1
|
Nonaka K, Nishimura K, Uesaka K, Mishiro-Sato E, Fukase M, Kato R, Okumura F, Nakatsukasa K, Obara K, Kamura T. Snf1 and yeast GSK3-β activates Tda1 to suppress glucose starvation signaling. EMBO Rep 2025:10.1038/s44319-025-00456-y. [PMID: 40275108 DOI: 10.1038/s44319-025-00456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
In budding yeast, the presence of glucose, a preferred energy source, suppresses the expression of respiration-related genes through a process known as glucose repression. Conversely, under glucose starvation conditions, Snf1 phosphorylates and activates downstream factors, relieving this repression and allowing cells to adapt. Recently, the Tda1 protein kinase has been implicated in these glucose starvation responses, although its function remains largely uncharacterized. In this study, we demonstrate that Snf1 and yeast glycogen synthase kinase 3-beta (GSK3-β) independently phosphorylate and activate Tda1, which in turn phosphorylates Hxk2 at Ser15. The Ser483 and Thr484 residues of Tda1 are critical for its activation by Snf1, while the Ser509 residue is crucial for its activation by yeast GSK3-β. Importantly, under glucose starvation conditions, the TDA1 deletion mutant shows increased expression of respiration-related genes and a faster growth rate compared to wild-type cells, which is opposite to what is observed in SNF1 and yeast GSK3-β deletion mutants. These findings suggest that Tda1 is activated by Snf1 and yeast GSK3-β, and functions as a suppressor of the glucose starvation signaling.
Collapse
Affiliation(s)
- Kazuki Nonaka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Kohei Nishimura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Kazuma Uesaka
- Graduate School of Bioagricultural Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Minako Fukase
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Rei Kato
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Fukuoka, 813-8529, Japan
| | - Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Nagoya, Aichi, 467-8501, Japan
| | - Keisuke Obara
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Takumi Kamura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| |
Collapse
|
2
|
Simpson-Lavy K, Kupiec M. Calcium Signaling Is a Universal Carbon Source Signal Transducer and Effects an Ionic Memory of Past Carbon Sources. Int J Mol Sci 2025; 26:2198. [PMID: 40076822 PMCID: PMC11900981 DOI: 10.3390/ijms26052198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Glucose is the preferred carbon source for most cells. However, cells may encounter other carbon sources that can be utilized. How cells match their metabolic gene expression to their carbon source, beyond a general glucose repressive system (catabolite repression), remains little understood. By studying the effect of up to seven different carbon sources on Snf1 phosphorylation and on the expression of downstream regulated genes, we searched for the mechanism that identifies carbon sources. We found that the glycolysis metabolites glucose-6-phosphate (G6P) and glucose-1-phosphate (G1P) play a central role in the adaptation of gene expression to different carbon sources. The ratio of G1P and G6P activates analogue calcium signaling via the proton-exporter Pma1 to regulate downstream genes. The signaling pathway bifurcates with calcineurin-reducing ADH2 (alcohol dehydrogenase) expression and with Cmk1-increasing ZWF1 (glucose-6-phosphate dehydrogenase) expression. Furthermore, calcium signaling is not only regulated by the present carbon source; it is also regulated by past carbon sources. We were able to manipulate this ionic memory mechanism to obtain high expression of ZWF1 in media containing galactose. Our findings provide a universal mechanism by which cells respond to all carbon sources.
Collapse
Affiliation(s)
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
3
|
Li M, Zhu W, Fan J, Gao M, Wang X, Wu C, Wang Y, Lu Y. Carbon catabolite repression during the simultaneous utilization of lignocellulose-derived sugars in lactic acid production: Influencing factors and mitigation strategies. ENVIRONMENTAL RESEARCH 2025; 266:120484. [PMID: 39617153 DOI: 10.1016/j.envres.2024.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Lignocellulose is the most abundant, sustainable, and comparatively economical renewable biomass containing ample fermentable sugars for bio-based chemical production, such as lactic acid (LA). LA is a versatile chemical with substantial global demand. However, the concurrent utilization of mixed sugars derived from lignocellulose, including glucose, xylose, and arabinose, remains a formidable challenge because of the metabolic regulation of carbon catabolite repression (CCR), in which glucose is preferentially utilized over non-glucose sugars, resulting in the loss of carbon resources and a decrease in biorefinery efficacy. Most current studies on CCR have concentrated on elucidating the principles and their impact on specific bacterial species using mixed carbon sources. However, there remains a notable dearth of comprehensive reviews summarizing the underlying principles and corresponding mitigation strategies across other bacterial strains encountering similar challenges. In light of this, this article delineates the possible factors that lead to CCR, including signal transduction and metabolic pathways. Additionally, the fermentation conditions and nutrients are described. Finally, this study proposes appropriate mitigation strategies to overcome the aforementioned obstacles and presents new insights into the rapid and simultaneous consumption of mixed sugars to bolster the production yields of biofuels and chemicals in the future.
Collapse
Affiliation(s)
- Mingxi Li
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Wenbin Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, Guangdong, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiamei Fan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ying Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China; Chengdu Environmental Investment Group Co., LTD, Chengdu, 610042, Sichuan, China.
| | - Yuan Lu
- Chengdu Environmental Investment Group Co., LTD, Chengdu, 610042, Sichuan, China.
| |
Collapse
|
4
|
Ma L, Ma J, Tian Y, Li X, Tai B, Xing F. Fus3 Interacts with Gal83, Revealing the MAPK Crosstalk to Snf1/AMPK to Regulate Secondary Metabolic Substrates in Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10065-10075. [PMID: 38634532 DOI: 10.1021/acs.jafc.4c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Aflatoxins (AFs), highly carcinogenic natural products, are produced by the secondary metabolism of fungi such as Aspergillus flavus. Essential for the fungi to respond to environmental changes and aflatoxin synthesis, the pheromone mitogen-activated protein kinase (MAPK) is a potential regulator of aflatoxin biosynthesis. However, the mechanism by which pheromone MAPK regulates aflatoxin biosynthesis is not clear. Here, we showed Gal83, a new target of Fus3, and identified the pheromone Fus3-MAPK signaling pathway as a regulator of the Snf1/AMPK energy-sensing pathway modulating aflatoxins synthesis substrates. The screening for Fus3 target proteins identified the β subunit of Snf1/AMPK complexes using tandem affinity purification and multiomics. This subunit physically interacted with Fus3 both in vivo and in vitro and received phosphorylation from Fus3. Although the transcript levels of aflatoxin synthesis genes were not noticeably downregulated in both gal83 and fus3 deletion mutant strains, the levels of aflatoxin B1 and its synthesis substrates and gene expression levels of primary metabolizing enzymes were significantly reduced. This suggests that both the Fus3-MAPK and Snf1/AMPK pathways respond to energy signals. In conclusion, all the evidence unlocks a novel pathway of Fus3-MAPK to regulate AFs synthesis substrates by cross-talking with the Snf1/AMPK complexes.
Collapse
Affiliation(s)
- Longxue Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Junning Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Yuanyuan Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Xu Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Bowen Tai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| |
Collapse
|
5
|
Sunder S, Bauman JS, Decker SJ, Lifton AR, Kumar A. The yeast AMP-activated protein kinase Snf1 phosphorylates the inositol polyphosphate kinase Kcs1. J Biol Chem 2024; 300:105657. [PMID: 38224949 PMCID: PMC10851228 DOI: 10.1016/j.jbc.2024.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
The yeast Snf1/AMP-activated kinase (AMPK) maintains energy homeostasis, controlling metabolic processes and glucose derepression in response to nutrient levels and environmental cues. Under conditions of nitrogen or glucose limitation, Snf1 regulates pseudohyphal growth, a morphological transition characterized by the formation of extended multicellular filaments. During pseudohyphal growth, Snf1 is required for wild-type levels of inositol polyphosphate (InsP), soluble phosphorylated species of the six-carbon cyclitol inositol that function as conserved metabolic second messengers. InsP levels are established through the activity of a family of inositol kinases, including the yeast inositol polyphosphate kinase Kcs1, which principally generates pyrophosphorylated InsP7. Here, we report that Snf1 regulates Kcs1, affecting Kcs1 phosphorylation and inositol kinase activity. A snf1 kinase-defective mutant exhibits decreased Kcs1 phosphorylation, and Kcs1 is phosphorylated in vivo at Ser residues 537 and 646 during pseudohyphal growth. By in vitro analysis, Snf1 directly phosphorylates Kcs1, predominantly at amino acids 537 and 646. A yeast strain carrying kcs1 encoding Ser-to-Ala point mutations at these residues (kcs1-S537A,S646A) shows elevated levels of pyrophosphorylated InsP7, comparable to InsP7 levels observed upon deletion of SNF1. The kcs1-S537A,S646A mutant exhibits decreased pseudohyphal growth, invasive growth, and cell elongation. Transcriptional profiling indicates extensive perturbation of metabolic pathways in kcs1-S537A,S646A. Growth of kcs1-S537A,S646A is affected on medium containing sucrose and antimycin A, consistent with decreased Snf1p signaling. This work identifies Snf1 phosphorylation of Kcs1, collectively highlighting the interconnectedness of AMPK activity and InsP signaling in coordinating nutrient availability, energy homoeostasis, and cell growth.
Collapse
Affiliation(s)
- Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua S Bauman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stuart J Decker
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandra R Lifton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Simpson-Lavy K, Kupiec M. Glucose Inhibits Yeast AMPK (Snf1) by Three Independent Mechanisms. BIOLOGY 2023; 12:1007. [PMID: 37508436 PMCID: PMC10376661 DOI: 10.3390/biology12071007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Snf1, the fungal homologue of mammalian AMP-dependent kinase (AMPK), is a key protein kinase coordinating the response of cells to a shortage of glucose. In fungi, the response is to activate respiratory gene expression and metabolism. The major regulation of Snf1 activity has been extensively investigated: In the absence of glucose, it becomes activated by phosphorylation of its threonine at position 210. This modification can be erased by phosphatases when glucose is restored. In the past decade, two additional independent mechanisms of Snf1 regulation have been elucidated. In response to glucose (or, surprisingly, also to DNA damage), Snf1 is SUMOylated by Mms21 at lysine 549. This inactivates Snf1 and leads to Snf1 degradation. More recently, glucose-induced proton export has been found to result in Snf1 inhibition via a polyhistidine tract (13 consecutive histidine residues) at the N-terminus of the Snf1 protein. Interestingly, the polyhistidine tract plays also a central role in the response to iron scarcity. This review will present some of the glucose-sensing mechanisms of S. cerevisiae, how they interact, and how their interplay results in Snf1 inhibition by three different, and independent, mechanisms.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
The polyHIS Tract of Yeast AMPK Coordinates Carbon Metabolism with Iron Availability. Int J Mol Sci 2023; 24:ijms24021368. [PMID: 36674878 PMCID: PMC9863760 DOI: 10.3390/ijms24021368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Energy status in all eukaryotic cells is sensed by AMP-kinases. We have previously found that the poly-histidine tract at the N-terminus of S. cerevisiae AMPK (Snf1) inhibits its function in the presence of glucose via a pH-regulated mechanism. We show here that in the absence of glucose, the poly-histidine tract has a second function, linking together carbon and iron metabolism. Under conditions of iron deprivation, when different iron-intense cellular systems compete for this scarce resource, Snf1 is inhibited. The inhibition is via an interaction of the poly-histidine tract with the low-iron transcription factor Aft1. Aft1 inhibition of Snf1 occurs in the nucleus at the nuclear membrane, and only inhibits nuclear Snf1, without affecting cytosolic Snf1 activities. Thus, the temporal and spatial regulation of Snf1 activity enables a differential response to iron depending upon the type of carbon source. The linkage of nuclear Snf1 activity to iron sufficiency ensures that sufficient clusters are available to support respiratory enzymatic activity and tests mitochondrial competency prior to activation of nuclear Snf1.
Collapse
|
8
|
Regulation of yeast Snf1 (AMPK) by a polyhistidine containing pH sensing module. iScience 2022; 25:105083. [PMID: 36147951 PMCID: PMC9486060 DOI: 10.1016/j.isci.2022.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Cellular regulation of pH is crucial for internal biological processes and for the import and export of ions and nutrients. In the yeast Saccharomyces cerevisiae, the major proton pump (Pma1) is regulated by glucose. Glucose is also an inhibitor of the energy sensor Snf1/AMPK, which is conserved in all eukaryotes. Here, we demonstrate that a poly-histidine (polyHIS) tract in the pre-kinase region (PKR) of Snf1 functions as a pH-sensing module (PSM) and regulates Snf1 activity. This regulation is independent from, and unaffected by, phosphorylation at T210, the major regulatory control of Snf1, but is controlled by the Pma1 plasma-membrane proton pump. By examining the PKR from additional yeast species, and by varying the number of histidines in the PKR, we determined that the polyHIS functions progressively. This regulation mechanism links the activity of a key enzyme with the metabolic status of the cell at any given moment.
Collapse
|
9
|
Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 2022; 85:52-68. [PMID: 33862221 PMCID: PMC9768867 DOI: 10.1016/j.semcancer.2021.04.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
The intrinsic mechanisms sensing the imbalance of energy in cells are pivotal for cell survival under various environmental insults. AMP-activated protein kinase (AMPK) serves as a central guardian maintaining energy homeostasis by orchestrating diverse cellular processes, such as lipogenesis, glycolysis, TCA cycle, cell cycle progression and mitochondrial dynamics. Given that AMPK plays an essential role in the maintenance of energy balance and metabolism, managing AMPK activation is considered as a promising strategy for the treatment of metabolic disorders such as type 2 diabetes and obesity. Since AMPK has been attributed to aberrant activation of metabolic pathways, mitochondrial dynamics and functions, and epigenetic regulation, which are hallmarks of cancer, targeting AMPK may open up a new avenue for cancer therapies. Although AMPK is previously thought to be involved in tumor suppression, several recent studies have unraveled its tumor promoting activity. The double-edged sword characteristics for AMPK as a tumor suppressor or an oncogene are determined by distinct cellular contexts. In this review, we will summarize recent progress in dissecting the upstream regulators and downstream effectors for AMPK, discuss the distinct roles of AMPK in cancer regulation and finally offer potential strategies with AMPK targeting in cancer therapy.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
10
|
Ke S, Liu YY, Karthikraj R, Kannan K, Jiang J, Abe K, Milanesi A, Brent GA. Thyroid hormone receptor β sumoylation is required for thyrotropin regulation and thyroid hormone production. JCI Insight 2021; 6:e149425. [PMID: 34237030 PMCID: PMC8410017 DOI: 10.1172/jci.insight.149425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Thyroid hormone receptor β (THRB) is posttranslationally modified by small ubiquitin-like modifier (SUMO). We generated a mouse model with a mutation that disrupted sumoylation at lysine 146 (K146Q) and resulted in desumoylated THRB as the predominant form in tissues. The THRB K146Q mutant mice had normal serum thyroxine (T4), markedly elevated serum thyrotropin-stimulating hormone (TSH; 81-fold above control), and enlargement of both the pituitary and the thyroid gland. The marked elevation in TSH, despite a normal serum T4, indicated blunted feedback regulation of TSH. The THRB K146Q mutation altered the recruitment of transcription factors to the TSHβ gene promoter, compared with WT, in hyperthyroidism and hypothyroidism. Thyroid hormone content (T4, T3, and rT3) in the thyroid gland of the THRB K146Q mice was 10-fold lower (per gram tissue) than control, despite normal TSH bioactivity. The expression of thyroglobulin and dual oxidase 2 genes in the thyroid was reduced and associated with modifications of cAMP response element-binding protein DNA binding and cofactor interactions in the presence of the desumoylated THRB. Therefore, thyroid hormone production had both TSH-dependent and TSH-independent components. We conclude that THRB sumoylation at K146 was required for normal TSH feedback regulation and TH synthesis in the thyroid gland, by a TSH-independent pathway.
Collapse
Affiliation(s)
- Sujie Ke
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Department of Endocrinology, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan-Yun Liu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | | | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Jingjing Jiang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kiyomi Abe
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Department of Pediatrics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Tokyo Saiseikai Central Hospital, Minato-ku, Tokyo, Japan
| | - Anna Milanesi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Gregory A Brent
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
11
|
Rashida Z, Srinivasan R, Cyanam M, Laxman S. Kog1/Raptor mediates metabolic rewiring during nutrient limitation by controlling SNF1/AMPK activity. SCIENCE ADVANCES 2021; 7:eabe5544. [PMID: 33853774 PMCID: PMC8046376 DOI: 10.1126/sciadv.abe5544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/26/2021] [Indexed: 05/04/2023]
Abstract
In changing environments, cells modulate resource budgeting through distinct metabolic routes to control growth. Accordingly, the TORC1 and SNF1/AMPK pathways operate contrastingly in nutrient replete or limited environments to maintain homeostasis. The functions of TORC1 under glucose and amino acid limitation are relatively unknown. We identified a modified form of the yeast TORC1 component Kog1/Raptor, which exhibits delayed growth exclusively during glucose and amino acid limitations. Using this, we found a necessary function for Kog1 in these conditions where TORC1 kinase activity is undetectable. Metabolic flux and transcriptome analysis revealed that Kog1 controls SNF1-dependent carbon flux apportioning between glutamate/amino acid biosynthesis and gluconeogenesis. Kog1 regulates SNF1/AMPK activity and outputs and mediates a rapamycin-independent activation of the SNF1 targets Mig1 and Cat8. This enables effective glucose derepression, gluconeogenesis activation, and carbon allocation through different pathways. Therefore, Kog1 centrally regulates metabolic homeostasis and carbon utilization during nutrient limitation by managing SNF1 activity.
Collapse
Affiliation(s)
- Zeenat Rashida
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Rajalakshmi Srinivasan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
| | - Meghana Cyanam
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
12
|
Ovens AJ, Scott JW, Langendorf CG, Kemp BE, Oakhill JS, Smiles WJ. Post-Translational Modifications of the Energy Guardian AMP-Activated Protein Kinase. Int J Mol Sci 2021; 22:ijms22031229. [PMID: 33513781 PMCID: PMC7866021 DOI: 10.3390/ijms22031229] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/13/2023] Open
Abstract
Physical exercise elicits physiological metabolic perturbations such as energetic and oxidative stress; however, a diverse range of cellular processes are stimulated in response to combat these challenges and maintain cellular energy homeostasis. AMP-activated protein kinase (AMPK) is a highly conserved enzyme that acts as a metabolic fuel sensor and is central to this adaptive response to exercise. The complexity of AMPK’s role in modulating a range of cellular signalling cascades is well documented, yet aside from its well-characterised regulation by activation loop phosphorylation, AMPK is further subject to a multitude of additional regulatory stimuli. Therefore, in this review we comprehensively outline current knowledge around the post-translational modifications of AMPK, including novel phosphorylation sites, as well as underappreciated roles for ubiquitination, sumoylation, acetylation, methylation and oxidation. We provide insight into the physiological ramifications of these AMPK modifications, which not only affect its activity, but also subcellular localisation, nutrient interactions and protein stability. Lastly, we highlight the current knowledge gaps in this area of AMPK research and provide perspectives on how the field can apply greater rigour to the characterisation of novel AMPK regulatory modifications.
Collapse
Affiliation(s)
- Ashley J. Ovens
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; (A.J.O.); (J.S.O.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC 3000, Australia; (J.W.S.); (B.E.K.)
| | - John W. Scott
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC 3000, Australia; (J.W.S.); (B.E.K.)
- Protein Chemistry & Metabolism, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia;
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Christopher G. Langendorf
- Protein Chemistry & Metabolism, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia;
| | - Bruce E. Kemp
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC 3000, Australia; (J.W.S.); (B.E.K.)
- Protein Chemistry & Metabolism, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia;
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; (A.J.O.); (J.S.O.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC 3000, Australia; (J.W.S.); (B.E.K.)
| | - William J. Smiles
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; (A.J.O.); (J.S.O.)
- Correspondence:
| |
Collapse
|
13
|
The regulation of Saccharomyces cerevisiae Snf1 protein kinase on glucose utilization is in a glucose-dependent manner. Curr Genet 2021; 67:245-248. [PMID: 33385241 DOI: 10.1007/s00294-020-01137-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation catalyzed by protein kinases is the major regulatory mechanism that controls many cellular processes. The regulatory mechanism of one protein kinase in different signals is distinguished, probably inducing multiple phenotypes. The Saccharomyces cerevisiae Snf1 protein kinase, a member of the AMP‑activated protein kinase family, plays important roles in the response to nutrition and environmental stresses. Glucose is an important nutrient for life activities of cells, but glucose repression and osmotic pressure could be produced at certain concentrations. To deeply understand the role of Snf1 in the regulation of nutrient metabolism and stress response of S. cerevisiae cells, the role and the regulatory mechanism of Snf1 in glucose metabolism are discussed in different level of glucose: below 1% (glucose derepression status), in 2% (glucose repression status), and in 30% glucose (1.66 M, an osmotic equivalent to 0.83 M NaCl). In summary, Snf1 regulates glucose metabolism in a glucose-dependent manner, which is associated with the different regulation on activation, localization, and signal pathways of Snf1 by varied glucose. Exploring the regulatory mechanism of Snf1 in glucose metabolism in different concentrations of glucose can provide insights into the study of the global regulatory mechanism of Snf1 in yeast and can help to better understand the complexity of physiological response of cells to stresses.
Collapse
|
14
|
Simpson-Lavy K, Kupiec M. Noise buffering by biomolecular condensates in glucose sensing. Curr Opin Cell Biol 2020; 69:1-6. [PMID: 33388622 DOI: 10.1016/j.ceb.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023]
Abstract
Many cellular processes involve buffering mechanisms against noise to enhance state stability. Such processes include the cell cycle and the switch between respiration and fermentation. In recent years, protein aggregation/condensation has emerged as an important regulatory mechanism. In this article, we examine the regulation of Std1, an activator of the Snf1/AMPK kinase, by sequestration into foci of liquid drops, and how foci of metabolic signaling and enzymatic proteins are regulated by chaperones, anti-aggregases and by phosphorylation.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
15
|
Guo J, Wang S, Wang G, Lu R, Wang Y, Guo Y, Ji W. Overexpression of GmSUMO2 gene confers increased abscisic acid sensitivity in transgenic soybean hairy roots. Mol Biol Rep 2020; 47:3475-3484. [PMID: 32279210 DOI: 10.1007/s11033-020-05433-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Small ubiquitin-like modifier (SUMO) participates in post-translational modification of various target proteins. SUMOylation is an important molecular regulatory mechanism for plants to respond to abiotic stress. In the present study, GmSUMO2 gene was isolated from soybean seedlings for further study because of the highest expression level among these six SUMO genes in soybean. qRT-PCR results showed that GmSUMO2 gene were detected in root, leaf, cotyledon, seed root, flower, pod and seed, with the highest transcription level in cotyledon. Moreover, GmSUMO2 gene was transcriptionally regulated by 200 mM NaCl, 42 °C, 25 μM abscisic acid (ABA) and 20% PEG6000 during the 24 h period of treatment. Besides, western blot analysis using AtSUMO1 antibody indicated that the free SUMO levels and SUMOylation dynamics were regulated by ABA stimulus. Functional analysis indicated that overexpression of GmSUMO2 gene in soybean hairy roots accentuated the sensitivity to exogenous ABA. Furthermore, the expression levels of ABI3, ABI5, SnRK1.1 and SnRK1.2 were differentially regulated by GmSUMO2 in transgenic soybean hairy roots. Overall, these results provided a preliminary understanding of molecular characterization, expression and function of GmSUMO2 in soybean.
Collapse
Affiliation(s)
- Jingsong Guo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Sibo Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guixin Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Runfeng Lu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuxin Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, 550083, China
| | - Wei Ji
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Coccetti P, Nicastro R, Tripodi F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae. MICROBIAL CELL 2018; 5:482-494. [PMID: 30483520 PMCID: PMC6244292 DOI: 10.15698/mic2018.11.655] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All proliferating cells need to match metabolism, growth and cell cycle progression with nutrient availability to guarantee cell viability in spite of a changing environment. In yeast, a signaling pathway centered on the effector kinase Snf1 is required to adapt to nutrient limitation and to utilize alternative carbon sources, such as sucrose and ethanol. Snf1 shares evolutionary conserved functions with the AMP-activated Kinase (AMPK) in higher eukaryotes which, activated by energy depletion, stimulates catabolic processes and, at the same time, inhibits anabolism. Although the yeast Snf1 is best known for its role in responding to a number of stress factors, in addition to glucose limitation, new unconventional roles of Snf1 have recently emerged, even in glucose repressing and unstressed conditions. Here, we review and integrate available data on conventional and non-conventional functions of Snf1 to better understand the complexity of cellular physiology which controls energy homeostasis.
Collapse
Affiliation(s)
- Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Present address: Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
17
|
Willis SD, Stieg DC, Ong KL, Shah R, Strich AK, Grose JH, Cooper KF. Snf1 cooperates with the CWI MAPK pathway to mediate the degradation of Med13 following oxidative stress. MICROBIAL CELL 2018; 5:357-370. [PMID: 30175106 PMCID: PMC6116281 DOI: 10.15698/mic2018.08.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells, when faced with unfavorable environmental conditions, mount either pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core Mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 degradation dependent on the cell wall integrity pathway, MAPK Slt2. Here we show that the AMP kinase Snf1 activates a second SCFGrr1 responsive degron in Med13. Deletion of Snf1 resulted in nuclear retention of cyclin C and failure to induce mitochondrial fragmentation. This degron was able to confer oxidative-stress-induced destruction when fused to a heterologous protein in a Snf1 dependent manner. Although snf1∆ mutants failed to destroy Med13, deleting the degron did not prevent destruction. These results indicate that the control of Med13 degradation following H2O2 stress is complex, being controlled simultaneously by CWI and MAPK pathways.
Collapse
Affiliation(s)
- Stephen D Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - Kai Li Ong
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Ravina Shah
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Department of Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028. USA
| | - Alexandra K Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Shawnee High School, Medford, New Jersey 08055, USA
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| |
Collapse
|
18
|
A reversible liquid drop aggregation controls glucose response in yeast. Curr Genet 2018; 64:785-788. [DOI: 10.1007/s00294-018-0805-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022]
|
19
|
Simpson-Lavy K, Xu T, Johnston M, Kupiec M. The Std1 Activator of the Snf1/AMPK Kinase Controls Glucose Response in Yeast by a Regulated Protein Aggregation. Mol Cell 2017; 68:1120-1133.e3. [PMID: 29249654 DOI: 10.1016/j.molcel.2017.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The ability to respond to available nutrients is critical for all living cells. The AMP-activated protein kinase (SNF1 in yeast) is a central regulator of metabolism that is activated when energy is depleted. We found that SNF1 activity in the nucleus is regulated by controlled relocalization of the SNF1 activator Std1 into puncta. This process is regulated by glucose through the activity of the previously uncharacterized protein kinase Vhs1 and its substrate Sip5, a protein of hitherto unknown function. Phosphorylation of Sip5 prevents its association with Std1 and triggers Std1 accretion. Reversible Std1 puncta formation occurs under non-stressful, ambient conditions, creating non-amyloid inclusion bodies at the nuclear-vacuolar junction, and it utilizes cellular chaperones similarly to the aggregation of toxic or misfolded proteins such as those associated with Parkinson's, Alzheimer's, and CJD diseases. Our results reveal a controlled, non-pathological, physiological role of protein aggregation in the regulation of a major metabolic cellular pathway.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- Dept of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Tianchang Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mark Johnston
- Dept of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Martin Kupiec
- Dept of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
20
|
Zhang J, Chen Z, Zhou Z, Yang P, Wang CY. Sumoylation Modulates the Susceptibility to Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:299-322. [DOI: 10.1007/978-3-319-50044-7_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Broeckx T, Hulsmans S, Rolland F. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6215-6252. [PMID: 27856705 DOI: 10.1093/jxb/erw416] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The SnRK1 (SNF1-related kinase 1) kinases are the plant cellular fuel gauges, activated in response to energy-depleting stress conditions to maintain energy homeostasis while also gatekeeping important developmental transitions for optimal growth and survival. Similar to their opisthokont counterparts (animal AMP-activated kinase, AMPK, and yeast Sucrose Non-Fermenting 1, SNF), they function as heterotrimeric complexes with a catalytic (kinase) α subunit and regulatory β and γ subunits. Although the overall configuration of the kinase complexes is well conserved, plant-specific structural modifications (including a unique hybrid βγ subunit) and associated differences in regulation reflect evolutionary divergence in response to fundamentally different lifestyles. While AMP is the key metabolic signal activating AMPK in animals, the plant kinases appear to be allosterically inhibited by sugar-phosphates. Their function is further fine-tuned by differential subunit expression, localization, and diverse post-translational modifications. The SnRK1 kinases act by direct phosphorylation of key metabolic enzymes and regulatory proteins, extensive transcriptional regulation (e.g. through bZIP transcription factors), and down-regulation of TOR (target of rapamycin) kinase signaling. Significant progress has been made in recent years. New tools and more directed approaches will help answer important fundamental questions regarding their structure, regulation, and function, as well as explore their potential as targets for selection and modification for improved plant performance in a changing environment.
Collapse
Affiliation(s)
- Tom Broeckx
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Sander Hulsmans
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| |
Collapse
|
22
|
Interplay between Top1 and Mms21/Nse2 mediated sumoylation in stable maintenance of long chromosomes. Curr Genet 2016; 63:627-645. [PMID: 27872982 DOI: 10.1007/s00294-016-0665-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 01/16/2023]
Abstract
Genetic information in cells is encrypted in DNA molecules forming chromosomes of varying sizes. Accurate replication and partitioning of chromosomes in the crowded cellular milieu is a complex process involving duplication, folding and movement. Longer chromosomes may be more susceptible to mis-segregation or DNA damage and there may exist specialized physiological mechanisms preventing this. Here, we present genetic evidence for such a mechanism which depends on Mms21/Nse2 mediated sumoylation and topoisomerase-1 (Top1) for maintaining stability of longer chromosomes. While mutations inactivating Top1 or the SUMO ligase activity of Mms21 (mms21sl) individually destabilized yeast artificial chromosomes (YACs) to a modest extent, the mms21sl top1 double mutant exhibited a synthetic-sick phenotype, and showed preferential destabilization of the longer chromosome relative to shorter chromosomes. In contrast, an smc6-56 top1 mutant defective in Smc6, another subunit of the Smc5/6 complex, of which Mms21 is a component, did not show such a preferential enhancement in frequency of loss of the longer YAC, indicating that this defect may be specific to the deficiency in SUMO ligase activity of Mms21 in the mms21sl top1 mutants. In addition, mms21sl top1 double mutants harboring a longer fusion derivative of natural yeast chromosomes IV and XII displayed reduced viability, consistent with enhanced chromosome instability, relative to single mutants or the double mutant having the natural (shorter) non-fused chromosomes. Our findings reveal a functional interplay between Mms21 and Top1 in maintenance of longer chromosomes, and suggest that lack of sumoylation of Mms21 targets coupled with Top1 deficiency is a crucial requirement for accurate inheritance of longer chromosomes.
Collapse
|
23
|
Jiao R, Lobanova L, Waldner A, Fu A, Xiao L, Harkness TA, Arnason TG. The ubiquitin-conjugating enzyme, Ubc1, indirectly regulates SNF1 kinase activity via Forkhead-dependent transcription. MICROBIAL CELL 2016; 3:540-553. [PMID: 28357323 PMCID: PMC5349210 DOI: 10.15698/mic2016.11.538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The SNF1 kinase in Saccharomyces cerevisiae is an excellent model to study the regulation and function of the AMP-dependent protein kinase (AMPK) family of serine-threonine protein kinases. Yeast discoveries regarding the regulation of this non-hormonal sensor of metabolic/environmental stress are conserved in higher eukaryotes, including poly-ubiquitination of the α-subunit of yeast (Snf1) and human (AMPKα) that ultimately effects subunit stability and enzyme activity. The ubiquitin-cascade enzymes responsible for targeting Snf1 remain unknown, leading us to screen for those that impact SNF1 kinase function. We identified the E2, Ubc1, as a regulator of SNF1 kinase function. The decreased Snf1 abundance found upon deletion of Ubc1 is not due to increased degradation, but instead is partly due to impaired SNF1 gene expression, arising from diminished abundance of the Forkhead 1/2 proteins, previously shown to contribute to SNF1 transcription. Ultimately, we report that the Fkh1/2 cognate transcription factor, Hcm1, fails to enter the nucleus in the absence of Ubc1. This implies that Ubc1 acts indirectly through transcriptional effects to modulate SNF1 kinase activity.
Collapse
Affiliation(s)
- Rubin Jiao
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Liubov Lobanova
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Amanda Waldner
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Anthony Fu
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Linda Xiao
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Troy A Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Terra G Arnason
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5. ; Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| |
Collapse
|
24
|
Deroover S, Ghillebert R, Broeckx T, Winderickx J, Rolland F. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1. FEMS Yeast Res 2016; 16:fow036. [PMID: 27189362 DOI: 10.1093/femsyr/fow036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2016] [Indexed: 11/12/2022] Open
Abstract
Trehalose-6-P (T6P), an intermediate of trehalose biosynthesis, was identified as an important regulator of yeast sugar metabolism and signaling. tps1Δ mutants, deficient in T6P synthesis (TPS), are unable to grow on rapidly fermentable medium with uncontrolled influx in glycolysis, depletion of ATP and accumulation of sugar phosphates. However, the exact molecular mechanisms involved are not fully understood. We show that SNF1 deletion restores the tps1Δ growth defect on glucose, suggesting that lack of TPS hampers inactivation of SNF1 or SNF1-regulated processes. In addition to alternative, non-fermentable carbon metabolism, SNF1 controls two major processes: respiration and gluconeogenesis. The tps1Δ defect appears to be specifically associated with deficient inhibition of gluconeogenesis, indicating more downstream effects. Consistently, Snf1 dephosphorylation and inactivation on glucose medium are not affected, as confirmed with an in vivo Snf1 activity reporter. Detailed analysis shows that gluconeogenic Pck1 and Fbp1 expression, protein levels and activity are not repressed upon glucose addition to tps1Δ cells, suggesting a link between the metabolic defect and persistent gluconeogenesis. While SNF1 is essential for induction of gluconeogenesis, T6P/TPS is required for inactivation of gluconeogenesis in the presence of glucose, downstream and independent of SNF1 activity and the Cat8 and Sip4 transcription factors.
Collapse
Affiliation(s)
- Sofie Deroover
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Ruben Ghillebert
- Laboratory of Functional Biology, Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Tom Broeckx
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Joris Winderickx
- Laboratory of Functional Biology, Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
25
|
Emanuelle S, Doblin MS, Stapleton DI, Bacic A, Gooley PR. Molecular Insights into the Enigmatic Metabolic Regulator, SnRK1. TRENDS IN PLANT SCIENCE 2016; 21:341-353. [PMID: 26642889 DOI: 10.1016/j.tplants.2015.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/13/2015] [Accepted: 11/03/2015] [Indexed: 05/20/2023]
Abstract
Sucrose non-fermenting-1 (SNF1)-related kinase 1 (SnRK1) lies at the heart of metabolic homeostasis in plants and is crucial for normal development and response to stress. Evolutionarily related to SNF1 in yeast and AMP-activated kinase (AMPK) in mammals, SnRK1 acts protectively to maintain homeostasis in the face of fluctuations in energy status. Despite a conserved function, the structure and regulation of the plant kinase differ considerably from its relatively well-understood opisthokont orthologues. In this review, we highlight the known plant-specific modes of regulation involving SnRK1 together with new insights based on a 3D molecular model of the kinase. We also summarise how these differences from other orthologues may be specific adaptations to plant metabolism, and offer insights into possible avenues of future inquiry into this enigmatic enzyme.
Collapse
Affiliation(s)
- Shane Emanuelle
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Monika S Doblin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David I Stapleton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Paul R Gooley
- Department of Biochemistry & Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
26
|
Jayakody LN, Ferdouse J, Hayashi N, Kitagaki H. Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor. Crit Rev Biotechnol 2016; 37:177-189. [PMID: 26953525 DOI: 10.3109/07388551.2015.1128877] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although there have been approximately 60 chemical compounds identified as potent fermentation inhibitors in lignocellulose hydrolysate, our research group recently discovered glycolaldehyde as a key fermentation inhibitor during second generation biofuel production. Accordingly, we have developed a yeast S. cerevisiae strain exhibiting tolerance to glycolaldehyde. During this glycolaldehyde study, we established novel approaches for rational engineering of inhibitor-tolerant S. cerevisiae strains, including engineering redox cofactors and engineering the SUMOylation pathway. These new technical dimensions provide a novel platform for engineering S. cerevisiae strains to overcome one of the key barriers for industrialization of lignocellulosic ethanol production. As such, this review discusses novel biochemical insight of glycolaldehyde in the context of the biofuel industry.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- a Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana , IL , USA.,b Department of Biochemistry and Applied Biosciences United Graduate School of Agricultural Sciences , Kagoshima University , Kagoshima , Japan , and
| | - Jannatul Ferdouse
- c Department of Environmental Sciences Faculty of Agriculture , Saga University , Saga , Japan
| | - Nobuyuki Hayashi
- c Department of Environmental Sciences Faculty of Agriculture , Saga University , Saga , Japan
| | - Hiroshi Kitagaki
- b Department of Biochemistry and Applied Biosciences United Graduate School of Agricultural Sciences , Kagoshima University , Kagoshima , Japan , and.,c Department of Environmental Sciences Faculty of Agriculture , Saga University , Saga , Japan
| |
Collapse
|
27
|
Nie M, Boddy MN. Cooperativity of the SUMO and Ubiquitin Pathways in Genome Stability. Biomolecules 2016; 6:14. [PMID: 26927199 PMCID: PMC4808808 DOI: 10.3390/biom6010014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 01/27/2023] Open
Abstract
Covalent attachment of ubiquitin (Ub) or SUMO to DNA repair proteins plays critical roles in maintaining genome stability. These structurally related polypeptides can be viewed as distinct road signs, with each being read by specific protein interaction motifs. Therefore, via their interactions with selective readers in the proteome, ubiquitin and SUMO can elicit distinct cellular responses, such as directing DNA lesions into different repair pathways. On the other hand, through the action of the SUMO-targeted ubiquitin ligase (STUbL) family proteins, ubiquitin and SUMO can cooperate in the form of a hybrid signal. These mixed SUMO-ubiquitin chains recruit “effector” proteins such as the AAA+ ATPase Cdc48/p97-Ufd1-Npl4 complex that contain both ubiquitin and SUMO interaction motifs. This review will summarize recent key findings on collaborative and distinct roles that ubiquitin and SUMO play in orchestrating DNA damage responses.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Michael N Boddy
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
SUMO Pathway Modulation of Regulatory Protein Binding at the Ribosomal DNA Locus in Saccharomyces cerevisiae. Genetics 2016; 202:1377-94. [PMID: 26837752 DOI: 10.1534/genetics.116.187252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
In this report, we identify cellular targets of Ulp2, one of two Saccharomyces cerevisiae small ubiquitin-related modifier (SUMO) proteases, and investigate the function of SUMO modification of these proteins. PolySUMO conjugates from ulp2Δ and ulp2Δ slx5Δ cells were isolated using an engineered affinity reagent containing the four SUMO-interacting motifs (SIMs) of Slx5, a component of the Slx5/Slx8 SUMO-targeted ubiquitin ligase (STUbL). Two proteins identified, Net1 and Tof2, regulate ribosomal DNA (rDNA) silencing and were found to be hypersumoylated in ulp2Δ,slx5Δ, and ulp2Δ slx5Δ cells. The increase in sumoylation of Net1 and Tof2 in ulp2Δ, but not ulp1ts cells, indicates that these nucleolar proteins are specific substrates of Ulp2 Based on quantitative chromatin-immunoprecipitation assays, both Net1 and Tof2 lose binding to their rDNA sites in ulp2Δ cells and both factors largely regain this association in ulp2Δ slx5Δ A parsimonious interpretation of these results is that hypersumoylation of these proteins causes them to be ubiquitylated by Slx5/Slx8, impairing their association with rDNA. Fob1, a protein that anchors both Net1 and Tof2 to the replication-fork barrier (RFB) in the rDNA repeats, is sumoylated in wild-type cells, and its modification levels increase specifically in ulp2Δ cells. Fob1 experiences a 50% reduction in rDNA binding in ulp2Δ cells, which is also rescued by elimination of Slx5 Additionally, overexpression of Sir2, another RFB-associated factor, suppresses the growth defect of ulp2Δ cells. Our data suggest that regulation of rDNA regulatory proteins by Ulp2 and the Slx5/Slx8 STUbL may be the cause of multiple ulp2Δ cellular defects.
Collapse
|
29
|
Crozet P, Margalha L, Butowt R, Fernandes N, Elias CA, Orosa B, Tomanov K, Teige M, Bachmair A, Sadanandom A, Baena-González E. SUMOylation represses SnRK1 signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:120-133. [PMID: 26662259 PMCID: PMC4817235 DOI: 10.1111/tpj.13096] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/12/2015] [Accepted: 11/24/2015] [Indexed: 05/10/2023]
Abstract
The SnRK1 protein kinase balances cellular energy levels in accordance with extracellular conditions and is thereby key for plant stress tolerance. In addition, SnRK1 has been implicated in numerous growth and developmental processes from seed filling and maturation to flowering and senescence. Despite its importance, the mechanisms that regulate SnRK1 activity are poorly understood. Here, we demonstrate that the SnRK1 complex is SUMOylated on multiple subunits and identify SIZ1 as the E3 Small Ubiquitin-like Modifier (SUMO) ligase responsible for this modification. We further show that SnRK1 is ubiquitinated in a SIZ1-dependent manner, causing its degradation through the proteasome. In consequence, SnRK1 degradation is deficient in siz1-2 mutants, leading to its accumulation and hyperactivation of SnRK1 signaling. Finally, SnRK1 degradation is strictly dependent on its activity, as inactive SnRK1 variants are aberrantly stable but recover normal degradation when expressed as SUMO mimetics. Altogether, our data suggest that active SnRK1 triggers its own SUMOylation and degradation, establishing a negative feedback loop that attenuates SnRK1 signaling and prevents detrimental hyperactivation of stress responses.
Collapse
Affiliation(s)
- Pierre Crozet
- Rua da Quinta Grande 6, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Leonor Margalha
- Rua da Quinta Grande 6, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Rafal Butowt
- Rua da Quinta Grande 6, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Noémia Fernandes
- Rua da Quinta Grande 6, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Carlos A. Elias
- Rua da Quinta Grande 6, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Beatriz Orosa
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| | - Konstantin Tomanov
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna A-1030, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, Vienna A-1090, Austria
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna A-1030, Austria
| | - Ari Sadanandom
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| | - Elena Baena-González
- Rua da Quinta Grande 6, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
- For correspondence ()
| |
Collapse
|
30
|
Sanz P, Viana R, Garcia-Gimeno MA. AMPK in Yeast: The SNF1 (Sucrose Non-fermenting 1) Protein Kinase Complex. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:353-374. [PMID: 27812987 DOI: 10.1007/978-3-319-43589-3_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In yeast, SNF1 protein kinase is the orthologue of mammalian AMPK complex. It is a trimeric complex composed of Snf1 protein kinase (orthologue of AMPKα catalytic subunit), Snf4 (orthologue of AMPKγ regulatory subunit), and a member of the Gal83/Sip1/Sip2 family of proteins (orthologues of AMPKβ subunit) that act as scaffolds and also regulate the subcellular localization of the complex. In this chapter, we review the recent literature on the characteristics of SNF1 complex subunits, the structure and regulation of the activity of the SNF1 complex, its role at the level of transcriptional regulation of relevant target genes and also at the level of posttranslational modification of targeted substrates. We also review the crosstalk of SNF1 complex activity with other key protein kinase pathways such as cAMP-PKA, TORC1, and PAS kinase.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCiii), Jaime Roig 11, 46010, Valencia, Spain.
| | - Rosa Viana
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCiii), Jaime Roig 11, 46010, Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotecnología, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
31
|
Plant SnRK1 Kinases: Structure, Regulation, and Function. EXPERIENTIA SUPPLEMENTUM 2016; 107:403-438. [DOI: 10.1007/978-3-319-43589-3_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Castro PH, Verde N, Lourenço T, Magalhães AP, Tavares RM, Bejarano ER, Azevedo H. SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:2297-2311. [PMID: 26468507 DOI: 10.1093/pcp/pcv149] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Post-translational modification mechanisms function as switches that mediate the balance between optimum growth and the response to environmental stimuli, by regulating the activity of key proteins. SUMO (small ubiquitin-like modifier) attachment, or sumoylation, is a post-translational modification that is essential for the plant stress response, also modulating hormonal circuits to co-ordinate developmental processes. The Arabidopsis SUMO E3 ligase SAP and Miz 1 (SIZ1) is the major SUMO conjugation enhancer in response to stress, and is implicated in several aspects of plant development. Here we report that known SUMO targets are over-represented in multiple carbohydrate-related proteins, suggesting a functional link between sumoylation and sugar metabolism and signaling in plants. We subsequently observed that SUMO-conjugated proteins accumulate in response to high doses of sugar in a SIZ1-dependent manner, and that the null siz1 mutant displays increased expression of sucrose and starch catabolic genes and shows reduced starch levels. We demonstrated that SIZ1 controls germination time and post-germination growth via osmotic and sugar-dependent signaling, respectively. Glucose was specifically linked to SUMO-sugar interplay, with high levels inducing root growth inhibition and aberrant root hair morphology in siz1. The use of sugar analogs and sugar marker gene expression analysis allowed us to implicate SIZ1 in a signaling pathway dependent on glucose metabolism, probably involving modulation of SNF1-related kinase 1 (SnRK1) activity.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal These authors contributed equally to this work
| | - Nuno Verde
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal These authors contributed equally to this work
| | - Tiago Lourenço
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Alexandre Papadopoulos Magalhães
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Rui Manuel Tavares
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Herlânder Azevedo
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
33
|
SUMOylation of AMPKα1 by PIAS4 specifically regulates mTORC1 signalling. Nat Commun 2015; 6:8979. [PMID: 26616021 PMCID: PMC4674823 DOI: 10.1038/ncomms9979] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 10/23/2015] [Indexed: 12/24/2022] Open
Abstract
AMP-activated protein kinase (AMPK) inhibits several anabolic pathways such as fatty acid and protein synthesis, and identification of AMPK substrate specificity would be useful to understand its role in particular cellular processes and develop strategies to modulate AMPK activity in a substrate-specific manner. Here we show that SUMOylation of AMPKα1 attenuates AMPK activation specifically towards mTORC1 signalling. SUMOylation is also important for rapid inactivation of AMPK, to allow prompt restoration of mTORC1 signalling. PIAS4 and its SUMO E3 ligase activity are specifically required for the AMPKα1 SUMOylation and the inhibition of AMPKα1 activity towards mTORC1 signalling. The activity of a SUMOylation-deficient AMPKα1 mutant is higher than the wild type towards mTORC1 signalling when reconstituted in AMPKα-deficient cells. PIAS4 depletion reduced growth of breast cancer cells, specifically when combined with direct AMPK activator A769662, suggesting that inhibiting AMPKα1 SUMOylation can be explored to modulate AMPK activation and thereby suppress cancer cell growth. AMPK senses cellular energy and switches off pathways involved in protein and fatty acid synthesis, but the selectivity of AMPK for different pathways is unclear. Here, the authors show that PIAS4-dependent SUMOylation and inactivation of AMPK preferentially restores activity of the mTORC1 pathway.
Collapse
|
34
|
Zhang CY, Bai XW, Lin X, Liu XE, Xiao DG. Effects of SNF1 on Maltose Metabolism and Leavening Ability of Baker's Yeast in Lean Dough. J Food Sci 2015; 80:M2879-85. [PMID: 26580148 DOI: 10.1111/1750-3841.13137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/05/2015] [Indexed: 11/29/2022]
Abstract
Maltose metabolism of baker's yeast (Saccharomyces cerevisiae) in lean dough is negatively influenced by glucose repression, thereby delaying the dough fermentation. To improve maltose metabolism and leavening ability, it is necessary to alleviate glucose repression. The Snf1 protein kinase is well known to be essential for the response to glucose repression and required for transcription of glucose-repressed genes including the maltose-utilization genes (MAL). In this study, the SNF1 overexpression and deletion industrial baker's yeast strains were constructed and characterized in terms of maltose utilization, growth and fermentation characteristics, mRNA levels of MAL genes (MAL62 encoding the maltase and MAL61 encoding the maltose permease) and maltase and maltose permease activities. Our results suggest that overexpression of SNF1 was effective to glucose derepression for enhancing MAL expression levels and enzymes (maltase and maltose permease) activities. These enhancements could result in an 18% increase in maltose metabolism of industrial baker's yeast in LSMLD medium (the low sugar model liquid dough fermentation medium) containing glucose and maltose and a 15% increase in leavening ability in lean dough. These findings provide a valuable insight of breeding industrial baker's yeast for rapid fermentation.
Collapse
Affiliation(s)
- Cui-Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, P. R. China
| | - Xiao-Wen Bai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, P. R. China
| | - Xue Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, P. R. China
| | - Xiao-Er Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, P. R. China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
35
|
Lubitz T, Welkenhuysen N, Shashkova S, Bendrioua L, Hohmann S, Klipp E, Krantz M. Network reconstruction and validation of the Snf1/AMPK pathway in baker's yeast based on a comprehensive literature review. NPJ Syst Biol Appl 2015; 1:15007. [PMID: 28725459 PMCID: PMC5516868 DOI: 10.1038/npjsba.2015.7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/19/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND/OBJECTIVES The SNF1/AMPK protein kinase has a central role in energy homeostasis in eukaryotic cells. It is activated by energy depletion and stimulates processes leading to the production of ATP while it downregulates ATP-consuming processes. The yeast SNF1 complex is best known for its role in glucose derepression. METHODS We performed a network reconstruction of the Snf1 pathway based on a comprehensive literature review. The network was formalised in the rxncon language, and we used the rxncon toolbox for model validation and gap filling. RESULTS We present a machine-readable network definition that summarises the mechanistic knowledge of the Snf1 pathway. Furthermore, we used the known input/output relationships in the network to identify and fill gaps in the information transfer through the pathway, to produce a functional network model. Finally, we convert the functional network model into a rule-based model as a proof-of-principle. CONCLUSIONS The workflow presented here enables large scale reconstruction, validation and gap filling of signal transduction networks. It is analogous to but distinct from that established for metabolic networks. We demonstrate the workflow capabilities, and the direct link between the reconstruction and dynamic modelling, with the Snf1 network. This network is a distillation of the knowledge from all previous publications on the Snf1/AMPK pathway. The network is a knowledge resource for modellers and experimentalists alike, and a template for similar efforts in higher eukaryotes. Finally, we envisage the workflow as an instrumental tool for reconstruction of large signalling networks across Eukaryota.
Collapse
Affiliation(s)
- Timo Lubitz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niek Welkenhuysen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Sviatlana Shashkova
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Loubna Bendrioua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Krantz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
36
|
Simpson-Lavy KJ, Bronstein A, Kupiec M, Johnston M. Cross-Talk between Carbon Metabolism and the DNA Damage Response in S. cerevisiae. Cell Rep 2015; 12:1865-75. [PMID: 26344768 DOI: 10.1016/j.celrep.2015.08.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
Yeast cells with DNA damage avoid respiration, presumably because products of oxidative metabolism can be harmful to DNA. We show that DNA damage inhibits the activity of the Snf1 (AMP-activated) protein kinase (AMPK), which activates expression of genes required for respiration. Glucose and DNA damage upregulate SUMOylation of Snf1, catalyzed by the SUMO E3 ligase Mms21, which inhibits SNF1 activity. The DNA damage checkpoint kinases Mec1/ATR and Tel1/ATM, as well as the nutrient-sensing protein kinase A (PKA), regulate Mms21 activity toward Snf1. Mec1 and Tel1 are required for two SNF1-regulated processes-glucose sensing and ADH2 gene expression-even without exogenous genotoxic stress. Our results imply that inhibition of Snf1 by SUMOylation is a mechanism by which cells lower their respiration in response to DNA damage. This raises the possibility that activation of DNA damage checkpoint mechanisms could contribute to aerobic fermentation (Warburg effect), a hallmark of cancer cells.
Collapse
Affiliation(s)
- Kobi J Simpson-Lavy
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, 12801 E 17(th) Avenue, Aurora, CO 80045, USA; Tel Aviv University, Department of Molecular Microbiology and Biotechnology, Haim Levanon Street, Tel Aviv 6997801, Israel.
| | - Alex Bronstein
- Tel Aviv University, Department of Molecular Microbiology and Biotechnology, Haim Levanon Street, Tel Aviv 6997801, Israel
| | - Martin Kupiec
- Tel Aviv University, Department of Molecular Microbiology and Biotechnology, Haim Levanon Street, Tel Aviv 6997801, Israel
| | - Mark Johnston
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, 12801 E 17(th) Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
37
|
Cabasso O, Pekar O, Horowitz M. SUMOylation of EHD3 Modulates Tubulation of the Endocytic Recycling Compartment. PLoS One 2015; 10:e0134053. [PMID: 26226295 PMCID: PMC4520680 DOI: 10.1371/journal.pone.0134053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/03/2015] [Indexed: 11/18/2022] Open
Abstract
Endocytosis defines the entry of molecules or macromolecules through the plasma membrane as well as membrane trafficking in the cell. It depends on a large number of proteins that undergo protein-protein and protein-phospholipid interactions. EH Domain containing (EHDs) proteins formulate a family, whose members participate in different stages of endocytosis. Of the four mammalian EHDs (EHD1-EHD4) EHD1 and EHD3 control traffic to the endocytic recycling compartment (ERC) and from the ERC to the plasma membrane, while EHD2 modulates internalization. Recently, we have shown that EHD2 undergoes SUMOylation, which facilitates its exit from the nucleus, where it serves as a co-repressor. In the present study, we tested whether EHD3 undergoes SUMOylation and what is its role in endocytic recycling. We show, both in-vitro and in cell culture, that EHD3 undergoes SUMOylation. Localization of EHD3 to the tubular structures of the ERC depends on its SUMOylation on lysines 315 and 511. Absence of SUMOylation of EHD3 has no effect on its dimerization, an important factor in membrane localization of EHD3, but has a dominant negative effect on its appearance in tubular ERC structures. Non-SUMOylated EHD3 delays transferrin recycling from the ERC to the cell surface. Our findings indicate that SUMOylation of EHD3 is involved in tubulation of the ERC membranes, which is important for efficient recycling.
Collapse
Affiliation(s)
- Or Cabasso
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | - Olga Pekar
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | - Mia Horowitz
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
- * E-mail:
| |
Collapse
|
38
|
Shashkova S, Welkenhuysen N, Hohmann S. Molecular communication: crosstalk between the Snf1 and other signaling pathways. FEMS Yeast Res 2015; 15:fov026. [DOI: 10.1093/femsyr/fov026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 02/02/2023] Open
|
39
|
Hsu HE, Liu TN, Yeh CS, Chang TH, Lo YC, Kao CF. Feedback Control of Snf1 Protein and Its Phosphorylation Is Necessary for Adaptation to Environmental Stress. J Biol Chem 2015; 290:16786-96. [PMID: 25947383 DOI: 10.1074/jbc.m115.639443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 12/26/2022] Open
Abstract
Snf1, a member of the AMP-activated protein kinase family, plays a critical role in metabolic energy control in yeast cells. Snf1 activity is activated by phosphorylation of Thr-210 on the activation loop of its catalytic subunit; following activation, Snf1 regulates stress-responsive transcription factors. Here, we report that the level of Snf1 protein is dramatically decreased in a UBP8- and UBP10-deleted yeast mutant (ubp8Δ ubp10Δ), and this is independent of transcriptional regulation and proteasome-mediated degradation. Surprisingly, most Snf1-mediated functions, including glucose limitation regulation, utilization of alternative carbon sources, stress responses, and aging, are unaffected in this strain. Snf1 phosphorylation in ubp8Δ ubp10Δ cells is hyperactivated upon stress, which may compensate for the loss of the Snf1 protein and protect cells against stress and aging. Furthermore, artificial elevation of Snf1 phosphorylation (accomplished through deletion of REG1, which encodes a protein that regulates Snf1 dephosphorylation) restored Snf1 protein levels and the regulation of Snf1 activity in ubp8Δ ubp10Δ cells. Our results reveal the existence of a feedback loop that controls Snf1 protein level and its phosphorylation, which is masked by Ubp8 and Ubp10 through an unknown mechanism. We propose that this dynamic modulation of Snf1 phosphorylation and its protein level may be important for adaptation to environmental stress.
Collapse
Affiliation(s)
- Hsiang-En Hsu
- From the Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taipei, Taiwan
| | - Tzu-Ning Liu
- the Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617
| | - Chung-Shu Yeh
- the Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 11221, and the Genomics Research Center and
| | - Tien-Hsien Chang
- the Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 11221, and the Genomics Research Center and
| | - Yi-Chen Lo
- the Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617,
| | - Cheng-Fu Kao
- From the Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taipei, Taiwan
| |
Collapse
|
40
|
Jiao R, Postnikoff S, Harkness TA, Arnason TG. The SNF1 Kinase Ubiquitin-associated Domain Restrains Its Activation, Activity, and the Yeast Life Span. J Biol Chem 2015; 290:15393-15404. [PMID: 25869125 DOI: 10.1074/jbc.m115.647032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 02/04/2023] Open
Abstract
The enzyme family of heterotrimeric AMP-dependent protein kinases is activated upon low energy states, conferring a switch toward energy-conserving metabolic pathways through immediate kinase actions on enzyme targets and delayed alterations in gene expression through its nuclear relocalization. This family is evolutionarily conserved, including the presence of a ubiquitin-associated (UBA) motif in most catalytic subunits. The potential for the UBA domain to promote protein associations or direct subcellular location, as seen in other UBA-containing proteins, led us to query whether the UBA domain within the yeast AMP-dependent protein kinase ortholog, SNF1 kinase, was important in these aspects of its regulation. Here, we demonstrate that conserved UBA motif mutations significantly alter SNF1 kinase activation and biological activity, including enhanced allosteric subunit associations and increased oxidative stress resistance and life span. Significantly, the enhanced UBA-dependent longevity and oxidative stress response are at least partially dependent on the Fkh1 and Fkh2 stress response transcription factors, which in turn are shown to influence Snf1 gene expression.
Collapse
Affiliation(s)
- Rubin Jiao
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Spike Postnikoff
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Troy A Harkness
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Terra G Arnason
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
41
|
Shin HY, Nijland JG, de Waal PP, de Jong RM, Klaassen P, Driessen AJM. An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:176. [PMID: 26535057 PMCID: PMC4630928 DOI: 10.1186/s13068-015-0360-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae is unable to ferment pentose sugars like d-xylose. Through the introduction of the respective metabolic pathway, S. cerevisiae is able to ferment xylose but first utilizes d-glucose before the d-xylose can be transported and metabolized. Low affinity d-xylose uptake occurs through the endogenous hexose (Hxt) transporters. For a more robust sugar fermentation, co-consumption of d-glucose and d-xylose is desired as d-xylose fermentation is in particular prone to inhibition by compounds present in pretreated lignocellulosic feedstocks. RESULTS Evolutionary engineering of a d-xylose-fermenting S. cerevisiae strain lacking the major transporter HXT1-7 and GAL2 genes yielded a derivative that shows improved growth on xylose because of the expression of a normally cryptic HXT11 gene. Hxt11 also supported improved growth on d-xylose by the wild-type strain. Further selection for glucose-insensitive growth on d-xylose employing a quadruple hexokinase deletion yielded mutations at N366 of Hxt11 that reversed the transporter specificity for d-glucose into d-xylose while maintaining high d-xylose transport rates. The Hxt11 mutant enabled the efficient co-fermentation of xylose and glucose at industrially relevant sugar concentrations when expressed in a strain lacking the HXT1-7 and GAL2 genes. CONCLUSIONS Hxt11 is a cryptic sugar transporter of S. cerevisiae that previously has not been associated with effective d-xylose transport. Mutagenesis of Hxt11 yielded transporters that show a better affinity for d-xylose as compared to d-glucose while maintaining high transport rates. d-glucose and d-xylose co-consumption is due to a redistribution of the sugar transport flux while maintaining the total sugar conversion rate into ethanol. This method provides a single transporter solution for effective fermentation on lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Hyun Yong Shin
- />Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jeroen G. Nijland
- />Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paul P. de Waal
- />DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - René M. de Jong
- />DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Paul Klaassen
- />DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Arnold J. M. Driessen
- />Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
42
|
Jayakody LN, Kadowaki M, Tsuge K, Horie K, Suzuki A, Hayashi N, Kitagaki H. SUMO expression shortens the lag phase of Saccharomyces cerevisiae yeast growth caused by complex interactive effects of major mixed fermentation inhibitors found in hot-compressed water-treated lignocellulosic hydrolysate. Appl Microbiol Biotechnol 2014; 99:501-15. [DOI: 10.1007/s00253-014-6174-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022]
|
43
|
Sumoylation and transcription regulation at nuclear pores. Chromosoma 2014; 124:45-56. [PMID: 25171917 PMCID: PMC4339684 DOI: 10.1007/s00412-014-0481-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/22/2023]
Abstract
Increasing evidence indicates that besides promoters, enhancers, and epigenetic modifications, nuclear organization is another parameter contributing to optimal control of gene expression. Although differences between species exist, the influence of gene positioning on expression seems to be a conserved feature from yeast to Drosophila and mammals. The nuclear periphery is one of the nuclear compartments implicated in gene regulation. It consists of the nuclear envelope (NE) and the nuclear pore complexes (NPC), which have distinct roles in the control of gene expression. The NPC has recently been shown to tether proteins involved in the sumoylation pathway. Here, we will focus on the importance of gene positioning and NPC-linked sumoylation/desumoylation in transcription regulation. We will mainly discuss observations made in the yeast Saccharomyces cerevisiae model system and highlight potential parallels in metazoan species.
Collapse
|
44
|
Ronnebaum SM, Patterson C, Schisler JC. Minireview: hey U(PS): metabolic and proteolytic homeostasis linked via AMPK and the ubiquitin proteasome system. Mol Endocrinol 2014; 28:1602-15. [PMID: 25099013 DOI: 10.1210/me.2014-1180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the master regulators of both glucose and lipid cellular metabolism is 5'-AMP-activated protein kinase (AMPK). As a metabolic pivot that dynamically responds to shifts in nutrient availability and stress, AMPK dysregulation is implicated in the underlying molecular pathology of a variety of diseases, including cardiovascular diseases, diabetes, cancer, neurological diseases, and aging. Although the regulation of AMPK enzymatic activity by upstream kinases is an active area of research, less is known about regulation of AMPK protein stability and activity by components of the ubiquitin-proteasome system (UPS), the cellular machinery responsible for both the recognition and degradation of proteins. Furthermore, there is growing evidence that AMPK regulates overall proteasome activity and individual components of the UPS. This review serves to identify the current understanding of the interplay between AMPK and the UPS and to promote further exploration of the relationship between these regulators of energy use and amino acid availability within the cell.
Collapse
Affiliation(s)
- Sarah M Ronnebaum
- McAllister Heart Institute (S.M.R., J.C.S.) and Department of Pharmacology (J.C.S.), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; and Presbyterian Hospital/Weill-Cornell Medical Center (C.P.), New York, New York 10065
| | | | | |
Collapse
|
45
|
Berkholz J, Michalick L, Munz B. The E3 SUMO ligase Nse2 regulates sumoylation and nuclear-to-cytoplasmic translocation of skNAC-Smyd1 in myogenesis. J Cell Sci 2014; 127:3794-804. [PMID: 25002400 DOI: 10.1242/jcs.150334] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Skeletal and heart muscle-specific variant of the α subunit of nascent polypeptide associated complex (skNAC; encoded by NACA) is exclusively found in striated muscle cells. Its function, however, is largely unknown. Previous reports have demonstrated that skNAC binds to m-Bop/Smyd1, a multi-functional protein that regulates myogenesis both through the control of transcription and the modulation of sarcomerogenesis, and that both proteins undergo nuclear-to-cytoplasmic translocation at the later stages of myogenic differentiation. Here, we show that skNAC binds to the E3 SUMO ligase mammalian Mms21/Nse2 and that knockdown of Nse2 expression inhibits specific aspects of myogenic differentiation, accompanied by a partial blockade of the nuclear-to-cytoplasmic translocation of the skNAC-Smyd1 complex, retention of the complex in promyelocytic leukemia (PML)-like nuclear bodies and disturbed sarcomerogenesis. In addition, we show that the skNAC interaction partner Smyd1 contains a putative sumoylation motif and is sumoylated in muscle cells, with depletion of Mms21/Nse2 leading to reduced concentrations of sumoylated Smyd1. Taken together, our data suggest that the function, specifically the balance between the nuclear and cytosolic roles, of the skNAC-Smyd1 complex might be regulated by sumoylation.
Collapse
Affiliation(s)
- Janine Berkholz
- Charité - University Medicine Berlin, Institute of Physiology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Laura Michalick
- Charité - University Medicine Berlin, Institute of Physiology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Barbara Munz
- University Hospital Tubingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Strasse 6, D-72076 Tubingen, Germany
| |
Collapse
|
46
|
Chhunchha B, Fatma N, Kubo E, Singh DP. Aberrant sumoylation signaling evoked by reactive oxygen species impairs protective function of Prdx6 by destabilization and repression of its transcription. FEBS J 2014; 281:3357-81. [PMID: 24910119 DOI: 10.1111/febs.12866] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/24/2014] [Accepted: 06/05/2014] [Indexed: 12/20/2022]
Abstract
Loss of the cytoprotective protein peroxiredoxin 6 (Prdx6) in cells that are aging or under oxidative stress is known to be linked to the pathobiology of many age-related diseases. However, the mechanism by which Prdx6 activity goes awry is largely unknown. Using Prdx6-deficient (Prdx6(-/-) ) cells as a model for aging or redox active cells, human/mouse lens epithelial cells (LECs) facing oxidative stress and aging lenses, we found a significant increase in the levels of small ubiquitin-like modifier (Sumo)1 conjugates. These cells displayed increased levels of Sumo1 and reduced the expression of Prdx6. Specifically, we observed that Prdx6 is a target for aberrant sumoylation signaling, and that Sumo1 modification reduces its cellular abundance. LECs overexpressing Sumo1 showed reduced expression and activity of Prdx6 and its transactivator specificity protein 1 (Sp1), mRNA and protein with increased levels of reactive oxygen species; those cells were vulnerable to oxidative stress-induced cell death. A significant reduction in Prdx6, Sp1 protein and mRNA expression was observed in redox active Prdx6(-/-) cells and in aging lenses/LECs. The reduction was correlated with increased expression of Sumo1 and enrichment of the inactive form (dimeric) of Sumo-specific protease (Senp)1. Experiments with Sumo1-fused Prdx6 and Prdx6 promoter-linked to chloramphenicol acetyltransferase reporter gene constructs indicated that Sumo1 dysregulated Prdx6 activity by reducing its abundance and attenuating its transcription; in contrast, the delivery of Senp1 or Prdx6 reversed the process. The data show that reactive oxygen species-evoked aberrant sumoylation signaling affects Prdx6 activity by reducing Prdx6 abundance, as well as transcription. The findings of the present study may provide a foundation for a strategy to repair deleterious oxidative signaling generated by a reduced activity of Prdx6.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | |
Collapse
|
47
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
48
|
Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. FRONTIERS IN PLANT SCIENCE 2014; 5:190. [PMID: 24904600 PMCID: PMC4033248 DOI: 10.3389/fpls.2014.00190] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 05/17/2023]
Abstract
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.
Collapse
Affiliation(s)
| | | | | | - Américo Rodrigues
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- Escola Superior de Turismo e Tecnologia do Mar de Peniche, Instituto Politécnico de LeiriaPeniche, Portugal
| | | | | | | | - Elena Baena-González
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|