1
|
Li Y, Perera L, He RS, Baptissart M, Petrovich RM, Morgan M. TENT5C functions as a corepressor in the ligand-bound glucocorticoid receptor and estrogen receptor α complexes. FEBS J 2025. [PMID: 40421654 DOI: 10.1111/febs.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/28/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025]
Abstract
Terminal nucleotidyltransferase 5C (TENT5C) is a noncanonical poly(A) polymerase that promotes cancer suppression. TENT5C has been proposed to mediate the susceptibility of multiple myeloma to treatment with dexamethasone, a steroid hormone analog that binds to the glucocorticoid receptor (GR). However, the relationship between TENT5C and nuclear receptor (NR) signaling remains unclear. In this study, we investigate the regulatory role of TENT5C in the GR and estrogen receptor α (ERα) ligand complexes. We find that TENT5C acts as a corepressor of both GR and ERα. Molecular dynamics simulations indicate that the third TENT5C LXXLL motif directly interacts with ERα, but not GR. The physical interaction of TENT5C and ERα is supported by co-immunoprecipitation assays. Reporter assays show that mutations to the third TENT5C LXXLL motif disrupt TENT5C-mediated repression of ERα but do not affect the repression of the GR complex. In addition, the disruption of TENT5C poly(A) polymerase activity does not appear to affect TENT5C repression of ERα in the cell lines studied. Taken together, our findings highlight a role of TENT5C as an NR corepressor, differentially modulating GR- and ERα-induced transcriptional activity.
Collapse
Affiliation(s)
- Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Lalith Perera
- Genomic Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Rebecca S He
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Robert M Petrovich
- Genomic Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
2
|
Saadh MJ, Saeed TN, Alfarttoosi KH, Sanghvi G, Roopashree R, Thakur V, Lakshmi L, Kubaev A, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. Exosomes and MicroRNAs: key modulators of macrophage polarization in sepsis pathophysiology. Eur J Med Res 2025; 30:298. [PMID: 40247413 PMCID: PMC12007276 DOI: 10.1186/s40001-025-02561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Sepsis is a highly dangerous and complex condition that can result in death. It is characterized by a strong reaction to an infection, causing dysfunction in multiple bodily systems and a high risk of mortality. The transformation of macrophages is a vital stage in the procedure as they possess the capability to interchange between two separate types: M1, which promotes inflammation, and M2, which inhibits inflammation. The choice greatly affects the immune response of the host. This analysis underscores the rapidly expanding roles of exosomes and microRNAs (miRNAs) in regulating the trajectory of macrophage polarization during episodes of sepsis. Exosomes, extremely small extracellular vesicles, facilitate cellular communication by transferring biologically active compounds, including miRNAs, proteins, and lipids. We investigate the impact of changes in exosome production and composition caused by sepsis on macrophage polarization and function. Unique microRNAs present in exosomes play a significant role in controlling crucial signaling pathways that govern the phenotype of macrophages. Through thorough examination of recent progress in this area, we clarify the ways in which miRNAs derived from exosomes can either aggravate or alleviate the inflammatory reactions that occur during sepsis. This revelation not only deepens our comprehension of the underlying mechanisms of sepsis, but it also reveals potential new biomarkers and targets for treatment. This assessment aims to amalgamate diverse research investigations and propose potential avenues for future investigations on the influence that exosomes and miRNAs have on macrophage polarization and the body's response to sepsis. These entities are essential for controlling the host's reaction to sepsis and hold important functions in this mechanism.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Tamara Nazar Saeed
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Vishal Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - L Lakshmi
- Department of Nursing, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
3
|
Pan B, Hu D, Lu YW, Luo J, Xu XH, Guo H, Deng R, Liang Z, Wang Y, Ma Q, Mably JD, Tian J, Wang DZ. Trbp inhibits cardiac fibrosis through TGF-β pathway-mediated cross-talk between cardiomyocytes and fibroblasts. Clin Sci (Lond) 2025; 139:1-14. [PMID: 40067137 DOI: 10.1042/cs20242397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/20/2025]
Abstract
Cardiac remodeling in response to disease or tissue damage severely impairs heart function. Therefore, the description of the molecular mechanisms responsible is essential for the development of effective therapies. Trbp (Tarbp2) is a multifunctional RNA-binding protein that is essential during heart development, but its role in the adult heart and cardiac remodeling remains unknown. We generated inducible conditional knockout mice to delete Trbp from cardiomyocytes in young adults (Trbp-cKOs). While Trbp-cKO mice did not display a detectable phenotype, under stress conditions induced by transverse aortic constriction pressure overload, they rapidly developed severe heart failure; this was associated with maladaptive cardiac remodeling and increased interstitial fibrosis. RNA-sequencing revealed the induction of a fibrotic gene expression network and the TGF-β signaling pathway in Trbp-cKO hearts. In cultured neonatal rat ventricle cardiomyocytes (NRCMs), inhibition of Trbp resulted in an induction of the expression of both Tgfβ2 and Ltbp2; in contrast, Trbp overexpression repressed Tgfβ2 expression. Knockdown of Trbp in NRCMs that were co-cultured with neonatal rat cardiac fibroblasts (NRCFs) resulted in an increase in fibrotic gene expression. However, knockdown of Trbp in NRCMs combined with knockdown of Tgfβ2 in NRCFs using the same co-culture system failed to induce the same change in fibrotic gene expression. These data provide evidence for a critical role for Trbp in regulating cardiac fibrosis during cardiac remodeling mediated by cross-talk between cardiomyocytes and fibroblasts. The link to TGF-β signaling also highlights its importance and reveals a novel approach to intervention by targeting of Trbp.
Collapse
Affiliation(s)
- Bo Pan
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - Di Hu
- Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - Jing Luo
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
| | - Xiao Hui Xu
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
| | - Haipeng Guo
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - Rui Deng
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
- The Center for Regenerative Medicine and USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, U.S.A
- Department of Internal Medicine, USF Health, University of South Florida, Tampa, FL 33602, U.S.A
| | - Zhuomin Liang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - Yi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
| | - John D Mably
- The Center for Regenerative Medicine and USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, U.S.A
- Department of Internal Medicine, USF Health, University of South Florida, Tampa, FL 33602, U.S.A
| | - Jie Tian
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston MA 02115, U.S.A
- Department of Molecular Pharmacology & Physiology, USF Health, University of South Florida, Tampa, FL 33602, U.S.A
| |
Collapse
|
4
|
Admoni Y, Fridrich A, Weavers PK, Aharoni R, Razin T, Salinas-Saavedra M, Rabani M, Frank U, Moran Y. miRNA-target complementarity in cnidarians resembles its counterpart in plants. EMBO Rep 2025; 26:836-859. [PMID: 39747665 PMCID: PMC11811051 DOI: 10.1038/s44319-024-00350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/30/2023] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
microRNAs (miRNAs) are important post-transcriptional regulators that activate silencing mechanisms by annealing to mRNA transcripts. While plant miRNAs match their targets with nearly-full complementarity leading to mRNA cleavage, miRNAs in most animals require only a short sequence called 'seed' to inhibit target translation. Recent findings showed that miRNAs in cnidarians, early-branching metazoans, act similarly to plant miRNAs, by exhibiting full complementarity and target cleavage; however, it remained unknown if seed-based regulation was possible in cnidarians. Here, we investigate the miRNA-target complementarity requirements for miRNA activity in the cnidarian Nematostella vectensis. We show that bilaterian-like complementarity of seed-only or seed and supplementary 3' matches are insufficient for miRNA-mediated knockdown. Furthermore, miRNA-target mismatches in the cleavage site decrease knockdown efficiency. Finally, miRNA silencing of a target with three seed binding sites in the 3' untranslated region that mimics typical miRNA targeting was repressed in zebrafish but not in Nematostella and another cnidarian, Hydractinia symbiolongicarpus. Altogether, these results unravel striking similarities between plant and cnidarian miRNAs supporting a possible common evolutionary origin of miRNAs in plants and animals.
Collapse
Affiliation(s)
- Yael Admoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Paris K Weavers
- Center for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Talya Razin
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Miguel Salinas-Saavedra
- Center for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Michal Rabani
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Uri Frank
- Center for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
5
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Chang C, Wang Y, Wang R, Bao X. Considering Context-Specific microRNAs in Ischemic Stroke with Three "W": Where, When, and What. Mol Neurobiol 2024; 61:7335-7353. [PMID: 38381296 DOI: 10.1007/s12035-024-04051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
MicroRNAs are short non-coding RNA molecules that function as critical regulators of various biological processes through negative regulation of gene expression post-transcriptionally. Recent studies have indicated that microRNAs are potential biomarkers for ischemic stroke. In this review, we first illustrate the pathogenesis of ischemic stroke and demonstrate the biogenesis and transportation of microRNAs from cells. We then discuss several promising microRNA biomarkers in ischemic stroke in a context-specific manner from three dimensions: biofluids selection for microRNA extraction (Where), the timing of sample collection after ischemic stroke onset (When), and the clinical application of the differential-expressed microRNAs during stroke pathophysiology (What). We show that microRNAs have the utilities in ischemic stroke diagnosis, risk stratification, subtype classification, prognosis prediction, and treatment response monitoring. However, there are also obstacles in microRNA biomarker research, and this review will discuss the possible ways to improve microRNA biomarkers. Overall, microRNAs have the potential to assist clinical treatment, and developing microRNA panels for clinical application is worthwhile.
Collapse
Affiliation(s)
- Chuheng Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- M.D. Program, Peking Union Medical College, Beijing, 100730, China
| | - Youyang Wang
- Department of General Practice (General Internal Medicine), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Zhang L, Yu F, Zhang Y, Li P. Implications of lncRNAs in Helicobacter pylori-associated gastrointestinal cancers: underlying mechanisms and future perspectives. Front Cell Infect Microbiol 2024; 14:1392129. [PMID: 39035354 PMCID: PMC11257847 DOI: 10.3389/fcimb.2024.1392129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a harmful bacterium that is difficult to conveniently diagnose and effectively eradicate. Chronic H. pylori infection increases the risk of gastrointestinal diseases, even cancers. Despite the known findings, more underlying mechanisms are to be deeply explored to facilitate the development of novel prevention and treatment strategies of H. pylori infection. Long noncoding RNAs (lncRNAs) are RNAs with more than 200 nucleotides. They may be implicated in cell proliferation, inflammation and many other signaling pathways of gastrointestinal cancer progression. The dynamic expression of lncRNAs indicates their potential to be diagnostic or prognostic biomarkers. In this paper, we comprehensively summarize the processes of H. pylori infection and the treatment methods, review the known findings of lncRNA classification and functional mechanisms, elucidate the roles of lncRNAs in H. pylori-related gastrointestinal cancer, and discuss the clinical perspectives of lncRNAs.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Moradimotlagh A, Brar HK, Chen S, Moon KM, Foster LJ, Reiner N, Nandan D. Characterization of Argonaute-containing protein complexes in Leishmania-infected human macrophages. PLoS One 2024; 19:e0303686. [PMID: 38781128 PMCID: PMC11115314 DOI: 10.1371/journal.pone.0303686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
The intracellular protozoan parasite Leishmania causes leishmaniasis in humans, leading to serious illness and death in tropical and subtropical areas worldwide. Unfortunately, due to the unavailability of approved vaccines for humans and the limited efficacy of available drugs, leishmaniasis is on the rise. A comprehensive understanding of host-pathogen interactions at the molecular level could pave the way to counter leishmaniasis. There is growing evidence that several intracellular pathogens target RNA interference (RNAi) pathways in host cells to facilitate their persistence. The core elements of the RNAi system are complexes of Argonaute (Ago) proteins with small non-coding RNAs, also known as RNA-induced silencing complexes (RISCs). Recently, we have shown that Leishmania modulates Ago1 protein of host macrophages for its survival. In this study, we biochemically characterize the Ago proteins' interactome in Leishmania-infected macrophages compared to non-infected cells. For this, a quantitative proteomic approach using stable isotope labelling by amino acids in cell culture (SILAC) was employed, followed by purification of host Ago-complexes using a short TNRC6 protein-derived peptide fused to glutathione S-transferase beads as an affinity matrix. Proteomic-based detailed biochemical analysis revealed Leishmania modulated host macrophage RISC composition during infection. This analysis identified 51 Ago-interacting proteins with a broad range of biological activities. Strikingly, Leishmania proteins were detected as part of host Ago-containing complexes in infected cells. Our results present the first report of comprehensive quantitative proteomics of Ago-containing complexes isolated from Leishmania-infected macrophages and suggest targeting the effector complex of host RNAi machinery. Additionally, these results expand knowledge of RISC in the context of host-pathogen interactions in parasitology in general.
Collapse
Affiliation(s)
- Atieh Moradimotlagh
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Harsimran Kaur Brar
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Stella Chen
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C, Canada
| | - Neil Reiner
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Devki Nandan
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| |
Collapse
|
9
|
Pouresmaeil M, Dall'Ara M, Salvato M, Turri V, Ratti C. Cauliflower mosaic virus: Virus-host interactions and its uses in biotechnology and medicine. Virology 2023; 580:112-119. [PMID: 36812696 DOI: 10.1016/j.virol.2023.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Cauliflower mosaic virus (CaMV) was the first discovered plant virus with genomic DNA that uses reverse transcriptase for replication. The CaMV 35S promoter is a constitutive promoter and thus, an attractive driver of gene expression in plant biotechnology. It is used in most transgenic crops to activate foreign genes which have been artificially inserted into the host plant. In the last century, producing food for the world's population while preserving the environment and human health is the main topic of agriculture. The damage caused by viral diseases has a significant negative economic impact on agriculture, and disease control is based on two strategies: immunization and prevention to contain virus spread, so correct identification of plant viruses is important for disease management. Here, we discuss CaMV from different aspects: taxonomy, structure and genome, host plants and symptoms, transmission and pathogenicity, prevention, control and application in biotechnology as well as in medicine. Also, we calculated the CAI index for three ORFs IV, V, and VI of the CaMV virus in host plants, the results of which can be used in the discussion of gene transfer or antibody production to identify the CaMV.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Department of Biotechnology, Faculty of Agriculture, Azarbijan Shahid Madani University, Tabriz, Iran.
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| | - Maria Salvato
- University of Maryland, Department of Veterinary Medicine, College Park, MD, 20742, USA
| | - Valentina Turri
- Healthcare Direction, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori, IRCCS, 47014, Meldola, FC, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| |
Collapse
|
10
|
Kozłowski HM, Sobocińska J, Jędrzejewski T, Maciejewski B, Dzialuk A, Wrotek S. Fever-range whole body hyperthermia leads to changes in immune-related genes and miRNA machinery in Wistar rats. Int J Hyperthermia 2023; 40:2216899. [PMID: 37279921 DOI: 10.1080/02656736.2023.2216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVE Fever is defined as a rise in body temperature upon disease. Fever-range hyperthermia (FRH) is a simplified model of fever and a well-established medical procedure. Despite its beneficial effects, the molecular changes induced by FRH remain poorly characterized. The aim of this study was to investigate the influence of FRH on regulatory molecules such as cytokines and miRNAs involved in inflammatory processes. METHODS We developed a novel, fast rat model of infrared-induced FRH. The body temperature of animals was monitored using biotelemetry. FRH was induced by the infrared lamp and heating pad. White blood cell counts were monitored using Auto Hematology Analyzer. In peripheral blood mononuclear cells, spleen and liver expression of immune-related genes (IL-10, MIF and G-CSF, IFN-γ) and miRNA machinery (DICER1, TARBP2) was analyzed with RT-qPCR. Furthermore, RT-qPCR was used to explore miRNA-155 levels in the plasma of rats. RESULTS We observed a decrease in the total number of leukocytes due to lower number of lymphocytes, and an increase in the number of granulocytes. Furthermore, we observed elevated expressions of DICER1, TARBP2 and granulocyte colony-stimulating factor (G-CSF) in the spleen, liver and PBMCs immediately following FRH. FRH treatment also had anti-inflammatory effects, evidenced by the downregulation of pro-inflammatory macrophage migration inhibitor factor (MIF) and miR-155, and the increased expression of anti-inflammatory IL-10. CONCLUSION FRH affects the expression of molecules involved in inflammatory processes leading to alleviated inflammation. We suppose these effects may be miRNAs-dependent and FRH can be involved in therapies where anti-inflammatory action is needed.
Collapse
Affiliation(s)
- Henryk Mikołaj Kozłowski
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, Torun, Poland
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Justyna Sobocińska
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Bartosz Maciejewski
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Artur Dzialuk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
11
|
Negrete-García MC, de Jesús Ramos-Abundis J, Alvarado-Vasquez N, Montes-Martínez E, Montaño M, Ramos C, Sommer B. Exosomal Micro-RNAs as Intercellular Communicators in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11047. [PMID: 36232350 PMCID: PMC9569972 DOI: 10.3390/ijms231911047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Communication between neighboring or distant cells is made through a complex network that includes extracellular vesicles (EVs). Exosomes, which are a subgroup of EVs, are released from most cell types and have been found in biological fluids such as urine, plasma, and airway secretions like bronchoalveolar lavage (BAL), nasal lavage, saliva, and sputum. Mainly, the cargo exosomes are enriched with mRNAs and microRNAs (miRNAs), which can be transferred to a recipient cell consequently modifying and redirecting its biological function. The effects of miRNAs derive from their role as gene expression regulators by repressing or degrading their target mRNAs. Nowadays, various types of research are focused on evaluating the potential of exosomal miRNAs as biomarkers for the prognosis and diagnosis of different pathologies. Nevertheless, there are few reports on their role in the pathophysiology of idiopathic pulmonary fibrosis (IPF), a chronic lung disease characterized by progressive lung scarring with no cure. In this review, we focus on the role and effect of exosomal miRNAs as intercellular communicators in the onset and progression of IPF, as well as discussing their potential utility as therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- María Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Javier de Jesús Ramos-Abundis
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
- Higher School of Medicine Instituto Politécnico Nacional, Salvador Díaz Mirón esquina Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Noé Alvarado-Vasquez
- Biochemistry Department, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Eduardo Montes-Martínez
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Martha Montaño
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Carlos Ramos
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Bettina Sommer
- Bronchial Hyperreactivity Research Department, National Institute of Respiratory Diseases “Ismael Cosío Villegas” Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
12
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
13
|
Vaughn LS, Frederick K, Burnett SB, Sharma N, Bragg DC, Camargos S, Cardoso F, Patel RC. DYT- PRKRA Mutation P222L Enhances PACT's Stimulatory Activity on Type I Interferon Induction. Biomolecules 2022; 12:713. [PMID: 35625640 PMCID: PMC9138762 DOI: 10.3390/biom12050713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
DYT-PRKRA (dystonia 16 or DYT-PRKRA) is caused by mutations in the PRKRA gene that encodes PACT, the protein activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR). PACT participates in several cellular pathways, of which its role as a PKR activator protein during integrated stress response (ISR) is the best characterized. Previously, we have established that the DYT-PRKRA mutations cause enhanced activation of PKR during ISR to sensitize DYT-PRKRA cells to apoptosis. In this study, we evaluate if the most prevalent substitution mutation reported in DYT-PRKRA patients alters PACT's functional role in induction of type I IFNs via the retinoic acid-inducible gene I (RIG-I) signaling. Our results indicate that the P222L mutation augments PACT's ability to induce IFN β in response to dsRNA and the basal expression of IFN β and IFN-stimulated genes (ISGs) is higher in DYT-PRKRA patient cells compared to cells from the unaffected controls. Additionally, IFN β and ISGs are also induced at higher levels in DYT-PRKRA cells in response to dsRNA. These results offer a new avenue for investigations directed towards understanding the underlying molecular pathomechanisms in DYT-PRKRA.
Collapse
Affiliation(s)
- Lauren S. Vaughn
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Kenneth Frederick
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Samuel B. Burnett
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - D. Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - Sarah Camargos
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Francisco Cardoso
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Rekha C. Patel
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| |
Collapse
|
14
|
Tripathi AM, Admoni Y, Fridrich A, Lewandowska M, Surm JM, Aharoni R, Moran Y. Functional characterization of a 'plant-like' HYL1 homolog in the cnidarian Nematostella vectensis indicates a conserved involvement in microRNA biogenesis. eLife 2022; 11:69464. [PMID: 35289745 PMCID: PMC9098223 DOI: 10.7554/elife.69464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/14/2022] [Indexed: 12/01/2022] Open
Abstract
While the biogenesis of microRNAs (miRNAs) in both animals and plants depends on the RNase III Dicer, its partner proteins are considered distinct for each kingdom. Nevertheless, recent discovery of homologs of Hyponastic Leaves1 (HYL1), a ‘plant-specific’ Dicer partner, in the metazoan phylum Cnidaria, challenges the view that miRNAs evolved convergently in animals and plants. Here, we show that the HYL1 homolog Hyl1-like a (Hyl1La) is crucial for development and miRNA biogenesis in the cnidarian model Nematostella vectensis. Inhibition of Hyl1La by morpholinos resulted in metamorphosis arrest in Nematostella embryos and a significant reduction in levels of most miRNAs. Further, meta-analysis of morphants of miRNA biogenesis components, like Dicer1, shows clustering of their miRNA profiles with Hyl1La morphants. Strikingly, immunoprecipitation of Hyl1La followed by quantitative PCR revealed that in contrast to the plant HYL1, Hyl1La interacts only with precursor miRNAs and not with primary miRNAs. This was complemented by an in vitro binding assay of Hyl1La to synthetic precursor miRNA. Altogether, these results suggest that the last common ancestor of animals and plants carried a HYL1 homolog that took essential part in miRNA biogenesis and indicate early emergence of the miRNA system before plants and animals separated. In both animals and plants, small molecules known as micro ribonucleic acids (or miRNAs for short) control the amount of proteins cells make from instructions encoded in their DNA. Cells make mature miRNA molecules by cutting and modifying newly-made RNA molecules in two stages. Some of the components animals and plants utilize to make and use miRNAs are similar, but most are completely different. For example, in plants an enzyme known as Dicer cuts newly made RNAs into mature miRNAs with the help of a protein called HYL1, whereas humans and other animals do not have HYL1 and Dicer works with alternative partner proteins, instead. Therefore, it is generally believed that miRNAs evolved separately in animals and plants after they split from a common ancestor around 1.6 billion years ago. Recent studies on sea anemones and other primitive animals challenge this idea. Proteins similar to HYL1 in plants have been discovered in sea anemones and sponges, and sea anemone miRNAs show several similarities to plant miRNAs including their mode of action. However, it is not clear whether these HYL1-like proteins work in the same way as their plant counterparts. Here, Tripathi, Admoni et al. investigated the role of the HYL1-like protein in sea anemones. The experiments found that this protein was essential for the sea anemones to make miRNAs and to grow and develop properly. Unlike HYL1 in plants – which is involved in both stages of processing newly-made miRNAs into mature miRNAs – the sea anemone HYL1-like protein only helped in the second stage to make mature miRNAs from intermediate molecules known as precursor miRNAs. These findings demonstrate that some of the components plants use to make miRNAs also perform similar roles in sea anemones. This suggests that the miRNA system evolved before the ancestors of plants and animals separated from each other. Questions for future studies will include investigating how plants and animals evolved different miRNA machinery, and why sponges and jellyfish have HYL1-like proteins, whereas humans and other more complex animals do not.
Collapse
Affiliation(s)
- Abhinandan M Tripathi
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Admoni
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Epigenomic Modifications in Modern and Ancient Genomes. Genes (Basel) 2022; 13:genes13020178. [PMID: 35205223 PMCID: PMC8872240 DOI: 10.3390/genes13020178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Epigenetic changes have been identified as a major driver of fundamental metabolic pathways. More specifically, the importance of epigenetic regulatory mechanisms for biological processes like speciation and embryogenesis has been well documented and revealed the direct link between epigenetic modifications and various diseases. In this review, we focus on epigenetic changes in animals with special attention on human DNA methylation utilizing ancient and modern genomes. Acknowledging the latest developments in ancient DNA research, we further discuss paleoepigenomic approaches as the only means to infer epigenetic changes in the past. Investigating genome-wide methylation patterns of ancient humans may ultimately yield in a more comprehensive understanding of how our ancestors have adapted to the changing environment, and modified their lifestyles accordingly. We discuss the difficulties of working with ancient DNA in particular utilizing paleoepigenomic approaches, and assess new paleoepigenomic data, which might be helpful in future studies.
Collapse
|
16
|
Rajput M, Choudhary K, Kumar M, Vivekanand V, Chawade A, Ortiz R, Pareek N. RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. PLANTS 2021; 10:plants10091914. [PMID: 34579446 PMCID: PMC8467553 DOI: 10.3390/plants10091914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
With the rapid population growth, there is an urgent need for innovative crop improvement approaches to meet the increasing demand for food. Classical crop improvement approaches involve, however, a backbreaking process that cannot equipoise with increasing crop demand. RNA-based approaches i.e., RNAi-mediated gene regulation and the site-specific nuclease-based CRISPR/Cas9 system for gene editing has made advances in the efficient targeted modification in many crops for the higher yield and resistance to diseases and different stresses. In functional genomics, RNA interference (RNAi) is a propitious gene regulatory approach that plays a significant role in crop improvement by permitting the downregulation of gene expression by small molecules of interfering RNA without affecting the expression of other genes. Gene editing technologies viz. the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) have appeared prominently as a powerful tool for precise targeted modification of nearly all crops' genome sequences to generate variation and accelerate breeding efforts. In this regard, the review highlights the diverse roles and applications of RNAi and CRISPR/Cas9 system as powerful technologies to improve agronomically important plants to enhance crop yields and increase tolerance to environmental stress (biotic or abiotic). Ultimately, these technologies can prove to be important in view of global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Meenakshi Rajput
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Khushboo Choudhary
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - V. Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India;
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
- Correspondence: (A.C.); (N.P.)
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
- Correspondence: (A.C.); (N.P.)
| |
Collapse
|
17
|
Li JN, Sun HL, Wang MY, Chen PS. E-cadherin Interacts With Posttranslationally-Modified AGO2 to Enhance miRISC Activity. Front Cell Dev Biol 2021; 9:671244. [PMID: 34291046 PMCID: PMC8287304 DOI: 10.3389/fcell.2021.671244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which post-transcriptionally suppress target mRNAs expression and/or translation to modulate pathophyological processes. Expression and function of miRNAs are fine-tuned by a conserved biogenesis machinery involves two RNase-dependent processing steps of miRNA maturation and the final step of miRNA-induced silencing complex (miRISC)-mediated target silencing. A functional miRISC requires Argonaute 2 (AGO2) as an essential catalytic component which plays central roles in miRISC function. We uncovered a post-translational regulatory mechanism of AGO2 by E-cadherin. Mechanistically, E-cadherin activates ERK to phosphorylate AGO2, along with enhanced protein glycosylation. Consequently, the phosphorylated AGO2 was stabilized and ultimately resulted in induced miRISC activity on gene silencing. This study revealed a novel pathway for miRNA regulation through an E-cadherin-mediated miRISC activation.
Collapse
Affiliation(s)
- Jie-Ning Li
- College of Medicine, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Lung Sun
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Pai-Sheng Chen
- College of Medicine, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
18
|
The Ambivalent Role of miRNAs in Carcinogenesis: Involvement in Renal Cell Carcinoma and Their Clinical Applications. Pharmaceuticals (Basel) 2021; 14:ph14040322. [PMID: 33918154 PMCID: PMC8065760 DOI: 10.3390/ph14040322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
The analysis of microRNA (miRNAs), small, non-coding endogenous RNA, plays a crucial role in oncology. These short regulatory sequences, acting on thousands of messenger RNAs (mRNAs), modulate gene expression at the transcriptional and post-transcriptional level leading to translational repression or degradation of target molecules. Although their function is required for several physiological processes, such as proliferation, apoptosis and cell differentiation, miRNAs are also responsible for development and/or progression of several cancers, since they may interact with classical tumor pathways. In this review, we highlight recent advances in deregulated miRNAs in cancer focusing on renal cell carcinoma (RCC) and provide an overview of the potential use of miRNA in their clinical settings, such as diagnostic and prognostic markers.
Collapse
|
19
|
Ning Y, Hu J, Lu F. Aptamers used for biosensors and targeted therapy. Biomed Pharmacother 2020; 132:110902. [PMID: 33096353 PMCID: PMC7574901 DOI: 10.1016/j.biopha.2020.110902] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
Aptamers are single-stranded nucleic acid sequences that can bind to target molecules with high selectivity and affinity. Most aptamers are screened in vitro by a combinatorial biology technique called systematic evolution of ligands by exponential enrichment (SELEX). Since aptamers were discovered in the 1990s, they have attracted considerable attention and have been widely used in many fields owing to their unique advantages. In this review, we present an overview of the advancements made in aptamers used for biosensors and targeted therapy. For the former, we will discuss multiple aptamer-based biosensors with different principles detected by various signaling methods. For the latter, we will focus on aptamer-based targeted therapy using aptamers as both biotechnological tools for targeted drug delivery and as targeted therapeutic agents. Finally, challenges and new perspectives associated with these two regions were further discussed. We hope that this review will help researchers interested in aptamer-related biosensing and targeted therapy research.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
20
|
Carnino JM, Lee H, He X, Groot M, Jin Y. Extracellular vesicle-cargo miR-185-5p reflects type II alveolar cell death after oxidative stress. Cell Death Discov 2020; 6:82. [PMID: 32963810 PMCID: PMC7484781 DOI: 10.1038/s41420-020-00317-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 01/05/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating syndrome responsible for significant morbidity and mortality. Diffuse alveolar epithelial cell death, including but not limited to apoptosis and necroptosis, is one of the hallmarks of ARDS. Currently, no detectable markers can reflect this feature of ARDS. Hyperoxia-induced lung injury is a well-established murine model that mimics human ARDS. We found that hyperoxia and its derivative, reactive oxygen species (ROS), upregulate miR-185-5p, but not miR-185-3p, in alveolar cells. This observation is particularly more significant in alveolar type II (ATII) than alveolar type I (ATI) cells. Functionally, miR-185-5p promotes expression and activation of both receptor-interacting kinase I (RIPK1) and receptor-interacting kinase III (RIPK3), leading to phosphorylation of mixed lineage kinase domain-like (MLKL) and necroptosis. MiR-185-5p regulates this process probably via suppressing FADD and caspase-8 which are both necroptosis inhibitors. Furthermore, miR-185-5p also promotes intrinsic apoptosis, reflected by enhancing caspase-3/7 and 9 activity. Importantly, extracellular vesicle (EV)-containing miR-185-5p, but not free miR-185-5p, is detectable and significantly elevated after hyperoxia-induced cell death, both in vitro and in vivo. Collectively, hyperoxia-induced miR-185-5p regulates both necroptosis and apoptosis in ATII cells. The extracellular level of EV-cargo miR-185-5p is elevated in the setting of profound epithelial cell death.
Collapse
Affiliation(s)
- Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118 USA
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118 USA
| | - Xue He
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118 USA
| | - Michael Groot
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118 USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118 USA
| |
Collapse
|
21
|
Huang Q, Evans JD. Targeting the honey bee gut parasite Nosema ceranae with siRNA positively affects gut bacteria. BMC Microbiol 2020; 20:258. [PMID: 32807095 PMCID: PMC7433167 DOI: 10.1186/s12866-020-01939-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gut microbial communities can contribute positively and negatively to host health. So far, eight core bacterial taxonomic clusters have been reported in honey bees. These bacteria are involved in host metabolism and defenses. Nosema ceranae is a gut intracellular parasite of honey bees which destroys epithelial cells and gut tissue integrity. Studies have shown protective impacts of honey bee gut microbiota towards N. ceranae infection. However, the impacts of N. ceranae on the relative abundance of honey bee gut microbiota remains unclear, and has been confounded during prior infection assays which resulted in the co-inoculation of bacteria during Nosema challenges. We used a novel method, the suppression of N. ceranae with specific siRNAs, to measure the impacts of Nosema on the gut microbiome. RESULTS Suppressing N. ceranae led to significant positive effects on microbial abundance. Nevertheless, 15 bacterial taxa, including three core taxa, were negatively correlated with N. ceranae levels. In particular, one co-regulated group of 7 bacteria was significantly negatively correlated with N. ceranae levels. CONCLUSIONS N. ceranae are negatively correlated with the abundance of 15 identified bacteria. Our results provide insights into interactions between gut microbes and N. ceranae during infection.
Collapse
Affiliation(s)
- Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Zhimin Avenue 1101, Nanchang, 330045, China.
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, BARC-East Building 306, Beltsville, MD, 20705, USA.
| |
Collapse
|
22
|
Dubey H, Kiran K, Jaswal R, Bhardwaj SC, Mondal TK, Jain N, Singh NK, Kayastha AM, Sharma TR. Identification and characterization of Dicer-like genes in leaf rust pathogen (Puccinia triticina) of wheat. Funct Integr Genomics 2020; 20:711-721. [PMID: 32705366 DOI: 10.1007/s10142-020-00745-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Puccinia triticina (P. triticina) is one of the most devastating fungal pathogens of wheat which causes significant annual yield loss to the crop. Understanding the gene regulatory mechanism of the biotrophic pathogen is one of the important aspects of host-pathogen interaction studies. Dicer-like genes are considered as important mediators of RNAi-based gene regulation. In this study, we report the presence of three Dicer-like genes (Pt-DCL1, Pt-DCL2, Pt-DCL3) in P. triticina genome identified through computational and biological analyses. Quantitative real-time PCR studies revealed an increase in the expression of these genes in germinating spore stages. Heterologous expression combined with mass spectrometry analysis of Pt-DCL2 confirmed the presence of a canonical Dicer-like gene in P. triticina. Phylogenetic analysis of the Pt-DCLs with the Dicer-like proteins from other organisms showed a distinct cluster of rust pathogens from the order Pucciniales. The results indicated a species-specific duplication of Dicer-like genes within the wheat rust pathogens. This study, for the first time, reports the presence of Dicer-dependent RNAi pathway in P. triticina that may play a role in gene regulatory mechanism of the pathogen during its development. Our study serves as a vital source of information for further RNAi-based molecular studies for better understanding and management of the wheat leaf rust disease.
Collapse
Affiliation(s)
- Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India.,School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, Karnataka, 560035, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Rajdeep Jaswal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, 171009, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Neha Jain
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India. .,Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India.
| |
Collapse
|
23
|
Lee TJ, Yuan X, Kerr K, Yoo JY, Kim DH, Kaur B, Eltzschig HK. Strategies to Modulate MicroRNA Functions for the Treatment of Cancer or Organ Injury. Pharmacol Rev 2020; 72:639-667. [PMID: 32554488 PMCID: PMC7300323 DOI: 10.1124/pr.119.019026] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer and organ injury-such as that occurring in the perioperative period, including acute lung injury, myocardial infarction, and acute gut injury-are among the leading causes of death in the United States and impose a significant impact on quality of life. MicroRNAs (miRNAs) have been studied extensively during the last two decades for their role as regulators of gene expression, their translational application as diagnostic markers, and their potential as therapeutic targets for disease treatment. Despite promising preclinical outcomes implicating miRNA targets in disease treatment, only a few miRNAs have reached clinical trials. This likely relates to difficulties in the delivery of miRNA drugs to their targets to achieve efficient inhibition or overexpression. Therefore, understanding how to efficiently deliver miRNAs into diseased tissues and specific cell types in patients is critical. This review summarizes current knowledge on various approaches to deliver therapeutic miRNAs or miRNA inhibitors and highlights current progress in miRNA-based disease therapy that has reached clinical trials. Based on ongoing advances in miRNA delivery, we believe that additional therapeutic approaches to modulate miRNA function will soon enter routine medical treatment of human disease, particularly for cancer or perioperative organ injury. SIGNIFICANCE STATEMENT: MicroRNAs have been studied extensively during the last two decades in cancer and organ injury, including acute lung injury, myocardial infarction, and acute gut injury, for their regulation of gene expression, application as diagnostic markers, and therapeutic potentials. In this review, we specifically emphasize the pros and cons of different delivery approaches to modulate microRNAs, as well as the most recent exciting progress in the field of therapeutic targeting of microRNAs for disease treatment in patients.
Collapse
Affiliation(s)
- Tae Jin Lee
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xiaoyi Yuan
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Keith Kerr
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Dong H Kim
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Balveen Kaur
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Holger K Eltzschig
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
24
|
Coordinated AR and microRNA regulation in prostate cancer. Asian J Urol 2020; 7:233-250. [PMID: 32742925 PMCID: PMC7385519 DOI: 10.1016/j.ajur.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 03/22/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022] Open
Abstract
The androgen receptor (AR) remains a key driver of prostate cancer (PCa) progression, even in the advanced castrate-resistant stage, where testicular androgens are absent. It is therefore of critical importance to understand the molecular mechanisms governing its activity and regulation during prostate tumourigenesis. MicroRNAs (miRs) are small ∼22 nt non-coding RNAs that regulate target gene, often through association with 3′ untranslated regions (3′UTRs) of transcripts. They display dysregulation during cancer progression, can function as oncogenes or tumour suppressors, and are increasingly recognised as targets or regulators of hormonal action. Thus, understanding factors which modulate miRs synthesis is essential. There is increasing evidence for complex and dynamic bi-directional cross-talk between the multi-step miR biogenesis cascade and the AR signalling axis in PCa. This review summarises the wealth of mechanisms by which miRs are regulated by AR, and conversely, how miRs impact AR's transcriptional activity, including that of AR splice variants. In addition, we assess the implications of the convergence of these pathways on the clinical employment of miRs as PCa biomarkers and therapeutic targets.
Collapse
|
25
|
Fujitani K, Otomo A, Nagayama Y, Tachibana T, Kato R, Kawashima Y, Kodera Y, Kato T, Takada S, Tamura K, Takamatsu N, Ito M. PACT/PRKRA and p53 regulate transcriptional activity of DMRT1. Genet Mol Biol 2020; 43:e20190017. [PMID: 32251494 PMCID: PMC7198010 DOI: 10.1590/1678-4685-gmb-2019-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022] Open
Abstract
The transcription factor DMRT1 (doublesex and mab-3 related transcription factor)
has two distinct functions, somatic-cell masculinization and germ-cell
development in some vertebrate species, including mouse and the African clawed
frog Xenopus laevis. However, its transcriptional regulation
remains unclear. We tried to identify DMRT1-interacting proteins from X.
laevis testes by immunoprecipitation with an anti-DMRT1 antibody
and MS/MS analysis, and selected three proteins, including PACT/PRKRA
(Interferon-inducible double-stranded RNA dependent protein kinase activator A)
derived from testes. Next, we examined the effects of PACT/PRKRA and/or p53 on
the transcriptional activity of DMRT1. In transfected 293T cells, PACT/PRKRA and
p53 significantly enhanced and repressed DMRT1-driven luciferase activity,
respectively. We also observed that the enhanced activity by PACT/PRKRA was
strongly attenuated by p53. Moreover, in situ hybridization
analysis of Pact/Prkra mRNA in tadpole gonads indicated high
expression in female and male germline stem cells. Taken together, these
findings suggest that PACT/PRKRA and p53 might positively and negatively
regulate the activity of DMRT1, respectively, for germline stem cell fate.
Collapse
Affiliation(s)
- Kazuko Fujitani
- Kitasato University, Gene Analysis Center, School of Medicine, Sagamihara, Japan
| | - Asako Otomo
- Tokai University School of Medicine, Department of Molecular Life Sciences, Isehara, Japan
| | - Yuto Nagayama
- Osaka City University, Department of Bioengineering, Graduate School of Engineering, Osaka, Japan
| | - Taro Tachibana
- Osaka City University, Department of Bioengineering, Graduate School of Engineering, Osaka, Japan.,Cell Engineering Corporation, Osaka, Japan
| | - Rika Kato
- Kitasato University, Department of Physics, School of Science, Sagamihara, Japan
| | - Yusuke Kawashima
- Kitasato University, Department of Physics, School of Science, Sagamihara, Japan
| | - Yoshio Kodera
- Kitasato University, Department of Physics, School of Science, Sagamihara, Japan
| | - Tomoko Kato
- National Research Institute for Child Health and Development, Department of Systems BioMedicine, Tokyo, Japan
| | - Shuji Takada
- National Research Institute for Child Health and Development, Department of Systems BioMedicine, Tokyo, Japan
| | - Kei Tamura
- Kitasato University, Department of Bioscience, School of Science, Sagamihara, Japan
| | - Nobuhiko Takamatsu
- Kitasato University, Department of Bioscience, School of Science, Sagamihara, Japan
| | - Michihiko Ito
- Kitasato University, Department of Bioscience, School of Science, Sagamihara, Japan
| |
Collapse
|
26
|
Sousa AR, Oliveira AV, Oliveira MJ, Sarmento B. Nanotechnology-based siRNA delivery strategies for metastatic colorectal cancer therapy. Int J Pharm 2019; 568:118530. [DOI: 10.1016/j.ijpharm.2019.118530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
|
27
|
Salem ESB, Vonberg AD, Borra VJ, Gill RK, Nakamura T. RNAs and RNA-Binding Proteins in Immuno-Metabolic Homeostasis and Diseases. Front Cardiovasc Med 2019; 6:106. [PMID: 31482095 PMCID: PMC6710452 DOI: 10.3389/fcvm.2019.00106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing prevalence of worldwide obesity has emerged as a major risk factor for type 2 diabetes (T2D), hepatosteatosis, and cardiovascular disease. Accumulating evidence indicates that obesity has strong inflammatory underpinnings tightly linked to the development of metabolic diseases. However, the molecular mechanisms by which obesity induces aberrant inflammation associated with metabolic diseases are not yet clearly defined. Recently, RNAs have emerged as important regulators of stress responses and metabolism. RNAs are subject to changes in modification status, higher-order structure, and cellular localization; all of which could affect the affinity for RNA-binding proteins (RBPs) and thereby modify the RNA-RBP networks. Proper regulation and management of RNA characteristics are fundamental to cellular and organismal homeostasis, as well as paramount to health. Identification of multiple single nucleotide polymorphisms (SNPs) within loci of fat mass- and obesity-associated protein (FTO) gene, an RNA demethylase, through genome-wide association studies (GWAS) of T2D, and functional assessments of FTO in mice, support the concept that disruption in RNA modifications leads to the development of human diseases including obesity and metabolic disorder. In obesity, dynamic alterations in modification and localization of RNAs appear to modulate the RNA-RBP networks and activate proinflammatory RBPs, such as double-stranded RNA (dsRNA)-dependent protein kinase (PKR), Toll-like receptor (TLR) 3 and TLR7, and RNA silencing machinery. These changes induce aberrant inflammation and the development of metabolic diseases. This review will describe the current understanding of the underlying causes of these common and altered characteristics of RNA-RBP networks which will pave the way for developing novel approaches to tackle the pandemic issue of obesity.
Collapse
Affiliation(s)
- Esam S B Salem
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew D Vonberg
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rupinder K Gill
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
28
|
Yang Z, Jiang S, Shang J, Jiang Y, Dai Y, Xu B, Yu Y, Liang Z, Yang Y. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev 2019; 52:17-31. [PMID: 30954650 DOI: 10.1016/j.arr.2019.04.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is universally observed in multiple aging-related diseases and progressions and is characterized by excess accumulation of the extracellular matrix. Fibrosis occurs in various human organs and eventually results in organ failure. Noncoding RNAs (ncRNAs) have emerged as essential regulators of cellular signaling and relevant human diseases. In particular, the enigmatic class of long noncoding RNAs (lncRNAs) is a kind of noncoding RNA that is longer than 200 nucleotides and does not possess protein coding ability. LncRNAs have been identified to exert both promotive and inhibitory effects on the multifaceted processes of fibrosis. A growing body of studies has revealed that lncRNAs are involved in fibrosis in various organs, including the liver, heart, lung, and kidney. As lncRNAs have been increasingly identified, they have become promising targets for anti-fibrosis therapies. This review systematically highlights the recent advances regarding the roles of lncRNAs in fibrosis and sheds light on the use of lncRNAs as a potential treatment for fibrosis.
Collapse
|
29
|
Byun SH, Kwon M, Lee SM, Noh H, Yoon K. PACT increases mammalian embryonic neural stem cell properties by facilitating activation of the notch signaling pathway. Biochem Biophys Res Commun 2019; 513:392-397. [DOI: 10.1016/j.bbrc.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 01/09/2023]
|
30
|
Tang C, Ni M, Xie S, Zhang Y, Zhang C, Ni Z, Chu C, Wu L, Zhou Y, Zhang Y. DICER1 regulates antibacterial function of epididymis by modulating transcription of β-defensins. J Mol Cell Biol 2019; 11:408-420. [PMID: 30215742 PMCID: PMC7727269 DOI: 10.1093/jmcb/mjy048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/26/2018] [Accepted: 09/11/2018] [Indexed: 11/15/2022] Open
Abstract
DICER1 is a key enzyme responsible for the maturation of microRNAs. Recent evidences suggested that DICER1 and microRNAs expressed in epididymis were involved in the control of male fertility. However, the exact mechanism remains to be elucidated. Here, we created a mouse line by targeted disruption of Dicer1 gene in the principal cells of distal caput epididymis. Our data indicated that a set of β-defensin genes were downregulated by DICER1 rather than by microRNAs. Moreover, DICER1 was significantly enriched in the promoter of β-defensin gene and controlled transcription. Besides, the antibacterial ability of the adult epididymis significantly declined upon Dicer1 deletion both in vitro and in vivo. And a higher incidence of reproductive defect was observed in middle-aged Dicer1-/- males. These results suggest that DICER1 plays an important role in transcription of β-defensin genes, which are associated with the natural antibacterial properties in a microRNA-independent manner, and further impacts the male fertility.
Collapse
Affiliation(s)
- Chunhua Tang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Minjie Ni
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengsong Xie
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chaobao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zimei Ni
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chen Chu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuchuan Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yonglian Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Herbert A. ADAR and Immune Silencing in Cancer. Trends Cancer 2019; 5:272-282. [DOI: 10.1016/j.trecan.2019.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/03/2023]
|
32
|
Radke DI, Ling Q, Häsler R, Alp G, Ungefroren H, Trauzold A. Downregulation of TRAIL-Receptor 1 Increases TGFβ Type II Receptor Expression and TGFβ Signalling Via MicroRNA-370-3p in Pancreatic Cancer Cells. Cancers (Basel) 2018; 10:399. [PMID: 30366420 PMCID: PMC6267290 DOI: 10.3390/cancers10110399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
The accumulation of perturbations in signalling pathways resulting in an apoptosis-insensitive phenotype is largely responsible for the desperate prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). Accumulating evidence suggests that the death receptors TRAIL-R1 and TRAIL-R2 play important roles in PDAC biology by acting as either tumour suppressors through induction of cell death or tumour promoters through induction of pro-inflammatory signalling, invasion and metastasis. TRAIL-R2 can also associate with nuclear proteins and alter the maturation of micro RNAs (miRs). By genome-wide miR profiling and quantitative PCR analyses we now demonstrate that knockdown of TRAIL-R1 in PDAC cells decreased the level of mature miR-370 and led to an increased abundance of the type II receptor for transforming growth factor β (TGFβ). Transfection of cells with an artificial miR-370-3p decreased the levels of TGFβ-RII. We further show that transient expression of the miR-370 mimic decreased TGFβ1-induced expression of SERPINE1 encoding plasminogen activator-inhibitor 1 and partially relieved TGFβ1-induced growth inhibition. Moreover, stable TRAIL-R1 knockdown in Colo357 cells increased TGFβ1-induced SERPINE1 expression and this effect was partially reversed by transient expression of the miR-370 mimic. Finally, after transient knockdown of TRAIL-R1 in Panc1 cells there was a tendency towards enhanced activation of Smad2 and JNK1/2 signalling by exogenous TGFβ1. Taken together, our study reveals that TRAIL-R1 through regulation of miR-370 can decrease the sensitivity of PDAC cells to TGFβ and therefore represents a potential tumour suppressor in late-stage PDAC.
Collapse
Affiliation(s)
- David I Radke
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
| | - Qi Ling
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 31000, China.
| | - Robert Häsler
- Institute of Clinical Molecular Biology, University of Kiel, D-24105 Kiel, Germany.
| | - Gökhan Alp
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
| | - Hendrik Ungefroren
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany.
| | - Anna Trauzold
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
| |
Collapse
|
33
|
Sheng L, Ye L, Zhang D, Cawthorn WP, Xu B. New Insights Into the Long Non-coding RNA SRA: Physiological Functions and Mechanisms of Action. Front Med (Lausanne) 2018; 5:244. [PMID: 30238005 PMCID: PMC6135885 DOI: 10.3389/fmed.2018.00244] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) are emerging as new genetic/epigenetic regulators that can impact almost all physiological functions. Here, we focus on the long non-coding steroid receptor RNA activator (SRA), including new insights into its effects on gene expression, the cell cycle, and differentiation; how these relate to physiology and disease; and the mechanisms underlying these effects. We discuss how SRA acts as an RNA coactivator in nuclear receptor signaling; its effects on steroidogenesis, adipogenesis, and myocyte differentiation; the impact on breast and prostate cancer tumorigenesis; and, finally, its ability to modulate hepatic steatosis through several signaling pathways. Genome-wide analysis reveals that SRA regulates hundreds of target genes in adipocytes and breast cancer cells and binds to thousands of genomic sites in human pluripotent stem cells. Recent studies indicate that SRA acts as a molecular scaffold and forms networks with numerous coregulators and chromatin-modifying regulators in both activating and repressive complexes. We discuss how modifications to SRA's unique stem-loop secondary structure are important for SRA function, and highlight the various SRA isoforms and mutations that have clinical implications. Finally, we discuss the future directions for better understanding the molecular mechanisms of SRA action and how this might lead to new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Liang Sheng
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dong Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - William P Cawthorn
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical Center Ann Arbor, MI, United States
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Noncoding RNAs have emerged as important regulators of cellular and systemic lipid metabolism. In particular, the enigmatic class of long noncoding RNAs have been shown to play multifaceted roles in controlling transcriptional and posttranscriptional gene regulation. In this review, we discuss recent advances, current challenges and future opportunities in understanding the roles of lncRNAs in the regulation of lipid metabolism during health and disease. RECENT FINDINGS Despite comprising the majority of the transcriptionally active regions of the human genome, lncRNA functions remain poorly understood, with fewer than 1% of human lncRNAs functionally characterized. Broadly defined as nonprotein coding transcripts greater than 200 nucleotides in length, lncRNAs execute their functions by forming RNA-DNA, RNA-protein, and RNA-RNA interactions that regulate gene expression through diverse mechanisms, including epigenetic remodeling of chromatin, transcriptional activation or repression, posttranscriptional regulation of mRNA, and modulation of protein activity. It is now recognized that in lipid metabolism, just as in other areas of biology, lncRNAs operate to regulate the expression of individual genes and gene networks at multiple different levels. SUMMARY The complexity revealed by recent studies showing how lncRNAs can alter systemic and cell-type-specific cholesterol and triglyceride metabolism make it clear that we have entered a new frontier for discovery that is both daunting and exciting.
Collapse
Affiliation(s)
- Coen van Solingen
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
35
|
Klinge CM. Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr Relat Cancer 2018; 25:R259-R282. [PMID: 29440232 DOI: 10.1530/erc-17-0548] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
The human genome is 'pervasively transcribed' leading to a complex array of non-coding RNAs (ncRNAs) that far outnumber coding mRNAs. ncRNAs have regulatory roles in transcription and post-transcriptional processes as well numerous cellular functions that remain to be fully described. Best characterized of the 'expanding universe' of ncRNAs are the ~22 nucleotide microRNAs (miRNAs) that base-pair to target mRNA's 3' untranslated region within the RNA-induced silencing complex (RISC) and block translation and may stimulate mRNA transcript degradation. Long non-coding RNAs (lncRNAs) are classified as >200 nucleotides in length, but range up to several kb and are heterogeneous in genomic origin and function. lncRNAs fold into structures that interact with DNA, RNA and proteins to regulate chromatin dynamics, protein complex assembly, transcription, telomere biology and splicing. Some lncRNAs act as sponges for miRNAs and decoys for proteins. Nuclear-encoded lncRNAs can be taken up by mitochondria and lncRNAs are transcribed from mtDNA. Both miRNAs and lncRNAs are dysregulated in endocrine cancers. This review provides an overview on the current understanding of the regulation and function of selected lncRNAs and miRNAs, and their interaction, in endocrine-related cancers: breast, prostate, endometrial and thyroid.
Collapse
|
36
|
Ye J, Wang J, Zhang N, Liu Y, Tan L, Xu L. Expression of TARBP1 protein in human non-small-cell lung cancer and its prognostic significance. Oncol Lett 2018; 15:7182-7190. [PMID: 29731880 PMCID: PMC5920659 DOI: 10.3892/ol.2018.8202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/27/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the expression of transactivation response RNA-binding protein (TARBP)1 and its clinical significance in human non-small-cell lung cancer (NSCLC). TARBP1 expression at the mRNA level was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in 10 NSCLC tissues and paired adjacent normal tissues. TARBP1 protein expression was analyzed in 90 paraffin-embedded NSCLC tissue samples and paired adjacent normal tissues by immunohistochemistry. Statistical analyses were performed to assess the clinicopathological significance of TARBP1 expression. The expression of TARBP1 mRNA was higher in the 10 NSCLC samples than in the paired adjacent non-tumor tissues (P=0.0017). In the paraffin-embedded tissue samples, the expression level of TARBP1 was higher in the cancer tissues than in the adjacent non-cancerous tissues. TARBP1 expression was detected in 76.67% (69/90) of the NSCLC samples and in 22.22% (20/90) of the adjacent normal lung tissues (P<0.001). The expression of TARBP1 was significantly associated with histological grade (P<0.001), clinical stage (P=0.024) and pathological type (P<0.001), along with a decreased overall survival (OS) rate (P<0.001). On multivariate analysis, the expression of TARBP1 was an independent prognostic factor for hazard ratio (OS, 2.729; 95% confidence interval, 1.471-5.061; P=0.003). TARBP1 is overexpressed in NSCLC, and the expression of TARBP1 is associated with pathological grade, clinical stage and pathological type. Thus, TARBP1 may be an independent prognostic marker in patients with NSCLC.
Collapse
Affiliation(s)
- Jingmei Ye
- Department of Blood Transfusion, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| | - Jiani Wang
- Breast Cancer Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Nana Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yu Liu
- Breast Cancer Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Li Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| | - Lihua Xu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China.,Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| |
Collapse
|
37
|
Wang J, Ye C, Xiong H, Shen Y, Lu Y, Zhou J, Wang L. Dysregulation of long non-coding RNA in breast cancer: an overview of mechanism and clinical implication. Oncotarget 2018; 8:5508-5522. [PMID: 27732939 PMCID: PMC5354927 DOI: 10.18632/oncotarget.12537] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/03/2016] [Indexed: 01/16/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), which occupy nearly 98% of genome, have crucial roles in cancer development, including breast cancer. Breast cancer is a disease with high incidence. Despite of recent progress in understanding the molecular mechanisms and combined therapy strategies, the functions and mechanisms of lncRNAs in breast cancer remains unclear. This review presents the currently basic knowledge and research approaches of lncRNAs. We also highlight the latest advances of seven classic lncRNAs and three novel lncRNAs in breast cancer, elucidating their mechanisms and possible therapeutic targets. Additionally, association between lncRNA and specific molecular subtype of breast cancer is reported. Lastly, we briefly delineate the potential roles of lncRNAs in clinical applications as biomarkers and treatment targets.
Collapse
Affiliation(s)
- Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yong Shen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Lu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Burger K, Gullerova M. Nuclear re-localization of Dicer in primary mouse embryonic fibroblast nuclei following DNA damage. PLoS Genet 2018; 14:e1007151. [PMID: 29394246 PMCID: PMC5812656 DOI: 10.1371/journal.pgen.1007151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 02/14/2018] [Accepted: 12/11/2017] [Indexed: 11/30/2022] Open
Abstract
Dicer is a key component of RNA interference (RNAi) and well-known for its role in biogenesis of micro (mi)RNA in the cytoplasm. Increasing evidence suggests that mammalian Dicer is also present and active in the nucleus. We have previously shown that phosphorylated human Dicer associates with chromatin in response to DNA damage and processes double-stranded (ds)RNA in the nucleus. However, a recent study by Much et al. investigated endogenously tagged HA-Dicer both in primary mouse embryonic fibroblasts (PMEFs) as well as adult homozygous viable and fertile HA-Dicer mice under physiological conditions and concluded that murine Dicer is exclusively cytoplasmic. The authors challenged several findings, reporting functions of Dicer in mammalian nuclei. We have re-investigated this issue by applying subcellular fractionation, super-resolution microscopy followed by 3D reconstitution, and phospho-Dicer-specific antibodies using the same HA-Dicer PMEF cell line. Our data show that a small fraction of the murine HA-Dicer pool, approximately 5%, localises in the nucleus and is phosphorylated upon DNA damage. We propose that Dicer localisation is dynamic and not exclusively cytoplasmic, particularly in cells exposed to DNA damage.
Collapse
Affiliation(s)
- Kaspar Burger
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF, Bae H. Genome Editing Tools in Plants. Genes (Basel) 2017; 8:E399. [PMID: 29257124 PMCID: PMC5748717 DOI: 10.3390/genes8120399] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs.
Collapse
Affiliation(s)
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
40
|
Gabra MM, Salmena L. microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front Oncol 2017; 7:255. [PMID: 29164055 PMCID: PMC5674931 DOI: 10.3389/fonc.2017.00255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Up until the early 2000s, a functional role for microRNAs (miRNAs) was yet to be elucidated. With the advent of increasingly high-throughput and precise RNA-sequencing techniques within the last two decades, it has become well established that miRNAs can regulate almost all cellular processes through their ability to post-transcriptionally regulate a majority of protein-coding genes and countless other non-coding genes. In cancer, miRNAs have been demonstrated to play critical roles by modifying or controlling all major hallmarks including cell division, self-renewal, invasion, and DNA damage among others. Before the introduction of anthracyclines and cytarabine in the 1960s, acute myeloid leukemia (AML) was considered a fatal disease. In decades since, prognosis has improved substantially; however, long-term survival with AML remains poor. Resistance to chemotherapy, whether it is present at diagnosis or induced during treatment is a major therapeutic challenge in the treatment of this disease. Certain mechanisms such as DNA damage response and drug targeting, cell cycling, cell death, and drug trafficking pathways have been shown to be further dysregulated in treatment resistant cancers. miRNAs playing key roles in the emergence of these drug resistance phenotypes have recently emerged and replacement or inhibition of these miRNAs may be a viable treatment option. Herein, we describe the roles miRNAs can play in drug resistant AML and we describe miRNA-transcript interactions found within other cancer states which may be present within drug resistant AML. We describe the mechanisms of action of these miRNAs and how they can contribute to a poor overall survival and outcome as well. With the precision of miRNA mimic- or antagomir-based therapies, miRNAs provide an avenue for exquisite targeting in the therapy of drug resistant cancers.
Collapse
Affiliation(s)
- Martino Marco Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
41
|
Yuan H, Deng R, Zhao X, Chen R, Hou G, Zhang H, Wang Y, Xu M, Jiang B, Yu J. SUMO1 modification of KHSRP regulates tumorigenesis by preventing the TL-G-Rich miRNA biogenesis. Mol Cancer 2017; 16:157. [PMID: 29020972 PMCID: PMC5637259 DOI: 10.1186/s12943-017-0724-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/15/2017] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators involved in diverse physiological and pathological processes including cancer. SUMO (small ubiquitin-like modifier) is a reversible protein modifier. We recently found that SUMOylation of TARBP2 and DGCR8 is involved in the regulation of the miRNA pathway. KHSRP is a single stranded nucleic acid binding protein with roles in transcription and mRNA decay, and it is also a component of the Drosha-DGCR8 complex promoting the miRNA biogenesis. Methods The in vivo SUMOylation assay using the Ni2+-NTA affinity pulldown or immunoprecipitation (IP) and the in vitro E.coli-based SUMOylation assay were used to analyze SUMOylation of KHSRP. Nuclear/Cytosol fractionation assay and immunofluorescent staining were used to observe the localization of KHSRP. High-throughput miRNA sequencing, quantantive RT-PCR and RNA immunoprecipitation assay (RIP) were employed to determine the effects of KHSRP SUMO1 modification on the miRNA biogenesis. The soft-agar colony formation, migration, vasculogenic mimicry (VM) and three-dimensional (3D) cell culture assays were performed to detect the phenotypes of tumor cells in vitro, and the xenograft tumor model in mice was conducted to verify that SUMO1 modification of KHSRP regulated tumorigenesis in vivo. Results KHSRP is modified by SUMO1 at the major site K87, and this modification can be increased upon the microenvironmental hypoxia while reduced by the treatment with growth factors. SUMO1 modification of KHSRP inhibits its interaction with the pri-miRNA/Drosha-DGCR8 complex and probably increases its translocation from the nucleus to the cytoplasm. Consequently, SUMO1 modification of KHSRP impairs the processing step of pre-miRNAs from pri-miRNAs which especially harbor short G-rich stretches in their terminal loops (TL), resulting in the downregulation of a subset of TL-G-Rich miRNAs such as let-7 family and consequential tumorigenesis. Conclusions Our data demonstrate how the miRNA biogenesis pathway is connected to tumorigenesis and cancer progression through the reversible SUMO1 modification of KHSRP. Electronic supplementary material The online version of this article (10.1186/s12943-017-0724-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haihua Yuan
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guofang Hou
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming Xu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Bin Jiang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China.
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
42
|
Burger K, Schlackow M, Potts M, Hester S, Mohammed S, Gullerova M. Nuclear phosphorylated Dicer processes double-stranded RNA in response to DNA damage. J Cell Biol 2017. [PMID: 28642363 PMCID: PMC5551710 DOI: 10.1083/jcb.201612131] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The endoribonuclease Dicer is a key component of the human RNA interference pathway and is known for its role in cytoplasmic microRNA production. Recent findings suggest that noncanonical Dicer generates small noncoding RNA to mediate the DNA damage response (DDR). Here, we show that human Dicer is phosphorylated in the platform-Piwi/Argonaute/Zwille-connector helix cassette (S1016) upon induction of DNA damage. Phosphorylated Dicer (p-Dicer) accumulates in the nucleus and is recruited to DNA double-strand breaks. We further demonstrate that turnover of damage-induced nuclear, double-stranded (ds) RNA requires additional phosphorylation of carboxy-terminal Dicer residues (S1728 and S1852). DNA damage-induced nuclear Dicer accumulation is conserved in mammals. Dicer depletion causes endogenous DNA damage and delays the DDR by impaired recruitment of repair factors MDC1 and 53BP1. Collectively, we place Dicer within the context of the DDR by demonstrating a DNA damage-inducible phosphoswitch that causes localized processing of nuclear dsRNA by p-Dicer to promote DNA repair.
Collapse
Affiliation(s)
- Kaspar Burger
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Svenja Hester
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Huang K, Qi G, Sun Z, Liu X, Xu X, Wang H, Wu Z, Wan Y, Hu C. Ctenopharyngodon idella IRF2 and ATF4 down-regulate the transcriptional level of PRKRA. FISH & SHELLFISH IMMUNOLOGY 2017; 64:155-164. [PMID: 28263879 DOI: 10.1016/j.fsi.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
PRKRA (interferon-inducible double-stranded RNA-dependent protein kinase activator A) is a protective protein which regulates the adaptation of cells to ER stress and virus-stimulated signaling pathways by activating PKR. In the present study, a grass carp (Ctenopharyngodon idella) PRKRA full-length cDNA (named CiPRKRA, KT891991) was cloned and identified. The full-length cDNA is comprised of a 5' UTR (36 bp), a 3' UTR (350 bp) and the longest ORF (882 bp) encoding a polypeptide of 293 amino acids. The deduced amino acid sequence of CiPRKRA contains three typical dsRNA binding motifs (dsRBM). Phylogenetic tree analysis revealed a closer evolutionary relationship of CiPRKRA with other fish PRKRA, especially with Danio rerio PRKRA. qRT-PCR showed that CiPRKRA was significantly up-regulated after stimulation with tunicamycin (Tm) and Poly I:C in C. idella kidney (CIK) cells. To further study its transcriptional regulation, the partial promoter sequence of CiPRKRA (1463 bp) containing one ISRE and one CARE was cloned by Tail-PCR. Subsequently, grass carp IRF2 (CiIRF2) and ATF4 (CiATF4) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind Resin. In vitro, both CiIRF2 and CiATF4 bound to CiPRKRA promoter with high affinity by gel mobility shift assays, revealing that IRF2 and ATF4 might be potential transcriptional regulatory factors for CiPRKRA. Dual-luciferase reporter assays were applied to further investigate the transcriptional regulation of CiPRKRA in vivo. Recombinant plasmid of pGL3-PRKRAPro was constructed and transiently co-transfected into CIK cells with pcDNA3.1-CiIRF2 and pcDNA3.1-CiATF4, respectively. The results showed that both CiIRF2 and CiATF4 significantly decreased the luciferase activity of pGL3-PRKRAPro, suggesting that they play a negative role in CiPRKRA transcription.
Collapse
Affiliation(s)
- Keyi Huang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Guoqin Qi
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Zhicheng Sun
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiancheng Liu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Haizhou Wang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Zhen Wu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Yiqi Wan
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
44
|
Comparing the rules of engagement of androgen and glucocorticoid receptors. Cell Mol Life Sci 2017; 74:2217-2228. [PMID: 28168446 PMCID: PMC5425506 DOI: 10.1007/s00018-017-2467-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 01/22/2023]
Abstract
Despite the diverse physiological activities of androgens and glucocorticoids, the corresponding receptors are very close members of the nuclear-receptor super family. Their action mechanisms show striking similarities, since both receptors recognize very similar DNA-response elements and recruit the same coactivators to their target genes. The specificity of the responses lies mainly in the tissue-specific expression of the receptors and in their ligand specificity. In cells, where both receptors are expressed, the mechanisms leading to the difference in target genes are less obvious. They lie in part in subtle variations of the DNA-binding sites, in cooperativity with other transcription factors and in differential allosteric signals from the DNA and ligand to other receptor domains. We will highlight the different suggestions that might explain the DNA sequence selectivity and will compare the possible allosteric routes between the response elements and the different functions in the transactivation process. The interplay of androgen and glucocorticoid receptors is also highly relevant in clinical settings, where both receptors are therapeutically targeted. We will discuss the possibility that the glucocorticoid and androgen receptors can play partially redundant roles in castration-resistant prostate cancer.
Collapse
|
45
|
Sun X, Jiang S, Liu J, Wang H, Zhang Y, Tang SC, Wang J, Du N, Xu C, Wang C, Qin S, Zhang J, Liu D, Zhang Y, Li X, Wang J, Dong J, Wang X, Xu S, Tao Z, Xu F, Zhou J, Wang T, Ren H. MiR-208a stimulates the cocktail of SOX2 and β-catenin to inhibit the let-7 induction of self-renewal repression of breast cancer stem cells and formed miR208a/let-7 feedback loop via LIN28 and DICER1. Oncotarget 2016; 6:32944-54. [PMID: 26460550 PMCID: PMC4741741 DOI: 10.18632/oncotarget.5079] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022] Open
Abstract
MiR-208a stimulates cardiomyocyte hypertrophy, fibrosis and β-MHC (β-myosin heavy chain) expression, being involved in cardiovascular diseases. Although miR-208a is known to play a role in cardiovascular diseases, its role in cancer and cancer stem cells (CSCs) remains uncertain. We identified an inverse relationship between miR-208a and let-7a in breast cancer specimens, and found that SOX2, β-catenin and LIN28 are highly expressed in patients with advanced breast cancer opposed to lesser grades. Further, we isolated ALDH1+ CSCs from ZR75–1 and MDA-MB-231 (MM-231) breast cancer cell lines to test the role of miR-208a in breast CSCs (BrCSCs). Our studies showed that overexpression of miR-208a in these cells strongly promoted the proportion of ALDH1+ BrCSCs and continuously stimulated the self-renewal ability of BrCSCs. By using siRNAs of SOX2 and/or β-catenin, we found that miR-208a increased LIN28 through stimulation of both SOX2 and β-catenin. The knockdown of either SOX2 or β-catenin only partially attenuated the functions of miR-208a. Let-7a expression was strongly inhibited in miR-208a overexpressed cancer cells, which was achieved by miR-208a induction of LIN28, and the restoration of let-7a significantly inhibited the miR-208a induction of the number of ALDH1+ cells, inhibiting the propagations of BrCSCs. In let-7a overexpressed ZR75–1 and MM-231 cells, DICER1 activity was significantly inhibited with decreased miR-208a. Let-7a failed to decrease miR-208a expression in ZR75–1 and MM-231 cells with DICER1 knockdown. Our research revealed the mechanisms through which miR-208a functioned in breast cancer and BrCSCs, and identified the miR-208a-SOX2/β-catenin-LIN28-let-7a-DICER1 regulatory feedback loop in regulations of stem cells renewal.
Collapse
Affiliation(s)
- Xin Sun
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shiwen Jiang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325027, China
| | - Jian Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Huangzhen Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Yiwen Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shou-Ching Tang
- Breast Cancer Program and Interdisciplinary Translational Research Team, Georgia Regents University Cancer Center, Augusta, Georgia, 30912, United States.,Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jichang Wang
- Neurosurgery Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Chongwen Xu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Chenguang Wang
- Institute of Radiation Medicine, the Chinese Academy of Medical Sciences, Nankai District, Tianjing 300192, China
| | - Sida Qin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jia Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Dapeng Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Yunfeng Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Xiaojun Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jiansheng Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jun Dong
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Xin Wang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Cancer Institute and Hospital Affiliated to Tianjin Medical University, Tianjin, 300060, China
| | - Fei Xu
- Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jie Zhou
- Department of Breast Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510182, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| |
Collapse
|
46
|
Steroid receptor RNA activator: Biologic function and role in disease. Clin Chim Acta 2016; 459:137-146. [DOI: 10.1016/j.cca.2016.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/05/2016] [Accepted: 06/05/2016] [Indexed: 12/25/2022]
|
47
|
Foulds CE, Panigrahi AK, Coarfa C, Lanz RB, O'Malley BW. Long Noncoding RNAs as Targets and Regulators of Nuclear Receptors. Curr Top Microbiol Immunol 2016; 394:143-76. [PMID: 26362934 DOI: 10.1007/82_2015_465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Intensive research has been directed at the discovery, biogenesis, and expression patterns of long noncoding RNAs , yet their biochemical functions have remained elusive for the most part. Nuclear receptors that interpret signaling mediated by small molecule hormones play a role in regulating the expression of some long noncoding RNAs. More importantly, these RNAs have also been shown to effect hormone-affected gene transcription regulated by the nuclear receptors. In this chapter, we summarize the current knowledge that has been acquired on hormonal signaling inducing expression of long noncoding RNAs and how they then may act in trans or in cis to modulate gene transcription. We highlight a few of these noncoding RNA molecules in terms of how they may impact hormone-driven cancers. Future directions critical for moving this field forward are presented, with a clear emphasis on the need for better biochemical approaches to address the mechanism of action of these exciting RNAs.
Collapse
Affiliation(s)
- Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Anil K Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Dallaire A, Simard MJ. The implication of microRNAs and endo-siRNAs in animal germline and early development. Dev Biol 2016; 416:18-25. [PMID: 27287880 DOI: 10.1016/j.ydbio.2016.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023]
Abstract
Germ cells provide maternal mRNAs that are stored in the oocyte, and later translated at a specific time of development. In this context, gene regulation depends mainly on post-transcriptional mechanisms that contribute to keep maternal transcripts in a stable and translationally silent state. In recent years, small non-coding RNAs, such as microRNAs have emerged as key post-transcriptional regulators of gene expression. microRNAs control the translation efficiency and/or stability of targeted mRNAs. microRNAs are present in animal germ cells and maternally inherited microRNAs are abundant in early embryos. However, it is not known how microRNAs control the stability and translation of maternal transcripts. In this review, we will discuss the implication of germline microRNAs in regulating animal oogenesis and early embryogenesis as well as compare their roles with endo-siRNAs, small RNA species that share key molecular components with the microRNA pathway.
Collapse
Affiliation(s)
- Alexandra Dallaire
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada G1R 2J6; Laval University Cancer Research Centre, Quebec City, Québec, Canada G1R 2J6
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada G1R 2J6; Laval University Cancer Research Centre, Quebec City, Québec, Canada G1R 2J6.
| |
Collapse
|
49
|
Kotan LD, Cooper C, Darcan Ş, Carr IM, Özen S, Yan Y, Hamedani MK, Gürbüz F, Mengen E, Turan İ, Ulubay A, Akkuş G, Yüksel B, Topaloğlu AK, Leygue E. Idiopathic Hypogonadotropic Hypogonadism Caused by Inactivating Mutations in SRA1. J Clin Res Pediatr Endocrinol 2016; 8:125-134. [PMID: 27086651 PMCID: PMC5096466 DOI: 10.4274/jcrpe.3248] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE What initiates the pubertal process in humans and other mammals is still unknown. We hypothesized that gene(s) taking roles in triggering human puberty may be identified by studying a cohort of idiopathic hypogonadotropic hypogonadism (IHH). METHODS A cohort of IHH cases was studied based on autozygosity mapping coupled with whole exome sequencing. RESULTS Our studies revealed three independent families in which IHH/delayed puberty is associated with inactivating SRA1 variants. SRA1 was the first gene to be identified to function through its protein as well as noncoding functional ribonucleic acid products. These products act as co-regulators of nuclear receptors including sex steroid receptors as well as SF-1 and LRH-1, the master regulators of steroidogenesis. Functional studies with a mutant SRA1 construct showed a reduced co-activation of ligand-dependent activity of the estrogen receptor alpha, as assessed by luciferase reporter assay in HeLa cells. CONCLUSION Our findings strongly suggest that SRA1 gene function is required for initiation of puberty in humans. Furthermore, SRA1 with its alternative products and functionality may provide a potential explanation for the versatility and complexity of the pubertal process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - A Kemal Topaloğlu
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey Phone: +90 322 338 60 60-3148 E-mail:
| | | |
Collapse
|
50
|
Klinge CM. miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets. Mol Cell Endocrinol 2015; 418 Pt 3:273-97. [PMID: 25659536 PMCID: PMC4523495 DOI: 10.1016/j.mce.2015.01.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short (22 nucleotides), single-stranded, non-coding RNAs that form complimentary base-pairs with the 3' untranslated region of target mRNAs within the RNA-induced silencing complex (RISC) and block translation and/or stimulate mRNA transcript degradation. The non-coding miRBase (release 21, June 2014) reports that human genome contains ∼ 2588 mature miRNAs which regulate ∼ 60% of human protein-coding mRNAs. Dysregulation of miRNA expression has been implicated in estrogen-related diseases including breast cancer and endometrial cancer. The mechanism for estrogen regulation of miRNA expression and the role of estrogen-regulated miRNAs in normal homeostasis, reproduction, lactation, and in cancer is an area of great research and clinical interest. Estrogens regulate miRNA transcription through estrogen receptors α and β in a tissue-specific and cell-dependent manner. This review focuses primarily on the regulation of miRNA expression by ligand-activated ERs and their bona fide gene targets and includes miRNA regulation by tamoxifen and endocrine disrupting chemicals (EDCs) in breast cancer and cell lines.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|