1
|
Chen R, Li C, Zhao D, Yang G, Zeng L, Lin F, Xu H. Fabricating supramolecular pre-emergence herbicide CPAM-BPyHs for farming herbicide-resistant rice. Nat Commun 2025; 16:4347. [PMID: 40348750 PMCID: PMC12065884 DOI: 10.1038/s41467-025-59582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Controlling weeds before their emergence is crucial for minimizing their impacts on crop yield and quality. Bipyridyl herbicides (BPyHs), a class of highly effective and broad-spectrum herbicides, cannot be used as pre-emergence herbicides because they can be absorbed and inactivated by negatively charged soil after application. Here, we design and fabricate an adsorbed-but-active supramolecular pre-emergence herbicide consisting of cationic polyacrylamide and bipyridyl herbicides (CPAM-BPyHs). CPAM is a positively charged polymer. It can preferentially bind to soil particles and shift their electric potential to a more positive value. Thus, it prevents not only runoff but also inactivation of BPyHs. We also develop a BPyHs-resistant rice line by mutation of the gene encoding L-type amino acid transporter 5 (OsLAT5). Field trial results show that the weed control efficiency of CPAM-diquat for direct-seeded herbicide-resistant rice line exceeds 90%. The herbicidal activity can maintain up to one month with only one application. This work offers a method for rice weed control and provides insights into the design of pesticides to prevent soil inactivation and runoff.
Collapse
Affiliation(s)
- Ronghua Chen
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Chaozheng Li
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Di Zhao
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guili Yang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Lingda Zeng
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Fei Lin
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Brunharo CA, Short AW, Bobadilla LK, Streisfeld MA. The Genome of Lolium multiflorum Reveals the Genetic Architecture of Paraquat Resistance. Mol Ecol 2025; 34:e17775. [PMID: 40285737 PMCID: PMC12051776 DOI: 10.1111/mec.17775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Herbicide resistance in agricultural weeds has become one of the greatest challenges for sustainable crop production. The repeated evolution of herbicide resistance provides an excellent opportunity to study the genetic and physiological basis of the resistance phenotype and the evolutionary responses to human-mediated selection pressures. Lolium multiflorum is a ubiquitous weed that has evolved herbicide resistance repeatedly around the world in various cropping systems. We assembled and annotated a chromosome-scale genome for L. multiflorum and elucidated the genetic architecture of paraquat resistance by performing quantitative trait locus analysis, genome-wide association studies, genetic divergence analysis and transcriptome analyses from paraquat-resistant and -susceptible L. multiflorum plants. We identified two regions on chromosome 5 that were associated with paraquat resistance. These regions both showed evidence for positive selection among the resistant populations we sampled, but the effects of this selection on the genome differed, implying a complex evolutionary history. In addition, these regions contained candidate genes that encoded cellular transport functions, including a novel multidrug and toxin extrusion (MATE) protein and a cation transporter previously shown to interact with polyamines. Given that L. multiflorum is a weed and a cultivated crop species, the genomic resources generated will prove valuable to a wide spectrum of the plant science community. Our work contributes to a growing body of knowledge on the underlying evolutionary and ecological dynamics of rapid adaptation to strong anthropogenic selection pressure that could help initiate efforts to improve weed management practices in the long term for a more sustainable agriculture.
Collapse
Affiliation(s)
- Caio A. Brunharo
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Aidan W. Short
- Institute of Ecology and Evolution, University of OregonEugeneOregonUSA
| | | | | |
Collapse
|
3
|
Scarampi A, Lawrence JM, Bombelli P, Kosmützky D, Zhang JZ, Howe CJ. Polyploid cyanobacterial genomes provide a reservoir of mutations, allowing rapid evolution of herbicide resistance. Curr Biol 2025; 35:1549-1561.e3. [PMID: 40120581 DOI: 10.1016/j.cub.2025.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/13/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Adaptive mechanisms in bacteria, which are widely assumed to be haploid or partially diploid, are thought to rely on the emergence of spontaneous mutations or lateral gene transfer from a reservoir of pre-existing variants within the surrounding environment. These variants then become fixed in the population upon exposure to selective pressures. Here, we show that multiple distinct wild-type (WT) substrains of the highly polyploid cyanobacterium Synechocystis sp. PCC 6803 can adapt rapidly to the potent herbicide methyl viologen (MV). Genome sequencing revealed that the mutations responsible for adaptation to MV were already present prior to selection in the genomes of the unadapted parental strains at low allelic frequencies. This indicates that chromosomal polyploidy in bacteria can provide cells with a reservoir of conditionally beneficial mutations that can become rapidly enriched and fixed upon selection. MV-resistant strains performed oxygenic photosynthesis less efficiently than WTs when MV was absent, suggesting trade-offs in cellular fitness associated with the evolution of MV resistance and a possible role for balancing selection in the maintenance of these alleles under ecologically relevant growth conditions. Resistance was associated with reduced intracellular accumulation of MV. Our results indicate that genome polyploidy plays a role in the rapid adaptation of some bacteria to stressful conditions, which may include xenobiotics, nutrient limitation, environmental stresses, and seasonal changes.
Collapse
Affiliation(s)
- Alberto Scarampi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Joshua M Lawrence
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Darius Kosmützky
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jenny Z Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| |
Collapse
|
4
|
Yang X, Qin H, Zhou Y, Mai Z, Chai X, Guo J, Kang Y, Zhong M. HB52-PUT2 Module-Mediated Polyamine Shoot-to-Root Movement Regulates Salt Stress Tolerance in Tomato. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40159694 DOI: 10.1111/pce.15479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/31/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Soil salinity severely restricts crop quality and yields. Plants have developed various strategies to alleviate salinity stress's negative effects, including polyamine redistribution by polyamine uptake transporters (PUTs). However, the mechanisms by which PUTs alter polyamine translocation processes during salt stress have not been fully elucidated. Here, we show that disruption of PUT2, which is involved in polyamine shoot-to-root transport, results in salt sensitivity phenotypes in tomato. Moreover, yeast one-hybrid screened for an HD-Zip transcription factor HB52 that interacts with PUT2, and loss of function of HB52 also led to increased sensitivity to salt stress, whereas HB52-overexpression lines exhibited improved salt tolerance. Furthermore, molecular analyses demonstrated that HB52 directly activated the expression of PUT2 and facilitated Na+ efflux by promoting polyamine shoot-to-root mobility. This study uncovers a synergistic transcriptional regulatory network associated with a homeobox protein regulator that promotes polyamine long-distance transport under salt stress.
Collapse
Affiliation(s)
- Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hongyi Qin
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yu Zhou
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ziqi Mai
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xirong Chai
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Juxian Guo
- Vegetable Research Institute, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Min Zhong
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Liu T, Qu J, Fang Y, Yang H, Lai W, Pan L, Liu JH. Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:582-595. [PMID: 39601632 DOI: 10.1111/jipb.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/29/2024]
Abstract
Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and H2O2 were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenting Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Luyi Pan
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
6
|
Wang B, Wang S, Geng Q, Zhang N, Zhuo Q, Zhou Q, Zeng H, Tian J. Effects of Perillaldehyde and Polyamines on Defense Mechanisms of Sweet Potatoes against Ceratocystis fimbriata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27479-27494. [PMID: 39579138 DOI: 10.1021/acs.jafc.4c07055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Sweet potato (Ipomoea batatas) serves as a significant food and economic crop worldwide. However, its production and safety are jeopardized by black rot, a disease caused by Ceratocystis fimbriata. Although polyamines (PAs) are common biological growth factors, their function in the storage of fruits and vegetables remains poorly understood. This study examines the physiological roles of both exogenous and endogenous PAs in C. fimbriata, particularly their metabolism via gene knockout techniques. Additionally, we assessed how exogenous PAs affect sweet potato storage resistance. Our findings reveal that PAs are crucial in managing oxidative and cell wall stress in C. fimbriata. At high concentrations, PAs displayed cytotoxic effects through the upregulation of nitric oxide synthase (TAH18). Furthermore, exogenous PAs significantly enhanced the defense mechanisms of sweet potatoes during storage. The concurrent use of perillaldehyde (PAE), a natural antibacterial compound, additionally decreased the incidence of black rot in sweet potatoes. This study provides a novel strategy and theoretical basis for the prevention and control of fungal diseases in stored fruits and vegetables.
Collapse
Affiliation(s)
- Bo Wang
- JSNU-UWM International Cooperation Joint Research Laboratory of Food Safety and Microbial Functional Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Shan Wang
- JSNU-UWM International Cooperation Joint Research Laboratory of Food Safety and Microbial Functional Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Qingru Geng
- JSNU-UWM International Cooperation Joint Research Laboratory of Food Safety and Microbial Functional Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Ninghui Zhang
- JSNU-UWM International Cooperation Joint Research Laboratory of Food Safety and Microbial Functional Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Qiuhan Zhuo
- JSNU-UWM International Cooperation Joint Research Laboratory of Food Safety and Microbial Functional Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Qianru Zhou
- JSNU-UWM International Cooperation Joint Research Laboratory of Food Safety and Microbial Functional Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Hong Zeng
- Youjiang Medical University For Nationalities, Baise 533000, Guangxi, PR China
| | - Jun Tian
- JSNU-UWM International Cooperation Joint Research Laboratory of Food Safety and Microbial Functional Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| |
Collapse
|
7
|
Yang J, Zhang Z, Li X, Guo L, Li C, Lai J, Han Y, Ye W, Miao Y, Deng M, Cao P, Zhang Y, Ding X, Zhang J, Yang J, Wang S. A gene cluster for polyamine transport and modification improves salt tolerance in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1706-1723. [PMID: 39401077 DOI: 10.1111/tpj.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Polyamines act as protective compounds directly protecting plants from stress-related damage, while also acting as signaling molecules to participate in serious abiotic stresses. However, the molecular mechanisms underlying these effects are poorly understood. Here, we utilized metabolome genome-wide association study to investigate the polyamine content of wild and cultivated tomato accessions, and we discovered a new gene cluster that drove polyamine content during tomato domestication. The gene cluster contains two polyphenol oxidases (SlPPOE and SlPPOF), two BAHD acyltransferases (SlAT4 and SlAT5), a coumaroyl-CoA ligase (Sl4CL6), and a polyamine uptake transporter (SlPUT3). SlPUT3 mediates polyamine uptake and transport, while the five other genes are involved in polyamine modification. Further salt tolerance assays demonstrated that SlPPOE, SlPPOF, and SlAT5 overexpression lines showed greater phenolamide accumulation and salt tolerance as compared with wild-type (WT). Meanwhile, the exogenous application of Spm to SlPUT3-OE lines displayed salt tolerance compared with WT, while having the opposite effect in slput3 lines, confirms that the polyamine and phenolamide can play a protective role by alleviating cell damage. SlPUT3 interacted with SlPIP2;4, a H2O2 transport protein, to maintain H2O2 homeostasis. Polyamine-derived H2O2 linked Spm to stress responses, suggesting that Spm signaling activates stress response pathways. Collectively, our finding reveals that the H2O2-polyamine-phenolamide module coordinately enhanced tomato salt stress tolerance and provide a foundation for tomato stress-resistance breeding.
Collapse
Affiliation(s)
- Jie Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Zhonghui Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xianggui Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Langchen Guo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Chun Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Lai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yige Han
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Weizhen Ye
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yuanyuan Miao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Meng Deng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Peng Cao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yueran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xiangyu Ding
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jianing Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Shouchuang Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| |
Collapse
|
8
|
Joshi K, Ahmed S, Ge L, Avestakh A, Oloyede B, Phuntumart V, Kalinoski A, Morris PF. Spatial organization of putrescine synthesis in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112232. [PMID: 39214468 DOI: 10.1016/j.plantsci.2024.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Three plant pathways for the synthesis of putrescine have been described to date. These are the synthesis of putrescine from ornithine, by ornithine decarboxylase (ODC); the synthesis of putrescine from arginine by arginine decarboxylase, agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (NLP1); and arginine decarboxylase and agmatinase. To address how these pathways are organized in plants, we have used transient expression analysis of these genes in the leaves of Nicotiana benthamiana. Brassicas do not have ODC, but the single ODC gene from rice and one of the soybean genes, were localized to the ER. Transient expression of the rice agmatinase gene showed that it was localized to the mitochondria. In A. thaliana there are five isoforms of AIH and three isoforms of NLP1. Stable GFP-tagged transformants of the longest isoforms of AIH and NLP1 showed that both proteins were localized to the ER, but in tissues with chloroplasts, the localization was concentrated to lamellae adjacent to chloroplasts. Transient expression analyses showed that four of the isoforms of AIH and all of the isoforms of NLP1 were localized to the ER. However, AIH.4 was localized to the chloroplast. Combining these results with other published data, reveal that putrescine synthesis is excluded from the cytoplasm and is spatially localized to the chloroplast, ER, and likely the mitochondria. Synthesis of putrescine in the ER may facilitate cell to cell transport via plasmodesmata, or secretion via vesicles. Differential expression of these pathways may enable putrescine-mediated activation of hormone-responsive genes.
Collapse
Affiliation(s)
- Kumud Joshi
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Sheaza Ahmed
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Lingxiao Ge
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Arefeh Avestakh
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Babatunde Oloyede
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Vipaporn Phuntumart
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo, 3000 Arlington Ave., Toledo, USA
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| |
Collapse
|
9
|
Yang H, Fang Y, Liang Z, Qin T, Liu J, Liu T. Polyamines: pleiotropic molecules regulating plant development and enhancing crop yield and quality. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3194-3201. [PMID: 39024414 PMCID: PMC11500986 DOI: 10.1111/pbi.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Polyamines (PAs) are pleiotropic bioorganic molecules. Cellular PA contents are determined by a balance between PA synthesis and degradation. PAs have been extensively demonstrated to play vital roles in the modulation of plant developmental processes and adaptation to various environmental stresses. In this review, the latest advances on the diverse roles of PAs in a range of developmental processes, such as morphogenesis, organogenesis, growth and development, and fruit ripening, are summarized and discussed. Besides, the crosstalk between PAs and phytohormones or other signalling molecules, including H2O2 and NO, involved in these processes is dwelled on. In addition, the attempts made to improve the yield and quality of grain and vegetable crops through altering the PA catabolism are enumerated. Finally, several other vital questions that remain unanswered are proposed and discussed. These include the mechanisms underlying the cooperative regulation of developmental processes by PAs and their interplaying partners like phytohormones, H2O2 and NO; PA transport for maintaining homeostasis; and utilization of PA anabolism/catabolism for generating high-yield and good-quality crops. This review aims to gain new insights into the pleiotropic role of PAs in the modulation of plant growth and development, which provides an alternative approach for manipulating and engineering valuable crop varieties that can be used in the future.
Collapse
Affiliation(s)
- Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhiman Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Tian Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Ji‐Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
10
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. Improvement of plant quality by amino acid transporters: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109084. [PMID: 39217823 DOI: 10.1016/j.plaphy.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Amino acids serve as the primary means of transport and organic nitrogen carrier in plants, playing an essential role in plant growth and development. Amino acid transporters (AATs) facilitate the movement of amino acids within plants and have been identified and characterised in a number of species. It has been demonstrated that these amino acid transporters exert an influence on the quality attributes of plants, in addition to their primary function of transporting amino acid transport. This paper presents a summary of the role of AATs in plant quality improvement. This encompasses the enhancement of nitrogen utilization efficiency, root development, tiller number and fruit yield. Concurrently, AATs can bolster the resilience of plants to pests, diseases and abiotic stresses, thereby further enhancing the yield and quality of fruit. AATs exhibit a wide range of substrate specificity, which greatly optimizes the use of pesticides and significantly reduces pesticide residues, and reduces the risk of environmental pollution while increasing the safety of fruit. The discovery of AATs function provides new ideas and ways to cultivate high-quality crop and promote changes in agricultural development, and has great potential in the application of plant quality improvement.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
11
|
Guerrero S, Roces V, García-Campa L, Valledor L, Meijón M. Proteomic dynamics revealed sex-biased responses to combined heat-drought stress in Marchantia. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2226-2241. [PMID: 39109947 DOI: 10.1111/jipb.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024]
Abstract
Recent studies have documented plant responses to climate change extensively, particularly to single-stress exposures. However, critical factors for stress survival, such as sexual differentiation, are not often considered. The dioicous Marchantia polymorpha stands as an evolutionary milestone, potentially preserving ancestral traits from the early colonizers. In this study, we employed proteomic analyses complemented with physiological monitoring to investigate combined heat and drought responses in Tak-1 (male) and Tak-2 (female) accessions of this liverwort. Additionally, targeted transcriptomics was conducted using different natural populations from contrasting environments. Our findings revealed sex-biased dynamics among natural accessions, particularly evident under control conditions and during early stress responses. Although Tak-2 exhibited greater diversity than Tak-1 under control conditions, male accession demonstrated distinct and more rapid stress sensing and signaling. These differences in stress response appeared to be strongly related to sex-specific plasticity influenced by geoclimatic origin. Furthermore, we established distinct protein gene ages and genomic distribution trends, underscoring the importance of protein diversification over time. This study provides an evolutionary perspective on sexual divergence and stress emergence employing a systems biology approach, which allowed for the establishment of global and sex-specific interaction networks in the stress response.
Collapse
Affiliation(s)
- Sara Guerrero
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Víctor Roces
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Lara García-Campa
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Luis Valledor
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Mónica Meijón
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| |
Collapse
|
12
|
Mai H, Qin T, Wei H, Yu Z, Pang G, Liang Z, Ni J, Yang H, Tang H, Xiao L, Liu H, Liu T. Overexpression of OsACL5 triggers environmentally-dependent leaf rolling and reduces grain size in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:833-847. [PMID: 37965680 PMCID: PMC10955489 DOI: 10.1111/pbi.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Major polyamines include putrescine, spermidine, spermine and thermospermine, which play vital roles in growth and adaptation against environmental changes in plants. Thermospermine (T-Spm) is synthetised by ACL5. The function of ACL5 in rice is still unknown. In this study, we used a reverse genetic strategy to investigate the biological function of OsACL5. We generated several knockout mutants by pYLCRISPR/Cas9 system and overexpressing (OE) lines of OsACL5. Interestingly, the OE plants exhibited environmentally-dependent leaf rolling, smaller grains, lighter 1000-grain weight and reduction in yield per plot. The area of metaxylem vessels of roots and leaves of OE plants were significantly smaller than those of WT, which possibly caused reduction in leaf water potential, resulting in leaf rolling with rise in the environmental temperature and light intensity and decrease in humidity. Additionally, the T-Spm contents were markedly increased by over ninefold whereas the ethylene evolution was reduced in OE plants, suggesting that T-Spm signalling pathway interacts with ethylene pathway to regulate multiple agronomic characters. Moreover, the osacl5 exhibited an increase in grain length, 1000-grain weight, and yield per plot. OsACL5 may affect grain size via mediating the expression of OsDEP1, OsGS3 and OsGW2. Furthermore, haplotypes analysis indicated that OsACL5 plays a conserved function on regulating T-Spm levels during the domestication of rice. Our data demonstrated that identification of OsACL5 provides a theoretical basis for understanding the physiological mechanism of T-Spm which may play roles in triggering environmentally dependent leaf rolling; OsACL5 will be an important gene resource for molecular breeding for higher yield.
Collapse
Affiliation(s)
- Huafu Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Tian Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Huan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Gang Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhiman Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Jiansheng Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Haiying Tang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Lisi Xiao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
13
|
Xia JQ, Xu P, Xiang CB. The innovative safe herbicide dienediamine saves paraquat. MOLECULAR PLANT 2024; 17:11-12. [PMID: 38053336 DOI: 10.1016/j.molp.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Affiliation(s)
- Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
14
|
Peng H, Zhao D, Tang W, Peng A. Dienediamine: A safe surrogate for the herbicide paraquat. MOLECULAR PLANT 2023; 16:1962-1975. [PMID: 37924209 DOI: 10.1016/j.molp.2023.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Paraquat (PQ) has been used as an herbicide worldwide because of its potent activity against weeds. However, it is highly toxic to humans. The very high fatality of PQ poisoning is due to its inherent toxicity and the lack of any effective treatment. Consequently, developing a non-toxic herbicide with comparable efficacy to PQ will contribute to global food security and help prevent PQ-related fatalities. Herein, we report a new herbicide called dienediamine, which was discovered from how to intervene the redox cycle of PQ, an inherent toxicity nature. Dienediamine, the "reduced" form of PQ with no function as an electron transfer agent, was shown to be non-toxic through comprehensive in vivo and in vitro experiments at molar concentrations equivalent to PQ's absolute lethal dose. Remarkably, dienediamine can undergo conversion to PQ under natural sunlight and ambient air conditions, exhibiting herbicidal activities that are comparable to those of PQ. The conversion of dienediamine to PQ, which is toxic to chloroplasts, is the key mechanism underlying its potent herbicidal activity. Our study discovers that dienediamine is a safe and superior alternative to PQ, possessing significant potential for application in sustainable agriculture globally.
Collapse
Affiliation(s)
- Henian Peng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Dake Zhao
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchangzhong Road, Shanghai 200072, China
| | - Wenjun Tang
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchangzhong Road, Shanghai 200072, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| | - Ai Peng
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchangzhong Road, Shanghai 200072, China.
| |
Collapse
|
15
|
Qiao J, Feng Z, Zhang Y, Xiao X, Dong J, Haubruge E, Zhang H. Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen. Food Chem 2023; 405:134800. [PMID: 36347200 DOI: 10.1016/j.foodchem.2022.134800] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
This study aimed at investigating phenolamides and flavonoid glycosides in 20 types of monofloral bee pollen. The plant origins of pollen samples were determined by DNA barcoding, with the purities to over 70 %. The 31 phenolamides and their 33 cis/trans isomers, and 25 flavonoid glycosides were identified; moreover, 19 phenolamides and 14 flavonoid glycosides as new-found compounds in bee pollen. All phenolics and flavonoids are present in the amidation or glycosylation form. The MS/MS cleavage modes of phenolamides and flavonoid glycosides were summarized. Isorhamnetin-3-O-gentiobioside presented the highest levels 23.61 mg/g in apricot pollen. Phenolamides in 11 types of pollen constituted over 1 % of the total weight, especially 3.9 % in rose and 2.8 % in pear pollen. Tri-p-coumaroyl spermidine and di-p-coumaroyl-caffeoyl spermidine respectively accounted for over 2.6 % of the total weight in pear and rose pollen. The richness in phenolamides and flavonoid glycosides can offer bee pollen more bioactivities as functional foods.
Collapse
Affiliation(s)
- Jiangtao Qiao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Zhouxu Feng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yong Zhang
- Jiangsu Beevip Biotechnonlogy Co., Ltd, Taizhou, Jiangsu, China
| | - Xingying Xiao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jie Dong
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium.
| | - Hongcheng Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| |
Collapse
|
16
|
Zhong M, Yue L, Liu W, Qin H, Lei B, Huang R, Yang X, Kang Y. Genome-Wide Identification and Characterization of the Polyamine Uptake Transporter (Put) Gene Family in Tomatoes and the Role of Put2 in Response to Salt Stress. Antioxidants (Basel) 2023; 12:antiox12020228. [PMID: 36829787 PMCID: PMC9952195 DOI: 10.3390/antiox12020228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The polyamine uptake transporter (Put), an important polyamines-related protein, is involved in plant cell growth, developmental processes, and abiotic stimuli, but no research on the Put family has been carried out in the tomato. Herein, eight tomato Put were identified and scattered across four chromosomes, which were classified into three primary groups by phylogenetic analysis. Protein domains and gene structural organization also showed a significant degree of similarity, and the Put genes were significantly induced by various hormones and polyamines. Tissue-specific expression analysis indicated that Put genes were expressed in all tissues of the tomato. The majority of Put genes were induced by different abiotic stresses. Furthermore, Put2 transcription was found to be responsive to salt stress, and overexpression of Put2 in yeast conferred salinity tolerance and polyamine uptake. Moreover, overexpression of Put2 in tomatoes promoted salinity tolerance accompanied by a decrease in the Na+/K+ ratio, restricting the generation of reactive oxygen and increasing polyamine metabolism and catabolism, antioxidant enzyme activity (SOD, CAT, APX, and POD), and nonenzymatic antioxidant activity (GSH/GSSG and ASA/DHA ratios, GABA, and flavonoid content); loss of function of put2 produced opposite effects. These findings highlight that Put2 plays a pivotal role in mediating polyamine synthesis and catabolism, and the antioxidant capacity in tomatoes, providing a valuable gene for salinity tolerance in plants.
Collapse
Affiliation(s)
- Min Zhong
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Lingqi Yue
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hongyi Qin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.Y.); (Y.K.)
| | - Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.Y.); (Y.K.)
| |
Collapse
|
17
|
Huang YJ, Huang YP, Xia JQ, Fu ZP, Chen YF, Huang YP, Ma A, Hou WT, Chen YX, Qi X, Gao LP, Xiang CB. AtPQT11, a P450 enzyme, detoxifies paraquat via N-demethylation. J Genet Genomics 2022; 49:1169-1173. [PMID: 35489696 DOI: 10.1016/j.jgg.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Yi-Jie Huang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Yue-Ping Huang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Zhou-Ping Fu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yi-Fan Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yi-Peng Huang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Aimin Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Wen-Tao Hou
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Yu-Xing Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Li-Ping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
| |
Collapse
|
18
|
Xia JQ, Liu QQ, Xiang CB. 14 C-paraquat Efflux Assay in Arabidopsis Mesophyll Protoplasts. Bio Protoc 2022; 12:e4512. [PMID: 36311346 PMCID: PMC9550345 DOI: 10.21769/bioprotoc.4512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Weeds compete with crops for growth resources, causing tremendous yield losses. Paraquat is one of the three most common non-selective herbicides. To study the mechanisms of paraquat resistance, we need to trace the movement of paraquat in plants and within the cell. 14 C is a radioactive carbon isotope widely used to trace substances of interest in various biological studies, especially in transport analyses. Here, we describe a detailed protocol using 14 C-paraquat to demonstrate paraquat efflux in Arabidopsis protoplasts.
Collapse
Affiliation(s)
- Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Qian-Qian Liu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
,
*For correspondence:
| |
Collapse
|
19
|
An Exploration of the Effect of the Kleier Model and Carrier-Mediated Theory to Design Phloem-Mobile Pesticides Based on Researching the N-Alkylated Derivatives of Phenazine-1-Carboxylic Acid-Glycine. Molecules 2022; 27:molecules27154999. [PMID: 35956949 PMCID: PMC9370529 DOI: 10.3390/molecules27154999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
The Kleier model and Carrier-mediated theory are effective for molecularly designing pesticides with phloem mobility. However, the single Kleier model or Carrier-mediated theory cannot achieve a reliable explanation of the phloem mobility of all exogenous substances. A detailed investigation of the two models and the scope of their applications can provide a more accurate and highly efficient basis for the guidance of the design and development of phloem-mobile pesticides. In the present paper, a strategy using active ingredient-amino acid conjugates as mode compounds is developed based on Carrier-mediated theory. An N-alkylated amino acid is used to improve the pesticide’s physicochemical properties following the Kleier model, thus allowing the conjugates to fall on the predicted and more accessible transportation region of phloem. Moreover, the influence of this movement on phloem is inspected by the Kleier model and Carrier-mediated theory. To verify this strategy, a series of N-alkylated phenazine-1-carboxylic acid-glycine compounds (PCA-Gly) were designed and synthesized. The results related to the castor bean seeds (R. communis L.) indicated that all the target compounds (4a−4f) had phloem mobility. The capacity for phloem mobility shows that N-alkylated glycine containing small substituents can significantly improve PCA phloem mobility, such as 4c(i-C3H7-N) > 4a(CH3-N) ≈ 4b(C2H5-N) > 4d (t-C4H9-N) > PCA-Gly > 4e(C6H5-N) > 4f(CH2COOH-N), with an oil−water partition coefficient between 1.2~2.5. In particular, compounds 4a(CH3-N), 4b(C2H5-N), and 4c(i-C3H7-N) present better phloem mobility, with the average concentrations in phloem sap of 14.62 μΜ, 13.98 μΜ, and 17.63 μΜ in the first 5 h, which are 8 to 10 times higher than PCA-Gly (1.71 μΜ). The results reveal that the Kleier model and Carrier-mediated theory play a guiding role in the design of phloem-mobile pesticides. However, the single Kleier model or Carrier-mediated theory are not entirely accurate. Still, there is a synergism between Carrier-mediated theory and the Kleier model for promoting the phloem transport of exogenous compounds. Therefore, we suggest the introduction of endogenous plant compounds as a promoiety to improve the phloem mobility of pesticides through Carrier-mediated theory. It is necessary to consider the improvement of physicochemical properties according to the Kleier model, which can contribute to a scientific theory for developing phloem-mobile pesticides.
Collapse
|
20
|
Feng ZQ, Wang X, Li T, Wang XF, Li HF, You CX. Genome-wide identification and comparative analysis of genes encoding AAPs in apple (Malus × domestica Borkh.). Gene X 2022; 832:146558. [PMID: 35569773 DOI: 10.1016/j.gene.2022.146558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/10/2022] [Accepted: 05/06/2022] [Indexed: 11/27/2022] Open
Abstract
Amino acid permeases (AAPs) play important roles in plant amino acid transport and nitrogen metabolism. In this study, we carried a comprehensive analysis for apple genes encoding AAPs using bioinformatics and molecular biology. Eleven MdAAPs were identified by a genome-wide search and comparative genomic analysis revealed relatively conserved gene composition, transmembrane characteristics, and protein structures. Phylogenetic tree construction and analysis of the conserved motifs of MdAAPs and AtAAPs showed that AAPs can be classified into three groups (I, II, and III). We compared the promoters of the identified genes and did gene functional annotation and qRT-PCR and found a relationship between apple AAPs and nitrogen deficiency. The expression profile data implied that MdAAPs exhibit diversified distributions and functions in different tissues.
Collapse
Affiliation(s)
- Zi-Quan Feng
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Tong Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Hui-Feng Li
- Shandong Institue of Pomology, Taian, Shandong 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
21
|
Faragó D, Zsigmond L, Benyó D, Alcazar R, Rigó G, Ayaydin F, Rabilu SA, Hunyadi‐Gulyás É, Szabados L. Small paraquat resistance proteins modulate paraquat and ABA responses and confer drought tolerance to overexpressing Arabidopsis plants. PLANT, CELL & ENVIRONMENT 2022; 45:1985-2003. [PMID: 35486392 PMCID: PMC9324991 DOI: 10.1111/pce.14338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 05/13/2023]
Abstract
Adaptation of higher plants to extreme environmental conditions is under complex regulation. Several small peptides have recently been described to modulate responses to stress conditions. The Small Paraquat resistance protein (SPQ) of Lepidium crassifolium has previously been identified due to its capacity to confer paraquat resistance to overexpressing transgenic Arabidopsis plants. Here, we show that overexpression of the closely related Arabidopsis SPQ can also enhance resistance to paraquat, while the Arabidopsis spq1 mutant is slightly hypersensitive to this herbicide. Besides being implicated in paraquat response, overexpression of SPQs enhanced sensitivity to abscisic acid (ABA), and the knockout spq1 mutant was less sensitive to ABA. Both Lepidium- and Arabidopsis-derived SPQs could improve drought tolerance by reducing water loss, stabilizing photosynthetic electron transport and enhancing plant viability and survival in a water-limited environment. Enhanced drought tolerance of SPQ-overexpressing plants could be confirmed by characterizing various parameters of growth, morphology and photosynthesis using an automatic plant phenotyping platform with RGB and chlorophyll fluorescence imaging. Our results suggest that SPQs can be regulatory small proteins connecting ROS and ABA regulation and through that influence responses to certain stresses.
Collapse
Affiliation(s)
- Dóra Faragó
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Dániel Benyó
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Rubén Alcazar
- Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
| | - Gábor Rigó
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Nonprofit Ltd.SzegedHungary
- Cellular Imaging Laboratory, Biological Research CentreSzegedHungary
| | - Sahilu Ahmad Rabilu
- Institute of Plant Biology, Biological Research CentreSzegedHungary
- Doctoral School in Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | | | - László Szabados
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| |
Collapse
|
22
|
Ma L, Liu X, Lv W, Yang Y. Molecular Mechanisms of Plant Responses to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:934877. [PMID: 35832230 PMCID: PMC9271918 DOI: 10.3389/fpls.2022.934877] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 06/12/2023]
Abstract
Saline-alkali soils pose an increasingly serious global threat to plant growth and productivity. Much progress has been made in elucidating how plants adapt to salt stress by modulating ion homeostasis. Understanding the molecular mechanisms that affect salt tolerance and devising strategies to develop/breed salt-resilient crops have been the primary goals of plant salt stress signaling research over the past few decades. In this review, we reflect on recent major advances in our understanding of the cellular and physiological mechanisms underlying plant responses to salt stress, especially those involving temporally and spatially defined changes in signal perception, decoding, and transduction in specific organelles or cells.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohong Liu
- Department of Art and Design, Taiyuan University, Taiyuan, China
| | - Wanjia Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Lyu YS, Cao LM, Huang WQ, Liu JX, Lu HP. Disruption of three polyamine uptake transporter genes in rice by CRISPR/Cas9 gene editing confers tolerance to herbicide paraquat. ABIOTECH 2022; 3:140-145. [PMID: 36304519 PMCID: PMC9590464 DOI: 10.1007/s42994-022-00075-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
Weeds are a major biotic constraint that can cause dramatic crop production losses. Herbicide technology has been widely used by farmers as the most cost-effective weed control measure, and development of new strategy to improve herbicide tolerance in plants is urgently needed. The CRISPR/Cas9-based genome editing tool has been used in diverse applications related to agricultural technology for crop improvement. Here we identified three polyamine uptake transporter (PUT) genes in rice that are homologous to the Arabidopsis AtRMV1. We successfully demonstrate that CRISPR/Cas9-targeted mutagenesis of OsPUT1/2/3 greatly improves paraquat resistance in rice without obvious yield penalty. Therefore, manipulation of these loci could be valuable for producing transgene-free rice with improved herbicide resistance in future. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00075-4.
Collapse
Affiliation(s)
- Yu-Shu Lyu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Li-Miao Cao
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Wen-Qian Huang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Hai-Ping Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
24
|
Nazish T, Huang YJ, Zhang J, Xia JQ, Alfatih A, Luo C, Cai XT, Xi J, Xu P, Xiang CB. Understanding paraquat resistance mechanisms in Arabidopsis thaliana to facilitate the development of paraquat-resistant crops. PLANT COMMUNICATIONS 2022; 3:100321. [PMID: 35576161 PMCID: PMC9251430 DOI: 10.1016/j.xplc.2022.100321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/06/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Paraquat (PQ) is the third most used broad-spectrum nonselective herbicide around the globe after glyphosate and glufosinate. Repeated usage and overreliance on this herbicide have resulted in the emergence of PQ-resistant weeds that are a potential hazard to agriculture. It is generally believed that PQ resistance in weeds is due to increased sequestration of the herbicide and its decreased translocation to the target site, as well as an enhanced ability to scavenge reactive oxygen species. However, little is known about the genetic bases and molecular mechanisms of PQ resistance in weeds, and hence no PQ-resistant crops have been developed to date. Forward genetics of the model plant Arabidopsis thaliana has advanced our understanding of the molecular mechanisms of PQ resistance. This review focuses on PQ resistance loci and resistance mechanisms revealed in Arabidopsis and examines the possibility of developing PQ-resistant crops using the elucidated mechanisms.
Collapse
Affiliation(s)
- Tahmina Nazish
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Yi-Jie Huang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Alamin Alfatih
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chao Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Xiao-Teng Cai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China.
| | - Jing Xi
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
25
|
Li Z, Geng W, Tan M, Ling Y, Zhang Y, Zhang L, Peng Y. Differential Responses to Salt Stress in Four White Clover Genotypes Associated With Root Growth, Endogenous Polyamines Metabolism, and Sodium/Potassium Accumulation and Transport. FRONTIERS IN PLANT SCIENCE 2022; 13:896436. [PMID: 35720567 PMCID: PMC9201400 DOI: 10.3389/fpls.2022.896436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 05/04/2023]
Abstract
Selection and utilization of salt-tolerant crops are essential strategies for mitigating salinity damage to crop productivity with increasing soil salinization worldwide. This study was conducted to identify salt-tolerant white clover (Trifolium repens) genotypes among 37 materials based on a comprehensive evaluation of five physiological parameters, namely, chlorophyll (Chl) content, photochemical efficiency of PS II (Fv/Fm), performance index on an absorption basis (PIABS), and leaf relative water content (RWC), and to further analyze the potential mechanism of salt tolerance associated with changes in growth, photosynthetic performance, endogenous polyamine metabolism, and Na+/K+ uptake and transport. The results showed that significant variations in salt tolerance were identified among 37 genotypes, as PI237292 and Tr005 were the top two genotypes with the highest salt tolerance, and PI251432 and Korla were the most salt-sensitive genotypes compared to other materials. The salt-tolerant PI237292 and Tr005 not only maintained significantly lower EL but also showed significantly better photosynthetic performance, higher leaf RWC, underground dry weight, and the root to shoot ratio than the salt-sensitive PI251432 and Korla under salt stress. Increases in endogenous PAs, putrescine (Put), and spermidine (Spd) contents could be key adaptive responses to salt stress in the PI237292 and the Tr005 through upregulating genes encoding Put and Spd biosynthesis (NCA, ADC, SAMDC, and SPDS2). For Na+ and K+ accumulation and transport, higher salt tolerance of the PI237292 could be associated with the maintenance of Na+ and Ca+ homeostasis associated with upregulations of NCLX and BTB/POZ. The K+ homeostasis-related genes (KEA2, HAK25, SKOR, POT2/8/11, TPK3/5, and AKT1/5) are differentially expressed among four genotypes under salt stress. However, the K+ level and K+/Na+ ratio were not completely consistent with the salt tolerance of the four genotypes. The regulatory function of these differentially expressed genes (DEGs) on salt tolerance in the white clover and other leguminous plants needs to be investigated further. The current findings also provide basic genotypes for molecular-based breeding for salt tolerance in white clover species.
Collapse
Affiliation(s)
- Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wan Geng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Meng Tan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liquan Zhang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, China
- *Correspondence: Liquan Zhang,
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Yan Peng,
| |
Collapse
|
26
|
Translational and post-translational regulation of polyamine metabolic enzymes in plants. J Biotechnol 2021; 344:1-10. [PMID: 34915092 DOI: 10.1016/j.jbiotec.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/19/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Polyamines are small organic and basic polycations that perform essential regulatory functions in all living organisms. Fluctuations in polyamine content have been observed to occur during growth, development and under stress conditions, implying that polyamines play pivotal roles in diverse cellular and physiological processes. To achieve polyamine homeostasis, the entire metabolic pathway is subjected to a fine-tuned regulation of its biosynthetic and catabolic genes and enzymes. In this review, we describe and discuss the most important mechanisms implicated in the translational and post-translational regulation of polyamine metabolic enzymes in plants. At the translational level, we emphasize the role of polyamines in the modulation of upstream open reading frame (uORF) activities that control the translation of polyamine biosynthetic and catabolic mRNAs. At the post-translational level, different aspects of the regulation of polyamine metabolic proteins are depicted, such as the proteolytic activation of enzyme precursors, the importance of dimerization in protein stability as well as in protein intracellular localization.
Collapse
|
27
|
Lv Z, Zhao M, Wang W, Wang Q, Huang M, Li C, Lian Q, Xia J, Qi J, Xiang C, Tang H, Ge X. Changing Gly311 to an acidic amino acid in the MATE family protein DTX6 enhances Arabidopsis resistance to the dihydropyridine herbicides. MOLECULAR PLANT 2021; 14:2115-2125. [PMID: 34509639 DOI: 10.1016/j.molp.2021.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/15/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
In modern agriculture, frequent application of herbicides may induce the evolution of resistance in plants, but the mechanisms underlying herbicide resistance remain largely unexplored. Here, we report the characterization of rtp1 (resistant to paraquat 1), an Arabidopsis mutant showing strong resistance to the widely used herbicides paraquat and diquat. The rtp1 mutant is semi-dominant and carries a point mutation in the gene encoding the multidrug and toxic compound extrusion family protein DTX6, leading to the change of glycine to glutamic acid at residue 311 (G311E). The wild-type DTX6 with glycine 311 conferred weak paraquat and diquat resistance when overexpressed, while mutation of glycine 311 to a negatively charged amino acid (G311E or G311D) markedly increased the paraquat and diquat resistance of plants, whereas mutation to a positively charged amino acid (G311R or G311K) compromised the resistance, suggesting that the charge property of residue 311 of DTX6 is critical for the paraquat and diquat resistance of Arabidopsis plants. DTX6 is localized in the endomembrane trafficking system and may undergo the endosomal sorting to localize to the vacuole and plasma membrane. Treatment with the V-ATPase inhibitor ConA reduced the paraquat resistance of the rtp1 mutant. Paraquat release and uptake assays demonstrated that DTX6 is involved in both exocytosis and vacuolar sequestration of paraquat. DTX6 and DTX5 show functional redundancy as the dtx5 dtx6 double mutant but not the dtx6 single mutant plants were more sensitive to paraquat and diquat than the wild-type plants. Collectively, our work reveals a potential mechanism for the evolution of herbicide resistance in weeds and provides a promising gene for the manipulation of plant herbicide resistance.
Collapse
Affiliation(s)
- Zeyu Lv
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mingming Zhao
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenjing Wang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qi Wang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mengqi Huang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chaoqun Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qichao Lian
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinqiu Xia
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chengbin Xiang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
28
|
Xia JQ, Nazish T, Javaid A, Ali M, Liu QQ, Wang L, Zhang ZY, Zhang ZS, Huang YJ, Wu J, Yang ZS, Sun LF, Chen YX, Xiang CB. A gain-of-function mutation of the MATE family transporter DTX6 confers paraquat resistance in Arabidopsis. MOLECULAR PLANT 2021; 14:2126-2133. [PMID: 34509638 DOI: 10.1016/j.molp.2021.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/15/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Paraquat is one of the most widely used nonselective herbicides and has elicited the emergence of paraquat-resistant weeds. However, the molecular mechanisms of paraquat resistance are not completely understood. Here we report the Arabidopsis gain-of-function mutant pqt15-D with significantly enhanced resistance to paraquat and the corresponding gene PQT15, which encodes the Multidrug and Toxic Extrusion (MATE) transporter DTX6. A point mutation at +932 bp in DTX6 causes a G311E amino acid substitution, enhancing the paraquat resistance of pqt15-D, and overexpression of DTX6/PQT15 in the wild-type plants also results in strong paraquat resistance. Moreover, heterologous expression of DTX6 and DTX6-D in Escherichia coli significantly enhances bacterial resistance to paraquat. Importantly, overexpression of DTX6-D enables Arabidopsis plants to tolerate 4 mM paraquat, a near-commercial application level. DTX6/PQT15 is localized in the plasma membrane and endomembrane, and functions as a paraquat efflux transporter as demonstrated by paraquat efflux assays with isolated protoplasts and bacterial cells. Taken together, our results demonstrate that DTX6/PQT15 is an efflux transporter that confers paraquat resistance by exporting paraquat out of the cytosol. These findings reveal a molecular mechanism of paraquat resistance in higher plants and provide a promising candidate gene for engineering paraquat-resistant crops.
Collapse
Affiliation(s)
- Jin-Qiu Xia
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Tahmina Nazish
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Ayesha Javaid
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Mohsin Ali
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Qian-Qian Liu
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Liang Wang
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zheng-Yi Zhang
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zi-Sheng Zhang
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Yi-Jie Huang
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jie Wu
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zhi-Sen Yang
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Lin-Feng Sun
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Yu-Xing Chen
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Cheng-Bin Xiang
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
29
|
Dhatterwal P, Mehrotra S, Miller AJ, Mehrotra R. Promoter profiling of Arabidopsis amino acid transporters: clues for improving crops. PLANT MOLECULAR BIOLOGY 2021; 107:451-475. [PMID: 34674117 DOI: 10.1007/s11103-021-01193-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The review describes the importance of amino acid transporters in plant growth, development, stress tolerance, and productivity. The promoter analysis provides valuable insights into their functionality leading to agricultural benefits. Arabidopsis thaliana genome is speculated to possess more than 100 amino acid transporter genes. This large number suggests the functional significance of amino acid transporters in plant growth and development. The current article summarizes the substrate specificity, cellular localization, tissue-specific expression, and expression of the amino acid transporter genes in response to environmental cues. However, till date functionality of a majority of amino acid transporter genes in plant development and stress tolerance is unexplored. Considering, that gene expression is mainly regulated by the regulatory motifs localized in their promoter regions at the transcriptional levels. The promoter regions ( ~ 1-kbp) of these amino acid transporter genes were analysed for the presence of cis-regulatory motifs responsive to developmental and external cues. This analysis can help predict the functionality of known and unexplored amino acid transporters in different tissues, organs, and various growth and development stages and responses to external stimuli. Furthermore, based on the promoter analysis and utilizing the microarray expression data we have attempted to identify plausible candidates (listed below) that might be targeted for agricultural benefits.
Collapse
Affiliation(s)
- Pinky Dhatterwal
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India.
| |
Collapse
|
30
|
Tillinghast J, Drury S, Bowser D, Benn A, Lee KPK. Structural mechanisms for gating and ion selectivity of the human polyamine transporter ATP13A2. Mol Cell 2021; 81:4650-4662.e4. [PMID: 34715014 DOI: 10.1016/j.molcel.2021.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/01/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022]
Abstract
Mutations in ATP13A2, also known as PARK9, cause a rare monogenic form of juvenile-onset Parkinson's disease named Kufor-Rakeb syndrome and other neurodegenerative diseases. ATP13A2 encodes a neuroprotective P5B P-type ATPase highly enriched in the brain that mediates selective import of spermine ions from lysosomes into the cytosol via an unknown mechanism. Here we present three structures of human ATP13A2 bound to an ATP analog or to spermine in the presence of phosphomimetics determined by cryoelectron microscopy. ATP13A2 autophosphorylation opens a lysosome luminal gate to reveal a narrow lumen access channel that holds a spermine ion in its entrance. ATP13A2's architecture suggests physical principles underlying selective polyamine transport and anticipates a "pump-channel" intermediate that could function as a counter-cation conduit to facilitate lysosome acidification. Our findings establish a firm foundation to understand ATP13A2 mutations associated with disease and bring us closer to realizing ATP13A2's potential in neuroprotective therapy.
Collapse
Affiliation(s)
- Jordan Tillinghast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Sydney Drury
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Darren Bowser
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Alana Benn
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Kenneth Pak Kin Lee
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
31
|
Sim SI, von Bülow S, Hummer G, Park E. Structural basis of polyamine transport by human ATP13A2 (PARK9). Mol Cell 2021; 81:4635-4649.e8. [PMID: 34715013 DOI: 10.1016/j.molcel.2021.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/17/2021] [Accepted: 08/11/2021] [Indexed: 02/03/2023]
Abstract
Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryoelectron microscopy (cryo-EM) structures of human ATP13A2 in five distinct conformational intermediates, which together, represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, in which polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand the functions and mechanisms of P5B-ATPases.
Collapse
Affiliation(s)
- Sue Im Sim
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Alhag A, Song J, Dahro B, Wu H, Khan M, Salih H, Liu JH. Genome-wide identification and expression analysis of Polyamine Uptake Transporter gene family in sweet orange (Citrus sinensis). PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1157-1166. [PMID: 34374185 DOI: 10.1111/plb.13302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Polyamine uptake transporter (PUT) plays important roles in polyamine homeostasis, but knowledge regarding PUT family genes in sweet orange (Citrus sinensis) remains elusive. Herein, our study aimed to perform a genome-wide identification of the PUT gene family in C. sinensis. A total of eight putative PUT genes (CsPUT1-CsPUT8) were identified in the sweet orange genome and distributed on three chromosomes. The CsPUT genes were divided into two major groups according to the phylogenetic tree analysis, with high similarities in protein domains and gene structure organization. The CsPUT genes were differentially expressed in different tissues, with the highest transcript levels being in the flowers and roots. Interestingly, the CsPUT genes were significantly induced by polyamines, putrescine, spermidine and spermine, indicating that CsPUT were possibly associated with intracellular polyamine transport and uptake. In addition, CsPUT showed differential expression in callus treated with ABA, cold, salt or osmotic shock. CsPUT4 was selected as a candidate for functional analysis of PUT. Overexpression of CsPUT4 elevated endogenous polyamine content and led to enhanced cold tolerance in transgenic callus cultures. Overall, these data provide valuable information for better understanding the potential biological functions of PUT genes in future.
Collapse
Affiliation(s)
- A Alhag
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
- University of Bakht Al Ruda, Ministry of Higher Education and Scientific Research, Khartoum, Sudan
| | - J Song
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - B Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - H Wu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - M Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - H Salih
- Crop Sciences, Faculty of Agriculture, Zalingei University, Central Darfur, Zalingei, Sudan
| | - J-H Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Pál M, Szalai G, Gondor OK, Janda T. Unfinished story of polyamines: Role of conjugation, transport and light-related regulation in the polyamine metabolism in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110923. [PMID: 34034871 DOI: 10.1016/j.plantsci.2021.110923] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 05/27/2023]
Abstract
Polyamines play a fundamental role in the functioning of all cells. Their regulatory role in plant development, their function under stress conditions, and their metabolism have been well documented as regards both synthesis and catabolism in an increasing number of plant species. However, the majority of these studies concentrate on the levels of the most abundant polyamines, sometimes providing data on the enzyme activity or gene expression levels during polyamine synthesis, but generally making no mention of the fact that changes in the polyamine pool are very dynamic, and that other processes are also involved in the regulation of actual polyamine levels. Differences in the distribution of individual polyamines and their conjugation with other compounds were described some time ago, but these have been given little attention. In addition, the role of polyamine transporters in plants is only now being recognised. The present review highlights the importance of conjugated polyamines and also points out that investigations should not only deal with the polyamine metabolism itself, but should also cover other important questions, such as the relationship between light perception and the polyamine metabolism, or the involvement of polyamines in the circadian rhythm.
Collapse
Affiliation(s)
- Magda Pál
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary.
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| | - Orsolya Kinga Gondor
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| |
Collapse
|
34
|
Ugalde JM, Fuchs P, Nietzel T, Cutolo EA, Homagk M, Vothknecht UC, Holuigue L, Schwarzländer M, Müller-Schüssele SJ, Meyer AJ. Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. PLANT PHYSIOLOGY 2021; 186:125-141. [PMID: 33793922 PMCID: PMC8154069 DOI: 10.1093/plphys/kiaa095] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/03/2020] [Indexed: 05/19/2023]
Abstract
Metabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways. Formation of glutathione disulfide and a shift of the glutathione redox potential (EGSH) toward less negative values is considered as hallmark of several stress conditions. Here we used the herbicide methyl viologen (MV) to generate ROS locally in chloroplasts of intact Arabidopsis (Arabidopsis thaliana) seedlings and recorded dynamic changes in EGSH and H2O2 levels with the genetically encoded biosensors Grx1-roGFP2 (for EGSH) and roGFP2-Orp1 (for H2O2) targeted to chloroplasts, the cytosol, or mitochondria. Treatment of seedlings with MV caused rapid oxidation in chloroplasts and, subsequently, in the cytosol and mitochondria. MV-induced oxidation was significantly boosted by illumination with actinic light, and largely abolished by inhibitors of photosynthetic electron transport. MV also induced autonomous oxidation in the mitochondrial matrix in an electron transport chain activity-dependent manner that was milder than the oxidation triggered in chloroplasts by the combination of MV and light. In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provides a basis for understanding how compartment-specific redox dynamics might operate in retrograde signaling and stress acclimation in plants.
Collapse
Affiliation(s)
- José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Edoardo A Cutolo
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, D-53115 Bonn, Germany
| | - Maria Homagk
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Ute C Vothknecht
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, D-53115 Bonn, Germany
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | | | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| |
Collapse
|
35
|
Fitzpatrick TB, Noordally Z. Of clocks and coenzymes in plants: intimately connected cycles guiding central metabolism? THE NEW PHYTOLOGIST 2021; 230:416-432. [PMID: 33264424 DOI: 10.1111/nph.17127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Plant fitness is a measure of the capacity of a plant to survive and reproduce in its particular environment. It is inherently dependent on plant health. Molecular timekeepers like the circadian clock enhance fitness due to their ability to coordinate biochemical and physiological processes with the environment on a daily basis. Central metabolism underlies these events and it is well established that diel metabolite adjustments are intimately and reciprocally associated with the genetically encoded clock. Thus, metabolic pathway activities are time-of-day regulated. Metabolite rhythms are driven by enzymes, a major proportion of which rely on organic coenzymes to facilitate catalysis. The B vitamin complex is the key provider of coenzymes in all organisms. Emerging evidence suggests that B vitamin levels themselves undergo daily oscillations in animals but has not been studied in any depth in plants. Moreover, it is rarely considered that daily rhythmicity in coenzyme levels may dictate enzyme activity levels and therefore metabolite levels. Here we put forward the proposal that B-vitamin-derived coenzyme rhythmicity is intertwined with metabolic and clock derived rhythmicity to achieve a tripartite homeostasis integrated into plant fitness.
Collapse
Affiliation(s)
- Teresa B Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Zeenat Noordally
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Geneva, 1211, Switzerland
| |
Collapse
|
36
|
Wang H, Xu D, Zhu X, Wang M, Xia Z. The maize SUMO conjugating enzyme ZmSCE1b protects plants from paraquat toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111909. [PMID: 33450536 DOI: 10.1016/j.ecoenv.2021.111909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 05/16/2023]
Abstract
Paraquat (PQ) herbicide causes damage to green plant tissues by inducing the production of toxic reactive oxygen species (ROS). SUMOylation is an important post-translational modification that enables plants to defend against multiple stresses. However, it is still unknown whether the SUMOylation is involved in PQ resistance response in crops. Herein, we showed that a maize SUMO conjugating enzyme gene (ZmSCE1b) functioned in PQ resistance. The quantitative real-time PCR (qRT-PCR) analysis revealed that this gene was significantly up-regulated upon PQ exposure. The overexpression of ZmSCE1b increased the levels of SUMO conjugates and improved PQ resistance in transgenic Arabidopsis. The ZmSCE1b-transgenic plants showed lower levels of ROS and lipid peroxidation, as well as higher antioxidant enzyme activities, upon PQ exposure. Furthermore, Western blotting showed that levels of SUMOylation in these transgenic plants were significantly elevated. In addition, the abundance of transcripts of several defense-related genes was apparently up-regulated in the over-expressing lines using qRT-PCR. Collectively, our results manifested the effect of overexpression of ZmSCE1b in improving resistance to PQ, possibly by regulating the levels of SUMO conjugates, antioxidant machinery, and expression of defense genes. Findings of this study can facilitate the understanding of the regulatory mechanisms underlying the involvement of SCE-mediated SUMOylation in PQ resistance response in crop plants. Meanwhile, ZmSCE1b could be utilized for engineering PQ-resistant crops in phytoremediation.
Collapse
Affiliation(s)
- Huanyan Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Dongliang Xu
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xianfeng Zhu
- School of Life Sciences, Henan University, Kaifeng 475004, PR China
| | - Meiping Wang
- Library of Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, PR China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou 450002, PR China.
| |
Collapse
|
37
|
The Arabidopsis L-Type Amino Acid Transporter 5 (LAT5/PUT5) Is Expressed in the Phloem and Alters Seed Nitrogen Content When Knocked Out. PLANTS 2020; 9:plants9111519. [PMID: 33182302 PMCID: PMC7695346 DOI: 10.3390/plants9111519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022]
Abstract
The Arabidopsis L-type Amino Acid Transporter-5 (LAT5; At3g19553) was recently studied for its role in developmental responses such as flowering and senescence, under an assumption that it is a polyamine uptake transporter (PUT5). The LATs in Arabidopsis have a wide range of substrates, including amino acids and polyamines. This report extensively studied the organ and tissue-specific expression of the LAT5/PUT5 and investigated its role in mediating amino acid transport. Organ-specific quantitative RT-PCR detected LAT5/PUT5 transcripts in all organs with a relatively higher abundance in the leaves. Tissue-specific expression analysis identified GUS activity in the phloem under the LAT5/PUT5 promoter. In silico analysis identified both amino acid transporter and antiporter domains conserved in the LAT5/PUT5 protein. The physiological role of the LAT5/PUT5 was studied through analyzing a mutant line, lat5-1, under various growth conditions. The mutant lat5-1 seedlings showed increased sensitivity to exogenous leucine in Murashige and Skoog growth medium. In soil, the lat5-1 showed reduced leaf growth and altered nitrogen content in the seeds. In planta radio-labelled leucine uptake studies showed increased accumulation of leucine in the lat5-1 plants compared to the wild type when treated in the dark prior to the isotopic feeding. These studies suggest that LAT5/PUT5 plays a role in mediating amino acid transport.
Collapse
|
38
|
Zarza X, Van Wijk R, Shabala L, Hunkeler A, Lefebvre M, Rodriguez‐Villalón A, Shabala S, Tiburcio AF, Heilmann I, Munnik T. Lipid kinases PIP5K7 and PIP5K9 are required for polyamine-triggered K + efflux in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:416-432. [PMID: 32666545 PMCID: PMC7693229 DOI: 10.1111/tpj.14932] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 05/03/2023]
Abstract
Polyamines, such as putrescine, spermidine and spermine (Spm), are low-molecular-weight polycationic molecules present in all living organisms. Despite their implication in plant cellular processes, little is known about their molecular mode of action. Here, we demonstrate that polyamines trigger a rapid increase in the regulatory membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2 ), and that this increase is required for polyamine effects on K+ efflux in Arabidopsis roots. Using in vivo 32 Pi -labelling of Arabidopsis seedlings, low physiological (μm) concentrations of Spm were found to promote a rapid PIP2 increase in roots that was time- and dose-dependent. Confocal imaging of a genetically encoded PIP2 biosensor revealed that this increase was triggered at the plasma membrane. Differential 32 Pi -labelling suggested that the increase in PIP2 was generated through activation of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity rather than inhibition of a phospholipase C or PIP2 5-phosphatase activity. Systematic analysis of transfer DNA insertion mutants identified PIP5K7 and PIP5K9 as the main candidates involved in the Spm-induced PIP2 response. Using non-invasive microelectrode ion flux estimation, we discovered that the Spm-triggered K+ efflux response was strongly reduced in pip5k7 pip5k9 seedlings. Together, our results provide biochemical and genetic evidence for a physiological role of PIP2 in polyamine-mediated signalling controlling K+ flux in plants.
Collapse
Affiliation(s)
- Xavier Zarza
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| | - Ringo Van Wijk
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| | - Lana Shabala
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartAustralia
| | - Anna Hunkeler
- Department of BiologyInstitute of Agricultural ScienceSwiss Federal Institute of Technology in ZurichZurichSwitzerland
| | - Matthew Lefebvre
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| | - Antia Rodriguez‐Villalón
- Department of BiologyInstitute of Agricultural ScienceSwiss Federal Institute of Technology in ZurichZurichSwitzerland
| | - Sergey Shabala
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartAustralia
- International Research Centre for Environmental Membrane BiologyFoshan UniversityFoshanChina
| | - Antonio F. Tiburcio
- Dept. of Natural Products, Plant Biology and Soil ScienceUniversity of BarcelonaBarcelonaSpain
| | - Ingo Heilmann
- Dept of Cellular BiochemistryInstitute of Biochemistry and BiotechnologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Teun Munnik
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| |
Collapse
|
39
|
Madeo F, Hofer SJ, Pendl T, Bauer MA, Eisenberg T, Carmona-Gutierrez D, Kroemer G. Nutritional Aspects of Spermidine. Annu Rev Nutr 2020; 40:135-159. [DOI: 10.1146/annurev-nutr-120419-015419] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural polyamines (spermidine and spermine) are small, positively charged molecules that are ubiquitously found within organisms and cells. They exert numerous (intra)cellular functions and have been implicated to protect against several age-related diseases. Although polyamine levels decline in a complex age-dependent, tissue-, and cell type–specific manner, they are maintained in healthy nonagenarians and centenarians. Increased polyamine levels, including through enhanced dietary intake, have been consistently linked to improved health and reduced overall mortality. In preclinical models, dietary supplementation with spermidine prolongs life span and health span. In this review, we highlight salient aspects of nutritional polyamine intake and summarize the current knowledge of organismal and cellular uptake and distribution of dietary (and gastrointestinal) polyamines and their impact on human health. We further summarize clinical and epidemiological studies of dietary polyamines.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Central Lab Graz Cell Informatics and Analyses (GRACIA), NAWI Graz, University of Graz, 8010 Graz, Austria
| | | | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Jiangsu 215163, Suzhou, China
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University, S-17177 Solna, Sweden
| |
Collapse
|
40
|
Gaines TA, Duke SO, Morran S, Rigon CAG, Tranel PJ, Küpper A, Dayan FE. Mechanisms of evolved herbicide resistance. J Biol Chem 2020; 295:10307-10330. [PMID: 32430396 PMCID: PMC7383398 DOI: 10.1074/jbc.rev120.013572] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
The widely successful use of synthetic herbicides over the past 70 years has imposed strong and widespread selection pressure, leading to the evolution of herbicide resistance in hundreds of weed species. Both target-site resistance (TSR) and nontarget-site resistance (NTSR) mechanisms have evolved to most herbicide classes. TSR often involves mutations in genes encoding the protein targets of herbicides, affecting the binding of the herbicide either at or near catalytic domains or in regions affecting access to them. Most of these mutations are nonsynonymous SNPs, but polymorphisms in more than one codon or entire codon deletions have also evolved. Some herbicides bind multiple proteins, making the evolution of TSR mechanisms more difficult. Increased amounts of protein target, by increased gene expression or by gene duplication, are an important, albeit less common, TSR mechanism. NTSR mechanisms include reduced absorption or translocation and increased sequestration or metabolic degradation. The mechanisms that can contribute to NTSR are complex and often involve genes that are members of large gene families. For example, enzymes involved in herbicide metabolism-based resistances include cytochromes P450, GSH S-transferases, glucosyl and other transferases, aryl acylamidase, and others. Both TSR and NTSR mechanisms can combine at the individual level to produce higher resistance levels. The vast array of herbicide-resistance mechanisms for generalist (NTSR) and specialist (TSR and some NTSR) adaptations that have evolved over a few decades illustrate the evolutionary resilience of weed populations to extreme selection pressures. These evolutionary processes drive herbicide and herbicide-resistant crop development and resistance management strategies.
Collapse
Affiliation(s)
- Todd A Gaines
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Sarah Morran
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Carlos A G Rigon
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Anita Küpper
- Bayer AG, CropScience Division, Frankfurt am Main, Germany
| | - Franck E Dayan
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
41
|
Chai H, Guo J, Zhong Y, Hsu CC, Zou C, Wang P, Zhu JK, Shi H. The plasma-membrane polyamine transporter PUT3 is regulated by the Na + /H + antiporter SOS1 and protein kinase SOS2. THE NEW PHYTOLOGIST 2020; 226:785-797. [PMID: 31901205 DOI: 10.1111/nph.16407] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
In Arabidopsis, the plasma membrane transporter PUT3 is important to maintain the cellular homeostasis of polyamines and plays a role in stabilizing mRNAs of some heat-inducible genes. The plasma membrane Na+ /H+ transporter SOS1 and the protein kinase SOS2 are two salt-tolerance determinants crucial for maintaining intracellular Na+ and K+ homeostasis. Here, we report that PUT3 genetically and physically interacts with SOS1 and SOS2, and these interactions modulate PUT3 transport activity. Overexpression of PUT3 (PUT3OE) results in hypersensitivity of the transgenic plants to polyamine and paraquat. The hypersensitivity of PUT3OE is inhibited by the sos1 and sos2 mutations, which indicates that SOS1 and SOS2 are required for PUT3 transport activity. A protein interaction assay revealed that PUT3 physically interacts with SOS1 and SOS2 in yeast and plant cells. SOS2 phosphorylates PUT3 both in vitro and in vivo. SOS1 and SOS2 synergistically activate the polyamine transport activity of PUT3, and PUT3 also modulates SOS1 activity by activating SOS2 in yeast cells. Overall, our findings suggest that both plasma-membrane proteins PUT3 and SOS1 could form a complex with the protein kinase SOS2 in response to stress conditions and modulate the transport activity of each other through protein interactions and phosphorylation.
Collapse
Affiliation(s)
- Haoxi Chai
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jianfei Guo
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yingli Zhong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Chuan-Chih Hsu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Changsong Zou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, Henan, China
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, Henan, China
| |
Collapse
|
42
|
Sujeeth N, Mehterov N, Gupta S, Qureshi MK, Fischer A, Proost S, Omidbakhshfard MA, Obata T, Benina M, Staykov N, Balazadeh S, Walther D, Fernie AR, Mueller-Roeber B, Hille J, Gechev TS. A novel seed plants gene regulates oxidative stress tolerance in Arabidopsis thaliana. Cell Mol Life Sci 2020; 77:705-718. [PMID: 31250033 PMCID: PMC7040063 DOI: 10.1007/s00018-019-03202-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/27/2019] [Accepted: 06/19/2019] [Indexed: 11/30/2022]
Abstract
Oxidative stress can lead to plant growth retardation, yield loss, and death. The atr7 mutant of Arabidopsis thaliana exhibits pronounced tolerance to oxidative stress. Using positional cloning, confirmed by knockout and RNA interference (RNAi) lines, we identified the atr7 mutation and revealed that ATR7 is a previously uncharacterized gene with orthologs in other seed plants but with no homology to genes in lower plants, fungi or animals. Expression of ATR7-GFP fusion shows that ATR7 is a nuclear-localized protein. RNA-seq analysis reveals that transcript levels of genes encoding abiotic- and oxidative stress-related transcription factors (DREB19, HSFA2, ZAT10), chromatin remodelers (CHR34), and unknown or uncharacterized proteins (AT5G59390, AT1G30170, AT1G21520) are elevated in atr7. This indicates that atr7 is primed for an upcoming oxidative stress via pathways involving genes of unknown functions. Collectively, the data reveal ATR7 as a novel seed plants-specific nuclear regulator of oxidative stress response.
Collapse
Affiliation(s)
- Neerakkal Sujeeth
- BioAtlantis Ltd, Clash Industrial Estate, Tralee, Co. Kerry, V92 RWV5, Ireland
| | - Nikolay Mehterov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000, Plovdiv, Bulgaria
| | - Saurabh Gupta
- Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str., 24-25, 14476, Potsdam-Golm, Germany
| | - Muhammad K Qureshi
- Department of Plant Breeding & Genetics, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Bosan Road, Multan, 60800, Punjab, Pakistan
| | - Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - M Amin Omidbakhshfard
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Maria Benina
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000, Plovdiv, Bulgaria
| | - Nikola Staykov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000, Plovdiv, Bulgaria
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000, Plovdiv, Bulgaria
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000, Plovdiv, Bulgaria
- Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str., 24-25, 14476, Potsdam-Golm, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jacques Hille
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Tsanko S Gechev
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000, Plovdiv, Bulgaria.
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
43
|
Moriyama Y, Hatano R, Moriyama S, Uehara S. Vesicular polyamine transporter as a novel player in amine-mediated chemical transmission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183208. [PMID: 32004521 DOI: 10.1016/j.bbamem.2020.183208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
The solute carrier 18B1 (SLC18B1) is the most recently identified gene of the vesicular amine transporter family and is conserved in the animal kingdom from insects to humans. Proteoliposomes containing the purified human SLC18B1 protein transport not only monoamines, but also polyamines, such as spermidine (Spd) and spermine (Spm), using an electrochemical gradient of H+ established by vacuolar H+-ATPase (V-ATPase) as the driving force. SLC18B1 gene knockdown abolished the exocytosis of polyamines from mast cells, which affected the secretion of histamine. SLC18B1 gene knockout decreased polyamine levels by ~20% in the brain, and impaired short- and long-term memory. Thus, the SLC18B1 protein is responsible for the vesicular storage and release of polyamines, and functions as a vesicular polyamine transporter (VPAT). VPAT may define when, where, and how polyamine-mediated chemical transmission occurs, providing insights into the more versatile and complex features of amine-mediated chemical transmission than currently considered.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; CYRIC Tohoku University, Sendai 980-8578, Japan.
| | - Ryo Hatano
- Department of Medicinal Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Satomi Moriyama
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara 634-8521, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| |
Collapse
|
44
|
Sipari N, Lihavainen J, Shapiguzov A, Kangasjärvi J, Keinänen M. Primary Metabolite Responses to Oxidative Stress in Early-Senescing and Paraquat Resistant Arabidopsis thaliana rcd1 (Radical-Induced Cell Death1). FRONTIERS IN PLANT SCIENCE 2020; 11:194. [PMID: 32180786 PMCID: PMC7059619 DOI: 10.3389/fpls.2020.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
Rcd1 (radical-induced cell death1) is an Arabidopsis thaliana mutant, which exhibits high tolerance to paraquat [methyl viologen (MV)], herbicide that interrupts photosynthetic electron transport chain causing the formation of superoxide and inhibiting NADPH production in the chloroplast. To understand the biochemical mechanisms of MV-resistance and the role of RCD1 in oxidative stress responses, we performed metabolite profiling of wild type (Col-0) and rcd1 plants in light, after MV exposure and after prolonged darkness. The function of RCD1 has been extensively studied at transcriptomic and biochemical level, but comprehensive metabolite profiling of rcd1 mutant has not been conducted until now. The mutant plants exhibited very different metabolic features from the wild type under light conditions implying enhanced glycolytic activity, altered nitrogen and nucleotide metabolism. In light conditions, superoxide production was elevated in rcd1, but no metabolic markers of oxidative stress were detected. Elevated senescence-associated metabolite marker levels in rcd1 at early developmental stage were in line with its early-senescing phenotype and possible mitochondrial dysfunction. After MV exposure, a marked decline in the levels of glycolytic and TCA cycle intermediates in Col-0 suggested severe plastidic oxidative stress and inhibition of photosynthesis and respiration, whereas in rcd1 the results indicated sustained photosynthesis and respiration and induction of energy salvaging pathways. The accumulation of oxidative stress markers in both plant lines indicated that MV-resistance in rcd1 derived from the altered regulation of cellular metabolism and not from the restricted delivery of MV into the cells or chloroplasts. Considering the evidence from metabolomic, transcriptomic and biochemical studies, we propose that RCD1 has a negative effect on reductive metabolism and rerouting of the energy production pathways. Thus, the altered, highly active reductive metabolism, energy salvaging pathways and redox transfer between cellular compartments in rcd1 could be sufficient to avoid the negative effects of MV-induced toxicity.
Collapse
Affiliation(s)
- Nina Sipari
- Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- *Correspondence: Nina Sipari,
| | - Jenna Lihavainen
- Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
45
|
Luo Q, Wei J, Dong Z, Shen X, Chen Y. Differences of endogenous polyamines and putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.). PLoS One 2019; 14:e0216513. [PMID: 31877139 PMCID: PMC6932794 DOI: 10.1371/journal.pone.0216513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/03/2019] [Indexed: 12/02/2022] Open
Abstract
Background Paraquat is one of the most effective herbicides used to control weeds in agricultural management, while the pernicious weed goosegrass (Eleusine indica) has evolved resistance to herbicides, including paraquat. Polyamines provide high-level paraquat resistance in many plants. In the present study, we selected three polyamines, namely, putrescine, spermidine, and spermine, as putative genes to investigate their correlation with paraquat resistance by using paraquat-resistant (R) and paraquat-susceptible (S) goosegrass populations. Results There was no significant difference in the putrescine nor spermine content between the R and S biotypes. However, 30 and 90 min after paraquat treatment, the spermidine concentration was 346.14-fold and 421.04-fold (P < 0.001) higher in the R biotype than in the S biotype, but the spermidine concentration was drastically reduced to a marginal level after 90 min. Since the transcript level of PqE was low while the spermidine concentration showed a transient increase, the PqE gene was likely involved in the synthesis of the paraquat resistance mechanism, regulation of polyamine content, and synthesis of spermidine and spermine. PqTS1, PqTS2, and PqTS3 encode transporter proteins involved in the regulation of paraquat concentration but showed different transcription patterns with synchronous changes in polyamine content. Conclusion Endogenous polyamines (especially spermidine) play a vital role in paraquat resistance in goosegrass. PqE, PqTS1, PqTS2, and PqTS3 were speculated on the relationship between polyamine metabolism and paraquat resistance. To validate the roles of PqE, PqTS1, PqTS2, and PqTS3 in polyamine transport systems, further research is needed.
Collapse
Affiliation(s)
- Qiyu Luo
- Department of Crop Cultivation and Farming System, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiping Wei
- Department of Crop Cultivation and Farming System, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhaoxia Dong
- Department of Crop Cultivation and Farming System, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xuefeng Shen
- Department of Crop Cultivation and Farming System, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yong Chen
- Department of Crop Cultivation and Farming System, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
46
|
polyamine uptake transporter 2 (put2) and decaying seeds enhance phyA-mediated germination by overcoming PIF1 repression of germination. PLoS Genet 2019; 15:e1008292. [PMID: 31339933 PMCID: PMC6682160 DOI: 10.1371/journal.pgen.1008292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 08/05/2019] [Accepted: 07/07/2019] [Indexed: 01/03/2023] Open
Abstract
Red light promotes germination after activating phytochrome phyB, which destabilizes the germination repressor PIF1. Early upon seed imbibition, canopy light, unfavorable for photosynthesis, represses germination by stabilizing PIF1 after inactivating phyB. Paradoxically, later upon imbibition, canopy light stimulates germination after activating phytochrome phyA. phyA-mediated germination is poorly understood and, intriguingly, is inefficient, compared to phyB-mediated germination, raising the question of its physiological significance. A genetic screen identified polyamine uptake transporter 2 (put2) mutants that overaccumulate polyamines, a class of antioxidant polycations implicated in numerous cellular functions, which we found promote phyA-mediated germination. In WT seeds, our data suggest that canopy light represses polyamines accumulation through PIF1 while red light promotes polyamines accumulation. We show that canopy light also downregulates PIF1 levels, through phyA; however, PIF1 reaccumulates rapidly, which limits phyA-mediated germination. High polyamines levels in decaying seeds bypass PIF1 repression of germination and stimulate phyA-mediated germination, suggesting an adaptive mechanism promoting survival when viability is compromised.
Collapse
|
47
|
Wu H, Xu H, Marivingt-Mounir C, Bonnemain JL, Chollet JF. Vectorizing agrochemicals: enhancing bioavailability via carrier-mediated transport. PEST MANAGEMENT SCIENCE 2019; 75:1507-1516. [PMID: 30537141 DOI: 10.1002/ps.5298] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/14/2018] [Accepted: 11/30/2018] [Indexed: 05/02/2023]
Abstract
Systemicity of agrochemicals is an advantageous property for controlling phloem sucking insects, as well as pathogens and pests not accessible to contact products. After the penetration of the cuticle, the plasma membrane constitutes the main barrier to the entry of an agrochemical into the sap flow. The current strategy for developing systemic agrochemicals is to optimize the physicochemical properties of the molecules so that they can cross the plasma membrane by simple diffusion or ion trapping mechanisms. The main problem with current systemic compounds is that they move everywhere within the plant, and this non-controlled mobility results in the contamination of the plant parts consumed by vertebrates and pollinators. To achieve the site-targeted distribution of agrochemicals, a carrier-mediated propesticide strategy is proposed in this review. After conjugating a non-systemic agrochemical with a nutrient (α-amino acids or sugars), the resulting conjugate may be actively transported across the plasma membrane by nutrient-specific carriers. By applying this strategy, non-systemic active ingredients are expected to be delivered into the target organs of young plants, thus avoiding or minimizing subsequent undesirable redistribution. The development of this innovative strategy presents many challenges, but opens up a wide range of exciting possibilities. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanxiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Cécile Marivingt-Mounir
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, Poitiers Cedex 9, France
| | - Jean-Louis Bonnemain
- Laboratoire Écologie et Biologie des Interactions, Unité Mixte de Recherche CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| | - Jean-François Chollet
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, Poitiers Cedex 9, France
| |
Collapse
|
48
|
Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes. Proc Natl Acad Sci U S A 2019; 116:12540-12549. [PMID: 31152136 DOI: 10.1073/pnas.1902010116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tip-focused accumulation of reactive oxygen species (ROS) is tightly associated with pollen tube growth and is thus critical for fertilization. However, it is unclear how tip-growing cells establish such specific ROS localization. Polyamines have been proposed to function in tip growth as precursors of the ROS, hydrogen peroxide. The ABC transporter AtABCG28 may regulate ROS status, as it contains multiple cysteine residues, a characteristic of proteins involved in ROS homeostasis. In this study, we found that AtABCG28 was specifically expressed in the mature pollen grains and pollen tubes. AtABCG28 was localized to secretory vesicles inside the pollen tube that moved toward and fused with the plasma membrane of the pollen tube tip. Knocking out AtABCG28 resulted in defective pollen tube growth, failure to localize polyamine and ROS to the growing pollen tube tip, and complete male sterility, whereas ectopic expression of this gene in root hair could recover ROS accumulation at the tip and improved the growth under high-pH conditions, which normally prevent ROS accumulation and tip growth. Together, these data suggest that AtABCG28 is critical for localizing polyamine and ROS at the growing tip. In addition, this function of AtABCG28 is likely to protect the pollen tube from the cytotoxicity of polyamine and contribute to the delivery of polyamine to the growing tip for incorporation into the expanding cell wall.
Collapse
|
49
|
Cui F, Brosché M, Shapiguzov A, He XQ, Vainonen JP, Leppälä J, Trotta A, Kangasjärvi S, Salojärvi J, Kangasjärvi J, Overmyer K. Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis. Free Radic Biol Med 2019; 134:555-566. [PMID: 30738155 DOI: 10.1016/j.freeradbiomed.2019.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/20/2023]
Abstract
Reactive oxygen species (ROS) are key signalling intermediates in plant metabolism, defence, and stress adaptation. In plants, both the chloroplast and mitochondria are centres of metabolic control and ROS production, which coordinate stress responses in other cell compartments. The herbicide and experimental tool, methyl viologen (MV) induces ROS generation in the chloroplast under illumination, but is also toxic in non-photosynthetic organisms. We used MV to probe plant ROS signalling in compartments other than the chloroplast. Taking a genetic approach in the model plant Arabidopsis (Arabidopsis thaliana), we used natural variation, QTL mapping, and mutant studies with MV in the light, but also under dark conditions, when the chloroplast electron transport is inactive. These studies revealed a light-independent MV-induced ROS-signalling pathway, suggesting mitochondrial involvement. Mitochondrial Mn SUPEROXIDE DISMUTASE was required for ROS-tolerance and the effect of MV was enhanced by exogenous sugar, providing further evidence for the role of mitochondria. Mutant and hormone feeding assays revealed roles for stress hormones in organellar ROS-responses. The radical-induced cell death1 mutant, which is tolerant to MV-induced ROS and exhibits altered mitochondrial signalling, was used to probe interactions between organelles. Our studies suggest that mitochondria are involved in the response to ROS induced by MV in plants.
Collapse
Affiliation(s)
- Fuqiang Cui
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland; Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland; Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia
| | - Xin-Qiang He
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland; College of Life Sciences, Peking University, Beijing, 100871, China
| | - Julia P Vainonen
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Johanna Leppälä
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland; School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, P.O Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland.
| |
Collapse
|
50
|
Kim JS, Lim JY, Shin H, Kim BG, Yoo SD, Kim WT, Huh JH. ROS1-Dependent DNA Demethylation Is Required for ABA-Inducible NIC3 Expression. PLANT PHYSIOLOGY 2019; 179:1810-1821. [PMID: 30692220 PMCID: PMC6446795 DOI: 10.1104/pp.18.01471] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/14/2019] [Indexed: 05/15/2023]
Abstract
DNA methylation plays an important role in diverse developmental processes in many eukaryotes, including the response to environmental stress. Abscisic acid (ABA) is a plant hormone that is up-regulated under stress. The involvement of DNA methylation in the ABA response has been reported but is poorly understood. DNA demethylation is a reverse process of DNA methylation and often induces structural changes of chromatin leading to transcriptional activation. In Arabidopsis (Arabidopsis thaliana), active DNA demethylation depends on the activity of REPRESSOR OF SILENCING 1 (ROS1), which directly excises 5-methylcytosine from DNA. Here we showed that ros1 mutants were hypersensitive to ABA during early seedling development and root elongation. Expression levels of some ABA-inducible genes were decreased in ros1 mutants, and more than 60% of their proximal regions became hypermethylated, indicating that a subset of ABA-inducible genes are under the regulation of ROS1-dependent DNA demethylation. Notable among them is NICOTINAMIDASE 3 (NIC3) that encodes an enzyme that converts nicotinamide to nicotinic acid in the NAD+ salvage pathway. Many enzymes in this pathway are known to be involved in stress responses. The nic3 mutants display hypersensitivity to ABA, whereas overexpression of NIC3 restores normal ABA responses. Our data suggest that NIC3 is responsive to ABA but requires ROS1-mediated DNA demethylation at the promoter as a prerequisite to transcriptional activation. These findings suggest that ROS1-induced active DNA demethylation maintains the active state of NIC3 transcription in response to ABA.
Collapse
Affiliation(s)
- June-Sik Kim
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Joo Young Lim
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Hosub Shin
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Beom-Gi Kim
- Molecular Breeding Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54875, Korea
| | - Sang-Dong Yoo
- Division of Life Sciences, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jin Hoe Huh
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|