments of Biomedical Engineering, Chemistry, and Mathematics, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
29
|
Oscillatory rheotaxis of artificial swimmers in microchannels. Nat Commun 2022; 13:2952. [PMID: 35618708 PMCID: PMC9135748 DOI: 10.1038/s41467-022-30611-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
Biological microswimmers navigate upstream of an external flow with trajectories ranging from linear to spiralling and oscillatory. Such a rheotactic response primarily stems from the hydrodynamic interactions triggered by the complex shapes of the microswimmers, such as flagellar chirality. We show here that a self-propelling droplet exhibits oscillatory rheotaxis in a microchannel, despite its simple spherical geometry. Such behaviour has been previously unobserved in artificial swimmers. Comparing our experiments to a purely hydrodynamic theory model, we demonstrate that the oscillatory rheotaxis of the droplet is primarily governed by both the shear flow characteristics and the interaction of the finite-sized microswimmer with all four microchannel walls. The dynamics can be controlled by varying the external flow strength, even leading to the rheotactic trapping of the oscillating droplet. Our results provide a realistic understanding of the behaviour of active particles navigating in confined microflows relevant in many biotechnology applications.
Collapse
|
30
|
Rossetto D, Valer L, Yeh Martín N, Guella G, Hongo Y, Mansy SS. Prebiotic Environments with Mg 2+ and Thiophilic Metal Ions Increase the Thermal Stability of Cysteine and Non-cysteine Peptides. ACS EARTH & SPACE CHEMISTRY 2022; 6:1221-1226. [PMID: 35620317 PMCID: PMC9126146 DOI: 10.1021/acsearthspacechem.2c00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Wet-dry cycles driven by heating to high temperatures are frequently invoked for the prebiotic synthesis of peptides. Similarly, iron-sulfur clusters are often cited as an example of an ancient catalyst that helped prune early chemical systems into metabolic-like pathways. Because extant iron-sulfur clusters are metallocofactors of protein enzymes and nearly ubiquitous across biology, a reasonable hypothesis is that prebiotic iron-sulfur peptides formed on the early Earth. However, iron-sulfur clusters are coordinated by multiple cysteine residues, and the stability of cysteines to the heat steps of wet-dry cycles has not been determined. It, therefore, has remained unclear if the peptides needed to stabilize the formation of iron-sulfur clusters could have formed. If not, then iron-sulfur-dependent activity may have emerged later, when milder, more biological-like peptide synthesis machinery took hold. Here, we report the thermal stability of cysteine-containing peptides. We show that temperatures of 150 °C lead to the rapid degradation of cysteinyl peptides. However, the presence of Mg2+ at environmentally reasonable concentrations leads to significant protection. Thiophilic metal ions also protect against degradation at 150 °C but require concentrations not frequently observed in the environment. Nevertheless, cysteine-containing peptides are stable at lower, prebiotically plausible temperatures in seawater, carbonate lake, and ferrous lake conditions. The data are consistent with the persistence of cysteine-containing peptides on the early Earth in environments rich in metal ions. High concentrations of Mg2+ are common intra- and extra-cellularly, suggesting that the protection afforded by Mg2+ may reflect conditions that were present on the prebiotic Earth.
Collapse
Affiliation(s)
- Daniele Rossetto
- D-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, Italy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Luca Valer
- D-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, Italy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Noël Yeh Martín
- D-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, Italy
| | - Graziano Guella
- Department
of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
| | - Yayoi Hongo
- Earth-Life
Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Okinawa
Institute of Science and Technology Graduate University, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Sheref S. Mansy
- D-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, Italy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
31
|
pH-taxis drives aerobic bacteria in duodenum to migrate into the pancreas with tumors. Sci Rep 2022; 12:1783. [PMID: 35110595 PMCID: PMC8810860 DOI: 10.1038/s41598-022-05554-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023] Open
Abstract
As oral or intestinal bacteria have been found in pancreatic cystic fluid and tumors, understanding bacterial migration from the duodenum into the pancreas via hepato-pancreatic duct is critical. Mathematical models of migration of aerobic bacteria from the duodenum to the pancreas with tumors were developed. Additionally, the bacterial distributions under the pH gradient and those under flow were measured in double-layer flow based microfluidic device and T-shaped cylinders. Migration of aerobic bacteria from the duodenum into pancreas is counteracted by bile and pancreatic juice flow but facilitated by pH-taxis from acidic duodenum fluid toward more favorable slightly alkaline pH in pancreatic juice. Additionally, the reduced flow velocity in cancer patients, due to compressed pancreatic duct by solid tumor, facilitates migration. Moreover, measured distribution of GFP E. coli under the pH gradient in a microfluidic device validated pH-tactic behaviors. Furthermore, Pseudomonas fluorescens in hydrochloride solution, but not in bicarbonate solution, migrated upstream against bicarbonate flow of > 20 μm/s, with an advancement at approximately 50 μm/s.
Collapse
|
32
|
Ohmura T, Nishigami Y, Ichikawa M. Simple dynamics underlying the survival behaviors of ciliates. Biophys Physicobiol 2022; 19:e190026. [PMID: 36160323 PMCID: PMC9465405 DOI: 10.2142/biophysico.bppb-v19.0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
|
33
|
Liu Z, Zeng W, Ma X, Cheng X. Density fluctuations and energy spectra of 3D bacterial suspensions. SOFT MATTER 2021; 17:10806-10817. [PMID: 34787630 DOI: 10.1039/d1sm01183a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Giant number fluctuations are often considered as a hallmark of the emergent nonequilibrium dynamics of active fluids. However, these anomalous density fluctuations have only been reported experimentally in two-dimensional dry active systems heretofore. Here, we investigate density fluctuations of bulk Escherichia coli suspensions, a paradigm of three-dimensional (3D) wet active fluids. Our experiments demonstrate the existence and quantify the scaling relation of giant number fluctuations in 3D bacterial suspensions. Surprisingly, the anomalous scaling persists at small scales in low-concentration suspensions well before the transition to active turbulence, reflecting the long-range nature of hydrodynamic interactions of 3D wet active fluids. To illustrate the origin of the density fluctuations, we measure the energy spectra of suspension flows and explore the density-energy coupling in both the steady and transient states of active turbulence. A scale-invariant density-independent correlation between density fluctuations and energy spectra is uncovered across a wide range of length scales. In addition, our experiments show that the energy spectra of bacterial turbulence exhibit the scaling of 3D active nematic fluids, challenging the common view of dense bacterial suspensions as active polar fluids.
Collapse
Affiliation(s)
- Zhengyang Liu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Wei Zeng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
- College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Xiaolei Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
34
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
35
|
Ohmura T, Nishigami Y, Taniguchi A, Nonaka S, Ishikawa T, Ichikawa M. Near-wall rheotaxis of the ciliate Tetrahymena induced by the kinesthetic sensing of cilia. SCIENCE ADVANCES 2021; 7:eabi5878. [PMID: 34669467 PMCID: PMC8528427 DOI: 10.1126/sciadv.abi5878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To survive in harsh environments, single-celled microorganisms autonomously respond to external stimuli, such as light, heat, and flow. Here, we elucidate the flow response of Tetrahymena, a well-known single-celled freshwater microorganism. Tetrahymena moves upstream against an external flow via a behavior called rheotaxis. While micrometer-sized particles are swept away downstream in a viscous flow, what dynamics underlie the rheotaxis of the ciliate? Our experiments reveal that Tetrahymena slides along walls during upstream movement, which indicates that the cells receive rotational torque from shear flow to control cell orientation. To evaluate the effects of the shear torque and propelling speed, we perform a numerical simulation with a hydrodynamic model swimmer adopting cilia dynamics in a shear flow. The swimmer orientations converge to an upstream alignment, and the swimmer slides upstream along a boundary wall. The results suggest that Tetrahymena automatically responds to shear flow by performing rheotaxis using cilia-stalling mechanics.
Collapse
Affiliation(s)
- Takuya Ohmura
- Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
- Biozentrum, University of Basel, Basel 4056, Switzerland
- Corresponding author. (T.O.); (Y.N.); (M.I.)
| | - Yukinori Nishigami
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
- Corresponding author. (T.O.); (Y.N.); (M.I.)
| | - Atsushi Taniguchi
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Spatiotemporal Regulations Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi 444-8585, Japan
| | - Shigenori Nonaka
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Spatiotemporal Regulations Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi 444-8585, Japan
| | - Takuji Ishikawa
- Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Masatoshi Ichikawa
- Department of Physics, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Corresponding author. (T.O.); (Y.N.); (M.I.)
| |
Collapse
|
36
|
Abstract
Dispersed populations often need to organize into groups. Chemical attractants provide one means of directing individuals into an aggregate, but whether these structures emerge can depend on various factors, such as there being a sufficiently large population or the response to the attractant being sufficiently sensitive. In an aquatic environment, fluid flow may heavily impact on population distribution and many aquatic organisms adopt a rheotaxis response when exposed to a current, orienting and swimming according to the flow field. Consequently, flow-induced transport could be substantially different for the population members and any aggregating signal they secrete. With the aim of investigating how flows and rheotaxis responses impact on an aquatic population's ability to form and maintain an aggregated profile, we develop and analyse a mathematical model that incorporates these factors. Through a systematic analysis into the effect of introducing rheotactic behaviour under various forms of environmental flow, we demonstrate that each of flow and rheotaxis can act beneficially or detrimentally on the ability to form and maintain a cluster. Synthesizing these findings, we test a hypothesis that density-dependent rheotaxis may be optimal for group formation and maintenance, in which individuals increase their rheotactic effort as they approach an aggregated state.
Collapse
Affiliation(s)
- K J Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, Viale Pier Andrea Mattioli, 39 10125 Torino, Italy
| |
Collapse
|
37
|
Bacteria hinder large-scale transport and enhance small-scale mixing in time-periodic flows. Proc Natl Acad Sci U S A 2021; 118:2108548118. [PMID: 34580224 DOI: 10.1073/pnas.2108548118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding mixing and transport of passive scalars in active fluids is important to many natural (e.g., algal blooms) and industrial (e.g., biofuel, vaccine production) processes. Here, we study the mixing of a passive scalar (dye) in dilute suspensions of swimming Escherichia coli in experiments using a two-dimensional (2D) time-periodic flow and in a simple simulation. Results show that the presence of bacteria hinders large-scale transport and reduces overall mixing rate. Stretching fields, calculated from experimentally measured velocity fields, show that bacterial activity attenuates fluid stretching and lowers flow chaoticity. Simulations suggest that this attenuation may be attributed to a transient accumulation of bacteria along regions of high stretching. Spatial power spectra and correlation functions of dye-concentration fields show that the transport of scalar variance across scales is also hindered by bacterial activity, resulting in an increase in average size and lifetime of structures. On the other hand, at small scales, activity seems to enhance local mixing. One piece of evidence is that the probability distribution of the spatial concentration gradients is nearly symmetric with a vanishing skewness. Overall, our results show that the coupling between activity and flow can lead to nontrivial effects on mixing and transport.
Collapse
|
38
|
Driving a Microswimmer with Wall-Induced Flow. MICROMACHINES 2021; 12:mi12091025. [PMID: 34577669 PMCID: PMC8471039 DOI: 10.3390/mi12091025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Active walls such as cilia and bacteria carpets generate background flows that can influence the trajectories of microswimmers moving nearby. Recent advances in artificial magnetic cilia carpets offer the potentiality to use a similar wall-generated background flow to steer bio-hybrid microrobots. In this paper, we provide some ground theoretical and numerical work assessing the viability of this novel means of swimmer guidance by setting up a simple model of a spherical swimmer in an oscillatory flow and analysing it from the control theory viewpoint. We show a property of local controllability around the reference free trajectories and investigate the bang-bang structure of the control for time-optimal trajectories, with an estimation of the minimal time for suitable objectives. By direct simulation, we have demonstrated that the wall actuation can improve the wall-following transport by nearly 50%, which can be interpreted by synchronous flow structure. Although an open-loop control with a periodic bang-bang actuation loses some robustness and effectiveness, a feedback control is found to improve its robustness and effective transport, even with hydrodynamic wall-swimmer interactions. The results shed light on the potentialities of flow control and open the way to future experiments on swimmer guidance.
Collapse
|
39
|
Moreau C, Ishimoto K, Gaffney EA, Walker BJ. Control and controllability of microswimmers by a shearing flow. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211141. [PMID: 34430052 PMCID: PMC8355676 DOI: 10.1098/rsos.211141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
With the continuing rapid development of artificial microrobots and active particles, questions of microswimmer guidance and control are becoming ever more relevant and prevalent. In both the applications and theoretical study of such microscale swimmers, control is often mediated by an engineered property of the swimmer, such as in the case of magnetically propelled microrobots. In this work, we will consider a modality of control that is applicable in more generality, effecting guidance via modulation of a background fluid flow. Here, considering a model swimmer in a commonplace flow and simple geometry, we analyse and subsequently establish the efficacy of flow-mediated microswimmer positional control, later touching upon a question of optimal control. Moving beyond idealized notions of controllability and towards considerations of practical utility, we then evaluate the robustness of this control modality to sources of variation that may be present in applications, examining in particular the effects of measurement inaccuracy and rotational noise. This exploration gives rise to a number of cautionary observations, which, overall, demonstrate the need for the careful assessment of both policy and behavioural robustness when designing control schemes for use in practice.
Collapse
Affiliation(s)
- Clément Moreau
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan
| | - Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Benjamin J. Walker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
40
|
Wang Q, Wu H. Mathematical modeling of chemotaxis guided amoeboid cell swimming. Phys Biol 2021; 18. [PMID: 33853049 DOI: 10.1088/1478-3975/abf7d8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/14/2021] [Indexed: 01/15/2023]
Abstract
Cells and microorganisms adopt various strategies to migrate in response to different environmental stimuli. To date, many modeling research has focused on the crawling-basedDictyostelium discoideum(Dd) cells migration induced by chemotaxis, yet recent experimental results reveal that even without adhesion or contact to a substrate, Dd cells can still swim to follow chemoattractant signals. In this paper, we develop a modeling framework to investigate the chemotaxis induced amoeboid cell swimming dynamics. A minimal swimming system consists of one deformable Dd amoeboid cell and a dilute suspension of bacteria, and the bacteria produce chemoattractant signals that attract the Dd cell. We use themathematical amoeba modelto generate Dd cell deformation and solve the resulting low Reynolds number flows, and use a moving mesh based finite volume method to solve the reaction-diffusion-convection equation. Using the computational model, we show that chemotaxis guides a swimming Dd cell to follow and catch bacteria, while on the other hand, bacterial rheotaxis may help the bacteria to escape from the predator Dd cell.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Mathematics, University of California, Riverside, CA, United States of America.,Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
| | - Hao Wu
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
41
|
Affiliation(s)
- Shimin Yu
- Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| | - Yang Cai
- School of Materials Science and Engineering Heilongjiang University of Science and Technology Harbin China
| | - Zhiguang Wu
- Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| | - Qiang He
- Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| |
Collapse
|
42
|
Brette R. Integrative Neuroscience of Paramecium, a "Swimming Neuron". eNeuro 2021; 8:ENEURO.0018-21.2021. [PMID: 33952615 PMCID: PMC8208649 DOI: 10.1523/eneuro.0018-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022] Open
Abstract
Paramecium is a unicellular organism that swims in fresh water by beating thousands of cilia. When it is stimulated (mechanically, chemically, optically, thermally…), it often swims backward then turns and swims forward again. This "avoiding reaction" is triggered by a calcium-based action potential. For this reason, some authors have called Paramecium a "swimming neuron." This review summarizes current knowledge about the physiological basis of behavior of Paramecium.
Collapse
Affiliation(s)
- Romain Brette
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| |
Collapse
|
43
|
Shave MK, Xu Z, Raman V, Kalasin S, Tuominen MT, Forbes NS, Santore MM. Escherichia coli Swimming back Toward Stiffer Polyetheylene Glycol Coatings, Increasing Contact in Flow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17196-17206. [PMID: 33821607 PMCID: PMC8503937 DOI: 10.1021/acsami.1c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bacterial swimming in flow near surfaces is critical to the spread of infection and device colonization. Understanding how material properties affect flagella- and motility-dependent bacteria-surface interactions is a first step in designing new medical devices that mitigate the risk of infection. We report that, on biomaterial coatings such as polyethylene glycol (PEG) hydrogels and end-tethered layers that prevent adhesive bacteria accumulation, the coating mechanics and hydration control the near-surface travel and dynamic surface contact of E. coli cells in gentle shear flow (order 10 s-1). Along relatively stiff (order 1 MPa) PEG hydrogels or end-tethered layers of PEG chains of similar polymer correlation length, run-and-tumble E. coli travel nanometrically close to the coating's surface in the flow direction in distinguishable runs or "engagements" that persist for several seconds, after which cells leave the interface. The duration of these engagements was greater along stiff hydrogels and end-tethered layers compared with softer, more-hydrated hydrogels. Swimming cells that left stiff hydrogels or end-tethered layers proceeded out to distances of a few microns and then returned to engage the surface again and again, while cells engaging the soft hydrogel tended not to return after leaving. As a result of differences in the duration of engagements and tendency to return to stiff hydrogel and end-tethered layers, swimming E. coli experienced 3 times the integrated dynamic surface contact with stiff coatings compared with softer hydrogels. The striking similarity of swimming behaviors near 16-nm-thick end-tethered layers and 100-μm-thick stiff hydrogels argues that only the outermost several nanometers of a highly hydrated coating influence cell travel. The range of material stiffnesses, cell-surface distance during travel, and time scales of travel compared with run-and-tumble time scales suggests the influence of the coating derives from its interactions with flagella and its potential to alter flagellar bundling. Given that restriction of flagellar rotation is known to trigger increased virulence, bacteria influenced by surfaces in one region may become predisposed to form a biofilm downstream.
Collapse
Affiliation(s)
- Molly K. Shave
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Zhou Xu
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Surachate Kalasin
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Mark T. Tuominen
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Maria M. Santore
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
44
|
Lange S, Friedrich BM. Sperm chemotaxis in marine species is optimal at physiological flow rates according theory of filament surfing. PLoS Comput Biol 2021; 17:e1008826. [PMID: 33844682 PMCID: PMC8041200 DOI: 10.1371/journal.pcbi.1008826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Sperm of marine invertebrates have to find eggs cells in the ocean. Turbulent flows mix sperm and egg cells up to the millimeter scale; below this, active swimming and chemotaxis become important. Previous work addressed either turbulent mixing or chemotaxis in still water. Here, we present a general theory of sperm chemotaxis inside the smallest eddies of turbulent flow, where signaling molecules released by egg cells are spread into thin concentration filaments. Sperm cells ‘surf’ along these filaments towards the egg. External flows make filaments longer, but also thinner. These opposing effects set an optimal flow strength. The optimum predicted by our theory matches flow measurements in shallow coastal waters. Our theory quantitatively agrees with two previous fertilization experiments in Taylor-Couette chambers and provides a mechanistic understanding of these early experiments. ‘Surfing along concentration filaments’ could be a paradigm for navigation in complex environments in the presence of turbulent flow. Many motile cells navigate in complex environments along concentration gradients of signaling molecules. This chemotaxis has been studied extensively both experimentally and theoretically, yet mostly for idealized conditions of perfect chemical gradients. But under physiological conditions, concentration fields are subject to distortions, e.g., by turbulent flows in the ocean. Pioneering experiments suggest that in species with external fertilization, chemotaxis of sperm cells towards the egg may even work better at an optimal flow strength compared to conditions of still water. Yet to date, the mechanistic cause for this optimum is not known. We present a general theory of chemotactic navigation in external flow. We characterize how external flow distorts concentration fields into long filaments, and show how chemotaxing cells can subsequently ‘surf’ along these filaments towards a chemoattractant source. Stronger flows make concentration filaments longer, but also thinner; together, these two counter-acting effects set an optimal flow strength. Beyond fertilization of marine invertebrates, we believe that ‘surfing along concentration filaments’ could be a more general paradigm, relevant also for the ecology of marine bacteria feeding on organic marine snow in the ocean, or chemotaxis inside multi-cellular organisms with internal flows.
Collapse
Affiliation(s)
- Steffen Lange
- HTW Dresden, Dresden, Germany
- Center for Advancing Electronics Dresden, TU Dresden, Germany
- * E-mail:
| | - Benjamin M. Friedrich
- Center for Advancing Electronics Dresden, TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| |
Collapse
|
45
|
Junot G, Clément E, Auradou H, García-García R. Single-trajectory characterization of active swimmers in a flow. Phys Rev E 2021; 103:032608. [PMID: 33862792 DOI: 10.1103/physreve.103.032608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 11/07/2022]
Abstract
We develop a maximum likelihood method to infer relevant physical properties of elongated active particles. Using individual trajectories of advected swimmers as input, we are able to accurately determine their rotational diffusion coefficients and an effective measure of their aspect ratio, also providing reliable estimators for the uncertainties of such quantities. We validate our theoretical construction using numerically generated active trajectories upon no flow, simple shear, and Poiseuille flow, with excellent results. Being designed to rely on single-particle data, our method eases applications in experimental conditions where swimmers exhibit a strong morphological diversity. We briefly discuss some of such ongoing experimental applications, specifically, in the characterization of swimming E. coli in a flow.
Collapse
Affiliation(s)
- Gaspard Junot
- Laboratoire PMMH-ESPCI Paris, PSL Research University, Sorbonne Université and Denis Diderot, 7, quai Saint-Bernard, Paris, France
| | - Eric Clément
- Laboratoire PMMH-ESPCI Paris, PSL Research University, Sorbonne Université and Denis Diderot, 7, quai Saint-Bernard, Paris, France.,Institut Universitaire de France (IUF)
| | - Harold Auradou
- Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France
| | - Reinaldo García-García
- Laboratoire PMMH-ESPCI Paris, PSL Research University, Sorbonne Université and Denis Diderot, 7, quai Saint-Bernard, Paris, France
| |
Collapse
|
46
|
Fazli Z, Naji A. Active particles with polar alignment in ring-shaped confinement. Phys Rev E 2021; 103:022601. [PMID: 33736018 DOI: 10.1103/physreve.103.022601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
We study steady-state properties of active, nonchiral and chiral Brownian particles with polar alignment and steric interactions confined within a ring-shaped confinement (annulus) in two dimensions. Exploring possible interplays between polar interparticle alignment, geometric confinement and the surface curvature, being incorporated here on minimal levels, we report a surface-population reversal effect, whereby active particles migrate from the outer concave boundary of the annulus to accumulate on its inner convex boundary. This contrasts the conventional picture, implying stronger accumulation of active particles on concave boundaries relative to the convex ones. The population reversal is caused by both particle alignment and surface curvature, disappearing when either of these factors is absent. We explore the ensuing consequences for the chirality-induced current and swim pressure of active particles and analyze possible roles of system parameters, such as the mean number density of particles and particle self-propulsion, chirality, and alignment strengths.
Collapse
Affiliation(s)
- Zahra Fazli
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.,School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
47
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
48
|
Hoeger K, Ursell T. Steric scattering of rod-like swimmers in low Reynolds number environments. SOFT MATTER 2021; 17:2479-2489. [PMID: 33503087 DOI: 10.1039/d0sm01551b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbes form integral components of all natural ecosystems. In most cases, the surrounding micro-environment has physical variations that affect the movements of micro-swimmers, including solid objects of varying size, shape and density. As swimmers move through viscous environments, a combination of hydrodynamic and steric forces are known to significantly alter their trajectories in a way that depends on surface curvature. In this work, our goal was to clarify the role of steric forces when rod-like swimmers interact with solid objects comparable to cell size. We imaged hundreds-of-thousands of scattering interactions between swimming bacteria and micro-fabricated pillars with radii from ∼1 to ∼10 cell lengths. Scattering interactions were parameterized by the angle of the cell upon contact with the pillar, and primarily produced forward-scattering events that fell into distinct chiral distributions for scattering angle - no hydrodynamic trapping was observed. The chirality of a scattering event was a stochastic variable whose probability smoothly and symmetrically depended on the contact angle. Neglecting hydrodynamics, we developed a model that only considers contact forces and torques for a rear-pushed thin-rod scattering from a cylinder - the model predictions were in good agreement with measured data. Our results suggest that alteration of bacterial trajectories is subject to distinct mechanisms when interacting with objects of different size; primarily steric for objects below ∼10 cell lengths and requiring incorporation of hydrodynamics at larger scales. These results contribute to a mechanistic framework in which to examine (and potentially engineer) microbial movements through natural and synthetic environments that present complex steric structure.
Collapse
Affiliation(s)
- Kentaro Hoeger
- Department of Physics, University of Oregon, Eugene, OR 97424, USA.
| | - Tristan Ursell
- Department of Physics, University of Oregon, Eugene, OR 97424, USA. and Material Science Institute, University of Oregon, Eugene, OR 97424, USA and Institute of Molecular Biology, University of Oregon, Eugene, OR 97424, USA
| |
Collapse
|
49
|
Zhang J, Chinappi M, Biferale L. Base flow decomposition for complex moving objects in linear hydrodynamics: Application to helix-shaped flagellated microswimmers. Phys Rev E 2021; 103:023109. [PMID: 33736027 DOI: 10.1103/physreve.103.023109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The motion of microswimmers in complex flows is ruled by the interplay between swimmer propulsion and the dynamics induced by the fluid velocity field. Here we study the motion of a chiral microswimmer whose propulsion is provided by the spinning of a helical tail with respect to its body in a simple shear flow. Thanks to an efficient computational strategy that allowed us to simulate thousands of different trajectories, we show that the tail shape dramatically affects the swimmer's motion. In the shear dominated regime, the swimmers carrying an elliptical helical tail show several different Jeffery-like (tumbling) trajectories depending on their initial configuration. As the propulsion torque increases, a progressive regularization of the motion is observed until, in the propulsion dominated regime, the swimmers converge to the same final trajectory independently on the initial configuration. Overall, our results show that elliptical helix swimmer presents a much richer variety of trajectories with respect to the usually studied circular helix tails.
Collapse
Affiliation(s)
- Ji Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Mauro Chinappi
- Department of Industrial Engineering, University of Rome, Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy
| | - Luca Biferale
- Department of Physics, INFN, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
| |
Collapse
|
50
|
Si BR, Patel P, Mangal R. Self-Propelled Janus Colloids in Shear Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11888-11898. [PMID: 32897720 DOI: 10.1021/acs.langmuir.0c01924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To fully harness the potential of artificial active colloids, investigation of their response to various external stimuli including external flow is of great interest. Therefore, in this study, we perform experiments on SiO2-Pt Janus particles suspended in an aqueous medium in a capillary subjected to different shear flow rates. Particles were propelled using varied H2O2 (fuel) concentrations. For a particular propulsion speed, with increasing shear flow, a continuous transition in the motion of active Janus particles (JPs) from the usual random active motion to preferential movement along the vorticity direction and then finally to migration along the flow was observed. This transition was accompanied by a significant decline in in-plane fluctuations of the particle trajectories. Another key observation is that the activity of JPs produces a delay in shear-induced rolling, which at moderate flow, allows the JPs to adopt a specific orientation, facilitating their migration along the vorticity direction. At higher flow rates, once shear flow overcomes the activity-induced resistance and initiates rolling, the probability of JPs adopting such preferred orientations reduces. Our analysis further revealed that these transitions are governed by a nondimensional quantity λ, which compares the relative strength of the shear-induced particle flow to the propulsion speed.
Collapse
Affiliation(s)
- Bishwa Ranjan Si
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Preet Patel
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rahul Mangal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|