1
|
Tong CY, Li C, Hurni C, Jacq A, Nie XY, Guy CR, Suh JH, Wong RKW, Merlin C, Naef F, Menet JS, Jiang Y. Single-Cell Multiomic Analysis of Circadian Rhythmicity in Mouse Liver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647044. [PMID: 40291723 PMCID: PMC12026578 DOI: 10.1101/2025.04.03.647044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
From bacteria to humans, most organisms showcase inherent 24-hour circadian rhythms, best exemplified by the sleep-wake cycle. These rhythms are remarkably widespread, governing hormonal, metabolic, physiological, and behavioral oscillations, and are driven by "molecular clocks" that orchestrate the rhythmic expression of thousands of genes throughout the body. Here, we generate single-cell RNA and ATAC multiomic data to simultaneously characterize gene expression and chromatin accessibility of ~33,000 mouse liver cells across the 24-hour day. Our study yields several key insights, including: (i) detecting circadian rhythmicity in both discretized liver cell types and transient sub-lobule cell states, capturing space-time RNA and ATAC profiles in a cell-type- and cell-state-specific manner; (ii) delving beyond mean cyclic patterns to characterize distributions, accounting for gene expression stochasticity due to transcriptional bursting; (iii) interrogating multimodal circadian rhythmicity, encompassing RNAs, DNA regulatory elements, and transcription factors (TFs), while examining priming and lagging effects across modalities; and (iv) inferring spatiotemporal gene regulatory networks involving target genes, TFs, and cis-regulatory elements that controls circadian rhythmicity and liver physiology. Our findings apply to existing single-cell data of mouse and Drosophila brains and are further validated by time-series single molecule fluorescence in situ hybridization, as well as vast amounts of existing and orthogonal high-throughput data from chromatin immunoprecipitation followed by sequencing, capture Hi-C, and TF knockout experiments. Altogether, our study constructs a comprehensive map of the time-series transcriptomic and epigenomic landscapes that elucidate the function and mechanism of the liver peripheral clocks.
Collapse
|
2
|
Cela O, Scrima R, Rosiello M, Pacelli C, Piccoli C, Tamma M, Agriesti F, Mazzoccoli G, Capitanio N. Circadian clockwork controls the balance between mitochondrial turnover and dynamics: What is life … without time marking? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149542. [PMID: 39880150 DOI: 10.1016/j.bbabio.2025.149542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression. However, studies on mitochondrial DNA (mtDNA) gene expression remain incomplete. Using a well-established in vitro synchronization protocol, we investigated the time-resolved expression of mtDNA genes coding for respiratory chain complex subunits, revealing a rhythmic profile dependent on BMAL1, the master circadian clock transcription factor. Additionally, the expression of genes coding for key mitochondrial biogenesis transcription factors, PGC1a, NRF1, and TFAM, showed BMAL1-dependent circadian oscillations. Notably, LC3-II, involved in mitophagy, displayed a similar in-phase circadian expression, thereby maintaining stable respiratory chain complex levels. Moreover, we found that simultaneous mitochondrial biogenesis and degradation occur in a coordinated manner with cycles in organelle dynamics, leading to rhythmic changes in mitochondrial fission and fusion. This study provides new insights into circadian clock regulation of mitochondrial turnover, emphasizing the importance of temporal regulation in cellular metabolism. Understanding these mechanisms opens potential therapeutic avenues for targeting mitochondrial dysfunctions and related metabolic disorders.
Collapse
Affiliation(s)
- Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Michela Rosiello
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mirko Tamma
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesca Agriesti
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
3
|
Deota S, Pendergast JS, Kolthur-Seetharam U, Esser KA, Gachon F, Asher G, Dibner C, Benitah SA, Escobar C, Muoio DM, Zhang EE, Hotamışlıgil GS, Bass J, Takahashi JS, Rabinowitz JD, Lamia KA, de Cabo R, Kajimura S, Longo VD, Xu Y, Lazar MA, Verdin E, Zierath JR, Auwerx J, Drucker DJ, Panda S. The time is now: accounting for time-of-day effects to improve reproducibility and translation of metabolism research. Nat Metab 2025; 7:454-468. [PMID: 40097742 DOI: 10.1038/s42255-025-01237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
The constant expansion of the field of metabolic research has led to more nuanced and sophisticated understanding of the complex mechanisms that underlie metabolic functions and diseases. Collaborations with scientists of various fields such as neuroscience, immunology and drug discovery have further enhanced the ability to probe the role of metabolism in physiological processes. However, many behaviours, endocrine and biochemical processes, and the expression of genes, proteins and metabolites have daily ~24-h biological rhythms and thus peak only at specific times of the day. This daily variation can lead to incorrect interpretations, lack of reproducibility across laboratories and challenges in translating preclinical studies to humans. In this Review, we discuss the biological, environmental and experimental factors affecting circadian rhythms in rodents, which can in turn alter their metabolic pathways and the outcomes of experiments. We recommend that these variables be duly considered and suggest best practices for designing, analysing and reporting metabolic experiments in a circadian context.
Collapse
Affiliation(s)
- Shaunak Deota
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Frédéric Gachon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Charna Dibner
- Department of Surgery and Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute for Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Deborah M Muoio
- Departments of Medicine and Pharmacology & Cancer Biology, Duke Molecular Physiology Institute, Durham, NC, USA
| | | | - Gökhan S Hotamışlıgil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Katja A Lamia
- Department of Molecular and Cellular Biology and Department of Molecular Medicine, the Scripps Research Institute, La Jolla, CA, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Shingo Kajimura
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| | - Valter D Longo
- Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- AIRC Institute of Molecular Oncology, Italian Foundation for Cancer Research Institute of Molecular Oncology, Milan, Italy
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity and Metabolism and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
4
|
Wang Z, Ma L, Meng Y, Fang J, Xu D, Lu Z. The interplay of the circadian clock and metabolic tumorigenesis. Trends Cell Biol 2024; 34:742-755. [PMID: 38061936 DOI: 10.1016/j.tcb.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 09/08/2024]
Abstract
The circadian clock and cell metabolism are both dysregulated in cancer cells through intrinsic cell-autonomous mechanisms and external influences from the tumor microenvironment. The intricate interplay between the circadian clock and cancer cell metabolism exerts control over various metabolic processes, including aerobic glycolysis, de novo nucleotide synthesis, glutamine and protein metabolism, lipid metabolism, mitochondrial metabolism, and redox homeostasis in cancer cells. Importantly, oncogenic signaling can confer a moonlighting function on core clock genes, effectively reshaping cellular metabolism to fuel cancer cell proliferation and drive tumor growth. These interwoven regulatory mechanisms constitute a distinctive feature of cancer cell metabolism.
Collapse
Affiliation(s)
- Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China.
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
5
|
Iascone DM, Zhang X, Brafford P, Mesaros C, Sela Y, Hofbauer S, Zhang SL, Madhwal S, Cook K, Pivarshev P, Stanger BZ, Anderson S, Dang CV, Sehgal A. Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2319782121. [PMID: 39008664 PMCID: PMC11287162 DOI: 10.1073/pnas.2319782121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.
Collapse
Affiliation(s)
- Daniel Maxim Iascone
- HHMI, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Xue Zhang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Wistar Institute, Philadelphia, PA19104
| | - Patricia Brafford
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Wistar Institute, Philadelphia, PA19104
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA19104
| | - Yogev Sela
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Samuel Hofbauer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA19104
| | - Shirley L. Zhang
- HHMI, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Sukanya Madhwal
- HHMI, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kieona Cook
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Pavel Pivarshev
- HHMI, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ben Z. Stanger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Stewart Anderson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Chi V. Dang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Wistar Institute, Philadelphia, PA19104
| | - Amita Sehgal
- HHMI, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
6
|
Cela O, Scrima R, Pacelli C, Rosiello M, Piccoli C, Capitanio N. Autonomous Oscillatory Mitochondrial Respiratory Activity: Results of a Systematic Analysis Show Heterogeneity in Different In Vitro-Synchronized Cancer Cells. Int J Mol Sci 2024; 25:7797. [PMID: 39063035 PMCID: PMC11276763 DOI: 10.3390/ijms25147797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Circadian oscillations of several physiological and behavioral processes are an established process in all the organisms anticipating the geophysical changes recurring during the day. The time-keeping mechanism is controlled by a transcription translation feedback loop involving a set of well-characterized transcription factors. The synchronization of cells, controlled at the organismal level by a brain central clock, can be mimicked in vitro, pointing to the notion that all the cells are endowed with an autonomous time-keeping system. Metabolism undergoes circadian control, including the mitochondrial terminal catabolic pathways, culminating under aerobic conditions in the electron transfer to oxygen through the respiratory chain coupled to the ATP synthesis according to the oxidative phosphorylation chemiosmotic mechanism. In this study, we expanded upon previous isolated observations by utilizing multiple cell types, employing various synchronization protocols and different methodologies to measure mitochondrial oxygen consumption rates under conditions simulating various metabolic stressors. The results obtained clearly demonstrate that mitochondrial respiratory activity undergoes rhythmic oscillations in all tested cell types, regardless of their individual respiratory proficiency, indicating a phenomenon that can be generalized. However, notably, while primary cell types exhibited similar rhythmic respiratory profiles, cancer-derived cell lines displayed highly heterogeneous rhythmic changes. This observation confirms on the one hand the dysregulation of the circadian control of the oxidative metabolism observed in cancer, likely contributing to its development, and on the other hand underscores the necessity of personalized chronotherapy, which necessitates a detailed characterization of the cancer chronotype.
Collapse
Affiliation(s)
- Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (M.R.); (C.P.); (N.C.)
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (M.R.); (C.P.); (N.C.)
| | | | | | | | | |
Collapse
|
7
|
de Assis LVM, Oster H. Non-rhythmic modulators of the circadian system: A new class of circadian modulators. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 393:141-162. [PMID: 40390461 DOI: 10.1016/bs.ircmb.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The temporal organization of biological processes is critical for an organism's fitness and survival. An internal circadian clock network coordinates the alignment between the external and internal milieus via an array of systemic factors carrying temporal information such as core body temperature, autonomic activity, hormonal secretion, and behavioral functions. Collectively, these so called zeitgebers are characterized by strong temporal variations (i.e., high amplitudes). At the same time, target tissues show time windows of highest and lowest sensitivity to specific zeitgebers and, in this way, tissues can further modulate the effect of zeitgeber input in a process known as circadian gating. Such interplay between systemic signals and local circadian gating, however, suggests an additional level of temporal control-the resetting of target tissue rhythms in response to altered levels of tonic (i.e., non-rhythmic) signals. The recently identified tuning of liver transcriptome rhythms by thyroid hormones (THs) is one example of such regulation. THs show low-amplitude rhythms in the serum levels that are easily disrupted by altered thyroid states. At the same time, circadian rhythms in TH target tissues, such as liver, are markedly affected by alterations in TH state. Temporal regulation of TH target genes in other tissues suggests similar effects across the body. This chapter describes the rationale, experimental evidence, and potential consequences of this new level of circadian regulators.
Collapse
Affiliation(s)
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
8
|
Liu X, Cai YD, Chiu JC. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J Biol Chem 2024; 300:105616. [PMID: 38159854 PMCID: PMC10810748 DOI: 10.1016/j.jbc.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA.
| |
Collapse
|
9
|
Iascone DM, Zhang X, Bafford P, Mesaros C, Sela Y, Hofbauer S, Zhang SL, Cook K, Pivarshev P, Stanger BZ, Anderson S, Dang CV, Sehgal A. Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566310. [PMID: 38014131 PMCID: PMC10680562 DOI: 10.1101/2023.11.08.566310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Crosstalk between cellular metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to degenerative disease, including cancer. Here, we investigated whether maintenance of circadian rhythms depends upon specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to overall levels of a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function in an in vitro mouse model of pancreatic adenocarcinoma. Metabolic profiling of a library of congenic tumor cell clones revealed significant differences in levels of lactate, pyruvate, ATP, and other crucial metabolites that we used to identify candidate clones with which to generate circadian reporter lines. Despite the shared genetic background of the clones, we observed diverse circadian profiles among these lines that varied with their metabolic phenotype: the most hypometabolic line had the strongest circadian rhythms while the most hypermetabolic line had the weakest rhythms. Treatment of these tumor cell lines with bezafibrate, a peroxisome proliferator-activated receptor (PPAR) agonist shown to increase OxPhos, decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, treatment with the Complex I antagonist rotenone enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function, and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.
Collapse
Affiliation(s)
- Daniel Maxim Iascone
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xue Zhang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
- Wistar Institute, Philadelphia, PA, USA
- Present address: Johns Hopkins University, Baltimore, MD, USA
| | - Patricia Bafford
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
- Wistar Institute, Philadelphia, PA, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogev Sela
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samuel Hofbauer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shirley L Zhang
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Present address: Emory University, Atlanta, GA, USA
| | - Kieona Cook
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pavel Pivarshev
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z Stanger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stewart Anderson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Chi V Dang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
- Wistar Institute, Philadelphia, PA, USA
- Present address: Johns Hopkins University, Baltimore, MD, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Xia Y, Yao B, Fu Z, Li L, Jin S, Qu B, Huang Y, Ding H. Clock genes regulate skeletal muscle energy metabolism through NAMPT/NAD +/SIRT1 following heavy-load exercise. Am J Physiol Regul Integr Comp Physiol 2023; 325:R490-R503. [PMID: 37545421 PMCID: PMC11178296 DOI: 10.1152/ajpregu.00261.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The biological clock is an invisible "clock" in the organism, which can regulate behavior, physiology, and biochemical reactions. However, the relationship between clock genes and energy metabolism in postexercise skeletal muscle is not well known. The purpose of this study was to determine the mechanisms through which peripheral clock genes regulate energy metabolism in skeletal muscle. We analyzed the rhythm of mRNA expression of the clock genes Bmal1 and Clock in skeletal muscle following heavy-load exercise and measured related indicators of mitochondrial structure and function. We obtained the following experimental results. First, heavy-load exercise induced loss of circadian rhythm of Bmal1 between ZT0 and ZT24, and the circadian rhythm of Clock was not restored between ZT0 and ZT72. Second, analysis of mitochondrial morphology in group E showed abnormal swelling and ridge structure damage at ZT0, which recovered somewhat at ZT24 and ZT48, and the damage had essentially disappeared by ZT72. Third, the expression of NAMPT/NAD+/SIRT1 signaling axis proteins in group E was abnormal at ZT0, the content of NAMPT and the activity of SIRT1 significantly increased, and the content of NAD+ significantly decreased. Fourth, the expression of BMAL1 and PGC-1α in group E significantly increased, whereas the ATP and ADP content, as well as the activities of COXII and COXIV, were significantly changed. Finally, the colocalization of BMAL1 and SIRT1 in group E was significantly upregulated at ZT0. These results suggest that the skeletal muscle clock gene Bmal1 may regulate the energy metabolism level of skeletal muscle after exercise through the NAMPT/NAD+/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Yu Xia
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Binyu Yao
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Zeting Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Lunyu Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Songlin Jin
- College of Physical Education and Health, Geely University of China, Chengdu, China
| | - Bo Qu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ying Huang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Haili Ding
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| |
Collapse
|
11
|
Huang R, Chen J, Zhou M, Xin H, Lam SM, Jiang X, Li J, Deng F, Shui G, Zhang Z, Li MD. Multi-omics profiling reveals rhythmic liver function shaped by meal timing. Nat Commun 2023; 14:6086. [PMID: 37773240 PMCID: PMC10541894 DOI: 10.1038/s41467-023-41759-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023] Open
Abstract
Post-translational modifications (PTMs) couple feed-fast cycles to diurnal rhythms. However, it remains largely uncharacterized whether and how meal timing organizes diurnal rhythms beyond the transcriptome. Here, we systematically profile the daily rhythms of the proteome, four PTMs (phosphorylation, ubiquitylation, succinylation and N-glycosylation) and the lipidome in the liver from young female mice subjected to either day/sleep time-restricted feeding (DRF) or night/wake time-restricted feeding (NRF). We detect robust daily rhythms among different layers of omics with phosphorylation the most nutrient-responsive and succinylation the least. Integrative analyses reveal that clock regulation of fatty acid metabolism represents a key diurnal feature that is reset by meal timing, as indicated by the rhythmic phosphorylation of the circadian repressor PERIOD2 at Ser971 (PER2-pSer971). We confirm that PER2-pSer971 is activated by nutrient availability in vivo. Together, this dataset represents a comprehensive resource detailing the proteomic and lipidomic responses by the liver to alterations in meal timing.
Collapse
Affiliation(s)
- Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, China
| | - Xiaoqing Jiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
12
|
Jiang H, Wang X, Ma J, Xu G. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194958. [PMID: 37453648 DOI: 10.1016/j.bbagrm.2023.194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.
Collapse
Affiliation(s)
- Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
13
|
Pandey P, Wall PK, Lopez SR, Dubuisson OS, Zunica ER, Dantas WS, Kirwan JP, Axelrod CL, Johnson AE. A familial natural short sleep mutation promotes healthy aging and extends lifespan in Drosophila. RESEARCH SQUARE 2023:rs.3.rs-2882949. [PMID: 37398097 PMCID: PMC10312989 DOI: 10.21203/rs.3.rs-2882949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Sleep loss typically imposes negative effects on animal health. However, humans with a rare genetic mutation in the dec2 gene (dec2P384R) present an exception; these individuals sleep less without the usual effects associated with sleep deprivation. Thus, it has been suggested that the dec2P384R mutation activates compensatory mechanisms that allows these individuals to thrive with less sleep. To test this directly, we used a Drosophila model to study the effects of the dec2P384R mutation on animal health. Expression of human dec2P384R in fly sleep neurons was sufficient to mimic the short sleep phenotype and, remarkably, dec2P384R mutants lived significantly longer with improved health despite sleeping less. The improved physiological effects were enabled, in part, by enhanced mitochondrial fitness and upregulation of multiple stress response pathways. Moreover, we provide evidence that upregulation of pro-health pathways also contributes to the short sleep phenotype, and this phenomenon may extend to other pro-longevity models.
Collapse
Affiliation(s)
- Pritika Pandey
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - P. Kerr Wall
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - Stephen R. Lopez
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - Olga S. Dubuisson
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - Elizabeth R.M. Zunica
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - Wagner S. Dantas
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - John P. Kirwan
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - Christopher L. Axelrod
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - Alyssa E. Johnson
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| |
Collapse
|
14
|
Shui K, Wang C, Zhang X, Ma S, Li Q, Ning W, Zhang W, Chen M, Peng D, Hu H, Fang Z, Guo A, Gao G, Ye M, Zhang L, Xue Y. Small-sample learning reveals propionylation in determining global protein homeostasis. Nat Commun 2023; 14:2813. [PMID: 37198164 DOI: 10.1038/s41467-023-38414-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Proteostasis is fundamental for maintaining organismal health. However, the mechanisms underlying its dynamic regulation and how its disruptions lead to diseases are largely unclear. Here, we conduct in-depth propionylomic profiling in Drosophila, and develop a small-sample learning framework to prioritize the propionylation at lysine 17 of H2B (H2BK17pr) to be functionally important. Mutating H2BK17 which eliminates propionylation leads to elevated total protein level in vivo. Further analyses reveal that H2BK17pr modulates the expression of 14.7-16.3% of genes in the proteostasis network, and determines global protein level by regulating the expression of genes involved in the ubiquitin-proteasome system. In addition, H2BK17pr exhibits daily oscillation, mediating the influences of feeding/fasting cycles to drive rhythmic expression of proteasomal genes. Our study not only reveals a role of lysine propionylation in regulating proteostasis, but also implements a generally applicable method which can be extended to other issues with little prior knowledge.
Collapse
Affiliation(s)
- Ke Shui
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chenwei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xuedi Zhang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Shanshan Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qinyu Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Wanshan Ning
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Weizhi Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Miaomiao Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Di Peng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Hui Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Anyuan Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, Hubei, China.
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, 210031, Jiangsu, China.
| |
Collapse
|
15
|
Pandey P, Wall PK, Lopez SR, Dubuisson OS, Zunica ERM, Dantas WS, Kirwan JP, Axelrod CL, Johnson AE. A familial natural short sleep mutation promotes healthy aging and extends lifespan in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538137. [PMID: 37163058 PMCID: PMC10168263 DOI: 10.1101/2023.04.25.538137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Sleep loss typically imposes negative effects on animal health. However, humans with a rare genetic mutation in the dec2 gene ( dec2 P384R ) present an exception; these individuals sleep less without the usual effects associated with sleep deprivation. Thus, it has been suggested that the dec2 P384R mutation activates compensatory mechanisms that allows these individuals to thrive with less sleep. To test this directly, we used a Drosophila model to study the effects of the dec2 P384R mutation on animal health. Expression of human dec2 P384R in fly sleep neurons was sufficient to mimic the short sleep phenotype and, remarkably, dec2 P384R mutants lived significantly longer with improved health despite sleeping less. The improved physiological effects were enabled, in part, by enhanced mitochondrial fitness and upregulation of multiple stress response pathways. Moreover, we provide evidence that upregulation of pro-health pathways also contributes to the short sleep phenotype, and this phenomenon may extend to other pro-longevity models.
Collapse
|
16
|
Samad M, Agostinelli F, Sato T, Shimaji K, Baldi P. CircadiOmics: circadian omic web portal. Nucleic Acids Res 2022; 50:W183-W190. [PMID: 35657089 PMCID: PMC9252794 DOI: 10.1093/nar/gkac419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/14/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022] Open
Abstract
Circadian rhythms are a foundational aspect of biology. These rhythms are found at the molecular level in every cell of every living organism and they play a fundamental role in homeostasis and a variety of physiological processes. As a result, biomedical research of circadian rhythms continues to expand at a rapid pace. To support this research, CircadiOmics (http://circadiomics.igb.uci.edu/) is the largest annotated repository and analytic web server for high-throughput omic (e.g. transcriptomic, metabolomic, proteomic) circadian time series experimental data. CircadiOmics contains over 290 experiments and over 100 million individual measurements, across >20 unique tissues/organs, and 11 different species. Users are able to visualize and mine these datasets by deriving and comparing periodicity statistics for oscillating molecular species including: period, amplitude, phase, P-value and q-value. These statistics are obtained from BIO_CYCLE and JTK_CYCLE and are intuitively aggregated and displayed for comparison. CircadiOmics is the most up-to-date and cutting-edge web portal for searching and analyzing circadian omic data and is used by researchers around the world.
Collapse
Affiliation(s)
- Muntaha Samad
- Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA.,Institute for Genomics and Bioinformatics, University of California, Irvine CA 92697, USA
| | - Forest Agostinelli
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Kohei Shimaji
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Pierre Baldi
- Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA.,Institute for Genomics and Bioinformatics, University of California, Irvine CA 92697, USA
| |
Collapse
|
17
|
Ribas-Latre A, Eckel-Mahan K. Nutrients and the Circadian Clock: A Partnership Controlling Adipose Tissue Function and Health. Nutrients 2022; 14:2084. [PMID: 35631227 PMCID: PMC9147080 DOI: 10.3390/nu14102084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
White adipose tissue (WAT) is a metabolic organ with flexibility to retract and expand based on energy storage and utilization needs, processes that are driven via the coordination of different cells within adipose tissue. WAT is comprised of mature adipocytes (MA) and cells of the stromal vascular cell fraction (SVF), which include adipose progenitor cells (APCs), adipose endothelial cells (AEC) and infiltrating immune cells. APCs have the ability to proliferate and undergo adipogenesis to form MA, the main constituents of WAT being predominantly composed of white, triglyceride-storing adipocytes with unilocular lipid droplets. While adiposity and adipose tissue health are controlled by diet and aging, the endogenous circadian (24-h) biological clock of the body is highly active in adipose tissue, from adipocyte progenitor cells to mature adipocytes, and may play a unique role in adipose tissue health and function. To some extent, 24-h rhythms in adipose tissue rely on rhythmic energy intake, but individual circadian clock proteins are also thought to be important for healthy fat. Here we discuss how and why the clock might be so important in this metabolic depot, and how temporal and qualitative aspects of energy intake play important roles in maintaining healthy fat throughout aging.
Collapse
Affiliation(s)
- Aleix Ribas-Latre
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, University Hospital Leipzig, D-04103 Leipzig, Germany
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Møller SH, Hsueh PC, Yu YR, Zhang L, Ho PC. Metabolic programs tailor T cell immunity in viral infection, cancer, and aging. Cell Metab 2022; 34:378-395. [PMID: 35235773 DOI: 10.1016/j.cmet.2022.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Productive T cell responses to infection and cancer rely on coordinated metabolic reprogramming and epigenetic remodeling among the immune cells. In particular, T cell effector and memory differentiation, exhaustion, and senescence/aging are tightly regulated by the metabolism-epigenetics axis. In this review, we summarize recent advances of how metabolic circuits combined with epigenetic changes dictate T cell fate decisions and shape their functional states. We also discuss how the metabolic-epigenetic axis orchestrates T cell exhaustion and explore how physiological factors, such as diet, gut microbiota, and the circadian clock, are integrated in shaping T cell epigenetic modifications and functionality. Furthermore, we summarize key features of the senescent/aged T cells and discuss how to ameliorate vaccination- and COVID-induced T cell dysfunctions by metabolic modulations. An in-depth understanding of the unexplored links between cellular metabolism and epigenetic modifications in various physiological or pathological contexts has the potential to uncover novel therapeutic strategies for fine-tuning T cell immunity.
Collapse
Affiliation(s)
- Sofie Hedlund Møller
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Pei-Chun Hsueh
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Yi-Ru Yu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China.
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
19
|
Chronoradiobiology of Breast Cancer: The Time Is Now to Link Circadian Rhythm and Radiation Biology. Int J Mol Sci 2022; 23:ijms23031331. [PMID: 35163264 PMCID: PMC8836288 DOI: 10.3390/ijms23031331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Circadian disruption has been linked to cancer development, progression, and radiation response. Clinical evidence to date shows that circadian genetic variation and time of treatment affect radiation response and toxicity for women with breast cancer. At the molecular level, there is interplay between circadian clock regulators such as PER1, which mediates ATM and p53-mediated cell cycle gating and apoptosis. These molecular alterations may govern aggressive cancer phenotypes, outcomes, and radiation response. Exploiting the various circadian clock mechanisms may enhance the therapeutic index of radiation by decreasing toxicity, increasing disease control, and improving outcomes. We will review the body’s natural circadian rhythms and clock gene-regulation while exploring preclinical and clinical evidence that implicates chronobiological disruptions in the etiology of breast cancer. We will discuss radiobiological principles and the circadian regulation of DNA damage responses. Lastly, we will present potential rational therapeutic approaches that target circadian pathways to improve outcomes in breast cancer. Understanding the implications of optimal timing in cancer treatment and exploring ways to entrain circadian biology with light, diet, and chronobiological agents like melatonin may provide an avenue for enhancing the therapeutic index of radiotherapy.
Collapse
|
20
|
Tuning up an aged clock: Circadian clock regulation in metabolism and aging. TRANSLATIONAL MEDICINE OF AGING 2022. [DOI: 10.1016/j.tma.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
21
|
Balparda M, Elsässer M, Badia MB, Giese J, Bovdilova A, Hüdig M, Reinmuth L, Eirich J, Schwarzländer M, Finkemeier I, Schallenberg-Rüdinger M, Maurino VG. Acetylation of conserved lysines fine-tunes mitochondrial malate dehydrogenase activity in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:92-111. [PMID: 34713507 DOI: 10.1111/tpj.15556] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Plants need to rapidly and flexibly adjust their metabolism to changes of their immediate environment. Since this necessity results from the sessile lifestyle of land plants, key mechanisms for orchestrating central metabolic acclimation are likely to have evolved early. Here, we explore the role of lysine acetylation as a post-translational modification to directly modulate metabolic function. We generated a lysine acetylome of the moss Physcomitrium patens and identified 638 lysine acetylation sites, mostly found in mitochondrial and plastidial proteins. A comparison with available angiosperm data pinpointed lysine acetylation as a conserved regulatory strategy in land plants. Focusing on mitochondrial central metabolism, we functionally analyzed acetylation of mitochondrial malate dehydrogenase (mMDH), which acts as a hub of plant metabolic flexibility. In P. patens mMDH1, we detected a single acetylated lysine located next to one of the four acetylation sites detected in Arabidopsis thaliana mMDH1. We assessed the kinetic behavior of recombinant A. thaliana and P. patens mMDH1 with site-specifically incorporated acetyl-lysines. Acetylation of A. thaliana mMDH1 at K169, K170, and K334 decreases its oxaloacetate reduction activity, while acetylation of P. patens mMDH1 at K172 increases this activity. We found modulation of the malate oxidation activity only in A. thaliana mMDH1, where acetylation of K334 strongly activated it. Comparative homology modeling of MDH proteins revealed that evolutionarily conserved lysines serve as hotspots of acetylation. Our combined analyses indicate lysine acetylation as a common strategy to fine-tune the activity of central metabolic enzymes with likely impact on plant acclimation capacity.
Collapse
Affiliation(s)
- Manuel Balparda
- Molecular Plant Physiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Marlene Elsässer
- Molecular Evolution, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Mariana B Badia
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
- Facultad de Quı́mica e Ingenierı́a del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, S2002QEO, Rosario, Argentina
| | - Jonas Giese
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Anastasiia Bovdilova
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| | - Meike Hüdig
- Molecular Plant Physiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| | - Lisa Reinmuth
- Molecular Evolution, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Mareike Schallenberg-Rüdinger
- Molecular Evolution, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Veronica G Maurino
- Molecular Plant Physiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| |
Collapse
|
22
|
Role of circadian rhythm and impact of circadian rhythm disturbance on the metabolism and disease. J Cardiovasc Pharmacol 2021; 79:254-263. [PMID: 34840256 DOI: 10.1097/fjc.0000000000001178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Molecular circadian clocks exist in almost all cells of the organism and operate for approximately 24 h, maintain the normal physiological and behavioral body processes and regulate metabolism of many cells related to a variety of disease states. Circadian rhythms regulate metabolism, mainly including neurotransmitters, hormones, amino acids and lipids. Circadian misalignment is related to metabolic syndromes, such as obesity, diabetes and hypertension, which have reached an alarming level in modern society. We reviewed the mechanism of the circadian clock and the interaction between circadian rhythm and metabolism, as well as circadian rhythm disturbance on the metabolism of hypertension, obesity and diabetes. Finally, we discuss how to use the circadian rhythm to prevent diseases. Thus, this review is a micro to macro discussion from the perspective of circadian rhythm and aims to provide basic ideas for circadian rhythm research and disease therapies.
Collapse
|
23
|
Tabibzadeh S. CircadiOmic medicine and aging. Ageing Res Rev 2021; 71:101424. [PMID: 34389481 DOI: 10.1016/j.arr.2021.101424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023]
Abstract
The earth displays daily, seasonal and annual environmental cycles that have led to evolutionarily adapted ultradian, circadian and infradian rhythmicities in the entire biosphere. All biological organisms must adapt to these cycles that synchronize the function of their circadiome. The objective of this review is to discuss the latest knowledge regarding the role of circadiomics in health and aging. The biological timekeepers are responsive to the environmental cues at microsecond to seasonal time-scales and act with precision of a clock machinery. The robustness of these rhythms is essential to normal daily function of cells, tissues and organs. Mis-alignment of circadian rhythms makes the individual prone to aging, sleep disorders, cancer, diabetes, and neuro-degenerative diseases. Circadian and CircadiOmic medicine are emerging fields that leverage our in-depth understanding of health issues, that arise as a result of disturbances in circadian rhythms, towards establishing better therapeutic approaches in personalized medicine and for geroprotection.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, 16471 Scientific Way, Irvine, CA 92618, United States.
| |
Collapse
|
24
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
25
|
Guo X, Zheng J, Zhang S, Jiang X, Chen T, Yu J, Wang S, Ma X, Wu C. Advances in Unhealthy Nutrition and Circadian Dysregulation in Pathophysiology of NAFLD. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2021; 2:691828. [PMID: 36994336 PMCID: PMC10012147 DOI: 10.3389/fcdhc.2021.691828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022]
Abstract
Unhealthy diets and lifestyle result in various metabolic conditions including metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Much evidence indicates that disruption of circadian rhythms contributes to the development and progression of excessive hepatic fat deposition and inflammation, as well as liver fibrosis, a key characteristic of non-steatohepatitis (NASH) or the advanced form of NAFLD. In this review, we emphasize the importance of nutrition as a critical factor in the regulation of circadian clock in the liver. We also focus on the roles of the rhythms of nutrient intake and the composition of diets in the regulation of circadian clocks in the context of controlling hepatic glucose and fat metabolism. We then summarize the effects of unhealthy nutrition and circadian dysregulation on the development of hepatic steatosis and inflammation. A better understanding of how the interplay among nutrition, circadian rhythms, and dysregulated metabolism result in hepatic steatosis and inflammation can help develop improved preventive and/or therapeutic strategies for managing NAFLD.
Collapse
Affiliation(s)
- Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xin Guo, ; Chaodong Wu,
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shixiu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaofan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shu'e Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Xin Guo, ; Chaodong Wu,
| |
Collapse
|
26
|
Wang X, Sato F, Tanimoto K, Rajeshwaran N, Thangavelu L, Makishima M, Bhawal UK. The Potential Roles of Dec1 and Dec2 in Periodontal Inflammation. Int J Mol Sci 2021; 22:10349. [PMID: 34638690 PMCID: PMC8508764 DOI: 10.3390/ijms221910349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Periodontal inflammation is a common inflammatory disease associated with chronic inflammation that can ultimately lead to alveolar attachment loss and bone destruction. Understanding autophagy and pyroptosis has suggested their significant roles in inflammation. In recent years, studies of differentiated embryo-chondrocyte expressed genes 1 and 2 (Dec1 and Dec2) have shown that they play important functions in autophagy and in pyroptosis, which contribute to the onset of periodontal inflammation. In this review, we summarize recent studies on the roles of clock genes, including Dec1 and Dec2, that are related to periodontal inflammation and other diseases.
Collapse
Affiliation(s)
- Xingzhi Wang
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Fuyuki Sato
- Pathology Division, Shizuoka Cancer Center, Shizuoka 411-8777, Japan;
| | - Keiji Tanimoto
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 739-8511, Japan;
| | - Niveda Rajeshwaran
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
| | - Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Ujjal K. Bhawal
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
27
|
Aviram R, Adamovich Y, Asher G. Circadian Organelles: Rhythms at All Scales. Cells 2021; 10:2447. [PMID: 34572096 PMCID: PMC8469338 DOI: 10.3390/cells10092447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circadian clocks have evolved in most light-sensitive organisms, from unicellular organisms to mammals. Consequently, a myriad of biological functions exhibits circadian rhythmicity, from behavior to physiology, through tissue and cellular functions to subcellular processes. Circadian rhythms in intracellular organelles are an emerging and exciting research arena. We summarize herein the current literature for rhythmicity in major intracellular organelles in mammals. These include changes in the morphology, content, and functions of different intracellular organelles. While these data highlight the presence of rhythmicity in these organelles, a gap remains in our knowledge regarding the underlying molecular mechanisms and their functional significance. Finally, we discuss the importance and challenges faced by spatio-temporal studies on these organelles and speculate on the presence of oscillators in organelles and their potential mode of communication. As circadian biology has been and continues to be studied throughout temporal and spatial axes, circadian organelles appear to be the next frontier.
Collapse
Affiliation(s)
| | | | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (R.A.); (Y.A.)
| |
Collapse
|
28
|
Hu X, Wang D, Sun L, Gao Y, Zhou D, Tong X, Li J, Lin H, Qing Y, Du S, Yang X, Jiang J, Yan G, Wei Z, Wang Q, Zhang J, He L, Wan C. Disturbed mitochondrial acetylation in accordance with the availability of acetyl groups in hepatocellular carcinoma. Mitochondrion 2021; 60:150-159. [PMID: 34375734 DOI: 10.1016/j.mito.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022]
Abstract
As an essential post-translational modification, acetylation participates in various cellular processes and shows aberrances during tumorigenesis. Owing to its modification substrate, acetyl-CoA, acetylation is postulated as a depot for acetyl groups and evolve to build a connection between epigenetics and metabolism. Here we depict a distinct acetylome atlas of hepatocellular carcinoma from the perspectives of both protein acetylation and acetyl-CoA metabolism. We found that tumor acetylome demonstrated a compartment-dependent alteration that the acetylation level of mitochondrial proteins tended to be decreased while nuclear proteins were highly acetylated. In addition, elevated expression of ATP-citrate synthase (ACLY) was observed in tumors, which would facilitate histone acetylation by transporting mitochondrial acetyl coenzyme A to the nucleus. A hypothetical model of the oncogenic acetylome was proposed that growing demands for histone acetylation in tumor cells would drive the relocalization of acetyl-CoA to the nucleus, which may contribute to the global deacetylation of mitochondrial proteins to support the nuclear acetyl-CoA pool in an ACLY-dependent manner. Our findings are thought-provoking on the potential linkage between epigenetics and metabolism in the progression of tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Daizhan Zhou
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200135, China; Institute of Medical Genetics, Tongji University, Shanghai 200331, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shujiao Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guoquan Yan
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhiyun Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, HMS Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Qingyu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
29
|
Elowe C, Tomanek L. Circadian and circatidal rhythms of protein abundance in the California mussel (Mytilus californianus). Mol Ecol 2021; 30:5151-5163. [PMID: 34390513 DOI: 10.1111/mec.16122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
Coastal habitats fluctuate with the 12.4 h tidal and 24 h light/dark cycle to predictably alter conditions such as air exposure, temperature, and food availability. Intertidal sessile bivalves exhibit behavioral and physiological adjustments to minimize the challenges of this environment. We investigated a high-resolution time course of the changes in protein abundance in the gill tissue of the intertidal mussel Mytilus californianus in a simulated tidal environment of 12:12 h light:dark cycles and a matching 6:6 h high:low tide cycle within each 12 h period. Approximately 38% of detected proteins showed significant rhythms in their abundances, with diversity in the phases of rhythmic isoforms. The circadian rhythm was dominant in protein abundance changes, particularly with oxidative metabolism. A tidal cycle elicited changes within functional groups, including in cytoskeletal proteins, chaperones, and oxidative stress proteins. In addition to protein abundance changes, we found the possibility for post-translational modifications driving rhythms, including methylation, mitochondrial peptide processing (proteolysis), and acylation. Dynamic changes in the proteome across functional categories demonstrate the importance of the tidal environment in entraining cellular processes, confirming that differential expression studies should not assume a static baseline of cellular conditions in intertidal organisms.
Collapse
Affiliation(s)
- Cory Elowe
- California Polytechnic State University, Department of Biological Sciences Environmental Proteomics Laboratory, Grand Avenue San Luis Obispo, CA, USA
| | - Lars Tomanek
- California Polytechnic State University, Department of Biological Sciences Environmental Proteomics Laboratory, Grand Avenue San Luis Obispo, CA, USA
| |
Collapse
|
30
|
Wang W, Zhang Y, Ding M, Huang X, Zhang M, Gu Y, Wu L, Zhang C, Lu C, Shen B, Xing C, Song L. Circadian oscillation expression of ornithine carbamoyltransferase and its significance in sleep disturbance. Biochem Biophys Res Commun 2021; 559:217-221. [PMID: 33957483 DOI: 10.1016/j.bbrc.2021.04.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/27/2022]
Abstract
Ornithine transcarbamylases (OTC), a key enzyme in urea cycle, is an important marker for some liver injury or diseases. However, whether OTC could be a sensitive indicator for liver dysfunction under sleep disturbance condition remains unknown. The present study aimed to explore the circadian oscillation expression of OTC and its significance in disturbed sleep condition. Sleep disturbance was conducted by a sleep deprivation (SD) instrument. Our results found that SD for 72h induced abnormal increasing of OTC levels in serum and liver of rats. And, serum OTC concentration and liver OTC expression could return to normal levels after recovery sleep following SD. Moreover, hepatic OTC expression showed circadian oscillation in day and night, characterized with occurrence of a peak between ZT 22 and ZT 2, and a nadir between ZT 14 and ZT 18. Further analysis suggested the existence of ROR response element (RORE) for potential RORɑ binding sites in OTC promoter region, and elevated RORɑ expression in rat livers under sleep disturbance condition. Additionally, oscillation expression of OTC induced by serum shock in HepG2 cells was characterized with a peak occurred between ZT 12 and ZT 16, and RORɑ knockdown at ZT 16 significantly lowered OTC expression. The results together indicate that OTC is closely correlated with circadian clock, and could be a sensitive indicator for sleep disturbance stress.
Collapse
Affiliation(s)
- Wei Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; School of Pharmacy, Jiamus University, Jiamusi, 154007, China
| | - Yifan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Mengnan Ding
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Min Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yu Gu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China
| | - Lin Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chongchong Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; School of Basic Medicine, Henan University, Kaifeng, 475004, China
| | - Chunfeng Lu
- School of Pharmacy, Jiamus University, Jiamusi, 154007, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chen Xing
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; School of Pharmacy, Jiamus University, Jiamusi, 154007, China; Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 473007, China.
| |
Collapse
|
31
|
Kinouchi K, Mikami Y, Kanai T, Itoh H. Circadian rhythms in the tissue-specificity from metabolism to immunity; insights from omics studies. Mol Aspects Med 2021; 80:100984. [PMID: 34158177 DOI: 10.1016/j.mam.2021.100984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022]
Abstract
Creatures on earth have the capacity to preserve homeostasis in response to changing environments. The circadian clock enables organisms to adapt to daily predictable rhythms in surrounding conditions. In mammals, circadian clocks constitute hierarchical network, where the central pacemaker in hypothalamic suprachiasmatic nucleus (SCN) serves as a time-keeping machinery and governs peripheral clocks in every other organ through descending neural and humoral factors. The central clock in SCN is reset by light, whilst peripheral clocks are entrained by feeding-fasting rhythms, emphasizing the point that temporal patterns of nutrient availability specifies peripheral clock functions. Indeed, emerging evidence revealed various types of diets or timing of food intake reprogram circadian rhythms in a tissue specific manner. This advancement in understanding of mechanisms underlying tissue specific responsiveness of circadian oscillators to nutrients at the genomic and epigenomic levels is largely owing to employment of state-of-the-art technologies. Specifically, high-throughput transcriptome, proteome, and metabolome have provided insights into how genes, proteins, and metabolites behave over circadian cycles in a given tissue under a certain dietary condition in an unbiased fashion. Additionally, combinations with specialized types of sequencing such as nascent-seq and ribosomal profiling allow us to dissect how circadian rhythms are generated or obliterated at each step of gene regulation. Importantly, chromatin immunoprecipitation followed by deep sequencing methods provide chromatin landscape in terms of regulatory mechanisms of circadian gene expression. In this review, we outline recent discoveries on temporal genomic and epigenomic regulation of circadian rhythms, discussing entrainment of the circadian rhythms by feeding as a fundamental new comprehension of metabolism and immune response, and as a potential therapeutic strategy of metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
32
|
Mei W, Jiang Z, Chen Y, Chen L, Sancar A, Jiang Y. Genome-wide circadian rhythm detection methods: systematic evaluations and practical guidelines. Brief Bioinform 2021; 22:bbaa135. [PMID: 32672832 PMCID: PMC8138819 DOI: 10.1093/bib/bbaa135] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms are oscillations of behavior, physiology and metabolism in many organisms. Recent advancements in omics technology make it possible for genome-wide profiling of circadian rhythms. Here, we conducted a comprehensive analysis of seven existing algorithms commonly used for circadian rhythm detection. Using gold-standard circadian and non-circadian genes, we systematically evaluated the accuracy and reproducibility of the algorithms on empirical datasets generated from various omics platforms under different experimental designs. We also carried out extensive simulation studies to test each algorithm's robustness to key variables, including sampling patterns, replicates, waveforms, signal-to-noise ratios, uneven samplings and missing values. Furthermore, we examined the distributions of the nominal $P$-values under the null and raised issues with multiple testing corrections using traditional approaches. With our assessment, we provide method selection guidelines for circadian rhythm detection, which are applicable to different types of high-throughput omics data.
Collapse
Affiliation(s)
- Wenwen Mei
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | - Zhiwen Jiang
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | - Yang Chen
- Department of Statistics and the Michigan Institute of Data Science, University of Michigan
| | - Li Chen
- Department of Medicine and a member of the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine
| | - Aziz Sancar
- Biochemistry and Biophysics at the University of North Carolina School of Medicine
| | - Yuchao Jiang
- Department of Biostatistics and the Department of Genetics, University of North Carolina at Chapel Hill and a member of UNC Lineberger Comprehensive Cancer Center
| |
Collapse
|
33
|
Paajanen P, Lane de Barros Dantas L, Dodd AN. Layers of crosstalk between circadian regulation and environmental signalling in plants. Curr Biol 2021; 31:R399-R413. [PMID: 33905701 DOI: 10.1016/j.cub.2021.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Circadian regulation has a pervasive influence upon plant development, physiology and metabolism, impacting upon components of fitness and traits of agricultural importance. Circadian regulation is inextricably connected to the responses of plants to their abiotic environments, from the cellular to whole plant scales. Here, we review the crosstalk that occurs between circadian regulation and responses to the abiotic environment from the intracellular scale through to naturally fluctuating environments. We examine the spatial crosstalk that forms part of plant circadian regulation, at the subcellular, tissue, organ and whole-plant scales. This includes a focus on chloroplast and mitochondrial signalling, alternative splicing, long-distance circadian signalling and circadian regulation within natural environments. We also consider mathematical models for plant circadian regulation, to suggest future areas for advancing understanding of roles for circadian regulation in plant responses to environmental cues.
Collapse
Affiliation(s)
- Pirita Paajanen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Antony N Dodd
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
34
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
35
|
Liu JL, Wang CY, Cheng TY, Rixiati Y, Ji C, Deng M, Yao S, Yuan LH, Zhao YY, Shen T, Li JM. Circadian Clock Disruption Suppresses PDL1 + Intraepithelial B Cells in Experimental Colitis and Colitis-Associated Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2021; 12:251-276. [PMID: 33652118 PMCID: PMC8141473 DOI: 10.1016/j.jcmgh.2021.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The circadian clock is crucial for physiological homeostasis including gut homeostasis. Disorder of the circadian clock may contribute to many diseases including inflammatory bowel disease (IBD). However, the role and the mechanisms of circadian clock involvement in IBD still are unclear. METHODS Disorder of the circadian clock including chronic social jet lag and circadian clock gene deficiency mice (Bmal1-/-, and Per1-/-Per2-/-) were established. Dextran sulfate sodium (DSS) and/or azoxymethane were used to induce mouse models of colitis and its associated colorectal cancer. Flow cytometry, immunohistochemistry, immunofluorescence, Western blot, and reverse-transcription quantitative polymerase chain reaction were used to analyze the characteristics of immune cells and their related molecules. RESULTS Mice with disorders of the circadian clock including chronic social jet lag and circadian clock gene deficiency were susceptible to colitis. Functionally, regulatory B (Breg) cells highly expressing Programmed cell death 1 ligand 1 (PDL1) in intestinal intraepithelial lymphocytes (IELs) helped to alleviate the severity of colitis after DSS treatment and was dysregulated in DSS-treated Bmal1-/- mice. Notably, interleukin 33 in the intestinal microenvironment was key for Bmal1-regulated PDL1+ Breg cells and interleukin 33 was a target of Bmal1 transcriptionally. Dysregulated PDL1+ B cells induced cell death of activated CD4+ T cells in DSS-treated Bmal1-/- mice. Consequently, circadian clock disorder was characterized as decreased numbers of Breg+ PDL1+ cells in IELs and dysfunction of CD4+ T cells promoted colitis-associated colorectal cancer (CRC) in mice. In clinical samples from CRC patients, low expression of Bmal1 gene in paracancerous tissues and center area of tumor was associated closely with a poorer prognosis of CRC patients. CONCLUSIONS Our study uncovers the importance of the circadian clock regulating PDL1+ Breg+ cells of IELs in IBD and IBD-associated CRC.
Collapse
Affiliation(s)
- Jing-Lin Liu
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | - Chu-Yi Wang
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | - Tian-Yu Cheng
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | | | - Cheng Ji
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | - Min Deng
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | - Su Yao
- Department of Pathology, Guangdong General Hospital, Guangzhou, China
| | - Li-Hua Yuan
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yuan-Yuan Zhao
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | - Tong Shen
- Department of Pathology, Soochow University Medical School, Suzhou, China.
| | - Jian-Ming Li
- Department of Pathology, Soochow University Medical School, Suzhou, China; Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
36
|
Brüning F, Humphrey SJ, Robles MS. Phosphoproteome and Proteome Sample Preparation from Mouse Tissues for Circadian Analysis. Methods Mol Biol 2021; 2130:185-193. [PMID: 33284445 DOI: 10.1007/978-1-0716-0381-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent advances in mass spectrometry (MS)-based quantitative proteomics now allow the identification and quantification of deep proteomes and post-translational modifications (PTMs) in relatively short times. Therefore, in the last few years, this technology has proven successful in the circadian field to characterize temporal oscillations of the proteome and more recently PTMs in cellular systems and in tissues. In this chapter, we describe a robust and simple protocol, based on the EasyPhos workflow, to enable preparation of large number of proteomes and phosphoproteomes from mouse tissues for MS-based quantitative analysis. We additionally discuss computational methods to analyze proteome and phosphoproteome time series to determine circadian oscillations.
Collapse
Affiliation(s)
- Franziska Brüning
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Medical Psychology, Faculty of Medicine, LMU, Munich, Germany
| | - Sean J Humphrey
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Maria S Robles
- Institute of Medical Psychology, Faculty of Medicine, LMU, Munich, Germany.
| |
Collapse
|
37
|
Cox KH, Takahashi JS. Introduction to the Clock System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:3-20. [PMID: 34773223 DOI: 10.1007/978-3-030-81147-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Circadian (24-h) rhythms dictate almost everything we do, setting our clocks for specific times of sleeping and eating, as well as optimal times for many other basic functions. The physiological systems that coordinate circadian rhythms are intricate, but at their core, they all can be distilled down to cell-autonomous rhythms that are then synchronized within and among tissues. At first glance, these cell-autonomous rhythms may seem rather straight-forward, but years of research in the field has shown that they are strikingly complex, responding to many different external signals, often with remarkable tissue-specificity. To understand the cellular clock system, it is important to be familiar with the major players, which consist of pairs of proteins in a triad of transcriptional/translational feedback loops. In this chapter, we will go through each of the core protein pairs one-by-one, summarizing the literature as to their regulation and their broader impacts on circadian gene expression. We will conclude by briefly examining the human genetics literature, as well as providing perspectives on the future of the study of the molecular clock.
Collapse
Affiliation(s)
- Kimberly H Cox
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
38
|
Bedont JL, Iascone DM, Sehgal A. The Lineage Before Time: Circadian and Nonclassical Clock Influences on Development. Annu Rev Cell Dev Biol 2020; 36:469-509. [PMID: 33021821 PMCID: PMC10826104 DOI: 10.1146/annurev-cellbio-100818-125454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diverse factors including metabolism, chromatin remodeling, and mitotic kinetics influence development at the cellular level. These factors are well known to interact with the circadian transcriptional-translational feedback loop (TTFL) after its emergence. What is only recently becoming clear, however, is how metabolism, mitosis, and epigenetics may become organized in a coordinated cyclical precursor signaling module in pluripotent cells prior to the onset of TTFL cycling. We propose that both the precursor module and the TTFL module constrain cellular identity when they are active during development, and that the emergence of these modules themselves is a key lineage marker. Here we review the component pathways underlying these ideas; how proliferation, specification, and differentiation decisions in both developmental and adult stem cell populations are or are not regulated by the classical TTFL; and emerging evidence that we propose implies a primordial clock that precedes the classical TTFL and influences early developmental decisions.
Collapse
Affiliation(s)
- Joseph Lewis Bedont
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Daniel Maxim Iascone
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- The Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
39
|
Deletion of Bmal1 Impairs Pancreatic β-Cell Function via Mitochondrial Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9803024. [PMID: 32964049 PMCID: PMC7492957 DOI: 10.1155/2020/9803024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022]
Abstract
Several studies have demonstrated that brain and muscle Arnt-like protein-1 (Bmal1) acts as a core clock gene for maintaining normal cell function, including hepatocytes and cardiomyocytes. Loss of Bmal1 is associated with type 2 diabetes due to pancreatic β-cell failure. However, little information is available about its role and mechanism in pancreatic β-cell. To address this, we investigated the consequences of Bmal1 inhibition in an insulinoma cell line (INS-1) by using small interfering RNA (siRNA). We observed that knockout of Bmal1 impaired glucose-stimulated insulin secretion in β-cell. Meanwhile, the depletion of Bmal1 in β-cell caused an adverse change in mitochondrial membrane potential and mitochondrial architecture. Deletion of Bmal1 attenuated mRNA and protein expression of mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) and enhanced the expression of fission 1 (Fis1). In summary, the deletion of Bmal1 impaired β-cell function may be via the mitochondrial signaling pathway in INS-1 cells.
Collapse
|
40
|
Impact of circadian and diurnal rhythms on cellular metabolic function and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:393-412. [PMID: 32739012 DOI: 10.1016/bs.irn.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The 24-h rotational period of the earth has driven evolution of biological systems that serve to synchronize organismal physiology and behavior to this predictable environmental event. In mammals, the circadian (circa, "about" and dia, "a day") clock keeps 24-h time at the organismal and cellular level, optimizing biological function for a given time of day. The most obvious circadian output is the sleep-wake cycle, though countless bodily functions, ranging from hormone levels to cognitive function, are influenced by the circadian clock. Here we discuss the regulation of metabolic pathways by the circadian clock, discuss the evidence implicating circadian and sleep disruption in neurodegenerative diseases, and suggest some possible connections between the clock, metabolism, and neurodegenerative disease.
Collapse
|
41
|
Barca‐Mayo O, Boender AJ, Armirotti A, De Pietri Tonelli D. Deletion of astrocytic BMAL1 results in metabolic imbalance and shorter lifespan in mice. Glia 2020; 68:1131-1147. [PMID: 31833591 PMCID: PMC7496695 DOI: 10.1002/glia.23764] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Disruption of the circadian cycle is strongly associated with metabolic imbalance and reduced longevity in humans. Also, rodent models of circadian arrhythmia, such as the constitutive knockout of the clock gene Bmal1, leads to metabolic disturbances and early death. Although astrocyte clock regulates molecular and behavioral circadian rhythms, its involvement in the regulation of energy balance and lifespan is unknown. Here, we show that astrocyte-specific deletion of Bmal1 is sufficient to alter energy balance, glucose homeostasis, and reduce lifespan. Mutant animals displayed impaired hypothalamic molecular clock, age-dependent astrogliosis, apoptosis of hypothalamic astrocytes, and increased glutamate and GABA levels. Importantly, modulation of GABAA-receptor signaling completely restored glutamate levels, delayed the reactive gliosis as well as the metabolic phenotypes and expanded the lifespan of the mutants. Our results demonstrate that the astrocytic clock can influence many aspects of brain function and neurological disease and suggest astrocytes and GABAA receptor as pharmacological targets to prevent the metabolic dysfunctions and shortened lifespan associated with alterations of circadian rhythms.
Collapse
Affiliation(s)
- Olga Barca‐Mayo
- Neurobiology of miRNA labFondazione Istituto Italiano di TecnologiaGenoaItaly
| | - Arjen J. Boender
- Neuromodulation of Cortical and Subcortical Circuits LabFondazione Istituto Italiano di TecnologiaGenoaItaly
| | - Andrea Armirotti
- D3 PharmaChemistryFondazione Istituto Italiano di TecnologiaGenoaItaly
| | | |
Collapse
|
42
|
Arafa K, Emara M. Insights About Circadian Clock and Molecular Pathogenesis in Gliomas. Front Oncol 2020; 10:199. [PMID: 32195174 PMCID: PMC7061216 DOI: 10.3389/fonc.2020.00199] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
The circadian clock is an endogenous time-keeping system that has been discovered across kingdoms of life. It controls and coordinates metabolism, physiology, and behavior to adapt to variations within the day and the seasonal environmental cycles driven by earth rotation. In mammals, although circadian rhythm is controlled by a set of core clock genes that are present in both in suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral tissues, the generation and control of the circadian rhythm at the cellular, tissue, and organism levels occurs in a hierarchal fashion. The SCN is central pacemaker comprising the principal circadian clock that synchronizes peripheral circadian clocks to their appropriate phase. Different epidemiological studies have shown that disruption of normal circadian rhythm is implicated in increasing the risk of developing cancers. In addition, deregulated expression of clock genes has been demonstrated in various types of cancer. These findings indicate a close association between circadian clock and cancer development and progression. Here, we review different evidences of this association in relation to molecular pathogenesis in gliomas.
Collapse
Affiliation(s)
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Cairo, Egypt
| |
Collapse
|
43
|
Herr DJ, Singh T, Dhammu T, Menick DR. Regulation of metabolism by mitochondrial enzyme acetylation in cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165728. [PMID: 32068115 DOI: 10.1016/j.bbadis.2020.165728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Ischemia reperfusion injury (I/R injury) contributes significantly to morbidity and mortality following myocardial infarction (MI). Although rapid reperfusion of the ischemic myocardium was established decades ago as a highly beneficial therapy for MI, significant cell death still occurs after the onset of reperfusion. Mitochondrial dysfunction is closely associated with I/R injury, resulting in the uncontrolled production of reactive oxygen species (ROS). Considerable efforts have gone into understanding the metabolic perturbations elicited by I/R injury. Recent work has identified the critical role of reversible protein acetylation in maintaining normal mitochondrial biologic function and energy metabolism both in the normal heart and during I/R injury. Several studies have shown that modification of class I HDAC and/or Sirtuin (Sirt) activity is cardioprotective in the setting of I/R injury. A better understanding of the role of these metabolic pathways in reperfusion injury and their regulation by reversible protein acetylation presents a promising way forward in improving the treatment of cardiac reperfusion injury. Here we briefly review some of what is known about how acetylation regulates mitochondrial metabolism and how it relates to I/R injury.
Collapse
Affiliation(s)
- Daniel J Herr
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Toolika Singh
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Tajinder Dhammu
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Donald R Menick
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States of America.
| |
Collapse
|
44
|
Zhou S, Dai YM, Zeng XF, Chen HZ. Circadian Clock and Sirtuins in Diabetic Lung: A Mechanistic Perspective. Front Endocrinol (Lausanne) 2020; 11:173. [PMID: 32308644 PMCID: PMC7145977 DOI: 10.3389/fendo.2020.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes-induced tissue injuries in target organs such as the kidney, heart, eye, liver, skin, and nervous system contribute significantly to the morbidity and mortality of diabetes. However, whether the lung should be considered a diabetic target organ has been discussed for decades. Accumulating evidence shows that both pulmonary histological changes and functional abnormalities have been observed in diabetic patients, suggesting that the lung is a diabetic target organ. Mechanisms underlying diabetic lung are unclear, however, oxidative stress, systemic inflammation, and premature aging convincingly contribute to them. Circadian system and Sirtuins have been well-documented to play important roles in above mechanisms. Circadian rhythms are intrinsic mammalian biological oscillations with a period of near 24 h driven by the circadian clock system. This system plays an important role in the regulation of energy metabolism, oxidative stress, inflammation, cellular proliferation and senescence, thus impacting metabolism-related diseases, chronic airway diseases and cancers. Sirtuins, a family of adenine dinucleotide (NAD+)-dependent histone deacetylases, have been demonstrated to regulate a series of physiological processes and affect diseases such as obesity, insulin resistance, type 2 diabetes (T2DM), heart disease, cancer, and aging. In this review, we summarize recent advances in the understanding of the roles of the circadian clock and Sirtuins in regulating cellular processes and highlight the potential interactions of the circadian clock and Sirtuins in the context of diabetic lung.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Shuang Zhou
| | - Yi-Min Dai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Feng Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
45
|
Dibner C. The importance of being rhythmic: Living in harmony with your body clocks. Acta Physiol (Oxf) 2020; 228:e13281. [PMID: 30980501 DOI: 10.1111/apha.13281] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
Circadian rhythms have developed in all light-sensitive organisms, including humans, as a fundamental anticipatory mechanism that enables proactive adaptation to environmental changes. The circadian system is organized in a highly hierarchical manner, with clocks operative in most cells of the body ensuring the temporal coordination of physiological processes. Circadian misalignment, stemming from modern life style, draws increasing attention due to its tight association with the development of metabolic, cardiovascular, inflammatory and mental diseases as well as cancer. This review highlights recent findings emphasizing the role of the circadian system in the temporal orchestration of physiology, with a particular focus on implications of circadian misalignment in human pathologies.
Collapse
Affiliation(s)
- Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Medicine University Hospital of Geneva Geneva Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine University of Geneva Geneva Switzerland
- Diabetes Center, Faculty of Medicine University of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3) Geneva Switzerland
| |
Collapse
|
46
|
Mauvoisin D, Gachon F. Proteomics in Circadian Biology. J Mol Biol 2019; 432:3565-3577. [PMID: 31843517 DOI: 10.1016/j.jmb.2019.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
The circadian clock is an endogenous molecular timekeeping system that allows organisms to adjust their physiology and behavior to the time of day in an anticipatory fashion. In different organisms, the circadian clock coordinates physiology and metabolism through regulation of gene expression at the transcriptional and post-transcriptional levels. Until now, circadian gene expression studies have mostly focused primarily on transcriptomics approaches. This type of analyses revealed that many protein-encoding genes show circadian expression in a tissue-specific manner. During the last three decades, a long way has been traveled since the pioneering work on dinoflagellates, and new advances in mass spectrometry offered new perspectives in the characterization of the circadian dynamics of the proteome. Altogether, these efforts highlighted that rhythmic protein oscillation is driven equally by gene transcription, post-transcriptional and post-translational regulations. The determination of the role of the circadian clock in these three levels of regulation appears to be the next major challenge in the field.
Collapse
Affiliation(s)
- Daniel Mauvoisin
- L'institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
47
|
Abstract
Humans, like all mammals, partition their daily behaviour into activity (wakefulness) and rest (sleep) phases that differ largely in their metabolic requirements. The circadian clock evolved as an autonomous timekeeping system that aligns behavioural patterns with the solar day and supports the body functions by anticipating and coordinating the required metabolic programmes. The key component of this synchronization is a master clock in the brain, which responds to light-darkness cues from the environment. However, to achieve circadian control of the entire organism, each cell of the body is equipped with its own circadian oscillator that is controlled by the master clock and confers rhythmicity to individual cells and organs through the control of rate-limiting steps of metabolic programmes. Importantly, metabolic regulation is not a mere output function of the circadian system, but nutrient, energy and redox levels signal back to cellular clocks in order to reinforce circadian rhythmicity and to adapt physiology to temporal tissue-specific needs. Thus, multiple systemic and molecular mechanisms exist that connect the circadian clock with metabolism at all levels, from cellular organelles to the whole organism, and deregulation of this circadian-metabolic crosstalk can lead to various pathologies.
Collapse
|
48
|
Ubiquitylation Dynamics of the Clock Cell Proteome and TIMELESS during a Circadian Cycle. Cell Rep 2019; 23:2273-2282. [PMID: 29791839 DOI: 10.1016/j.celrep.2018.04.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 02/10/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Circadian clocks have evolved as time-measuring molecular devices to help organisms adapt their physiology to daily changes in light and temperature. Transcriptional oscillations account for a large fraction of rhythmic protein abundance. However, cycling of various posttranslational modifications, such as ubiquitylation, also contributes to shape the rhythmic protein landscape. In this study, we used an in vivo ubiquitin labeling assay to investigate the circadian ubiquitylated proteome of Drosophila melanogaster. We find that cyclic ubiquitylation affects MEGATOR (MTOR), a chromatin-associated nucleoporin that, in turn, feeds back to regulate the core molecular oscillator. Furthermore, we show that the ubiquitin ligase subunits CULLIN-3 (CUL-3) and SUPERNUMERARY LIMBS (SLMB) cooperate for ubiquitylating the TIMELESS protein. These findings stress the importance of ubiquitylation pathways in the Drosophila circadian clock and reveal a key component of this system.
Collapse
|
49
|
Distinct metabolic adaptation of liver circadian pathways to acute and chronic patterns of alcohol intake. Proc Natl Acad Sci U S A 2019; 116:25250-25259. [PMID: 31757851 DOI: 10.1073/pnas.1911189116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Binge drinking and chronic exposure to ethanol contribute to alcoholic liver diseases (ALDs). A potential link between ALDs and circadian disruption has been observed, though how different patterns of alcohol consumption differentially impact hepatic circadian metabolism remains virtually unexplored. Using acute versus chronic ethanol feeding, we reveal differential reprogramming of the circadian transcriptome in the liver. Specifically, rewiring of diurnal SREBP transcriptional pathway leads to distinct hepatic signatures in acetyl-CoA metabolism that are translated into the subcellular patterns of protein acetylation. Thus, distinct drinking patterns of alcohol dictate differential adaptation of hepatic circadian metabolism.
Collapse
|
50
|
Cox KH, Takahashi JS. Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol 2019; 63:R93-R102. [PMID: 31557726 PMCID: PMC6872945 DOI: 10.1530/jme-19-0153] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022]
Abstract
The mammalian circadian clock has evolved as an adaptation to the 24-h light/darkness cycle on earth. Maintaining cellular activities in synchrony with the activities of the organism (such as eating and sleeping) helps different tissue and organ systems coordinate and optimize their performance. The full extent of the mechanisms by which cells maintain the clock are still under investigation, but involve a core set of clock genes that regulate large networks of gene transcription both by direct transcriptional activation/repression as well as the recruitment of proteins that modify chromatin states more broadly.
Collapse
Affiliation(s)
- Kimberly H. Cox
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Joseph S. Takahashi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
- To whom correspondence should be addressed:
| |
Collapse
|