1
|
Wei Q, Bai Z, Wang L, Wang J, Wang Y, Hu Y, Ding S, Ma Z, Li C, Li Y, Zhuo Y, Li W, Deng F, Liu B, Zhou P, Li Y, Wu Z, Wang J. A high-performance fluorescent sensor spatiotemporally reveals cell-type specific regulation of intracellular adenosine in vivo. Nat Commun 2025; 16:4245. [PMID: 40335490 PMCID: PMC12059024 DOI: 10.1038/s41467-025-59530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
Adenosine (Ado), a nucleoside bridging intracellular metabolism with intercellular communication, plays an essential role in regulating processes such as sleep and seizure. While the functions of extracellular Ado ("eAdo") are well documented, our knowledge about the distribution and regulatory functions of intracellular Ado ("iAdo") is limited by a lack of methods for detecting iAdo in vivo. Here, we develop HypnoS, a genetically encoded fluorescent sensor for iAdo characterized by its high sensitivity, specificity, spatiotemporal resolution, and rapid response (sub-seconds). HypnoS enables real-time visualization of iAdo dynamics in live cultures, acute brain slices, flies, and freely moving mice. Using HypnoS for dual-color mesoscopic imaging in mice, we show that seizure-induced iAdo waves propagated across the cortex, following calcium signals. Additionally, two-photon imaging reveals that iAdo decays more rapidly in astrocytes than in neurons during seizures. Moreover, by recording iAdo dynamics in the basal forebrain during the sleep-wake cycle, we observe that iAdo signals are present during wakefulness and rapid eye movement (REM) sleep, regulated by equilibrative nucleoside transporters (ENT1/2). Thus, HypnoS is a versatile and powerful tool for investigating the biological functions of iAdo across a range of physiological and pathological states.
Collapse
Affiliation(s)
- Qingpeng Wei
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zexiao Bai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yufei Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shiyi Ding
- University of Chinese Academy of Sciences, Beijing, China
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhixiong Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fei Deng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Bingjie Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengcheng Zhou
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
2
|
Peter‐Okaka U, Boison D. Adenosine Kinase: An Epigenetic Modulator and Drug Target. J Inherit Metab Dis 2025; 48:e70033. [PMID: 40393929 PMCID: PMC12092209 DOI: 10.1002/jimd.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 05/22/2025]
Abstract
Adenosine kinase (ADK, EC: 2.7.1.20) is an evolutionarily ancient ribokinase, which acts as a metabolic regulator by transferring a phosphoryl group to adenosine to form AMP. The enzyme is of interest as a therapeutic target because its inhibition is one of the most effective means to raise the levels of adenosine and hence adenosine receptor activation. For these reasons, ADK has received significant attention in drug discovery efforts in the early 2000s for indications such as epilepsy, chronic pain, and inflammation; however, the report of adverse events regarding cardiovascular and hepatic function as well as instances of microhemorrhage in the brain of preclinical models prevented further development efforts. Recent findings emphasize the importance of compartmentalization of the adenosine system reflected by two distinct isoforms of the enzyme, ADK-S and ADK-L, expressed in the cytoplasm and the cell nucleus, respectively. Newly identified adenosine receptor independent functions of adenosine as a regulator of biochemical transmethylation reactions, which include DNA and histone methylation, identify ADK-L as a distinct therapeutic target for the regulation of the nuclear methylome. This newly recognized role of ADK-L as an epigenetic regulator points toward the potential disease-modifying properties of the next generation of ADK inhibitors. Continued efforts to develop therapeutic strategies to separate nuclear from extracellular functions of adenosine would enable the development of targeted therapeutics with reduced adverse event potential. This review will summarize recent advances in the discovery of novel ADK inhibitors and discuss their potential therapeutic use in conditions ranging from epilepsy to cancer.
Collapse
Affiliation(s)
- Uchenna Peter‐Okaka
- Department of NeurosurgeryRutgers New Jersey Medical School and Robert Wood Johnson Barnabas HealthNew BrunswickNew JerseyUSA
| | - Detlev Boison
- Department of NeurosurgeryRobert Wood Johnson and New Jersey Medical Schools, Rutgers HealthPiscatawayNew JerseyUSA
- Brain Health InstituteRutgers UniversityPiscatawayNew JerseyUSA
- Rutgers HealthRutgers Cancer InstituteNew BrunswickNew JerseyUSA
| |
Collapse
|
3
|
Noble AJ, Adams AT, Satsangi J, Boden JM, Osborne AJ. Prenatal cannabis exposure is associated with alterations in offspring DNA methylation at genes involved in neurodevelopment, across the life course. Mol Psychiatry 2025; 30:1418-1429. [PMID: 39277688 PMCID: PMC11919715 DOI: 10.1038/s41380-024-02752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Prenatal cannabis exposure (PCE) is of increasing concern globally, due to the potential impact on offspring neurodevelopment, and its association with childhood and adolescent brain development and cognitive function. However, there is currently a lack of research addressing the molecular impact of PCE, that may help to clarify the association between PCE and neurodevelopment. To address this knowledge gap, here we present epigenome-wide association study data across multiple time points, examining the effect of PCE and co-exposure with tobacco using two longitudinal studies, the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Christchurch Health and Development Study (CHDS) at birth (0 y), 7 y and 15-17 y (ALSPAC), and ~27 y (CHDS). Our findings reveal genome-wide significant DNA methylation differences in offspring at 0 y, 7 y, 15-17 y, and 27 y associated with PCE alone, and co-exposure with tobacco. Importantly, we identified significantly differentially methylated CpG sites within the genes LZTS2, NPSR1, NT5E, CRIP2, DOCK8, COQ5, and LRP5 that are shared between different time points throughout development in offspring. Notably, functional pathway analysis showed enrichment for differential DNA methylation in neurodevelopment, neurotransmission, and neuronal structure pathways, and this was consistent across all timepoints in both cohorts. Given the increasing volume of epidemiological evidence that suggests a link between PCE and adverse neurodevelopmental outcomes in exposed offspring, this work highlights the need for further investigation into PCE, particularly in larger cohorts.
Collapse
Affiliation(s)
- Alexandra J Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK.
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Joseph M Boden
- Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Amy J Osborne
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
4
|
Wu M, Zhang R, Fu P, Mei Y. Disrupted astrocyte-neuron signaling reshapes brain activity in epilepsy and Alzheimer's disease. Neuroscience 2025; 570:132-151. [PMID: 39986432 DOI: 10.1016/j.neuroscience.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Astrocytes establish dynamic interactions with surrounding neurons and synchronize neuronal networks within a specific range. However, these reciprocal astrocyte-neuronal interactions are selectively disrupted in epilepsy and Alzheimer's disease (AD), which contributes to the initiation and progression of network hypersynchrony. Deciphering how disrupted astrocyte-neuronal signaling reshapes brain activity is crucial to prevent subclinical epileptiform activity in epilepsy and AD. In this review, we provide an overview of the diverse astrocyte-neuronal crosstalk in maintaining of network activity via homeostatic control of extracellular ions and transmitters, synapse formation and elimination. More importantly, since AD and epilepsy share the common symptoms of neuronal hyperexcitability and astrogliosis, we then explore the crosstalk between astrocytes and neurons in the context of epilepsy and AD and discuss how these disrupted interactions reshape brain activity in pathological conditions. Collectively, this review sheds light on how disrupted astrocyte-neuronal signaling reshapes brain activity in epilepsy and AD, and highlights that modifying astrocyte-neuronal signaling could be a therapeutic approach to prevent epileptiform activity in AD.
Collapse
Affiliation(s)
- Mengjie Wu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ruonan Zhang
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peng Fu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
5
|
Juvenal G, Higa GSV, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, di Virgilio F, Ulrich H, de Pasquale R. Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 2025; 21:149-177. [PMID: 39046648 PMCID: PMC11958915 DOI: 10.1007/s11302-024-10034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Guilherme Juvenal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe José Costa Viana
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yong Tang
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Roberto de Pasquale
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Xiong Z, Deng J, Xie P, Tang C, Wang J, Deng Q, Yang Y, Zhang J, Guo M, Wang X, Guan Y, Luan G, Zhou J, Li T. Deep Brain Stimulation Inhibits Epileptic Seizures via Increase of Adenosine Release and Inhibition of ENT1, CD39, and CD73 Expression. Mol Neurobiol 2025; 62:1800-1812. [PMID: 39042219 DOI: 10.1007/s12035-024-04374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus is an efficacious treatment option for patients with refractory epilepsy. Our previous study demonstrates that adenosine is a potential target of DBS for the treatment of epilepsy. Equilibrative nucleoside transporters-1 (ENT1) and ectonucleotidases (CD39, CD73) function as regulators of extracellular adenosine in the brain. It is unclear whether ENT1, CD39, and CD73 are involved in the mechanism of DBS for epilepsy. A total of 48 SD male rats were divided into four groups: control (naïve rats), Pilo (pilocarpine induced rats with epilepsy), DBS (rats with epilepsy treated with DBS for 8 weeks), and sham. In the present study, video electroencephalogram monitoring, Morris water maze assays, in vivo measurements of adenosine using fiber photometry, histochemistry, and western blot were performed on the hippocampus. DBS markedly attenuated spontaneous recurrent seizures (SRSs) and enhanced spatial learning in rats with epilepsy, assessed through video-EEG and water maze assays. Fibred photometry measurements of an adenosine sensor revealed dynamic increase in extracellular adenosine during DBS. The expressions of ENT1, CD39, and CD73 in Pilo group and sham group increased compared with the control group, while the expressions of ENT1, CD39, and CD73 in DBS group decreased compared to that of Pilo group and sham group. The findings indicate that DBS reduces the number of SRSs and improves spatial memory in rats with epilepsy with concomitant decrease of ENT1, CD39, and CD73 expressions. Adenosine-modulating enzymes might be the potential targets of DBS for the treatment of epilepsy.
Collapse
Affiliation(s)
- Zhonghua Xiong
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jiahui Deng
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Pandeng Xie
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Wang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Qinqin Deng
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yujiao Yang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Zhang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Mengyi Guo
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiongfei Wang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yuguang Guan
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Guoming Luan
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jian Zhou
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Tianfu Li
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| |
Collapse
|
7
|
Liu J, He T, Hu Z. The Effect of Music on Resistance to Mental Fatigue: Evidence from the EEG Power Spectrum. Appl Psychophysiol Biofeedback 2025:10.1007/s10484-025-09691-4. [PMID: 39890686 DOI: 10.1007/s10484-025-09691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
To evaluate the efficacy of listening to music in alleviating mental fatigue among healthy participants and to explore the neural evidence for this phenomenon via electroencephalography (EEG). METHODS A total of 30 participants were recruited and randomly assigned to either the music group or the control group. Mental fatigue was induced in both groups using a 30-minute Stroop task. Following this task, the music group listened to relaxing music for 20 min, whereas the control group sat quietly for the same duration. Measurements were taken at three time points: before the Stroop task, immediately after the Stroop task, and after the 20-minute intervention period. Visual analogue scale (VAS) scores and 3-minute resting-state EEG signals were collected at each time point. RESULTS The data indicated that listening to music significantly reduced mental fatigue. VAS scores decreased more in the music group than in the control group (P = 0.031). The EEG iAPF showed significant recovery in the music group (P < 0.0001). Delta power in the frontal region decreased significantly postintervention in the music group (P = 0.011). Theta and alpha power also decreased significantly in the music group across multiple brain regions (all Ps < 0.0076), with no significant changes observed in beta power. CONCLUSION These findings highlight the potential of listening to relaxing music as a noninvasive and enjoyable intervention for mitigating the effects of mental fatigue. Moreover, iAPF, theta, and alpha power can serve as reliable biomarkers for assessing mental fatigue and the restorative effects of interventions such as music.
Collapse
Affiliation(s)
- Jin Liu
- College of Music, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| | - Tingting He
- College of Physical Education, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Zhigang Hu
- College of Physical Education, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
8
|
Sahay S, Devine EA, Vargas CFA, McCullumsmith RE, O’Donovan SM. Adenosine Metabolism Pathway Alterations in Frontal Cortical Neurons in Schizophrenia. Cells 2024; 13:1657. [PMID: 39404420 PMCID: PMC11475131 DOI: 10.3390/cells13191657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Schizophrenia is a neuropsychiatric illness characterized by altered neurotransmission, in which adenosine, a modulator of glutamate and dopamine, plays a critical role that is relatively unexplored in the human brain. In the present study, postmortem human brain tissue from the anterior cingulate cortex (ACC) of individuals with schizophrenia (n = 20) and sex- and age-matched control subjects without psychiatric illness (n = 20) was obtained from the Bronx-Mount Sinai NIH Brain and Tissue Repository. Enriched populations of ACC pyramidal neurons were isolated using laser microdissection (LMD). The mRNA expression levels of six key adenosine pathway components-adenosine kinase (ADK), equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2), ectonucleoside triphosphate diphosphohydrolases 1 and 3 (ENTPD1 and ENTPD3), and ecto-5'-nucleotidase (NT5E)-were quantified using real-time PCR (qPCR) in neurons from these individuals. No significant mRNA expression differences were observed between the schizophrenia and control groups (p > 0.05). However, a significant sex difference was found in ADK mRNA expression, with higher levels in male compared with female subjects (Mann-Whitney U = 86; p < 0.05), a finding significantly driven by disease (t(17) = 3.289; p < 0.05). Correlation analyses also demonstrated significant associations (n = 12) between the expression of several adenosine pathway components (p < 0.05). In our dementia severity analysis, ENTPD1 mRNA expression was significantly higher in males in the "mild" clinical dementia rating (CDR) bin compared with males in the "none" CDR bin (F(2, 13) = 5.212; p < 0.05). Lastly, antipsychotic analysis revealed no significant impact on the expression of adenosine pathway components between medicated and non-medicated schizophrenia subjects (p > 0.05). The observed sex-specific variations and inter-component correlations highlight the value of investigating sex differences in disease and contribute to the molecular basis of schizophrenia's pathology.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
| | - Emily A. Devine
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Christina F.-A. Vargas
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
| | - Robert E. McCullumsmith
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
- Neuroscience Institute, ProMedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland
| |
Collapse
|
9
|
Kovács Z, Rauch E, D’Agostino DP, Ari C. Putative Role of Adenosine A1 Receptors in Exogenous Ketone Supplements-Evoked Anti-Epileptic Effect. Int J Mol Sci 2024; 25:9869. [PMID: 39337356 PMCID: PMC11432942 DOI: 10.3390/ijms25189869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Approximately 30% of patients with epilepsy are drug-refractory. There is an urgent need to elucidate the exact pathophysiology of different types of epilepsies and the mechanisms of action of both antiseizure medication and metabolic therapies to treat patients more effectively and safely. For example, it has been demonstrated that exogenous ketone supplement (EKS)-generated therapeutic ketosis, as a metabolic therapy, may decrease epileptic activity in both animal models and humans, but its exact mechanism of action is unknown. However, it was demonstrated that therapeutic ketosis, among others, can increase adenosine level, which may enhance activity of A1 adenosine receptors (A1Rs) in the brain. It has also been demonstrated previously that adenosine has anti-epileptic effect through A1Rs in different models of epilepsies. Thus, it is possible that (i) therapeutic ketosis generated by the administration of EKSs may exert its anti-epileptic effect through, among other mechanisms, increased adenosine level and A1R activity and that (ii) the enhanced activity of A1Rs may be a necessary anti-epileptic mechanism evoked by EKS administration-generated ketosis. Moreover, EKSs can evoke and maintain ketosis without severe side effects. These results also suggest that the therapeutic application of EKS-generated ketosis may be a promising opportunity to treat different types of epilepsies. In this literature review, we specifically focus on the putative role of A1Rs in the anti-epileptic effect of EKS-induced ketosis.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
| | - Enikő Rauch
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
- Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Dominic P. D’Agostino
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Csilla Ari
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
10
|
Nasrallah K, Berthoux C, Hashimotodani Y, Chávez AE, Gulfo MC, Luján R, Castillo PE. Retrograde adenosine/A 2A receptor signaling facilitates excitatory synaptic transmission and seizures. Cell Rep 2024; 43:114382. [PMID: 38905101 PMCID: PMC11286346 DOI: 10.1016/j.celrep.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/12/2023] [Accepted: 06/03/2024] [Indexed: 06/23/2024] Open
Abstract
Retrograde signaling at the synapse is a fundamental way by which neurons communicate and neuronal circuit function is fine-tuned upon activity. While long-term changes in neurotransmitter release commonly rely on retrograde signaling, the mechanisms remain poorly understood. Here, we identified adenosine/A2A receptor (A2AR) as a retrograde signaling pathway underlying presynaptic long-term potentiation (LTP) at a hippocampal excitatory circuit critically involved in memory and epilepsy. Transient burst activity of a single dentate granule cell induced LTP of mossy cell synaptic inputs, a BDNF/TrkB-dependent form of plasticity that facilitates seizures. Postsynaptic TrkB activation released adenosine from granule cells, uncovering a non-conventional BDNF/TrkB signaling mechanism. Moreover, presynaptic A2ARs were necessary and sufficient for LTP. Lastly, seizure induction released adenosine in a TrkB-dependent manner, while removing A2ARs or TrkB from the dentate gyrus had anti-convulsant effects. By mediating presynaptic LTP, adenosine/A2AR retrograde signaling may modulate dentate gyrus-dependent learning and promote epileptic activity.
Collapse
Affiliation(s)
- Kaoutsar Nasrallah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Coralie Berthoux
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yuki Hashimotodani
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrés E Chávez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michelle C Gulfo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rafael Luján
- Instituto de Biomedicina de la UCLM (IB-UCLM), Facultad de Medicina, Universidad Castilla-La Mancha, 02008 Albacete, Spain
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
11
|
Lin YS, Lange D, Baur DM, Foerges A, Chu C, Li C, Elmenhorst EM, Neumaier B, Bauer A, Aeschbach D, Landolt HP, Elmenhorst D. Repeated caffeine intake suppresses cerebral grey matter responses to chronic sleep restriction in an A 1 adenosine receptor-dependent manner: a double-blind randomized controlled study with PET-MRI. Sci Rep 2024; 14:12724. [PMID: 38830861 PMCID: PMC11148136 DOI: 10.1038/s41598-024-61421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Evidence has shown that both sleep loss and daily caffeine intake can induce changes in grey matter (GM). Caffeine is frequently used to combat sleepiness and impaired performance caused by insufficient sleep. It is unclear (1) whether daily use of caffeine could prevent or exacerbate the GM alterations induced by 5-day sleep restriction (i.e. chronic sleep restriction, CSR), and (2) whether the potential impact on GM plasticity depends on individual differences in the availability of adenosine receptors, which are involved in mediating effects of caffeine on sleep and waking function. Thirty-six healthy adults participated in this double-blind, randomized, controlled study (age = 28.9 ± 5.2 y/; F:M = 15:21; habitual level of caffeine intake < 450 mg; 29 homozygous C/C allele carriers of rs5751876 of ADORA2A, an A2A adenosine receptor gene variant). Each participant underwent a 9-day laboratory visit consisting of one adaptation day, 2 baseline days (BL), 5-day sleep restriction (5 h time-in-bed), and a recovery day (REC) after an 8-h sleep opportunity. Nineteen participants received 300 mg caffeine in coffee through the 5 days of CSR (CAFF group), while 17 matched participants received decaffeinated coffee (DECAF group). We examined GM changes on the 2nd BL Day, 5th CSR Day, and REC Day using magnetic resonance imaging and voxel-based morphometry. Moreover, we used positron emission tomography with [18F]-CPFPX to quantify the baseline availability of A1 adenosine receptors (A1R) and its relation to the GM plasticity. The results from the voxel-wise multimodal whole-brain analysis on the Jacobian-modulated T1-weighted images controlled for variances of cerebral blood flow indicated a significant interaction effect between caffeine and CSR in four brain regions: (a) right temporal-occipital region, (b) right dorsomedial prefrontal cortex (DmPFC), (c) left dorsolateral prefrontal cortex (DLPFC), and (d) right thalamus. The post-hoc analyses on the signal intensity of these GM clusters indicated that, compared to BL, GM on the CSR day was increased in the DECAF group in all clusters but decreased in the thalamus, DmPFC, and DLPFC in the CAFF group. Furthermore, lower baseline subcortical A1R availability predicted a larger GM reduction in the CAFF group after CSR of all brain regions except for the thalamus. In conclusion, our data suggest an adaptive GM upregulation after 5-day CSR, while concomitant use of caffeine instead leads to a GM reduction. The lack of consistent association with individual A1R availability may suggest that CSR and caffeine affect thalamic GM plasticity predominantly by a different mechanism. Future studies on the role of adenosine A2A receptors in CSR-induced GM plasticity are warranted.
Collapse
Affiliation(s)
- Yu-Shiuan Lin
- Centre for Chronobiology, University Psychiatric Clinics Basel, Wilhelm Kleinstr. 27, 4002, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- Athinoula. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachussetts General Hospital, Harvard Medical School, Boston, USA.
| | - Denise Lange
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Diego Manuel Baur
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - Anna Foerges
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
- Department of Neurophysiology, Institute of Zoology (Bio-II), RWTH Aachen University, Aachen, Germany
| | - Congying Chu
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Changhong Li
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Eva-Maria Elmenhorst
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Institute for Occupational, Social, and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine, INM-5, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany
| | - Daniel Aeschbach
- Department of Sleep and Human Factors, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - David Elmenhorst
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, North Rhine-Westphalia, Germany.
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Chen AB, Duque M, Wang VM, Dhanasekar M, Mi X, Rymbek A, Tocquer L, Narayan S, Prober D, Yu G, Wyart C, Engert F, Ahrens MB. Norepinephrine changes behavioral state via astroglial purinergic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595576. [PMID: 38826423 PMCID: PMC11142163 DOI: 10.1101/2024.05.23.595576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Both neurons and glia communicate via diffusible neuromodulatory substances, but the substrates of computation in such neuromodulatory networks are unclear. During behavioral transitions in the larval zebrafish, the neuromodulator norepinephrine drives fast excitation and delayed inhibition of behavior and circuit activity. We find that the inhibitory arm of this feedforward motif is implemented by astroglial purinergic signaling. Neuromodulator imaging, behavioral pharmacology, and perturbations of neurons and astroglia reveal that norepinephrine triggers astroglial release of adenosine triphosphate, extracellular conversion into adenosine, and behavioral suppression through activation of hindbrain neuronal adenosine receptors. This work, along with a companion piece by Lefton and colleagues demonstrating an analogous pathway mediating the effect of norepinephrine on synaptic connectivity in mice, identifies a computational and behavioral role for an evolutionarily conserved astroglial purinergic signaling axis in norepinephrine-mediated behavioral and brain state transitions.
Collapse
Affiliation(s)
- Alex B. Chen
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Marc Duque
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Vickie M. Wang
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Mahalakshmi Dhanasekar
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Xuelong Mi
- Bradley Department of Electrical and Computer Engineering; Virginia Polytechnic Institute and State University; Arlington, VA 22203, USA
| | - Altyn Rymbek
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Loeva Tocquer
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
- Present address: Allen Institute for Neural Dynamics; Seattle, WA 98109, USA
| | - David Prober
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Guoqiang Yu
- Department of Automation, Tsinghua University; Beijing 100084, P.R. China
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
| |
Collapse
|
13
|
Raffone N, Chistiakova M, Volgushev M. Ethanol Differentially Affects Excitatory and Inhibitory Synaptic Transmission in Visual Cortex of Wild-type and Adenosine A 1R Knock-out Mice. Neuroscience 2024; 540:117-127. [PMID: 38278472 DOI: 10.1016/j.neuroscience.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Ethanol is one of the most commonly used and abused substances in the world. While the behavioral effects of ethanol are well characterized, mechanisms of its action on neurons and synapses remain elusive. Prior research suggested that ethanol could affect neurons by interfering with metabolism of biologically active molecules, such as adenosine. Here, we explored the involvement of adenosine A1 receptors (A1R) in mediating ethanol's effects on synaptic transmission to layer 2/3 pyramidal neurons of visual cortex using wild type (WT) and A1R knock-out (KO) mice. Ethanol differentially affected excitatory and inhibitory transmission in WT and KO mice. In slices from WT mice ethanol had heterogeneous effects on excitatory transmission (facilitation, suppression or no change), with no net change. Ethanol's effects remained heterogeneous during acute blockade of A1Rs with a selective antagonist DPCPX. However, in A1RKO mice ethanol consistently suppressed excitatory transmission, with no cases of enhancement observed. Inhibitory transmission was suppressed by ethanol in both WT and A1RKO mice. At both excitatory and inhibitory synapses, changes of response amplitude correlated with changes of paired-pulse ratio, suggesting involvement of presynaptic mechanisms. We conclude that A1Rs are not involved in mediating effects of ethanol on synaptic transmission in mouse visual cortex. However, A1Rs are necessary for development of mechanisms mediating facilitation at some excitatory synapses. Our results add evidence for the diversity of ethanol's effects and mechanisms of action on synaptic transmission in different brain structures, and even in the same brain area (visual cortex) in different species, rats vs mice.
Collapse
Affiliation(s)
- Noah Raffone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Marina Chistiakova
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Maxim Volgushev
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA; The Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269 USA.
| |
Collapse
|
14
|
Zhou X, He Y, Xu T, Wu Z, Guo W, Xu X, Liu Y, Zhang Y, Shang H, Huang L, Yao Z, Li Z, Su L, Li Z, Feng T, Zhang S, Monteiro O, Cunha RA, Huang ZL, Zhang K, Li Y, Cai X, Qu J, Chen JF. 40 Hz light flickering promotes sleep through cortical adenosine signaling. Cell Res 2024; 34:214-231. [PMID: 38332199 PMCID: PMC10907382 DOI: 10.1038/s41422-023-00920-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
Flickering light stimulation has emerged as a promising non-invasive neuromodulation strategy to alleviate neuropsychiatric disorders. However, the lack of a neurochemical underpinning has hampered its therapeutic development. Here, we demonstrate that light flickering triggered an immediate and sustained increase (up to 3 h after flickering) in extracellular adenosine levels in the primary visual cortex (V1) and other brain regions, as a function of light frequency and intensity, with maximal effects observed at 40 Hz frequency and 4000 lux. We uncovered cortical (glutamatergic and GABAergic) neurons, rather than astrocytes, as the cellular source, the intracellular adenosine generation from AMPK-associated energy metabolism pathways (but not SAM-transmethylation or salvage purine pathways), and adenosine efflux mediated by equilibrative nucleoside transporter-2 (ENT2) as the molecular pathway responsible for extracellular adenosine generation. Importantly, 40 Hz (but not 20 and 80 Hz) light flickering for 30 min enhanced non-rapid eye movement (non-REM) and REM sleep for 2-3 h in mice. This somnogenic effect was abolished by ablation of V1 (but not superior colliculus) neurons and by genetic deletion of the gene encoding ENT2 (but not ENT1), but recaptured by chemogenetic inhibition of V1 neurons and by focal infusion of adenosine into V1 in a dose-dependent manner. Lastly, 40 Hz light flickering for 30 min also promoted sleep in children with insomnia by decreasing sleep onset latency, increasing total sleep time, and reducing waking after sleep onset. Collectively, our findings establish the ENT2-mediated adenosine signaling in V1 as the neurochemical basis for 40 Hz flickering-induced sleep and unravel a novel and non-invasive treatment for insomnia, a condition that affects 20% of the world population.
Collapse
Affiliation(s)
- Xuzhao Zhou
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Xu
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Wei Guo
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Xu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuntao Liu
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Zhang
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiping Shang
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Libin Huang
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhimo Yao
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zewen Li
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingya Su
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihui Li
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Feng
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Olivia Monteiro
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Kang Zhang
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jia Qu
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jiang-Fan Chen
- The Eye and Brain Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Chiu DN, Carter BC. Synaptotagmin 7 Sculpts Short-Term Plasticity at a High Probability Synapse. J Neurosci 2024; 44:e1756232023. [PMID: 38262726 PMCID: PMC10904093 DOI: 10.1523/jneurosci.1756-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Synapses with high release probability (Pr ) tend to exhibit short-term synaptic depression. According to the prevailing model, this reflects the temporary depletion of release-ready vesicles after an initial action potential (AP). At the high-Pr layer 4 to layer 2/3 (L4-L2/3) synapse in rodent somatosensory cortex, short-term plasticity appears to contradict the depletion model: depression is absent at interstimulus intervals (ISIs) <50 ms and develops to a maximum at ∼200 ms. To understand the mechanism(s) underlying the biphasic time course of short-term plasticity at this synapse, we used whole-cell electrophysiology and two-photon calcium imaging in acute slices from male and female juvenile mice. We tested several candidate mechanisms including neuromodulation, postsynaptic receptor desensitization, and use-dependent changes in presynaptic AP-evoked calcium. We found that, at single L4-L2/3 synapses, Pr varies as a function of ISI, giving rise to the distinctive short-term plasticity time course. Furthermore, the higher-than-expected Pr at short ISIs depends on expression of synaptotagmin 7 (Syt7). Our results show that two distinct vesicle release processes summate to give rise to short-term plasticity at this synapse: (1) a basal, high-Pr release mechanism that undergoes rapid depression and recovers slowly (τ = ∼3 s) and (2) a Syt7-dependent mechanism that leads to a transient increase in Pr (τ = ∼100 ms) after the initial AP. We thus reveal how these synapses can maintain a very high probability of neurotransmission for multiple APs within a short time frame. Key words : depression; facilitation; short-term plasticity; synaptotagmin 7.
Collapse
Affiliation(s)
- Delia N Chiu
- European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, 37077 Göttingen, Germany
| | - Brett C Carter
- European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Shigetomi E, Sakai K, Koizumi S. Extracellular ATP/adenosine dynamics in the brain and its role in health and disease. Front Cell Dev Biol 2024; 11:1343653. [PMID: 38304611 PMCID: PMC10830686 DOI: 10.3389/fcell.2023.1343653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
Extracellular ATP and adenosine are neuromodulators that regulate numerous neuronal functions in the brain. Neuronal activity and brain insults such as ischemic and traumatic injury upregulate these neuromodulators, which exert their effects by activating purinergic receptors. In addition, extracellular ATP/adenosine signaling plays a pivotal role in the pathogenesis of neurological diseases. Virtually every cell type in the brain contributes to the elevation of ATP/adenosine, and various mechanisms underlying this increase have been proposed. Extracellular adenosine is thought to be mainly produced via the degradation of extracellular ATP. However, adenosine is also released from neurons and glia in the brain. Therefore, the regulation of extracellular ATP/adenosine in physiological and pathophysiological conditions is likely far more complex than previously thought. To elucidate the complex mechanisms that regulate extracellular ATP/adenosine levels, accurate methods of assessing their spatiotemporal dynamics are needed. Several novel techniques for acquiring spatiotemporal information on extracellular ATP/adenosine, including fluorescent sensors, have been developed and have started to reveal the mechanisms underlying the release, uptake and degradation of ATP/adenosine. Here, we review methods for analyzing extracellular ATP/adenosine dynamics as well as the current state of knowledge on the spatiotemporal dynamics of ATP/adenosine in the brain. We focus on the mechanisms used by neurons and glia to cooperatively produce the activity-dependent increase in ATP/adenosine and its physiological and pathophysiological significance in the brain.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
17
|
Sahay S, Devine EA, McCullumsmith RE, O’Donovan SM. Adenosine Receptor mRNA Expression in Frontal Cortical Neurons in Schizophrenia. Cells 2023; 13:32. [PMID: 38201235 PMCID: PMC10778287 DOI: 10.3390/cells13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Schizophrenia is a devastating neuropsychiatric disorder associated with the dysregulation of glutamate and dopamine neurotransmitter systems. The adenosine system is an important neuroregulatory system in the brain that modulates glutamate and dopamine signaling via the ubiquitously expressed adenosine receptors; however, adenosine A1 and A2A receptor (A1R and A2AR) mRNA expression is poorly understood in specific cell subtypes in the frontal cortical brain regions implicated in this disorder. In this study, we assayed A1R and A2AR mRNA expression via qPCR in enriched populations of pyramidal neurons, which were isolated from postmortem anterior cingulate cortex (ACC) tissue from schizophrenia (n = 20) and control (n = 20) subjects using laser microdissection (LMD). A1R expression was significantly increased in female schizophrenia subjects compared to female control subjects (t(13) = -4.008, p = 0.001). A1R expression was also significantly decreased in female control subjects compared to male control subjects, suggesting sex differences in basal A1R expression (t(17) = 2.137, p = 0.047). A significant, positive association was found between dementia severity (clinical dementia rating (CDR) scores) and A2AR mRNA expression (Spearman's r = 0.424, p = 0.009). A2AR mRNA expression was significantly increased in unmedicated schizophrenia subjects, suggesting that A2AR expression may be normalized by chronic antipsychotic treatment (F(1,14) = 9.259, p = 0.009). Together, these results provide novel insights into the neuronal expression of adenosine receptors in the ACC in schizophrenia and suggest that receptor expression changes may be sex-dependent and associated with cognitive decline in these subjects.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
| | - Emily A. Devine
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
- Neuroscience Institute Promedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
| |
Collapse
|
18
|
Kourosh-Arami M, Komaki A, Gholami M, Marashi SH, Hejazi S. Heterosynaptic plasticity-induced modulation of synapses. J Physiol Sci 2023; 73:33. [PMID: 38057729 PMCID: PMC10717068 DOI: 10.1186/s12576-023-00893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Plasticity is a common feature of synapses that is stated in different ways and occurs through several mechanisms. The regular action of the brain needs to be balanced in several neuronal and synaptic features, one of which is synaptic plasticity. The different homeostatic processes, including the balance between excitation/inhibition or homeostasis of synaptic weights at the single-neuron level, may obtain this. Homosynaptic Hebbian-type plasticity causes associative alterations of synapses. Both homosynaptic and heterosynaptic plasticity characterize the corresponding aspects of adjustable synapses, and both are essential for the regular action of neural systems and their plastic synapses.In this review, we will compare homo- and heterosynaptic plasticity and the main factors affecting the direction of plastic changes. This review paper will also discuss the diverse functions of the different kinds of heterosynaptic plasticity and their properties. We argue that a complementary system of heterosynaptic plasticity demonstrates an essential cellular constituent for homeostatic modulation of synaptic weights and neuronal activity.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Gholami
- Department of Physiology, Medical College, Arak University of Medical Sciences, Arak, Iran
| | | | - Sara Hejazi
- Department of Industrial Engineering & Management Systems, University of Central Florida, Orlando, USA
| |
Collapse
|
19
|
Vincenzi F, Pasquini S, Contri C, Cappello M, Nigro M, Travagli A, Merighi S, Gessi S, Borea PA, Varani K. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules 2023; 13:1387. [PMID: 37759787 PMCID: PMC10527030 DOI: 10.3390/biom13091387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| |
Collapse
|
20
|
Whitelaw BS, Stoessel MB, Majewska AK. Movers and shakers: Microglial dynamics and modulation of neural networks. Glia 2023; 71:1575-1591. [PMID: 36533844 PMCID: PMC10729610 DOI: 10.1002/glia.24323] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Microglia are multifaceted cells that act as immune sentinels, with important roles in pathological events, but also as integral contributors to the normal development and function of neural circuits. In the last decade, our understanding of the contributions these cells make to synaptic health and dysfunction has expanded at a dizzying pace. Here we review the known mechanisms that govern the dynamics of microglia allowing these motile cells to interact with synapses, and recruit microglia to specific sites on neurons. We then review the molecular signals that may underlie the function of microglia in synaptic remodeling. The emerging picture from the literature suggests that microglia are highly sensitive cells, reacting to neuronal signals with dynamic and specific actions tuned to the need of specific synapses and networks.
Collapse
Affiliation(s)
- Brendan Steven Whitelaw
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, New York, USA
| | - Mark Blohm Stoessel
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, New York, USA
| | - Ania Katarzyna Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, New York, USA
| |
Collapse
|
21
|
Lindquist BE, Timbie C, Voskobiynyk Y, Paz JT. Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets. Neurobiol Dis 2023; 181:106094. [PMID: 36990364 PMCID: PMC10192143 DOI: 10.1016/j.nbd.2023.106094] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.
Collapse
Affiliation(s)
- Britta E Lindquist
- UCSF Department of Neurology, Division of Neurocritical Care, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Clare Timbie
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America; Kavli Institute for Fundamental Neuroscience, UCSF, United States of America.
| |
Collapse
|
22
|
Korkutata M, Lazarus M. Adenosine A 2A receptors and sleep. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:155-178. [PMID: 37741690 DOI: 10.1016/bs.irn.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine, a known endogenous somnogen, induces sleep via A1 and A2A receptors. In this chapter, we review the current knowledge regarding the role of the adenosine A2A receptor and its agonists, antagonists, and allosteric modulators in sleep-wake regulation. Although many adenosine A2A receptor agonists, antagonists, and allosteric modulators have been identified, only a few have been tested to see if they can promote sleep or wakefulness. In addition, the growing popularity of natural sleep aids has led to an investigation of natural compounds that may improve sleep by activating the adenosine A2A receptor. Finally, we discuss the potential therapeutic advantage of allosteric modulators of adenosine A2A receptors over classic agonists and antagonists for treating sleep and neurologic disorders.
Collapse
Affiliation(s)
- Mustafa Korkutata
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
23
|
Barrio-Alonso E, Lituma PJ, Notaras MJ, Albero R, Bouchekioua Y, Wayland N, Stankovic IN, Jain T, Gao S, Calderon DP, Castillo PE, Colak D. Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling. Cell Rep 2023; 42:112375. [PMID: 37043347 PMCID: PMC10564971 DOI: 10.1016/j.celrep.2023.112375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The regulation of neurons by circadian clock genes is thought to contribute to the maintenance of neuronal functions that ultimately underlie animal behavior. However, the impact of specific circadian genes on cellular and molecular mechanisms controlling synaptic plasticity and cognitive function remains elusive. Here, we show that the expression of the circadian protein TIMELESS displays circadian rhythmicity in the mammalian hippocampus. We identify TIMELESS as a chromatin-bound protein that targets synaptic-plasticity-related genes such as phosphodiesterase 4B (Pde4b). By promoting Pde4b transcription, TIMELESS negatively regulates cAMP signaling to modulate AMPA receptor GluA1 function and influence synaptic plasticity. Conditional deletion of Timeless in the adult forebrain impairs working and contextual fear memory in mice. These cognitive phenotypes were accompanied by attenuation of hippocampal Schaffer-collateral synapse long-term potentiation. Together, these data establish a neuron-specific function of mammalian TIMELESS by defining a mechanism that regulates synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Estibaliz Barrio-Alonso
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Pablo J Lituma
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Michael J Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Robert Albero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Youcef Bouchekioua
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Natalie Wayland
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Isidora N Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Tanya Jain
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sijia Gao
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA; Gale & Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
24
|
Lopes CR, Gonçalves FQ, Olaio S, Tomé AR, Cunha RA, Lopes JP. Adenosine A 2A Receptors Shut Down Adenosine A 1 Receptor-Mediated Presynaptic Inhibition to Promote Implementation of Hippocampal Long-Term Potentiation. Biomolecules 2023; 13:biom13040715. [PMID: 37189461 DOI: 10.3390/biom13040715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Adenosine operates a modulation system fine-tuning the efficiency of synaptic transmission and plasticity through A1 and A2A receptors (A1R, A2AR), respectively. Supramaximal activation of A1R can block hippocampal synaptic transmission, and the tonic engagement of A1R-mediated inhibition is increased with increased frequency of nerve stimulation. This is compatible with an activity-dependent increase in extracellular adenosine in hippocampal excitatory synapses, which can reach levels sufficient to block synaptic transmission. We now report that A2AR activation decreases A1R-medated inhibition of synaptic transmission, with particular relevance during high-frequency-induced long-term potentiation (LTP). Thus, whereas the A1R antagonist DPCPX (50 nM) was devoid of effects on LTP magnitude, the addition of an A2AR antagonist SCH58261 (50 nM) allowed a facilitatory effect of DPCPX on LTP to be revealed. Additionally, the activation of A2AR with CGS21680 (30 nM) decreased the potency of the A1R agonist CPA (6-60 nM) to inhibit hippocampal synaptic transmission in a manner prevented by SCH58261. These observations show that A2AR play a key role in dampening A1R during high-frequency induction of hippocampal LTP. This provides a new framework for understanding how the powerful adenosine A1R-mediated inhibition of excitatory transmission can be controlled to allow the implementation of hippocampal LTP.
Collapse
Affiliation(s)
- Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Simão Olaio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-534 Coimbra, Portugal
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
25
|
Wu Z, Cui Y, Wang H, Wu H, Wan Y, Li B, Wang L, Pan S, Peng W, Dong A, Yuan Z, Jing M, Xu M, Luo M, Li Y. Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Proc Natl Acad Sci U S A 2023; 120:e2212387120. [PMID: 36996110 PMCID: PMC10083574 DOI: 10.1073/pnas.2212387120] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
The purinergic signaling molecule adenosine (Ado) modulates many physiological and pathological functions in the brain. However, the exact source of extracellular Ado remains controversial. Here, utilizing a newly optimized genetically encoded GPCR-Activation-Based Ado fluorescent sensor (GRABAdo), we discovered that the neuronal activity-induced extracellular Ado elevation is due to direct Ado release from somatodendritic compartments of neurons, rather than from the axonal terminals, in the hippocampus. Pharmacological and genetic manipulations reveal that the Ado release depends on equilibrative nucleoside transporters but not the conventional vesicular release mechanisms. Compared with the fast-vesicular glutamate release, the Ado release is slow (~40 s) and requires calcium influx through L-type calcium channels. Thus, this study reveals an activity-dependent second-to-minute local Ado release from the somatodendritic compartments of neurons, potentially serving modulatory functions as a retrograde signal.
Collapse
Affiliation(s)
- Zhaofa Wu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Yuting Cui
- National Institute of Biological Sciences, Beijing102206, China
- Chinese Institute for Brain Research, Beijing102206, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
| | - Hao Wu
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yi Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Bohan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Lei Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing100871, China
| | - Sunlei Pan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Wanling Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai200031, China
| | - Ao Dong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Zhengwei Yuan
- National Institute of Biological Sciences, Beijing102206, China
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing102206, China
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai200031, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing102206, China
- Chinese Institute for Brain Research, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing100005, China
- New Cornerstone Science Institute at Chinese Institute for Brain Research, Beijing102206, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong518055, China
- National Biomedical Imaging Center, Peking University, Beijing100871, China
- New Cornerstone Science Institute at Peking University, Beijing100871, China
| |
Collapse
|
26
|
Faingold CL, Feng HJ. A unified hypothesis of SUDEP: Seizure-induced respiratory depression induced by adenosine may lead to SUDEP but can be prevented by autoresuscitation and other restorative respiratory response mechanisms mediated by the action of serotonin on the periaqueductal gray. Epilepsia 2023; 64:779-796. [PMID: 36715572 PMCID: PMC10673689 DOI: 10.1111/epi.17521] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major cause of death in people with epilepsy (PWE). Postictal apnea leading to cardiac arrest is the most common sequence of terminal events in witnessed cases of SUDEP, and postconvulsive central apnea has been proposed as a potential biomarker of SUDEP susceptibility. Research in SUDEP animal models has led to the serotonin and adenosine hypotheses of SUDEP. These neurotransmitters influence respiration, seizures, and lethality in animal models of SUDEP, and are implicated in human SUDEP cases. Adenosine released during seizures is proposed to be an important seizure termination mechanism. However, adenosine also depresses respiration, and this effect is mediated, in part, by inhibition of neuronal activity in subcortical structures that modulate respiration, including the periaqueductal gray (PAG). Drugs that enhance the action of adenosine increase postictal death in SUDEP models. Serotonin is also released during seizures, but enhances respiration in response to an elevated carbon dioxide level, which often occurs postictally. This effect of serotonin can potentially compensate, in part, for the adenosine-mediated respiratory depression, acting to facilitate autoresuscitation and other restorative respiratory response mechanisms. A number of drugs that enhance the action of serotonin prevent postictal death in several SUDEP models and reduce postictal respiratory depression in PWE. This effect of serotonergic drugs may be mediated, in part, by actions on brainstem sites that modulate respiration, including the PAG. Enhanced activity in the PAG increases respiration in response to hypoxia and other exigent conditions and can be activated by electrical stimulation. Thus, we propose the unifying hypothesis that seizure-induced adenosine release leads to respiratory depression. This can be reversed by serotonergic action on autoresuscitation and other restorative respiratory responses acting, in part, via the PAG. Therefore, we hypothesize that serotonergic or direct activation of this brainstem site may be a useful approach for SUDEP prevention.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Singer P, Yee BK. The adenosine hypothesis of schizophrenia into its third decade: From neurochemical imbalance to early life etiological risks. Front Cell Neurosci 2023; 17:1120532. [PMID: 36998267 PMCID: PMC10043328 DOI: 10.3389/fncel.2023.1120532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
The adenosine hypothesis of schizophrenia was conceptualized about two decades ago in an attempt to integrate two prominent theories of neurochemical imbalance that attribute the pathogenesis of schizophrenia to hyperfunction of the mesocorticolimbic dopamine neurotransmission and hypofunction of cortical glutamate neurotransmission. Given its unique position as an endogenous modulator of both dopamine and glutamate signaling in the brain, adenosine was postulated as a potential new drug target to achieve multiple antipsychotic actions. This new strategy may offer hope for improving treatment, especially in alleviating negative symptoms and cognitive deficits of schizophrenia that do not respond to current medications. To date, however, the adenosine hypothesis has yet led to any significant therapeutic breakthroughs. Here, we address two possible reasons for the impasse. First, neither the presence of adenosine functional deficiency in people with schizophrenia nor its causal relationship to symptom production has been satisfactorily examined. Second, the lack of novel adenosine-based drugs also impedes progress. This review updates the latest preclinical and clinical data pertinent to the construct validity of the adenosine hypothesis and explores novel molecular processes whereby dysregulation of adenosine signaling could be linked to the etiology of schizophrenia. It is intended to stimulate and revitalize research into the adenosine hypothesis towards the development of a new and improved generation of antipsychotic drugs that has eluded us for decades.
Collapse
Affiliation(s)
- Philipp Singer
- Roche Diagnostics International AG, Rotkreuz, Switzerland
- *Correspondence: Philipp Singer Benjamin K. Yee
| | - Benjamin K. Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Philipp Singer Benjamin K. Yee
| |
Collapse
|
28
|
Dias L, Pochmann D, Lemos C, Silva HB, Real JI, Gonçalves FQ, Rial D, Gonçalves N, Simões AP, Ferreira SG, Agostinho P, Cunha RA, Tomé AR. Increased Synaptic ATP Release and CD73-Mediated Formation of Extracellular Adenosine in the Control of Behavioral and Electrophysiological Modifications Caused by Chronic Stress. ACS Chem Neurosci 2023; 14:1299-1309. [PMID: 36881648 PMCID: PMC10080657 DOI: 10.1021/acschemneuro.2c00810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Increased ATP release and its extracellular catabolism through CD73 (ecto-5'-nucleotidase) lead to the overactivation of adenosine A2A receptors (A2AR), which occurs in different brain disorders. A2AR blockade blunts mood and memory dysfunction caused by repeated stress, but it is unknown if increased ATP release coupled to CD73-mediated formation of extracellular adenosine is responsible for A2AR overactivation upon repeated stress. This was now investigated in adult rats subject to repeated stress for 14 consecutive days. Frontocortical and hippocampal synaptosomes from stressed rats displayed an increased release of ATP upon depolarization, coupled to an increased density of vesicular nucleotide transporters and of CD73. The continuous intracerebroventricular delivery of the CD73 inhibitor α,β-methylene ADP (AOPCP, 100 μM) during restraint stress attenuated mood and memory dysfunction. Slice electrophysiological recordings showed that restraint stress decreased long-term potentiation both in prefrontocortical layer II/III-layer V synapses and in hippocampal Schaffer fibers-CA1 pyramid synapses, which was prevented by AOPCP, an effect occluded by adenosine deaminase and by the A2AR antagonist SCH58261. These results indicate that increased synaptic ATP release coupled to CD73-mediated formation of extracellular adenosine contributes to mood and memory dysfunction triggered by repeated restraint stress. This prompts considering interventions decreasing ATP release and CD73 activity as novel strategies to mitigate the burden of repeated stress.
Collapse
Affiliation(s)
- Liliana Dias
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniela Pochmann
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Henrique B Silva
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joana I Real
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniel Rial
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Nélio Gonçalves
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Patrícia Simões
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Samira G Ferreira
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula Agostinho
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,FMUC─Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Angelo R Tomé
- CNC─Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
29
|
Peng W, Liu X, Ma G, Wu Z, Wang Z, Fei X, Qin M, Wang L, Li Y, Zhang S, Xu M. Adenosine-independent regulation of the sleep-wake cycle by astrocyte activity. Cell Discov 2023; 9:16. [PMID: 36746933 PMCID: PMC9902472 DOI: 10.1038/s41421-022-00498-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/20/2022] [Indexed: 02/08/2023] Open
Abstract
Astrocytes play a crucial role in regulating sleep-wake behavior, and adenosine signaling is generally thought to be involved. Here we show multiple lines of evidence supporting that modulation of the sleep-wake behavior by astrocyte Ca2+ activity could occur without adenosine signaling. In the basal forebrain and the brainstem, two brain regions that are known to be essential for sleep-wake regulation, chemogenetically-induced astrocyte Ca2+ elevation significantly modulated the sleep-wake cycle. Although astrocyte Ca2+ level positively correlated with the amount of extracellular adenosine, as revealed by a genetically encoded adenosine sensor, we found no detectable change in adenosine level after suppressing astrocyte Ca2+ elevation, and transgenic mice lacking one of the major extracellular ATP-adenosine conversion enzymes showed similar extracellular adenosine level and astrocyte Ca2+-induced sleep modulation. Furthermore, astrocyte Ca2+ is dependent primarily on local neuronal activity, causing brain region-specific regulation of the sleep-wake cycle. Thus, neural activity-dependent astrocyte activity could regulate the sleep-wake behavior independent of adenosine signaling.
Collapse
Affiliation(s)
- Wanling Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaotong Liu
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Guofen Ma
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaofa Wu
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ziyue Wang
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Fei
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Meiling Qin
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lizhao Wang
- grid.16821.3c0000 0004 0368 8293Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulong Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Siyu Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shangha, China.
| |
Collapse
|
30
|
Chen XX, Ji ZG, Wang Y, Xu J, Wang LY, Wang HB. Bibliometric analysis of the effects of mental fatigue on athletic performance from 2001 to 2021. Front Psychol 2023; 13:1019417. [PMID: 36698588 PMCID: PMC9869051 DOI: 10.3389/fpsyg.2022.1019417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Aims To explore the research hot topics and main contents in the field of the influence of mental fatigue on athletic performance, and to provide new ideas and directions for future research in this field. Methods Using CiteSpace and VOSviewer visualization tool software core collection of Web of Science database to TS = ("mental fatigue" OR "mental exertion" OR "cognitive fatigue" OR "Cognitive exertion" OR "mental exhaustion" OR "mental tiredness") AND ("athletic performance" OR "technical skill*" OR "Skill*" OR "technique" OR "decision making" OR "performance") AND ("Humans") searched for the influence of mental fatigue on athletic performance from 2001 to 2021 to conduct visual analysis. Research hot topics were analyzed from the aspects of high-impact countries/regions, institutions, authors, high-frequency keywords, and mutation terms. Results A total of 658 publications were identified finally, and there has been an increasing trend in the annual number of publications, with the United States ranking first in the number of publications and influence. Future research will focus on promoting the application of EEG technology as an objective indicator for assessing mental fatigue, exploring effective methods and measures for pharmacological or non-pharmacological interventions against fatigue, and focusing on the effects of mental fatigue on endurance performance, technical skills, and sports-related decision-making. Conclusion The results of the present study help us understand the status of the mental fatigue and athletic performance field and its recent developments.
Collapse
Affiliation(s)
- Xiao-Xin Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Zhi-Guang Ji
- Department of Physical Education, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi Wang
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Xu
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li-Yan Wang
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hong-Biao Wang
- Department of Physical Education, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Hong-Biao Wang,
| |
Collapse
|
31
|
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology 2023; 222:109303. [PMID: 36309046 DOI: 10.1016/j.neuropharm.2022.109303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
32
|
A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation. Nat Commun 2022; 13:7427. [PMID: 36460638 PMCID: PMC9718817 DOI: 10.1038/s41467-022-35092-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Brain-inspired electronics require artificial synapses that have ultra-low energy consumption, high operating speed, and stable flexibility. Here, we demonstrate a flexible artificial synapse that uses a rapidly crystallized perovskite layer at room temperature. The device achieves a series of synaptic functions, including logical operations, temporal and spatial rules, and associative learning. Passivation using phenethyl-ammonium iodide eliminated defects and charge traps to reduce the energy consumption to 13.5 aJ per synaptic event, which is the world record for two-terminal artificial synapses. At this ultralow energy consumption, the device achieves ultrafast response frequency of up to 4.17 MHz; which is orders of magnitude magnitudes higher than previous perovskite artificial synapses. A multi-stimulus accumulative artificial neuromuscular system was then fabricated using the perovskite synapse as a key processing unit to control electrochemical artificial muscles, and realized muscular-fatigue warning. This artificial synapse will have applications in future bio-inspired electronics and neurorobots.
Collapse
|
33
|
Kim JD, Zhou T, Zhang A, Li S, Gupte AA, Hamilton DJ, Fang L. AIBP Regulates Metabolism of Ketone and Lipids but Not Mitochondrial Respiration. Cells 2022; 11:cells11223643. [PMID: 36429071 PMCID: PMC9688289 DOI: 10.3390/cells11223643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence indicates that the APOA1 binding protein (AIBP)-a secreted protein-plays a profound role in lipid metabolism. Interestingly, AIBP also functions as an NAD(P)H-hydrate epimerase to catalyze the interconversion of NAD(P)H hydrate [NAD(P)HX] epimers and is renamed as NAXE. Thus, we call it NAXE hereafter. We investigated its role in NAD(P)H-involved metabolism in murine cardiomyocytes, focusing on the metabolism of hexose, lipids, and amino acids as well as mitochondrial redox function. Unbiased metabolite profiling of cardiac tissue shows that NAXE knockout markedly upregulates the ketone body 3-hydroxybutyric acid (3-HB) and increases or trends increasing lipid-associated metabolites cholesterol, α-linolenic acid and deoxycholic acid. Paralleling greater ketone levels, ChemRICH analysis of the NAXE-regulated metabolites shows reduced abundance of hexose despite similar glucose levels in control and NAXE-deficient blood. NAXE knockout reduces cardiac lactic acid but has no effect on the content of other NAD(P)H-regulated metabolites, including those associated with glucose metabolism, the pentose phosphate pathway, or Krebs cycle flux. Although NAXE is present in mitochondria, it has no apparent effect on mitochondrial oxidative phosphorylation. Instead, we detected more metabolites that can potentially improve cardiac function (3-HB, adenosine, and α-linolenic acid) in the Naxe-/- heart; these mice also perform better in aerobic exercise. Our data reveal a new role of NAXE in cardiac ketone and lipid metabolism.
Collapse
Affiliation(s)
- Jun-dae Kim
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
| | - Teng Zhou
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
| | - Shumin Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
| | - Anisha A. Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, 407 E 61st St., New York, NY 10065, USA
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, 407 E 61st St., New York, NY 10065, USA
- Correspondence: ; Tel.: +713-363-9012; Fax: +713-363-9782
| |
Collapse
|
34
|
Nakajima N, Ohnishi Y, Yamamoto M, Setoyama D, Imai H, Takenaka T, Matsumoto M, Hosomi K, Saitoh Y, Furue H, Kishima H. Excess intracellular ATP causes neuropathic pain following spinal cord injury. Cell Mol Life Sci 2022; 79:483. [PMID: 35972649 PMCID: PMC11072579 DOI: 10.1007/s00018-022-04510-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Intractable neuropathic pain following spinal cord injury (NP-SCI) reduces a patient's quality of life. Excessive release of ATP into the extracellular space evokes neuroinflammation via purinergic receptor. Neuroinflammation plays an important role in the initiation and maintenance of NP. However, little is known about whether or not extracellular ATP cause NP-SCI. We found in the present study that excess of intracellular ATP at the lesion site evokes at-level NP-SCI. No significant differences in the body weight, locomotor function, or motor behaviors were found in groups that were negative and positive for at-level allodynia. The intracellular ATP level at the lesion site was significantly higher in the allodynia-positive mice than in the allodynia-negative mice. A metabolome analysis revealed that there were no significant differences in the ATP production or degradation between allodynia-negative and allodynia-positive mice. Dorsal horn neurons in allodynia mice were found to be inactivated in the resting state, suggesting that decreased ATP consumption due to neural inactivity leads to a build-up of intracellular ATP. In contrast to the findings in the resting state, mechanical stimulation increased the neural activity of dorsal horn and extracellular ATP release at lesion site. The forced production of intracellular ATP at the lesion site in non-allodynia mice induced allodynia. The inhibition of P2X4 receptors in allodynia mice reduced allodynia. These results suggest that an excess buildup of intracellular ATP in the resting state causes at-level NP-SCI as a result of the extracellular release of ATP with mechanical stimulation.
Collapse
Affiliation(s)
- Nobuhiko Nakajima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Ohnishi
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
- Department of Neurosurgery, Osaka Gyoumeikan Hospital, Osaka, Japan.
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Tomofumi Takenaka
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mari Matsumoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Neuromodulation and Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoichi Saitoh
- Department of Neuromodulation and Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, Hyogo, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
35
|
Sikka P, Behl T, Chandel P, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM. Scrutinizing the Therapeutic Promise of Purinergic Receptors Targeting Depression. Neurotox Res 2022; 40:1570-1585. [PMID: 35930172 DOI: 10.1007/s12640-022-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Antidepressant use has resulted in a variety of negative consequences, including permanent brain damage and erectile dysfunction. So, the purpose lies in developing something more productive with minimal side effects and consequently improved efficacy. A growing body of evidences indicated a remarkable purinergic signalling system, which helped in dealing with this complication. This has been found to be a powerful formula in dealing with psychiatric disorders. P1 (adenosine), P2X, and P2Y (ATP) are the receptors, involved in the pathology as well as exhibiting the therapeutic action by triggering the purinergic pathway. It was found that A2A and P2X7 receptors specifically were involved and recognized as possible targets for treating depression. Further, the development of biomarkers for the diagnosis of depression has also been attributed to accelerate the process. One such biomarker includes serum uric acid. Many clinical studies reveal the importance of antagonizing P2X7 and A2A receptors, for promising research in understanding the molecular premises of depression. However, further investigations are still needed to be done to open several unfolded mysteries for a better and safe upshot. The selective antagonists for A2A and P2X7 receptors may have antidepressant effects showing positive results, in agreement with non-clinical testing. In this review, efforts are being devoted to the targeted receptors in bringing out antidepressant effects with a possible link involving depression and defined purinergic signalling. Additionally, the overview of various receptors, including their functions and distribution, is being explored in a representative way along with the biomarkers involved.
Collapse
Affiliation(s)
- Priyanshi Sikka
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Parteek Chandel
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
36
|
Martínez-Gallego I, Pérez-Rodríguez M, Coatl-Cuaya H, Flores G, Rodríguez-Moreno A. Adenosine and Astrocytes Determine the Developmental Dynamics of Spike Timing-Dependent Plasticity in the Somatosensory Cortex. J Neurosci 2022; 42:6038-6052. [PMID: 35768208 PMCID: PMC9351642 DOI: 10.1523/jneurosci.0115-22.2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
During development, critical periods of synaptic plasticity facilitate the reordering and refinement of neural connections, allowing the definitive synaptic circuits responsible for correct adult physiology to be established. The L4-L2/3 synapses in the somatosensory cortex (S1) exhibit a presynaptic form of spike timing-dependent long-term depression (t-LTD) that probably fulfills a role in synaptic refinement. This t-LTD persists until the fourth postnatal week in mice, disappearing thereafter. When we investigated the mechanisms underlying this maturation-related loss of t-LTD in either sex mouse slices, we found that it could be completely recovered by antagonizing adenosine type 1 receptors. By contrast, an agonist of A1R impeded the induction of t-LTD at P13-27. Furthermore, we found that the adenosine that mediated the loss of t-LTD at the end of the fourth week of development is most probably supplied by astrocytes. At more mature stages (P38-60), we found that the protocol used to induce t-LTD provokes t-LTP. We characterized the mechanisms underlying the induction of this form of LTP, and we found it to be expressed presynaptically, as witnessed by paired-pulse and coefficient of variation analysis. In addition, this form of presynaptic t-LTP requires the activation of NMDARs and mGlu1Rs, and the entry of Ca2+ into the postsynaptic neuron through L-type voltage-dependent Ca2+ channels. Nitric oxide is also required for t-LTP as a messenger in the postsynaptic neuron as are the adenosine and glutamate that are released in association with astrocyte signaling. These results provide direct evidence of the mechanisms that close the window of plasticity associated with t-LTD and that drive the switch in synaptic transmission from t-LTD to t-LTP at L4-L2/3 synapses, in which astrocytes play a central role.SIGNIFICANCE STATEMENT During development, critical periods of plasticity facilitate the reordering and refining of neural connections, allowing correct adult physiology to be established. The L4-L2/3 synapses in the somatosensory cortex exhibit a presynaptic form plasticity (LTD) that probably fulfills a role in synaptic refinement. It is present until the fourth postnatal week in mice, disappearing thereafter. The mechanisms that are responsible for this loss of plasticity are not clear. We describe here these mechanisms and those involved in the switch from LTD to LTP observed as the brain matures. Defining these events responsible for closing (and opening) plasticity windows may be important for brain repair, sensorial recovery, the treatment of neurodevelopmental disorders, and for educational policy.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Mikel Pérez-Rodríguez
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Heriberto Coatl-Cuaya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla CP 72570, México
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| |
Collapse
|
37
|
Wall MJ, Puddefoot K, Yin W, Bingham C, Seifi M, Swinny JD, Ngomba RT. Adenosine is released during thalamic oscillations to provide negative feedback control. Neuropharmacology 2022; 216:109172. [PMID: 35780977 DOI: 10.1016/j.neuropharm.2022.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Physiological oscillations in the cortico-thalamo-cortical loop occur during processes such as sleep, but these can become dysfunctional in pathological conditions such as absence epilepsy. The purine neuromodulator adenosine can act as an endogenous anticonvulsant: it is released into the extracellular space during convulsive seizures to activate A1 receptors suppressing on-going activity and delaying the occurrence of the next seizure. However, the role of adenosine in thalamic physiological and epileptiform oscillations is less clear. Here we have combined immunohistochemistry, electrophysiology, and fixed potential amperometry (FPA) biosensor measurements to characterise the release and actions of adenosine in thalamic oscillations measured in rodent slices. In the thalamus, A1 receptors are highly expressed particularly in the ventral basal (VB) thalamus and reticular thalamic nucleus (nRT) supporting a role for adenosine signalling in controlling oscillations. In agreement with previous studies, both adenosine and adenosine A1 receptor agonists inhibited thalamic oscillations in control (spindle-like) and in epileptic conditions. Here we have shown for the first time that both control and epileptiform oscillations are enhanced (i.e., increased number of oscillatory cycles) by blocking A1 receptors consistent with adenosine release occurring during oscillations. Although increases in extracellular adenosine could not be directly detected during control oscillations, clear increases in adenosine concentration could be detected with a biosensor during epileptiform oscillation activity. Thus, adenosine is released during thalamic oscillations and acts via A1 receptors to feedback and reduce thalamic oscillatory activity.
Collapse
Affiliation(s)
- Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Katie Puddefoot
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | - Mohsen Seifi
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Jerome D Swinny
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
| | | |
Collapse
|
38
|
Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res 2022; 219:109071. [PMID: 35447101 PMCID: PMC9701099 DOI: 10.1016/j.exer.2022.109071] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The global prevalence of myopia, or nearsightedness, has increased at an alarming rate over the last few decades. An eye is myopic if incoming light focuses prior to reaching the retinal photoreceptors, which indicates a mismatch in its shape and optical power. This mismatch commonly results from excessive axial elongation. Important drivers of the myopia epidemic include environmental factors, genetic factors, and their interactions, e.g., genetic factors influencing the effects of environmental factors. One factor often hypothesized to be a driver of the myopia epidemic is environmental light, which has changed drastically and rapidly on a global scale. In support of this, it is well established that eye size is regulated by a homeostatic process that incorporates visual cues (emmetropization). This process allows the eye to detect and minimize refractive errors quite accurately and locally over time by modulating the rate of elongation of the eye via remodeling its outermost coat, the sclera. Critically, emmetropization is not dependent on post-retinal processing. Thus, visual cues appear to influence axial elongation through a retina-to-sclera, or retinoscleral, signaling cascade, capable of transmitting information from the innermost layer of the eye to the outermost layer. Despite significant global research interest, the specifics of retinoscleral signaling pathways remain elusive. While a few pharmacological treatments have proven to be effective in slowing axial elongation (most notably topical atropine), the mechanisms behind these treatments are still not fully understood. Additionally, several retinal neuromodulators, neurotransmitters, and other small molecules have been found to influence axial length and/or refractive error or be influenced by myopigenic cues, yet little progress has been made explaining how the signal that originates in the retina crosses the highly vascular choroid to affect the sclera. Here, we compile and synthesize the evidence surrounding three of the major candidate pathways receiving significant research attention - dopamine, retinoic acid, and adenosine. All three candidates have both correlational and causal evidence backing their involvement in axial elongation and have been implicated by multiple independent research groups across diverse species. Two hypothesized mechanisms are presented for how a retina-originating signal crosses the choroid - via 1) all-trans retinoic acid or 2) choroidal blood flow influencing scleral oxygenation. Evidence of crosstalk between the pathways is discussed in the context of these two mechanisms.
Collapse
Affiliation(s)
- Dillon M Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Reece Mazade
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Gangarosa Department of Environmental Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Kelleigh Hogan
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Pooja M Datta Roy
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA.
| |
Collapse
|
39
|
Lovinger DM, Mateo Y, Johnson KA, Engi SA, Antonazzo M, Cheer JF. Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nat Rev Neurosci 2022; 23:191-203. [PMID: 35228740 PMCID: PMC10709822 DOI: 10.1038/s41583-022-00561-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Central nervous system neurons communicate via fast synaptic transmission mediated by ligand-gated ion channel (LGIC) receptors and slower neuromodulation mediated by G protein-coupled receptors (GPCRs). These receptors influence many neuronal functions, including presynaptic neurotransmitter release. Presynaptic LGIC and GPCR activation by locally released neurotransmitters influences neuronal communication in ways that modify effects of somatic action potentials. Although much is known about presynaptic receptors and their mechanisms of action, less is known about when and where these receptor actions alter release, especially in vivo. This Review focuses on emerging evidence for important local presynaptic receptor actions and ideas for future studies in this area.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Yolanda Mateo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sheila A Engi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mario Antonazzo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph F Cheer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Salami P, Borzello M, Kramer MA, Westover MB, Cash SS. Quantifying seizure termination patterns reveals limited pathways to seizure end. Neurobiol Dis 2022; 165:105645. [PMID: 35104646 PMCID: PMC8860887 DOI: 10.1016/j.nbd.2022.105645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Despite their possible importance in the design of novel neuromodulatory approaches and in understanding status epilepticus, the dynamics and mechanisms of seizure termination are not well studied. We examined intracranial recordings from patients with epilepsy to differentiate seizure termination patterns and investigated whether these patterns are indicative of different underlying mechanisms. METHODS Seizures were classified into one of two termination patterns: (a) those that end simultaneously across the brain (synchronous), and (b) those whose termination is piecemeal across the cortex (asynchronous). Both types ended with either a burst suppression pattern, or continuous seizure activity. These patterns were quantified and compared using burst suppression ratio, absolute energy, and network connectivity. RESULTS Seizures with electrographic generalization showed burst suppression patterns in 90% of cases, compared with only 60% of seizures which remained focal. Interestingly, we found similar absolute energy and burst suppression ratios in seizures with synchronous and asynchronous termination, while seizures with continuous seizure activity were found to be different from seizures with burst suppression, showing lower energy during seizure and lower burst suppression ratio at the start and end of seizure. Finally, network density was observed to increase with seizure progression, with significantly lower densities in seizures with continuous seizure activity compared to seizures with burst suppression. SIGNIFICANCE Based on this spatiotemporal classification scheme, we suggest that there are a limited number of seizure termination patterns and dynamics. If this bears out, it would imply that the number of mechanisms underlying seizure termination is also constrained. Seizures with different termination patterns exhibit different dynamics even before their start. This may provide useful clues about how seizures may be managed, which in turn may lead to more targeted modes of therapy for seizure control.
Collapse
Affiliation(s)
- Pariya Salami
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Mia Borzello
- Department of Cognitive Science, University of California, San Diego, CA, USA; Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Marcoli M, Agnati LF, Franco R, Cortelli P, Anderlini D, Guidolin D, Cervetto C, Maura G. Modulating brain integrative actions as a new perspective on pharmacological approaches to neuropsychiatric diseases. Front Endocrinol (Lausanne) 2022; 13:1038874. [PMID: 36699033 PMCID: PMC9868467 DOI: 10.3389/fendo.2022.1038874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
A critical aspect of drug development in the therapy of neuropsychiatric diseases is the "Target Problem", that is, the selection of a proper target after not simply the etiopathological classification but rather the detection of the supposed structural and/or functional alterations in the brain networks. There are novel ways of approaching the development of drugs capable of overcoming or at least reducing the deficits without triggering deleterious side effects. For this purpose, a model of brain network organization is needed, and the main aspects of its integrative actions must also be established. Thus, to this aim we here propose an updated model of the brain as a hyper-network in which i) the penta-partite synapses are suggested as key nodes of the brain hyper-network and ii) interacting cell surface receptors appear as both decoders of signals arriving to the network and targets of central nervous system diseases. The integrative actions of the brain networks follow the "Russian Doll organization" including the micro (i.e., synaptic) and nano (i.e., molecular) levels. In this scenario, integrative actions result primarily from protein-protein interactions. Importantly, the macromolecular complexes arising from these interactions often have novel structural binding sites of allosteric nature. Taking G protein-coupled receptors (GPCRs) as potential targets, GPCRs heteromers offer a way to increase the selectivity of pharmacological treatments if proper allosteric drugs are designed. This assumption is founded on the possible selectivity of allosteric interventions on G protein-coupled receptors especially when organized as "Receptor Mosaics" at penta-partite synapse level.
Collapse
Affiliation(s)
- Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
- *Correspondence: Manuela Marcoli, ; Luigi F. Agnati,
| | - Luigi F. Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Manuela Marcoli, ; Luigi F. Agnati,
| | - Rafael Franco
- CiberNed Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine. Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Deanna Anderlini
- Centre for Sensorimotor Performance, The University of Queensland, Brisbane, QLD, Australia
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Pisa, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
| |
Collapse
|
42
|
Shimoda Y, Beppu K, Ikoma Y, Morizawa YM, Zuguchi S, Hino U, Yano R, Sugiura Y, Moritoh S, Fukazawa Y, Suematsu M, Mushiake H, Nakasato N, Iwasaki M, Tanaka KF, Tominaga T, Matsui K. Optogenetic stimulus-triggered acquisition of seizure resistance. Neurobiol Dis 2021; 163:105602. [PMID: 34954320 DOI: 10.1016/j.nbd.2021.105602] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022] Open
Abstract
Unlike an electrical circuit, the hardware of the brain is susceptible to change. Repeated electrical brain stimulation mimics epileptogenesis. After such "kindling" process, a moderate stimulus would become sufficient in triggering a severe seizure. Here, we report that optogenetic neuronal stimulation can also convert the rat brain to a hyperexcitable state. However, continued stimulation once again converted the brain to a state that was strongly resistant to seizure induction. Histochemical examinations showed that moderate astrocyte activation was coincident with resilience acquisition. Administration of an adenosine A1 receptor antagonist instantly reverted the brain back to a hyperexcitable state, suggesting that hyperexcitability was suppressed by adenosine. Furthermore, an increase in basal adenosine was confirmed using in vivo microdialysis. Daily neuron-to-astrocyte signaling likely prompted a homeostatic increase in the endogenous actions of adenosine. Our data suggest that a certain stimulation paradigm could convert the brain circuit resilient to epilepsy without exogenous drug administration.
Collapse
Affiliation(s)
- Yoshiteru Shimoda
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kaoru Beppu
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Yosuke M Morizawa
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Satoshi Zuguchi
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Utaro Hino
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Ryutaro Yano
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Satoru Moritoh
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yugo Fukazawa
- Division of Cell Biology and Neuroscience, University of Fukui Faculty of Medical Sciences, Fukui 910-1193, Japan
| | - Makoto Suematsu
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ko Matsui
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan.
| |
Collapse
|
43
|
Gleizes M, Fonta C, Nowak LG. Inhibitors of ectonucleotidases have paradoxical effects on synaptic transmission in the mouse cortex. J Neurochem 2021; 160:305-324. [PMID: 34905223 DOI: 10.1111/jnc.15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Extracellular adenosine plays prominent roles in the brain in both physiological and pathological conditions. Adenosine can be generated following the degradation of extracellular nucleotides by various types of ectonucleotidases. Several ectonucleotidases are present in the brain parenchyma: ecto-nucleotide triphosphate diphosphohydrolases 1 and 3 (NTPDase 1 and 3), ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP 1), ecto-5'-nucleotidase (eN), and tissue non-specific alkaline phosphatase (TNAP, whose function in the brain has received little attention). Here we examined, in a living brain preparation, the role of these ectonucleotidases in generating extracellular adenosine. We recorded local field potentials evoked by electrical stimulation of the lateral olfactory tract in the mouse piriform cortex in vitro. Variations in adenosine level were evaluated by measuring changes in presynaptic inhibition generated by adenosine A1 receptors (A1Rs) activation. A1R-mediated presynaptic inhibition was present endogenously and was enhanced by bath-applied AMP and ATP. We hypothesized that inhibiting ectonucleotidases would reduce extracellular adenosine concentration, which would result in a weakening of presynaptic inhibition. However, inhibiting TNAP had no effect in controlling endogenous adenosine action and no effect on presynaptic inhibition induced by bath-applied AMP. Furthermore, contrary to our expectation, inhibiting TNAP reinforced, rather than reduced, presynaptic inhibition induced by bath-applied ATP. Similarly, inhibition of NTPDase 1 and 3, NPP1 and eN induced stronger, rather than weaker, presynaptic inhibition, both in endogenous condition and with bath-applied ATP and AMP. Consequently, attempts to suppress the functions of extracellular adenosine by blocking its extracellular synthesis in living brain tissue could have functional impacts opposite to those anticipated.
Collapse
Affiliation(s)
- Marie Gleizes
- CerCo, Université Toulouse 3, CNRS, CHU Purpan, Pavillon Baudot, BP 25202, 31052, Toulouse Cedex
| | - Caroline Fonta
- CerCo, Université Toulouse 3, CNRS, CHU Purpan, Pavillon Baudot, BP 25202, 31052, Toulouse Cedex
| | - Lionel G Nowak
- CerCo, Université Toulouse 3, CNRS, CHU Purpan, Pavillon Baudot, BP 25202, 31052, Toulouse Cedex
| |
Collapse
|
44
|
Hu Y, Tao W. Microenvironmental Variations After Blood-Brain Barrier Breakdown in Traumatic Brain Injury. Front Mol Neurosci 2021; 14:750810. [PMID: 34899180 PMCID: PMC8662751 DOI: 10.3389/fnmol.2021.750810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is linked to several pathologies. The blood-brain barrier (BBB) breakdown is considered to be one of the initial changes. Further, the microenvironmental alteration following TBI-induced BBB breakdown can be multi-scaled, constant, and dramatic. The microenvironmental variations after disruption of BBB includes several pathological changes, such as cerebral blood flow (CBF) alteration, brain edema, cerebral metabolism imbalances, and accumulation of inflammatory molecules. The modulation of the microenvironment presents attractive targets for TBI recovery, such as reducing toxic substances, inhibiting inflammation, and promoting neurogenesis. Herein, we briefly review the pathological alterations of the microenvironmental changes following BBB breakdown and outline potential interventions for TBI recovery based on microenvironmental modulation.
Collapse
Affiliation(s)
- Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
45
|
Jacquet T, Poulin-Charronnat B, Bard P, Perra J, Lepers R. Physical Activity and Music to Counteract Mental Fatigue. Neuroscience 2021; 478:75-88. [PMID: 34601062 DOI: 10.1016/j.neuroscience.2021.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
Mental fatigue impairs both cognitive and physical performance. Bioactive substances (e.g., caffeine) have been used to counteract mental fatigue but could have side effects. The present study aimed to test two non-bioactive strategies to counteract mental fatigue: physical activity and listening to music. The participants first performed an arm-pointing task, then carried out a 32-min cognitively demanding task to induce mental fatigue (TLDB task), followed by another arm-pointing task at the end of the experiment. Between the end of the cognitively demanding task and the last arm-pointing task, 20 min went during which participants performed either 15 min of physical activity, of listening to music or of discussion (control). The subjective feeling of mental fatigue was assessed before each arm-pointing task and after the cognitively demanding task. For "physical activity" and "listening to music" groups, EEG was recorded at rest after each evaluation of subjective feeling of mental fatigue and during the cognitively demanding task. An increase in alpha power during the cognitively demanding task evidenced the presence of mental fatigue, without recovery during the following 20-min period. In the control condition, the arm-pointing task performance was deteriorated 20-min after the cognitively demanding task, while it remained stable after both physical activity and listening to music. Furthermore, recovery on the subjective feeling of mental fatigue was similar for both groups. The present results suggested that practicing physical activity and listening to music could be efficient strategies to counteract the negative effects of mental fatigue on motor performances.
Collapse
Affiliation(s)
- Thomas Jacquet
- LEAD - CNRS UMR5022, Université Bourgogne Franche-Comté, Pôle AAFE, 11 Esplanade Erasme, 21000 Dijon, France; CAPS, INSERM U1093, Université Bourgogne Franche-Comté, Faculty of Sport Sciences, BP 27877 UFR STAPS, 21000 Dijon, France.
| | - Bénédicte Poulin-Charronnat
- LEAD - CNRS UMR5022, Université Bourgogne Franche-Comté, Pôle AAFE, 11 Esplanade Erasme, 21000 Dijon, France
| | - Patrick Bard
- LEAD - CNRS UMR5022, Université Bourgogne Franche-Comté, Pôle AAFE, 11 Esplanade Erasme, 21000 Dijon, France
| | - Joris Perra
- LEAD - CNRS UMR5022, Université Bourgogne Franche-Comté, Pôle AAFE, 11 Esplanade Erasme, 21000 Dijon, France
| | - Romuald Lepers
- CAPS, INSERM U1093, Université Bourgogne Franche-Comté, Faculty of Sport Sciences, BP 27877 UFR STAPS, 21000 Dijon, France
| |
Collapse
|
46
|
Purnell B, Murugan M, Jani R, Boison D. The Good, the Bad, and the Deadly: Adenosinergic Mechanisms Underlying Sudden Unexpected Death in Epilepsy. Front Neurosci 2021; 15:708304. [PMID: 34321997 PMCID: PMC8311182 DOI: 10.3389/fnins.2021.708304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Adenosine is an inhibitory modulator of neuronal excitability. Neuronal activity results in increased adenosine release, thereby constraining excessive excitation. The exceptionally high neuronal activity of a seizure results in a surge in extracellular adenosine to concentrations many-fold higher than would be observed under normal conditions. In this review, we discuss the multifarious effects of adenosine signaling in the context of epilepsy, with emphasis on sudden unexpected death in epilepsy (SUDEP). We describe and categorize the beneficial, detrimental, and potentially deadly aspects of adenosine signaling. The good or beneficial characteristics of adenosine signaling in the context of seizures include: (1) its direct effect on seizure termination and the prevention of status epilepticus; (2) the vasodilatory effect of adenosine, potentially counteracting postictal vasoconstriction; (3) its neuroprotective effects under hypoxic conditions; and (4) its disease modifying antiepileptogenic effect. The bad or detrimental effects of adenosine signaling include: (1) its capacity to suppress breathing and contribute to peri-ictal respiratory dysfunction; (2) its contribution to postictal generalized EEG suppression (PGES); (3) the prolonged increase in extracellular adenosine following spreading depolarization waves may contribute to postictal neuronal dysfunction; (4) the excitatory effects of A2A receptor activation is thought to exacerbate seizures in some instances; and (5) its potential contributions to sleep alterations in epilepsy. Finally, the adverse effects of adenosine signaling may potentiate a deadly outcome in the form of SUDEP by suppressing breathing and arousal in the postictal period. Evidence from animal models suggests that excessive postictal adenosine signaling contributes to the pathophysiology of SUDEP. The goal of this review is to discuss the beneficial, harmful, and potentially deadly roles that adenosine plays in the context of epilepsy and to identify crucial gaps in knowledge where further investigation is necessary. By better understanding adenosine dynamics, we may gain insights into the treatment of epilepsy and the prevention of SUDEP.
Collapse
Affiliation(s)
- Benton Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Raja Jani
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
47
|
Augusto E, Gonçalves FQ, Real JE, Silva HB, Pochmann D, Silva TS, Matos M, Gonçalves N, Tomé ÂR, Chen JF, Canas PM, Cunha RA. Increased ATP release and CD73-mediated adenosine A 2A receptor activation mediate convulsion-associated neuronal damage and hippocampal dysfunction. Neurobiol Dis 2021; 157:105441. [PMID: 34224862 DOI: 10.1016/j.nbd.2021.105441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/12/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular ATP is a danger signal to the brain and contributes to neurodegeneration in animal models of Alzheimer's disease through its extracellular catabolism by CD73 to generate adenosine, bolstering the activation of adenosine A2A receptors (A2AR). Convulsive activity leads to increased ATP release, with the resulting morphological alterations being eliminated by A2AR blockade. However, it is not known if upon convulsions there is a CD73-mediated coupling between ATP release and A2AR overactivation, causing neurodegeneration. We now show that kainate-induced convulsions trigger a parallel increase of ATP release and of CD73 and A2AR densities in synapses and astrocytes of the mouse hippocampus. Notably, the genetic deletion of CD73 attenuates neuronal degeneration but has no impact on astrocytic modifications in the hippocampus upon kainate-induced convulsions. Furthermore, kainate-induced convulsions cause a parallel deterioration of hippocampal long-term potentiation (LTP) and hippocampal-dependent memory performance, which is eliminated by knocking out CD73. This demonstrates the key role of the ATP release/CD73/A2AR pathway to selectively control synaptic dysfunction and neurodegeneration following an acute brain insult, paving the way to consider CD73 as a new therapeutic target to prevent neuronal damage upon acute brain damage.
Collapse
Affiliation(s)
- Elisabete Augusto
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Joana E Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Daniela Pochmann
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Tiago S Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Marco Matos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ângelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
48
|
Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol 2021; 204:102105. [PMID: 34144123 DOI: 10.1016/j.pneurobio.2021.102105] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, All Saints Campus, Manchester M15 6BH, UK
| | - Manvitha Kuchukulla
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA.
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
49
|
Lopes CR, Cunha RA, Agostinho P. Astrocytes and Adenosine A 2A Receptors: Active Players in Alzheimer's Disease. Front Neurosci 2021; 15:666710. [PMID: 34054416 PMCID: PMC8155589 DOI: 10.3389/fnins.2021.666710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes, through their numerous processes, establish a bidirectional communication with neurons that is crucial to regulate synaptic plasticity, the purported neurophysiological basis of memory. This evidence contributed to change the classic “neurocentric” view of Alzheimer’s disease (AD), being astrocytes increasingly considered a key player in this neurodegenerative disease. AD, the most common form of dementia in the elderly, is characterized by a deterioration of memory and of other cognitive functions. Although, early cognitive deficits have been associated with synaptic loss and dysfunction caused by amyloid-β peptides (Aβ), accumulating evidences support a role of astrocytes in AD. Astrocyte atrophy and reactivity occurring at early and later stages of AD, respectively, involve morphological alterations that translate into functional changes. However, the main signals responsible for astrocytic alterations in AD and their impact on synaptic function remain to be defined. One possible candidate is adenosine, which can be formed upon extracellular catabolism of ATP released by astrocytes. Adenosine can act as a homeostatic modulator and also as a neuromodulator at the synaptic level, through the activation of adenosine receptors, mainly of A1R and A2AR subtypes. These receptors are also present in astrocytes, being particularly relevant in pathological conditions, to control the morphofunctional responses of astrocytes. Here, we will focus on the role of A2AR, since they are particularly associated with neurodegeneration and also with memory processes. Furthermore, A2AR levels are increased in the AD brain, namely in astrocytes where they can control key astrocytic functions. Thus, unveiling the role of A2AR in astrocytes function might shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Cátia R Lopes
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
50
|
Dale N. Biological insights from the direct measurement of purine release. Biochem Pharmacol 2021; 187:114416. [PMID: 33444569 DOI: 10.1016/j.bcp.2021.114416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/23/2022]
Abstract
Although purinergic signalling has been a well-established and accepted mechanism of chemical communication for many years, it remains important to measure the extracellular concentration of ATP and adenosine in real time. In this review I summarize the reasons why such measurements are still needed, how they provide additional mechanistic insight and give an overview of the techniques currently available to make spatially localised measurements of ATP and adenosine in real time. To illustrate the impact of direct real-time measurements, I explore CO2 and nutrient sensing in the medulla oblongata and hypothalamus. In both of these examples, the sensing involves hemichannel mediated ATP release from glial cells. For CO2 the hemichannels involved, connexin26, are directly CO2-sensitive. This mechanism contributes to the chemosensory control of breathing. In the hypothamalus, specialised glial cells, tanycytes, directly contact the cerebrospinal fluid in the 3rd ventricle and sense nutrients via sweet and umami taste receptors. Nutrient sensing by tanycytes is likely to contribute to the control of body weight as their selective stimulation alters food intake. To illustrate the importance of direct adenosine measurements, I consider the complex and multiple mechanisms of activity-dependent adenosine release in different brain regions. This activity dependent release of adenosine is likely to mediate important feedback regulation and may also be involved in controlling the sleep-wake state. I finish by briefly considering the potential of whole blood purine measurements in clinical practice.
Collapse
Affiliation(s)
- Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|