1
|
Waninger JJ, Demirci FY, Demirci H. Genetic analysis of metastatic versus nonmetastatic conjunctival melanoma using a cutaneous melanoma gene expression panel. CANADIAN JOURNAL OF OPHTHALMOLOGY 2025; 60:170-176. [PMID: 39366666 DOI: 10.1016/j.jcjo.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVE Conjunctival melanoma (CJM) is a rare subtype of mucosal melanomas. Despite an increasing understanding of CJM genetics, predicting patient prognosis remains challenging. Here we sought to see if a 31-gene expression profile (31-GEP) test (i.e., DecisionDx-Melanoma) originally developed and validated for cutaneous melanoma (CM) could be useful in the prognostication of patients with CJM. DESIGN/PARTICIPANTS We performed a single-center retrospective review and gene expression profiling of 10 patients with CJM. METHODS Deidentified archived samples of each primary tumor were sent to Castle Biosciences, where 31-GEP testing was performed. Patients were followed until death or a minimum of 5 years postexcision and monitored for tumor recurrence or metastatic spread. Mean fold change in individual gene expression was compared between nonmetastatic and metastatic groups via independent t-tests. RESULTS Fifty percent of patients developed metastatic disease and had reduced overall survival (3.6 vs 9.3 months; p = 0.018). In 4 of 10 patients, two nonmetastatic and two metastatic, tumor samples passed Castle Biosciences quality control allowing for class designation. All metastatic patients and one nonmetastatic patient were designated as class 2B. The final nonmetastatic patient was designated as class 1B. In individual gene analysis, BAP1 expression was significantly reduced in the metastatic group (p = 0.03). CONCLUSIONS In assessing if a CM gene expression panel could aid in the risk stratification of patients with CJM, we found that the uveal melanoma-relevant gene, BAP1, may be important. Additional studies with larger sample sizes are needed to determine the relevance of this and other differentially expressed genes in CJM prognostication.
Collapse
Affiliation(s)
- Jessica J Waninger
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - F Yesim Demirci
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hakan Demirci
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
2
|
Racz L, Pasternack-Ziach S, Spier I, Forchhammer S, Rehkämper C, Kind P, Reifenberger J, Redler S. BAPoma, a rare nevus, as the key to a diagnosis of BAP1-associated tumor predisposition syndrome. J Dtsch Dermatol Ges 2025. [PMID: 40424061 DOI: 10.1111/ddg.15791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/15/2025] [Indexed: 05/28/2025]
Affiliation(s)
- Lara Racz
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sandra Pasternack-Ziach
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Isabel Spier
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | | | | | - Peter Kind
- Laboratory for Dermatohistology, Offenbach am Main, Germany
| | - Julia Reifenberger
- Department of Dermatology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine- University Düsseldorf, Düsseldorf, Germany
| | - Silke Redler
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Rimini M, Fornaro L, Prinzi FL, Rizzato MD, Saborowski A, Antonuzzo L, Rossari F, Satake T, Peeters F, Vivaldi C, Pressiani T, Lucchetti J, Kim JW, Abidoye O, Rapposelli IG, Tamberi S, Finkelmeier F, Giordano G, Pircher C, Chon HJ, Braconi C, Qaisar A, Pirrone C, Castet F, Tamburini E, Yoo C, Parisi A, Diana A, Scartozzi M, Prager GW, Avallone A, Schirripa M, Kim IH, Perkhofer L, Oneda E, Verrico M, Couto N, Adeva J, Chan SL, Spinelli GP, Personeni N, Garajova I, Rodriquenz MG, Leo S, Alvim CM, Roque R, Farinea G, Salani F, De Rosa A, Lavacchi D, Camera S, Ikeda M, Dekervel J, Niger M, Balsano R, Tonini G, Corallo S, Kang M, Bekaii-Saab T, Esposito L, Boccaccino A, Vitiello F, Himmelsbach V, Landriscina M, Djaballah SA, Tesini G, Masi G, Vogel A, Lonardi S, Rimassa L, Casadei-Gardini A. Factors associated with reaching maintenance therapy in patients with advanced biliary tract cancer treated with durvalumab: Real-world results from a multicenter and multinational study. Int J Cancer 2025. [PMID: 40387725 DOI: 10.1002/ijc.35481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
Standard of care first-line systemic treatment for advanced biliary tract cancer includes chemo-immunotherapy with gemcitabine, cisplatin, and durvalumab, followed by maintenance durvalumab monotherapy. The present work aims to investigate the differences in baseline clinical and molecular characteristics between patients with early progression during chemo-immunotherapy and those who reach durvalumab maintenance therapy. The study population included patients with unresectable, locally advanced, or metastatic BTC who received treatment at 38 clinical Institutions in 12 countries from July 2021 to December 2023. The primary objective of the study was to investigate whether baseline clinical and molecular characteristics differed between patients with early progression during chemo-immunotherapy versus those reaching durvalumab maintenance therapy. Four hundred forty-eight patients were included in this study. Two hundred twenty-seven patients (50.7%) received maintenance with durvalumab monotherapy, whereas 221 (49.3%) did not receive maintenance therapy due to PD during first-line chemo-immunotherapy before completing 8 cycles. Results show that patients who received maintenance were more likely to be older (≥70 years), have an ECOG = 0, locally advanced disease, and a neutrophil-to-lymphocyte ratio (NLR) <3. A higher proportion of patients with BAP1 mutations received maintenance, while TP53 mutations were more common in those who progressed early. According to the present analysis, a substantial proportion of patients (50.7%) with advanced BTC who were treated with chemotherapy plus durvalumab proceeded to receive maintenance therapy with durvalumab monotherapy, with a median treatment duration of 4.4 cycles. Patients ≥70 years, with ECOG PS 0, with locally advanced disease, and with NLR <3 had a higher likelihood of receiving maintenance therapy.
Collapse
Affiliation(s)
- Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Lorenzo Fornaro
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Federica Lo Prinzi
- Operative Research Unit of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | | | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence; Thoracic Surgery Unit, Careggi University Hospital, Florence, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Tomoyuki Satake
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Frederik Peeters
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Caterina Vivaldi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Jessica Lucchetti
- Operative Research Unit of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Jin Won Kim
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Oluseyi Abidoye
- Department of Internal Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Stefano Tamberi
- Medical Oncology, Santa Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Fabian Finkelmeier
- Medical Clinic 1, Department of Gastroenterology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Riuniti, Foggia, Italy
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Chiara Pircher
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Hong Jae Chon
- Division of Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Chiara Braconi
- University of Glasgow (School of Cancer Sciences), Beatson West of Scotland Cancer Centre, CRUK Scotland Centre, Glasgow, UK
| | - Aitzaz Qaisar
- University of Glasgow (School of Cancer Sciences), Beatson West of Scotland Cancer Centre, CRUK Scotland Centre, Glasgow, UK
| | - Chiara Pirrone
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, Genoa, Italy
| | - Florian Castet
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Emiliano Tamburini
- Oncology Department and Palliative Care, Cardinale Panico Tricase City Hospital, Tricase, Italy
| | - Changhoon Yoo
- ASAN Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Alessandro Parisi
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | - Anna Diana
- Oncology Unit, Ospedale del Mare, Naples, Italy
| | - Mario Scartozzi
- Medical Oncology, University and University Hospital, Cagliari, Italy
| | - Gerald W Prager
- Department of Medicine I, Clinical Division of Oncology, Medical University Vienna, Austria
| | - Antonio Avallone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples, Italy
| | - Marta Schirripa
- Medical Oncology Unit, Department of Oncology and Hematology, Belcolle Hospital, Viterbo, Italy
| | - Il Hwan Kim
- Division of Oncology, Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Lukas Perkhofer
- Internal Medicine 1, University Hospital Ulm, Ulm, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Ester Oneda
- Dipartimento di Oncologia medica, Fondazione Poliambulanza, Brescia, Italy
| | - Monica Verrico
- UOC Oncologia A, Department of Hematology, Oncology and Dermatology, Policlinico Umberto I University Hospital, Sapienza University of Rome, Rome, Italy
| | - Nuno Couto
- Digestive Unit, Champalimaud Clinical Centre, Champalimaud Research Centre, Lisbon, Portugal
| | - Jorge Adeva
- 12 de Octubre University Hospital, Spanish Society of Medical Oncology (SEOM), Madrid, Spain
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Gian Paolo Spinelli
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy
| | - Nicola Personeni
- Medical Oncology Unit, P.O. Manerbio - ASST Garda, Manerbio (Brescia), Italy
| | - Ingrid Garajova
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Maria Grazia Rodriquenz
- Oncology Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Silvana Leo
- Division of Oncology, Vito Fazzi Hospital, Lecce, Italy
| | - Cecilia Melo Alvim
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Ricardo Roque
- Portuguese Institute of Oncology of Coimbra, Coimbra, Portugal
| | - Giovanni Farinea
- 12 de Octubre University Hospital, Spanish Society of Medical Oncology (SEOM), Madrid, Spain
| | - Francesca Salani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio De Rosa
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Jeroen Dekervel
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Monica Niger
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Balsano
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Giuseppe Tonini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Salvatore Corallo
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Minsu Kang
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Luca Esposito
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Vera Himmelsbach
- Medical Clinic 1, Department of Gastroenterology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Riuniti, Foggia, Italy
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Giulia Tesini
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Arndt Vogel
- Hannover Medical School, Hannover, Germany
- Longo Family Chair in Liver Cancer Research, Division of Gastroenterology and Hepatology, Toronto General Hospital, Medical Oncology, Princess Margaret Cancer Centre, Schwartz Reisman Liver Research Centre, Toronto, Canada
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lorenza Rimassa
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
4
|
Cedres S, Valdivia A, Priano I, Rocha P, Iranzo P, Pardo N, Martinez-Marti A, Felip E. BAP1 Mutations and Pleural Mesothelioma: Genetic Insights, Clinical Implications, and Therapeutic Perspectives. Cancers (Basel) 2025; 17:1581. [PMID: 40361508 PMCID: PMC12071723 DOI: 10.3390/cancers17091581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Pleural mesothelioma (PM) is a locally aggressive tumor associated with asbestos exposure. Despite legislative efforts to regulate asbestos use, its incidence continues to rise in some parts of the world. Chemotherapy and immunotherapy have improved survival in PM patients, but overall survival remains poor. Molecular analysis of PM patients has shown that most alterations occur in tumor suppressor genes, with BAP1 being the most frequently affected. Patients with germline BAP1 mutations have been reported to have a better prognosis, but this is not observed in those with somatic mutations. Interest in developing drugs targeting patients with BAP1 loss has led to several phase II studies in recent years. Unfortunately, initial results have not been very promising. In this review, we conclude that, at this time, with the contradictory results from studies and the limited number of patients evaluated, BAP1, the most commonly altered gene in PM, is not yet suitable for use in clinical practice as a prognostic or predictive factor. Future studies are needed to establish the prognostic or predictive value of BAP1.
Collapse
Affiliation(s)
- Susana Cedres
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, Paseo Vall d’Hebron 119, 08035 Barcelona, Spain; (A.V.); (P.R.)
| | - Augusto Valdivia
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, Paseo Vall d’Hebron 119, 08035 Barcelona, Spain; (A.V.); (P.R.)
| | - Ilaria Priano
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, Paseo Vall d’Hebron 119, 08035 Barcelona, Spain; (A.V.); (P.R.)
| | - Pedro Rocha
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, Paseo Vall d’Hebron 119, 08035 Barcelona, Spain; (A.V.); (P.R.)
| | - Patricia Iranzo
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, Paseo Vall d’Hebron 119, 08035 Barcelona, Spain; (A.V.); (P.R.)
| | - Nuria Pardo
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, Paseo Vall d’Hebron 119, 08035 Barcelona, Spain; (A.V.); (P.R.)
| | - Alex Martinez-Marti
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, Paseo Vall d’Hebron 119, 08035 Barcelona, Spain; (A.V.); (P.R.)
| | - Enriqueta Felip
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, Paseo Vall d’Hebron 119, 08035 Barcelona, Spain; (A.V.); (P.R.)
- Thoracic Cancers Translational Genomics Unit, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| |
Collapse
|
5
|
Kato T, Tanaka I, Huang H, Okado S, Imamura Y, Nomata Y, Takenaka H, Watanabe H, Kawasumi Y, Nakanishi K, Kadomatsu Y, Ueno H, Nakamura S, Mizuno T, Chen-Yoshikawa TF. Molecular Mechanisms of Tumor Progression and Novel Therapeutic and Diagnostic Strategies in Mesothelioma. Int J Mol Sci 2025; 26:4299. [PMID: 40362535 PMCID: PMC12072309 DOI: 10.3390/ijms26094299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway and histone methylation, thereby promoting tumor growth. NF2 mutations result in Merlin deficiency, leading to uncontrolled cell proliferation, whereas BAP1 mutations impair chromatin remodeling and hinder DNA damage repair. Emerging molecular targets in mesothelioma include mesothelin (MSLN), oxytocin receptor (OXTR), protein arginine methyltransferase (PRMT5), and carbohydrate sulfotransferase 4 (CHST4). MSLN-based therapies, such as antibody-drug conjugates and immunotoxins, have shown efficacy in clinical trials. OXTR, upregulated in mesothelioma, is correlated with poor prognosis and represents a novel therapeutic target. PRMT5 inhibition is being explored in tumors with MTAP deletions, commonly co-occurring with CDKN2A loss. CHST4 expression is associated with improved prognosis, potentially influencing tumor immunity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in some cases; however, resistance mechanisms remain a challenge. Advances in multi-omics approaches have improved our understanding of mesothelioma pathogenesis. Future research will aim to identify novel therapeutic targets and personalized treatment strategies, particularly in the context of epigenetic therapy and combination immunotherapy.
Collapse
Affiliation(s)
- Taketo Kato
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan;
| | - Heng Huang
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Shoji Okado
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yoshito Imamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuji Nomata
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Hirofumi Takenaka
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Hiroki Watanabe
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuta Kawasumi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Keita Nakanishi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuka Kadomatsu
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Harushi Ueno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Shota Nakamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Tetsuya Mizuno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Toyofumi Fengshi Chen-Yoshikawa
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| |
Collapse
|
6
|
Liu X, Wang S, Lv H, Chen E, Yan L, Yu J. Advances in the relationship of immune checkpoint inhibitors and DNA damage repair. Curr Res Transl Med 2025; 73:103494. [PMID: 39824061 DOI: 10.1016/j.retram.2025.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Cancer immunotherapy, alongside surgery, radiation therapy, and chemotherapy, has emerged as a key treatment modality. Immune checkpoint inhibitors (ICIs) represent a promising immunotherapy that plays a critical role in the management of various solid tumors. However, the limited efficacy of ICI monotherapy and the development of primary or secondary resistance to combination therapy remain a challenge. Consequently, identifying molecular markers for predicting ICI efficacy has become an area of active clinical research. Notably, the correlation between DNA damage repair (DDR) mechanisms and the effectiveness of ICI treatment has been established. This review outlines the two primary pathways of DDR, namely, the homologous recombination repair pathway and the mismatch repair pathway. The relationship between these key genes and ICIs has been discussed and the potential of these genes as molecular markers for predicting ICI efficacy summarized.
Collapse
Affiliation(s)
- Xiaolin Liu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Shan Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Hongwei Lv
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Enli Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Li Yan
- School of Humanities, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
7
|
Elsayed AM, Kittaneh M, Cebulla CM, Abdel-Rahman MH. An overview of BAP1 biological functions and current therapeutics. Biochim Biophys Acta Rev Cancer 2025; 1880:189267. [PMID: 39842618 DOI: 10.1016/j.bbcan.2025.189267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that was first identified in 1998. Germline loss-of-function variants in BAP1 are associated with a tumor predisposition syndrome with at least four cancers: uveal melanoma (UM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), and cutaneous melanoma (CM). Furthermore, somatic BAP1 mutations are important drivers for several cancers most notably UM, MMe, RCC, intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC). Emerging evidence substantiates the fundamental role of BAP1 in suppressing cancer initiation and progression by tuning DNA damage repair, apoptosis, ferroptosis, immune response, Warburg phenomenon, and metastasis. Multiple treatment strategies such as poly (ADP-ribose) polymerase (PARP) inhibitors, EZH2 inhibitors, alkylating agents, and immunotherapy have been used as potential therapies for BAP1-mutated tumors. Although these agents showed promising results in BAP1-mutated tumors in preclinical studies, the results of most clinical trials are still dismal. The objectives of this review are to summarize the current state of knowledge regarding the biological functions of BAP1, the implications of these functions in tumorigenesis, and the current progress in BAP1-targeted therapy.
Collapse
Affiliation(s)
- Abdelrahman M Elsayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Muaiad Kittaneh
- Department of Oncology, Loyola University Chicago, Maywood, IL 60660, USA
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Durgin JS, Zoumberos NA, Novice T, Fullen DR, Hristov AC, Lowe L, Patel RM, Harms PW, Andea AA, Bresler SC. Role of single-nucleotide pleomorphism microarray in the classification of BAP1-inactivated melanocytic tumours. Histopathology 2025. [PMID: 39976080 DOI: 10.1111/his.15434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
AIMS BAP1-inactivated melanocytic tumours (BIMTs) occur sporadically and in association with a familial tumour predisposition syndrome involving germline mutations in the BRCA1-associated protein-1 (BAP1) gene. Here we report the clinical features, histopathologic findings, and chromosomal copy number data of 19 BAP1-inactivated melanocytomas (BIMs) and compare their features to those of five BAP1-inactivated melanomas. METHODS We retrospectively searched the Department of Pathology archives and EMERSE (Electronic Medical Record Search Engine) for BIMTs that had undergone single-nucleotide polymorphism (SNP) microarray testing. Clinical history/follow-up data, detailed histopathologic features, and SNP microarray results were recorded. RESULTS Overall, four patients (4/13) with BIMs and available clinical history had features suspicious for a germline BAP1 aberration. In BIMs (19 cases), the BAP1-inactivated component showed variable cytologic features, including epithelioid (predominant), rhabdoid, plasmacytoid, and nevoid morphologies. Sentinel lymph node biopsy was negative in all (6/6) patients in which this procedure was performed. No patient diagnosed with a BIM with available clinical follow-up (18/19; mean 38 months) experienced an adverse event. While the histologic appearances of the five melanomas varied, one case resembled a BIM. The median mitotic count was 1/mm2 (range 0-6 mm2) in BIMs compared to 3/mm2 (range 1-4/mm2) in melanomas (P = 0.04). The median number of copy number alterations (CNAs) was two (range 0-6) in indolent cases versus seven (range 6-10) in melanomas (P = 0.0005). The most common molecular aberration after loss of 3p21 was heterozygous loss of the CDKN2A locus, which unlike homozygous loss has not been associated with melanoma. CONCLUSION While most BIMs appear to have a favourable prognosis, even those with multiple CNAs, they deserve careful integration of all clinical and pathologic findings. Although not fully diagnostic, a mitotic count of ≥3/mm2 and ≥6 CNAs in the appropriate context is supportive of a diagnosis of BAP1-inactivated melanoma.
Collapse
Affiliation(s)
- Joseph S Durgin
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Zoumberos
- Department of Pathology, University of Arkansas, Little Rock, Arkansas, USA
- Department of Dermatology, University of Arkansas, Little Rock, Arkansas, USA
| | - Taylor Novice
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas R Fullen
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandra C Hristov
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lori Lowe
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rajiv M Patel
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Cutaneous Pathology, WCP Laboratories Inc., Maryland Heights, Missouri, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Aleodor A Andea
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Roswell Park Comprehensive Cancer Center, Department of Pathology, Buffalo, New York, USA
| | - Scott C Bresler
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Kadamb R, Anton ML, Purwin TJ, Seeneevassen L, Chua V, Waltrich F, Teh JLF, Nieto MA, Sato T, Terai M, Roman SR, De Koning L, Zheng D, Aplin AE, Aguirre-Ghiso JA. Lineage commitment pathways epigenetically oppose oncogenic Gαq/11-YAP1 signaling in dormant disseminated uveal melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.05.583565. [PMID: 38496663 PMCID: PMC10942354 DOI: 10.1101/2024.03.05.583565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Uveal melanoma (UM) can remain in clinical dormancy for decades only to later produce lethal metastases. Using Gαq/11 mut /BAP1 wt UM xenograft models and human metastatic samples, we identified NR2F1 as a key inducer of UM disseminated cancer cell (DCC) dormancy. Dormant UM DCCs upregulate NR2F1, neural crest genes and, along with suppression of proliferation programs, NR2F1 silences YAP1/TEAD1 transcription by altering histone H3 activation marks. YAP1 can reciprocally repress NR2F1, but inhibiting Gαq/11 signaling or activating NR2F1 can arrest UM growth. NR2F1 knockout led to dormant DCC awakening and liver metastatic growth. NR2F1 and YAP1 inverse expression was confirmed in human livers carrying UM solitary, small DCC clusters as well as large metastases. Intriguingly, RNA-seq and Cut&Run analysis revealed that NR2F1 short-circuits oncogene signaling by repressing multiple G-protein signaling components. Our work provides previously unrecognized mechanistic insight into UM DCC dormancy and potential pathways for interception. Statement of significance NR2F1 epigenetically suppresses genes associated with G-protein signaling, cell cycle, and YAP1/TEAD1 pathways, inducing dormancy in uveal melanoma (UM) disseminated cancer cells. This study unveils novel markers for UM dormancy and reactivation, positioning NR2F1 as a promising target for intercepting residual and UM metastatic disease.
Collapse
|
10
|
Zhang T, Beytullahoglu O, Tulaiha R, Luvisotto A, Szczepanski A, Tsuboyama N, Zhao Z, Wang L. An epigenetic pathway regulates MHC-II expression and function in B cell lymphoma models. J Clin Invest 2025; 135:e179703. [PMID: 39817454 PMCID: PMC11735100 DOI: 10.1172/jci179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025] Open
Abstract
Mutations or homozygous deletions of MHC class II (MHC-II) genes are commonly found in B cell lymphomas that develop in immune-privileged sites and have been associated with patient survival. However, the mechanisms regulating MHC-II expression, particularly through genetic and epigenetic factors, are not yet fully understood. In this study, we identified a key signaling pathway involving the histone H2AK119 deubiquitinase BRCA1 associated protein 1 (BAP1), the interferon regulatory factor interferon regulatory factor 1 (IRF1), and the MHC-II transactivator class II transactivator (CIITA), which directly activates MHC-II gene expression. Disruption of the BAP1/IRF1/CIITA axis leads to a functional attenuation of MHC-II expression and MHC-II-dependent immune cell infiltration, leading to accelerated tumor growth in immunocompetent mice. Additionally, we demonstrated that pharmacological inhibition of polycomb repressive complex 1 (PRC1) - which deposits histone H2K119Ub and opposes BAP1 activity - can restore MHC-II gene expression in BAP1-deficient B cell lymphoma cells. These findings suggest that BAP1 may function as a tumor suppressor by regulating the tumor microenvironment and immune response. Our study also establishes the rationale for therapeutic strategies to restore tumor-specific MHC-II expression and enhance immunotherapy outcomes at epigenetic levels in B cell lymphoma treatment.
Collapse
Affiliation(s)
- Te Zhang
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Oguzhan Beytullahoglu
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rima Tulaiha
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amanda Luvisotto
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aileen Szczepanski
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Natsumi Tsuboyama
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zibo Zhao
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics and
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
11
|
Luf M, Begani P, Bowcock AM, Pfleger CM. Knockdown of PR-DUB subunit calypso in the developing Drosophila eye and wing results in mis-patterned tissues with altered size and shape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631961. [PMID: 39829919 PMCID: PMC11741251 DOI: 10.1101/2025.01.09.631961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The deubiquitinating enzyme BAP1, the catalytic subunit of the PR-DUB complex, is implicated in several cancers, in the familial cancer syndrome BAP1 Tumor Predisposition Syndrome, and in the neurodevelopmental disorder Küry -Isidor syndrome. In Drosophila, there are numerous reports in the literature describing developmental patterning phenotypes for several chromatin regulators including the discovery of Polycomb itself, but corresponding adult morphological phenotypes caused by developmental dysregulation of Drosophila BAP1 ortholog calypso ( caly ) are less well-described. We report here that knockdown of caly in the eye and wing produce concomitant chromatin dysregulation phenotypes. RNAi to caly in the early eye reduces survival and leads to changes in eye size and shape including eye outgrowths, some of which resemble homeotic transformations whereas others resemble tumor-like outgrowths seen in other fly cancer models. Mosaic eyes containing caly loss-of-function tissue phenocopy caly RNAi. Knocking down caly across the wing disrupts wing shape and patterning including effects on wing vein pattern. This phenotypic characterization reinforces the growing body of literature detailing developmental mis-patterning driven by chromatin dysregulation and serves as a baseline for future mechanistic studies to understand the role of BAP1 in development and disease. ARTICLE SUMMARY PR-DUB catalytic subunit deubiquitinating enzyme BAP1 plays an important role in tumor suppression and chromatin regulation. Whereas many chromatin regulators are well-characterized for their roles in patterning, the mis-patterning phenotypes in adult structure for dysregulating BAP1 ortholog calypso ( caly ) in development are less well described. We report mis-patterned adult eye and wing phenotypes caused by caly RNAi in the developing eye and wing respectively.
Collapse
|
12
|
Gilbert A, Wieland R, Zacher N, Rieger K, Berry GJ, Novoa R. Metastatic Mesothelioma of the Tunica Vaginalis Presenting as Scrotal and Abdominal Nodules: A Case Report and Review of the Literature. Am J Dermatopathol 2025; 47:e6-e11. [PMID: 39481034 DOI: 10.1097/dad.0000000000002848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
ABSTRACT Mesothelioma of the tunica vaginalis testis (MMTVT) is a rare neoplasm comprising <3% of all cases of malignant mesothelioma (MM). MMTVT derives from the tunica vaginalis testis, an outpouching of the mesothelial-lined abdominal peritoneum that detaches from the abdominal cavity after the descent of the testis. Similar to pleural mesothelioma, asbestos exposure is a known risk factor. However, MMTVT has a better prognosis than pleural mesothelioma. Cutaneous metastases from MMTVT are exceedingly rare. Herein, we describe a case of a 67-year-old man with a history of asbestos exposure presenting with scrotal pain and indurated plaques on his lower abdomen and scrotum. Histologic sections showed a sheet-like dermal proliferation comprising epithelioid cells with necrosis and increased mitotic activity. The clinical and histologic differential diagnosis was broad, including metastatic carcinoma, melanoma, sarcoma, germ cell tumor, hematologic malignancy, neuroendocrine carcinoma, and malignant mesothelioma. By immunohistochemistry, the neoplastic cells were positive for WT1, D2-40, and AE1/AE3, with rare positivity for calretinin, consistent with a diagnosis of mesothelioma. Additional immunohistochemical studies provided no support for the other diagnostic considerations listed above. BAP1 showed retained nuclear expression (normal) by immunohistochemistry. A DNA sequencing panel identified copy number losses in CDKN2A, MTAP, CDKN2B, and NF2, which are frequently identified genetic alterations in malignant mesothelioma. Subsequent testicular imaging demonstrated a diffusely thickened scrotal wall with an enlarged left testicle. Overall, this represents a case of malignant mesothelioma presenting with cutaneous metastases to the scrotum and lower abdomen, with clinical and imaging features suggestive of primary MMTVT. The International Mesothelioma Interest Group recommends using at least 2 mesothelial markers, such as calretinin, WT1, CK5/6 or D2-40, and 2 epithelial markers, such as claudin-4, CEA, MOC-31, as well as a broad-spectrum cytokeratin stain (AE1/AE3) as part of an initial immunohistochemical panel. Metastatic mesothelioma should be included in the differential diagnosis of malignant epithelioid dermal tumors with unusual staining patterns.
Collapse
Affiliation(s)
- Aubre Gilbert
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | | |
Collapse
|
13
|
Lu WT, Zalmas LP, Bailey C, Black JRM, Martinez-Ruiz C, Pich O, Gimeno-Valiente F, Usaite I, Magness A, Thol K, Webber TA, Jiang M, Saunders RE, Liu YH, Biswas D, Ige EO, Aerne B, Grönroos E, Venkatesan S, Stavrou G, Karasaki T, Al Bakir M, Renshaw M, Xu H, Schneider-Luftman D, Sharma N, Tovini L, Jamal-Hanjani M, McClelland SE, Litchfield K, Birkbak NJ, Howell M, Tapon N, Fugger K, McGranahan N, Bartek J, Kanu N, Swanton C. TRACERx analysis identifies a role for FAT1 in regulating chromosomal instability and whole-genome doubling via Hippo signalling. Nat Cell Biol 2025; 27:154-168. [PMID: 39738653 PMCID: PMC11735399 DOI: 10.1038/s41556-024-01558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/16/2024] [Indexed: 01/02/2025]
Abstract
Chromosomal instability (CIN) is common in solid tumours and fuels evolutionary adaptation and poor prognosis by increasing intratumour heterogeneity. Systematic characterization of driver events in the TRACERx non-small-cell lung cancer (NSCLC) cohort identified that genetic alterations in six genes, including FAT1, result in homologous recombination (HR) repair deficiencies and CIN. Using orthogonal genetic and experimental approaches, we demonstrate that FAT1 alterations are positively selected before genome doubling and associated with HR deficiency. FAT1 ablation causes persistent replication stress, an elevated mitotic failure rate, nuclear deformation and elevated structural CIN, including chromosome translocations and radial chromosomes. FAT1 loss contributes to whole-genome doubling (a form of numerical CIN) through the dysregulation of YAP1. Co-depletion of YAP1 partially rescues numerical CIN caused by FAT1 loss but does not relieve HR deficiencies, nor structural CIN. Importantly, overexpression of constitutively active YAP15SA is sufficient to induce numerical CIN. Taken together, we show that FAT1 loss in NSCLC attenuates HR and exacerbates CIN through two distinct downstream mechanisms, leading to increased tumour heterogeneity.
Collapse
Affiliation(s)
| | | | | | - James R M Black
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Carlos Martinez-Ruiz
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Francisco Gimeno-Valiente
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Ieva Usaite
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Kerstin Thol
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | | | | | - Yun-Hsin Liu
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Dhruva Biswas
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | | | | | - Subramanian Venkatesan
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Georgia Stavrou
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Takahiro Karasaki
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
- Department of Thoracic Surgery, Respiratory Center, Toranomon Hospital, Tokyo, Japan
| | - Maise Al Bakir
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Hang Xu
- The Francis Crick Institute, London, UK
| | | | - Natasha Sharma
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Laura Tovini
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mariam Jamal-Hanjani
- The Francis Crick Institute, London, UK
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | | | - Kevin Litchfield
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Nicolai J Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Kasper Fugger
- University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- CRUK Lung Cancer Centre of Excellence, London, UK
- University College London Cancer Institute, London, UK
| | - Jiri Bartek
- Danish Cancer Society Research Centre, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institutet, Solna, Sweden.
| | - Nnennaya Kanu
- CRUK Lung Cancer Centre of Excellence, London, UK.
- University College London Cancer Institute, London, UK.
| | - Charles Swanton
- The Francis Crick Institute, London, UK.
- CRUK Lung Cancer Centre of Excellence, London, UK.
- University College London Cancer Institute, London, UK.
| |
Collapse
|
14
|
Sturgill I, Raab J, Hoadley K. Expanded detection and impact of BAP1 alterations in cancer. NAR Cancer 2024; 6:zcae045. [PMID: 39554490 PMCID: PMC11567159 DOI: 10.1093/narcan/zcae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/15/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Aberrant expression of the BAP1 (BRCA associated protein 1) tumor suppressor gene is a prominent risk factor for several tumor types and is important in tumor evolution and progression. Here we performed integrated multi-omics analyses using data from The Cancer Genome Atlas for 33 cancer types and over 10 000 individuals to identify alterations leading to BAP1 disruption. We combined existing variant calls and new calls derived from a de novo local realignment pipeline across multiple independent variant callers, increasing somatic variant detection by 41% from 182 to 257, including 11 indels ≥40 bp. The expanded detection of mutations highlights the power of new tools to uncover longer indels and impactful mutations. We developed an expression-based BAP1 activity score and identified a transcriptional profile associated with BAP1 disruption in cancer. BAP1 has been proposed to play a critical role in controlling tumor plasticity and normal cell fate. Leveraging human and mouse liver datasets, BAP1 loss in normal cells resulted in lower BAP1 activity scores and lower scores were associated with a less-differentiated phenotype in embryonic cells. Together, our expanded BAP1 mutant samples revealed a transcriptional signature in cancer cells, supporting BAP1's influences on cellular plasticity and cell identity maintenance.
Collapse
Affiliation(s)
- Ian R Sturgill
- Bioinformatics and Computational Biology Curriculum, Department of Genetics, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599, USA
| | - Jesse R Raab
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599, USA
| | - Katherine A Hoadley
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Yuan W, Zhang Q, Zhao Y, Xia W, Yin S, Liang X, Chen T, Li G, Liu Y, Liu Z, Huang J. BAP1 regulates HSF1 activity and cancer immunity in pancreatic cancer. J Exp Clin Cancer Res 2024; 43:275. [PMID: 39350280 PMCID: PMC11441124 DOI: 10.1186/s13046-024-03196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The vast majority of pancreatic cancers have been shown to be insensitive to single-agent immunotherapy. Exploring the mechanisms of immune resistance and implementing combination therapeutic strategies are crucial for PDAC patients to derive benefits from immunotherapy. Deletion of BAP1 occurs in approximately 27% of PDAC patients and is significantly correlated with poor prognosis, but the mechanism how BAP1-deletion compromises survival of patients with PDAC remain a puzzle. METHODS Bap1 knock-out KPC (KrasG12D/+; LSLTrp53R172H/+; Pdx-1-Cre) mice and control KPC mice, syngeneic xenograft models were applied to analysis the correlation between BAP1 and immune therapy response in PDAC. Immunoprecipitation, RT-qPCR, luciferase and transcriptome analysis were combined to revealing potential mechanisms. Syngeneic xenograft models and flow cytometry were constructed to examine the efficacy of the inhibitor of SIRT1 and its synergistic effect with anti-PD-1 therapy. RESULT The deletion of BAP1 contributes to the resistance to immunotherapy in PDAC, which is attributable to BAP1's suppression of the transcriptional activity of HSF1. Specifically, BAP1 competes with SIRT1 for binding to the K80 acetylated HSF1. The BAP1-HSF1 interaction preserves the acetylation of HSF1-K80 and promotes HSF1-HSP70 interaction, facilitating HSF1 oligomerization and detachment from the chromatin. Furthermore, we demonstrate that the targeted inhibition of SIRT1 reverses the immune insensitivity in BAP1 deficient PDAC mouse model. CONCLUSION Our study elucidates an unrevealed mechanism by which BAP1 regulates immune therapy response in PDAC via HSF1 inhibition, and providing promising therapeutic strategies to address immune insensitivity in BAP1-deficient PDAC.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiyue Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wentao Xia
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shilin Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaofeng Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yanshen Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhiqiang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jinxi Huang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
16
|
Bzura A, Spicer JB, Dulloo S, Yap TA, Fennell DA. Targeting DNA Damage Response Deficiency in Thoracic Cancers. Drugs 2024; 84:1025-1033. [PMID: 39001941 DOI: 10.1007/s40265-024-02066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/15/2024]
Abstract
Thoracic cancers comprise non-small cell lung cancers (NSCLCs), small cell lung cancers (SCLCs) and malignant pleural mesotheliomas (MPM). Collectively, they account for the highest rate of death from malignancy worldwide. Genomic instability is a universal feature of cancer, which fuels mutations and tumour evolution. Deficiencies in DNA damage response (DDR) genes amplify genomic instability. Homologous recombination deficiency (HRD), resulting from BRCA1/BRCA2 inactivation, is exploited for therapeutic synthetic lethality with poly-ADP ribose polymerase (PARP) inhibitors in breast and ovarian cancers, as well as in prostate and pancreatic cancers. However, DDR deficiency and its therapeutic implications are less well established in thoracic cancers. Emerging evidence suggests that a subset of thoracic cancers may harbour DDR deficiency and may, thus, be effectively targeted with DDR agents. Here, we review the current evidence surrounding DDR in thoracic cancers and discuss the challenges and promise for achieving clinical benefit with such therapeutics.
Collapse
Affiliation(s)
- Aleksandra Bzura
- University of Leicester, NIHR Biomedical Research Centre and Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Jake B Spicer
- University of Leicester, NIHR Biomedical Research Centre and Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Sean Dulloo
- University of Leicester, NIHR Biomedical Research Centre and Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Timothy A Yap
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dean A Fennell
- University of Leicester, NIHR Biomedical Research Centre and Robert Kilpatrick Clinical Sciences Building, Leicester, UK.
- University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
17
|
Li Y, Yang J, Zheng B, Yan N, Yang W, Xie X, Xu G, Zhang M. Case report: ATM A1159T mutation in malignant peritoneal mesothelioma may be associated with tumor recurrence. SAGE Open Med Case Rep 2024; 12:2050313X241271818. [PMID: 39161923 PMCID: PMC11331467 DOI: 10.1177/2050313x241271818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Malignant peritoneal mesothelioma is an exceedingly rare malignant tumor. Herein, we present a case of malignant peritoneal mesothelioma in a 59-year-old Chinese female patient who was stable after treatment for multiple relapses. Imaging revealed massive ascites and an irregular thickening of the peritoneal mesangium. Laparoscopic biopsy revealed heterogeneous cell nests in the parietal peritoneal fibrous tissue, which were confirmed by immunohistochemical staining for Calretinin, WT-1, and D2-40. In terms of genetic screening, BAP1, CSF1R, and other key driver gene variants closely related to malignant peritoneal mesothelioma have been explored in tumor tissues. Notably, CARD11 driver mutation was first found in all malignant peritoneal mesothelioma patients, and ATM A1159T gene mutation found in recurrent focal tissue may be associated with recurrent tumor recurrence.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jintao Yang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Bei Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Na Yan
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Wenjuan Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xinling Xie
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Guoshu Xu
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Meiling Zhang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Sturgill IR, Raab JR, Hoadley KA. Expanded detection and impact of BAP1 alterations in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568094. [PMID: 38045292 PMCID: PMC10690206 DOI: 10.1101/2023.11.21.568094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Aberrant expression of the BAP1 tumor suppressor gene is a prominent risk factor for several tumor types and is important in tumor evolution and progression. Here we performed integrated multi-omic analyses using data from The Cancer Genome Atlas (TCGA) for 33 cancer types and over 10,000 individuals to identify alterations leading to BAP1 disruption. We combined existing variant calls and new calls derived from a de novo local realignment pipeline across multiple independent variant callers, increasing somatic variant detection by 41% from 182 to 257, including 11 indels ≥40bp. The expanded detection of mutations highlights the power of new tools to uncover longer indels and impactful mutations. We developed an expression-based BAP1 activity score and identified a transcriptional profile associated with BAP1 disruption in cancer. BAP1 has been proposed to play a critical role in controlling tumor plasticity and normal cell fate. Leveraging human and mouse liver datasets, BAP1 loss in normal cells resulted in lower BAP1 activity scores and lower scores were associated with a less-differentiated phenotype in embryonic cells. Together, our expanded BAP1 mutant samples revealed a transcriptional signature in cancer cells, supporting BAP1's influences on cellular plasticity and cell identity maintenance.
Collapse
|
19
|
Xu Z, Zhang N, Shi L. Potential roles of UCH family deubiquitinases in tumorigenesis and chemical inhibitors developed against them. Am J Cancer Res 2024; 14:2666-2694. [PMID: 39005671 PMCID: PMC11236784 DOI: 10.62347/oege2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) are a large group of proteases that reverse ubiquitination process and maintain protein homeostasis. The DUBs have been classified into seven subfamilies according to their primary sequence and structural similarity. As a small subfamily of DUBs, the ubiquitin C-terminal hydrolases (UCHs) subfamily only contains four members including UCHL1, UCHL3, UCHL5, and BRCA1-associated protein-1 (BAP1). Despite sharing the deubiquitinase activity with a similar catalysis mechanism, the UCHs exhibit distinctive biological functions which are mainly determined by their specific subcellular localization and partner substrates. Besides, growing evidence indicates that the UCH enzymes are involved in human malignancies. In this review, the structural information and biological functions of the UCHs are briefly described. Meanwhile, the roles of these enzymes in tumorigenesis and the discovered inhibitors against them are also summarized to give an insight into the cancer therapy with the potential alternative strategy.
Collapse
Affiliation(s)
- Zhuo Xu
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Li Shi
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
20
|
Guo X, Ma Y, Zhang T, Liu R, Chang F, Yan X, Yu T, Wu P, Li Q, Xu L, Duan J, Li L, Su Y, Shao G. The deubiquitinating enzyme USP4 regulates BRCA1 stability and function. NPJ Breast Cancer 2024; 10:35. [PMID: 38734703 PMCID: PMC11088691 DOI: 10.1038/s41523-024-00641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
BRCA1 plays a suppressive role in breast tumorigenesis. Ubiquitin-dependent degradation is a common mechanism that regulates BRCA1 protein stability, and several ubiquitin ligases involved have been identified. However, the deubiquitinating enzyme for BRCA1 remains less defined. Here, we report that the deubiquitinase USP4 interacts with, deubiquitinates and stabilizes BRCA1, maintaining the protein level of BRCA1. USP4 knockdown results in a decreased BRCA1 protein level, impairment in homologous recombination mediated double-stranded break repair, and increased genome instability, and confers resistance to DNA damage-inducing agents and PARP inhibitors. Ectopic expression of USP4 stabilizes BRCA1 and reverse the effects caused by USP4 knockdown. Moreover, USP4 is low expressed in human breast cancer tissues and its low expression correlates with poorer survival of patients. Furthermore, we identified several loss-of-function mutations of USP4 in human gynecological cancers, the catalytic activity of which or their interaction with BRCA1 is disrupted. Together, we reveal that USP4 is a deubiquitinase for BRCA1. USP4 positively regulates the stability and function of BRCA1 through de-ubiquitination, and plays important role in the suppression of breast cancer.
Collapse
Affiliation(s)
- Xueyuan Guo
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanfang Ma
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Runyu Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Fen Chang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xingyue Yan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Tianyun Yu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Pengfei Wu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qin Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luzheng Xu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100191, China
| | - Junyi Duan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanrong Su
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
21
|
Parra-Medina R, Castañeda-González JP, Chaves-Cabezas V, Alzate JP, Chaves JJ. Diagnostic performance of immunohistochemistry markers for malignant pleural mesothelioma diagnosis and subtypes. A systematic review and meta-analysis. Pathol Res Pract 2024; 257:155276. [PMID: 38603842 DOI: 10.1016/j.prp.2024.155276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) poses diagnostic challenges due to its resemblance to benign pleural pathologies and different histological subtypes. Several immunohistochemistry markers have been employed to aid in accurate diagnosis. METHODS The present systematic review and meta-analysis aimed to assess the diagnostic performance of various immunohistochemistry markers in malignant pleural mesothelioma diagnosis and its histological subtypes. Following the PRISMA guidelines, we systematically searched the literature for articles on using different immunohistochemical markers in MPM and its histological subtypes. EMBASE, LILACS, MEDLINE, and Virtual Health Library were searched for studies published up to August 2023. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) criteria to assess the quality of the included articles. Meta-analyses were performed to determine prevalence using a random-effects model. RESULTS 103 studies met the inclusion criteria, comprising a diverse range of immunohistochemistry markers. EMA and desmin-loss exhibited high sensitivity (96% and 92%, respectively) in distinguishing malignant pleural mesothelioma from benign pleural pathologies. Specificity was notably high for both BAP1-loss and survivin expression at 100%. Subtype-specific analyses demonstrated that EMA and HEG1 were sensitive markers for epithelioid mesothelioma, while GLUT1 showed high sensitivity for sarcomatoid mesothelioma. In cases comparing epithelioid mesothelioma and lung adenocarcinoma, CAM5.2 and calretinin displayed high sensitivity, while WT1 and BAP1-loss demonstrated exceptional specificity for malignant epithelioid mesothelioma. In the case of sarcomatoid mesothelioma and sarcomatoid lung carcinoma, GATA3 exhibited the most heightened sensitivity, while GATA3 and D2-40 displayed the best specificity for sarcomatoid malignant mesothelioma diagnosis. CONCLUSION Immunohistochemistry markers are essential in accurately diagnosing malignant pleural mesothelioma and its histological subtypes. This systematic review and meta-analysis provide a comprehensive insight into the diagnostic performance of these markers, facilitating their potential clinical utility in the discrimination of malignant pleural mesothelioma from other pleural pathologies and the differentiation of malignant pleural mesothelioma subtypes.
Collapse
Affiliation(s)
- Rafael Parra-Medina
- Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Pathology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Pathology, Instituto Nacional de Cancerología, Bogotá.
| | - Juan Pablo Castañeda-González
- Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Pathology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia.
| | - Viviana Chaves-Cabezas
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia.
| | - Juan Pablo Alzate
- Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia.
| | - Juan José Chaves
- Department of Medicine, Norwalk Hospital, Yale School of Medicine, Norwalk, CT, United States.
| |
Collapse
|
22
|
Landman N, Hulsman D, Badhai J, Kopparam J, Puppe J, Pandey GK, van Lohuizen M. Combination of EZH2 and ATM inhibition in BAP1-deficient mesothelioma. Br J Cancer 2024; 130:1855-1865. [PMID: 38519707 PMCID: PMC11130181 DOI: 10.1038/s41416-024-02661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND More than half of mesothelioma tumours show alterations in the tumour suppressor gene BAP1. BAP1-deficient mesothelioma is shown to be sensitive to EZH2 inhibition in preclinical settings but only showed modest efficacy in clinical trial. Adding a second inhibitor could potentially elevate EZH2i treatment efficacy while preventing acquired resistance at the same time. METHODS A focused drug synergy screen consisting of 20 drugs was performed by combining EZH2 inhibition with a panel of anti-cancer compounds in mesothelioma cell lines. The compounds used are under preclinical investigation or already used in the clinic. The synergistic potential of the combinations was assessed by using the Bliss model. To validate our findings, in vivo xenograft experiments were performed. RESULTS Combining EZH2i with ATMi was found to have synergistic potential against BAP1-deficient mesothelioma in our drug screen, which was validated in clonogenicity assays. Tumour growth inhibition potential was significantly increased in BAP1-deficient xenografts. In addition, we observe lower ATM levels upon depletion of BAP1 and hypothesise that this might be mediated by E2F1. CONCLUSIONS We demonstrated the efficacy of the combination of ATM and EZH2 inhibition against BAP1-deficient mesothelioma in preclinical models, indicating the potential of this combination as a novel treatment modality using BAP1 as a biomarker.
Collapse
Affiliation(s)
- Nick Landman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Danielle Hulsman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Jitendra Badhai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Jawahar Kopparam
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands
| | - Julian Puppe
- Department of Obstetrics and Gynaecology, University Hospital of Cologne, Kerpener Str. 34, Cologne, Germany
| | - Gaurav Kumar Pandey
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands.
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands.
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| | - Maarten van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands.
- Oncode Institute, Jaarbeursplein 6, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Liu XL, Run-Hua Z, Pan JX, Li ZJ, Yu L, Li YL. Emerging therapeutic strategies for metastatic uveal melanoma: Targeting driver mutations. Pigment Cell Melanoma Res 2024; 37:411-425. [PMID: 38411373 DOI: 10.1111/pcmr.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults. Although primary UM can be effectively controlled, a significant proportion of cases (40% or more) eventually develop distant metastases, commonly in the liver. Metastatic UM remains a lethal disease with limited treatment options. The initiation of UM is typically attributed to activating mutations in GNAQ or GNA11. The elucidation of the downstream pathways such as PKC/MAPK, PI3K/AKT/mTOR, and Hippo-YAP have provided potential therapeutic targets. Concurrent mutations in BRCA1 associated protein 1 (BAP1) or splicing factor 3b subunit 1 (SF3B1) are considered crucial for the acquisition of malignant potential. Furthermore, in preclinical studies, actionable targets associated with BAP1 loss or oncogenic mutant SF3B1 have been identified, offering promising avenues for UM treatment. This review aims to summarize the emerging targeted and epigenetic therapeutic strategies for metastatic UM carrying specific driver mutations and the potential of combining these approaches with immunotherapy, with particular focus on those in upcoming or ongoing clinical trials.
Collapse
Affiliation(s)
- Xiao-Lian Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhou Run-Hua
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jing-Xuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jie Li
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Le Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Lei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
van Kooten JP, Dietz MV, Dubbink HJ, Verhoef C, Aerts JGJV, Madsen EVE, von der Thüsen JH. Genomic characterization and detection of potential therapeutic targets for peritoneal mesothelioma in current practice. Clin Exp Med 2024; 24:80. [PMID: 38642130 PMCID: PMC11032274 DOI: 10.1007/s10238-024-01342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
Peritoneal mesothelioma (PeM) is an aggressive tumor with limited treatment options. The current study aimed to evaluate the value of next generation sequencing (NGS) of PeM samples in current practice. Foundation Medicine F1CDx NGS was performed on 20 tumor samples. This platform assesses 360 commonly somatically mutated genes in solid tumors and provides a genomic signature. Based on the detected mutations, potentially effective targeted therapies were identified. NGS was successful in 19 cases. Tumor mutational burden (TMB) was low in 10 cases, and 11 cases were microsatellite stable. In the other cases, TMB and microsatellite status could not be determined. BRCA1 associated protein 1 (BAP1) mutations were found in 32% of cases, cyclin dependent kinase inhibitor 2A/B (CDKN2A/B) and neurofibromin 2 (NF2) mutations in 16%, and ataxia-telangiectasia mutated serine/threonine kinase (ATM) in 11%. Based on mutations in the latter two genes, potential targeted therapies are available for approximately a quarter of cases (i.e., protein kinase inhibitors for three NF2 mutated tumors, and polyADP-ribose polymerase inhibitors for two ATM mutated tumors). Extensive NGS analysis of PeM samples resulted in the identification of potentially effective targeted therapies for about one in four patients. Although these therapies are currently not available for patients with PeM, ongoing developments might result in new treatment options in the future.
Collapse
Affiliation(s)
- Job P van Kooten
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Michelle V Dietz
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands.
| | | | - Cornelis Verhoef
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eva V E Madsen
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | | |
Collapse
|
25
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
van Poppelen NM, Cassoux N, Turunen JA, Naus NC, Verdijk RM, Vaarwater J, Cohen V, Papastefanou VP, Kiratli H, Saakyan SV, Tsygankov AY, Rospond-Kubiak I, Mudhar HS, Salvi SM, Kiilgaard JF, Heegaard S, Moulin AP, Saornil MA, Garciá-Alvarez C, Fili M, Eide NA, Meyer P, Kivelä TT, de Klein A, Kilic E, Al-Jamal RT. The Pediatric and Young Adult Choroidal and Ciliary Body Melanoma Genetic Study, A Survey by the European Ophthalmic Oncology Group. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 38573618 PMCID: PMC10996971 DOI: 10.1167/iovs.65.4.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/28/2023] [Indexed: 04/05/2024] Open
Abstract
Purpose To explore the genetic background of choroidal and ciliary body melanoma among children and young adults, with special focus on BAP1 germline variants in this age group. Methods Patients under the age of 25 and with confirmed choroidal or ciliary body melanoma were included in this retrospective, multicenter observational study. Nuclear BAP1 immunopositivity was used to evaluate the presence of functional BAP1 in the tumor. Next-generation sequencing using Ion Torrent platform was used to determine pathogenic variants of BAP1, EIF1AX, SF3B1, GNAQ and GNA11 and chromosome 3 status in the tumor or in DNA extracted from blood or saliva. Survival was analyzed using Kaplan-Meier estimates. Results The mean age at diagnosis was 17 years (range 5.0-24.8). A germline BAP1 pathogenic variant was identified in an 18-year-old patient, and a somatic variant, based mainly on immunohistochemistry, in 13 (42%) of 31 available specimens. One tumor had a somatic SF3B1 pathogenic variant. Disomy 3 and the absence of a BAP1 pathogenic variant in the tumor predicted the longest metastasis-free survival. Males showed longer metastasis-free survival than females (P = 0.018). Conclusions We did not find a stronger-than-average BAP1 germline predisposition for choroidal and ciliary body melanoma among children and young adults compared to adults. Males had a more favorable survival and disomy 3, and the absence of a BAP1 mutation in the tumor tissue predicted the most favorable metastasis-free survival. A BAP1 germline pathogenic variant was identified in one patient (1%), and a somatic variant based mainly on immunohistochemistry in 13 (42%).
Collapse
Affiliation(s)
- Natasha M. van Poppelen
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nathalie Cassoux
- Department of Ophthalmology, Curie Institute, Université Paris Cité UFR Médecine, Paris, France
| | - Joni A. Turunen
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Eye Genetics Group, Folkhälsan Research Center, Helsinki, Finland
| | - Nicole C. Naus
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert M. Verdijk
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden Universital Medical Center, Leiden, The Netherlands
| | - Jolanda Vaarwater
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Victoria Cohen
- Ocular Oncology Service, Moorfields Eye Hospital, London, United Kingdom
| | | | - Hayyam Kiratli
- Department of Ophthalmology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Svetlana V. Saakyan
- Department of Ophthalmology, Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
| | - Alexander Y. Tsygankov
- Department of Ophthalmology, Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
| | - Iwona Rospond-Kubiak
- Department of Ophthalmology, Poznan University of Medical Sciences, Poznán, Poland
| | - Hardeep S. Mudhar
- National Specialist Ophthalmic Pathology Service (NSOPS), Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Sachin M. Salvi
- Sheffield Ocular Oncology Service, Department of Ophthalmology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Jens F. Kiilgaard
- Department of Ophthalmology, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, University of Copenhagen, Copenhagen, Denmark
| | - Alexandre P. Moulin
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Lausanne University, Lausanne, Switzerland
| | - Maria A. Saornil
- Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Ciro Garciá-Alvarez
- Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Maria Fili
- Department of Ophthalmology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Nils A. Eide
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Peter Meyer
- Department of Ophthalmology, Basel University Hospital, Basel, Switzerland
| | - Tero T. Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Emine Kilic
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rana'a T. Al-Jamal
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Ocular Oncology Service, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
27
|
Sato H, Ito T, Hayashi T, Kitano S, Erdjument-Bromage H, Bott MJ, Toyooka S, Zauderer M, Ladanyi M. The BAP1 nuclear deubiquitinase is involved in the nonhomologous end-joining pathway of double-strand DNA repair through interaction with DNA-PK. Oncogene 2024; 43:1087-1097. [PMID: 38383726 PMCID: PMC11449502 DOI: 10.1038/s41388-024-02966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
BRCA1-associated protein 1 (BAP1) has emerged as a major tumor suppressor gene in diverse cancer types, notably in malignant pleural mesothelioma (DPM), and has also been identified as a germline cancer predisposition gene for DPM and other select cancers. However, its role in the response to DNA damage has remained unclear. Here, we show that BAP1 inactivation is associated with increased DNA damage both in Met-5A human mesothelial cells and human DPM cell lines. Through proteomic analyses, we identified PRKDC as an interaction partner of BAP1 protein complexes in DPM cells and 293 T human embryonic kidney cells. PRKDC encodes the catalytic subunit of DNA protein kinase (DNA-PKcs) which functions in the nonhomologous end-joining (NHEJ) pathway of DNA repair. Double-stranded DNA damage resulted in prominent nuclear expression of BAP1 in DPM cells and phosphorylation of BAP1 at serine 395. A plasmid-based NHEJ assay confirmed a significant effect of BAP1 knockdown on cellular NHEJ activity. Combination treatment with X-ray irradiation and gemcitabine (as a radiosensitizer) strongly suppressed the growth of BAP1-deficient cells. Our results suggest reciprocal positive interactions between BAP1 and DNA-PKcs, based on phosphorylation of BAP1 by the latter and deubiquitination of DNA-PKcs by BAP1. Thus, functional interaction of BAP1 with DNA-PKcs supports a role for BAP1 in NHEJ DNA repair and may provide the basis for new therapeutic strategies and new insights into its role as a tumor suppressor.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tatsuo Ito
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hygiene, Kawasaki Medical University, Okayama, Japan
| | - Takuo Hayashi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shigehisa Kitano
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hediye Erdjument-Bromage
- Kimmel Center for Biology and Medicine at Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Matthew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Marjorie Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
28
|
Yilmaz ME, Rashidfarokhi M, Pollard K, Durmus N, Keserci S, Sterman DH, Arslan AA, Shao Y, Reibman J. Mesothelioma Cases in the World Trade Center Survivors. ANNALS OF CASE REPORTS 2024; 9:10.29011/2574-7754.101709. [PMID: 39568634 PMCID: PMC11578103 DOI: 10.29011/2574-7754.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Objectives The destruction of the World Trade Center (WTC) towers in New York City on September 11, 2001 (9/11), released approximately 1 million tons of pulverized particulate matter throughout southern Manhattan and areas in Brooklyn, exposing community members and responders to high levels of potentially toxic environmental particles. Asbestos exposure was a health concern because of its use in certain sections of the WTC towers. Malignant mesothelioma, originating from the lining cells (mesothelium) of the peritoneal and pleural cavities, is one complication associated with asbestos exposure. Methods The WTC Environmental Health Center (WTC EHC) is a treatment and surveillance program for community members (Survivors) exposed to WTC dust and fumes. Results In this report, we describe four cases of mesothelioma in the WTC EHC as of July 1st, 2023. Two of our patients have been diagnosed with peritoneal mesothelioma and two patients have been diagnosed with pleural mesothelioma. Conclusion Given the known delay in the development of mesotheliomas after asbestos exposure, we provide information on these early mesothelioma cases to enhance the understanding of the adverse health effects of WTC exposures on the local community.
Collapse
Affiliation(s)
- Muhammed E Yilmaz
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mahsan Rashidfarokhi
- Division of Pulmonary and Critical Care Medicine, Elmhurst Hospital Center, Icahn School of Medicine, Elmhurst, NY, USA
| | - Kenna Pollard
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nedim Durmus
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sefa Keserci
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel H Sterman
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Alan A Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
29
|
Schneider S, Anderson JB, Bradley RP, Beigel K, Wright CM, Maguire BA, Yan G, Taylor DM, Harbour JW, Heuckeroth RO. BAP1 is required prenatally for differentiation and maintenance of postnatal murine enteric nervous system. J Clin Invest 2024; 134:e177771. [PMID: 38690732 PMCID: PMC11060734 DOI: 10.1172/jci177771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
Epigenetic regulatory mechanisms are underappreciated, yet are critical for enteric nervous system (ENS) development and maintenance. We discovered that fetal loss of the epigenetic regulator Bap1 in the ENS lineage caused severe postnatal bowel dysfunction and early death in Tyrosinase-Cre Bap1fl/fl mice. Bap1-depleted ENS appeared normal in neonates; however, by P15, Bap1-deficient enteric neurons were largely absent from the small and large intestine of Tyrosinase-Cre Bap1fl/fl mice. Bowel motility became markedly abnormal with disproportionate loss of cholinergic neurons. Single-cell RNA sequencing at P5 showed that fetal Bap1 loss in Tyrosinase-Cre Bap1fl/fl mice markedly altered the composition and relative proportions of enteric neuron subtypes. In contrast, postnatal deletion of Bap1 did not cause enteric neuron loss or impaired bowel motility. These findings suggest that BAP1 is critical for postnatal enteric neuron differentiation and for early enteric neuron survival, a finding that may be relevant to the recently described human BAP1-associated neurodevelopmental disorder.
Collapse
Affiliation(s)
- Sabine Schneider
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica B. Anderson
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca P. Bradley
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Katherine Beigel
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Christina M. Wright
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beth A. Maguire
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Guang Yan
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Deanne M. Taylor
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J. William Harbour
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert O. Heuckeroth
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Liang Y, Wang H, Seija N, Lin YH, Tung LT, Di Noia JM, Langlais D, Nijnik A. B-cell intrinsic regulation of antibody mediated immunity by histone H2A deubiquitinase BAP1. Front Immunol 2024; 15:1353138. [PMID: 38529289 PMCID: PMC10961346 DOI: 10.3389/fimmu.2024.1353138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, through its direct catalytic activity on the repressive epigenetic mark histone H2AK119ub, as well as on several other substrates. BAP1 is also a highly important tumor suppressor, expressed and functional across many cell types and tissues. In recent work, we demonstrated a cell intrinsic role of BAP1 in the B cell lineage development in murine bone marrow, however the role of BAP1 in the regulation of B cell mediated humoral immune response has not been previously explored. Methods and results In the current study, we demonstrate that a B-cell intrinsic loss of BAP1 in activated B cells in the Bap1 fl/fl Cγ1-cre murine model results in a severe defect in antibody production, with altered dynamics of germinal centre B cell, memory B cell, and plasma cell numbers. At the cellular and molecular level, BAP1 was dispensable for B cell immunoglobulin class switching but resulted in an impaired proliferation of activated B cells, with genome-wide dysregulation in histone H2AK119ub levels and gene expression. Conclusion and discussion In summary, our study establishes the B-cell intrinsic role of BAP1 in antibody mediated immune response and indicates its central role in the regulation of the genome-wide landscapes of histone H2AK119ub and downstream transcriptional programs of B cell activation and humoral immunity.
Collapse
Affiliation(s)
- Yue Liang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Noé Seija
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
| | - Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Javier M. Di Noia
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Repo PE, Backlund MP, Kivelä TT, Turunen JA. Functional assay for assessment of pathogenicity of BAP1 variants. Hum Mol Genet 2024; 33:426-434. [PMID: 37956408 PMCID: PMC10877462 DOI: 10.1093/hmg/ddad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Pathogenic germline variants in BRCA1-Associated Protein 1 (BAP1) cause BAP1 tumor predisposition syndrome (BAP1-TPDS). Carriers run especially a risk of uveal (UM) and cutaneous melanoma, malignant mesothelioma, and clear cell renal carcinoma. Approximately half of increasingly reported BAP1 variants lack accurate classification. Correct interpretation of pathogenicity can improve prognosis of the patients through tumor screening with better understanding of BAP1-TPDS. METHODS We edited five rare BAP1 variants with differing functional characteristics identified from patients with UM in HAP1 cells using CRISPR-Cas9 and assayed their effect on cell adhesion/spreading (at 4 h) and proliferation (at 48 h), measured as cell index (CI), using xCELLigence real-time analysis system. RESULTS In BAP1 knockout HAP1 cultures, cell number was half of wild type (WT) cultures at 48 h (p = 0.00021), reaching confluence later, and CI was 78% reduced (p < 0.0001). BAP1-TPDS-associated null variants c.67+1G>T and c.1780_1781insT, and a likely pathogenic missense variant c.281A>G reduced adhesion (all p ≤ 0.015) and proliferation by 74%-83% (all p ≤ 0.032). Another likely pathogenic missense variant c.680G>A reduced both by at least 50% (all p ≤ 0.032), whereas cells edited with likely benign one c.1526C>T grew similarly to WT. CONCLUSIONS BAP1 is essential for optimal fitness of HAP1 cells. Pathogenic and likely pathogenic BAP1 variants reduced cell fitness, reflected in adhesion/spreading and proliferation properties. Further, moderate effects were quantifiable. Variant modelling in HAP1 with CRISPR-Cas9 enabled functional analysis of coding and non-coding region variants in an endogenous expression system.
Collapse
Affiliation(s)
- Pauliina E Repo
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| | - Michael P Backlund
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
| | - Tero T Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| | - Joni A Turunen
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
- Ophthalmic Genetics and Rare Eye Diseases Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| |
Collapse
|
32
|
Lee J, Turetsky J, Nasri E, Rogers SC. Complete clinical remission of malignant peritoneal mesothelioma with systemic pemetrexed and bevacizumab in a patient with a BAP1 mutation. BMJ Case Rep 2023; 16:e255916. [PMID: 38142057 DOI: 10.1136/bcr-2023-255916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is a rare malignancy with historically poor prognosis. Recent research has started to reveal increasingly prevalent genetic mutations seen in this malignancy. Here, we report a case of complete clinical remission of unresectable, metastatic MPeM with systemic chemotherapy. Immunohistochemistry of our patient's malignant cytology sample showed loss of Breast Cancer Gene 1-associated protein-1 expression (BAP1). The patient had synchronous diagnoses of primary squamous cell carcinoma of the anus, benign schwannoma and meningioma. Following the completion of 18 cycles of pemetrexed and bevacizumab, the patient has remained in clinical remission for 8 months. We examine the unusual susceptibility of unresectable MPeM to systemic chemotherapy and attribute susceptibility to the molecular milieu created by mutations in multiple DNA repair pathways. We encourage increased testing for and analysis of mutations in DNA repair pathways to improve future treatment outcomes in this rare malignancy.
Collapse
Affiliation(s)
- Jimmy Lee
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jordan Turetsky
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - Elham Nasri
- Department of Pathology, Immunology and Laboratory Health, University of Florida Health, Gainesville, Florida, USA
| | - Sherise C Rogers
- Department of Medicine, Division of Hematology & Oncology, University of Florida Health, Gainesville, Florida, USA
| |
Collapse
|
33
|
John A, O'Sullivan H, Popat S. Updates in Management of Malignant Pleural Mesothelioma. Curr Treat Options Oncol 2023; 24:1758-1789. [PMID: 37975977 DOI: 10.1007/s11864-023-01148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
OPINION STATEMENT Malignant pleural mesothelioma (MPM) is an aggressive asbestos-associated thoracic malignancy that is usually incurable. As demonstrated in the landmark MARS2 trial, surgical resection does not improve survival outcomes and its role in managing MPM is limited. Whilst platinum-pemetrexed chemotherapy in combination with bevacizumab was the standard first-line approach for unresectable disease, landmark phase 3 trials have now established the role of immune checkpoint inhibitors (CPIs) in the upfront management of unresectable disease: either nivolumab-ipilimumab or carboplatin-pemetrexed-pembrolizumab. Patient selection for optimal strategy remains an ongoing question. For relapsed disease novel genomic-based therapies targeting a range of aberrations including losses of the tumour suppressor genes BAP1, CDKN2A and NF2, are being evaluated. Nonetheless, the future of MPM therapeutics holds promise. Here we overview current treatment strategies in the management of MPM.
Collapse
Affiliation(s)
- Alexius John
- The Lung Unit, The Royal Marsden Hospital, London, UK.
| | - Hazel O'Sullivan
- The Lung Unit, The Royal Marsden Hospital, London, UK
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Sanjay Popat
- The Lung Unit, The Royal Marsden Hospital, London, UK
- The Institute of Cancer Research, London, UK
| |
Collapse
|
34
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
35
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
36
|
Han Y, Rovella V, Smirnov A, Buonomo OC, Mauriello A, Perretta T, Shi Y, Woodmsith J, Bischof J, Melino G, Candi E, Bernassola F. A BRCA2 germline mutation and high expression of immune checkpoints in a TNBC patient. Cell Death Discov 2023; 9:370. [PMID: 37813891 PMCID: PMC10562433 DOI: 10.1038/s41420-023-01651-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of mammary carcinoma. Here, we describe a case of an 81-year-old female diagnosed with ductal triple negative breast cancer with a germline pathogenic variant in BReast CAncer gene2 (BRCA2). Genetic testing also revealed the presence of four somatic mutations in the ephrin type-A receptor 3 (EphA3), TP53, BRCA1-associated protein (BAP1), and MYB genes. The BRCA2, TP53, and BAP1 gene mutations are highly predictive of a defective homologous recombination repair system and subsequent chromosomal instability in this patient. Coherently, the patient displayed a strong homologous recombination deficiency signature and high tumor mutational burden status, which are generally associated with increased probability of immune neoantigens formation and presentation, and with tumor immunogenicity. Analysis of immune checkpoint revealed high expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), programmed death 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA 4), suggesting that the patient might likely benefit from immunotherapies. Altogether, these findings support an unveiled link between BRCA2 inactivation, HR deficiency and increased expression of immune checkpoints in TNBC. This clinical case highlights the importance of screening TNBC patients for genetic mutations and TMB biomarkers in order to predict the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yuyi Han
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Department of Ophthalmology, The Affiliated Hospital of Jiangnan University, 214000, Wuxi, China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Oreste Claudio Buonomo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tommaso Perretta
- Department of Diagnostic Imaging and Interventional Radiology, Policlinico Tor Vergata University, Rome, 00133, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | | | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
37
|
Bai Y, Zhao H, Liu H, Wang W, Dong H, Zhao C. RNA methylation, homologous recombination repair and therapeutic resistance. Biomed Pharmacother 2023; 166:115409. [PMID: 37659205 DOI: 10.1016/j.biopha.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Homologous recombination (HR) repair of DNA double-strand breaks (DSBs) is critical for maintaining genomic integrity and stability. Defects in HR increase the risk of tumorigenesis. However, many human tumors exhibit enhanced HR repair capabilities, consequently endowing tumor cells with resistance to DNA-damaging chemotherapy and radiotherapy. This review summarizes the role of RNA methylation in HR repair and therapeutic resistance in human tumors. We also analyzed the interactions between RNA methylation and other HR-modulating modifications including histone acetylation, histone deacetylation, ubiquitination, deubiquitination, protein arginine methylation, and gene transcription. This review proposes that targeting RNA methylation is a promising approach to overcoming HR-mediated therapeutic resistance.
Collapse
Affiliation(s)
- Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanlin Zhao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Haijun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Hongming Dong
- Department of Anatomy, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
38
|
Yu Z, Fidler TP, Ruan Y, Vlasschaert C, Nakao T, Uddin MM, Mack T, Niroula A, Heimlich JB, Zekavat SM, Gibson CJ, Griffin GK, Wang Y, Peloso GM, Heard-Costa N, Levy D, Vasan RS, Aguet F, Ardlie KG, Taylor KD, Rich SS, Rotter JI, Libby P, Jaiswal S, Ebert BL, Bick AG, Tall AR, Natarajan P. Genetic modification of inflammation- and clonal hematopoiesis-associated cardiovascular risk. J Clin Invest 2023; 133:e168597. [PMID: 37498674 PMCID: PMC10503804 DOI: 10.1172/jci168597] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is associated with an increased risk of cardiovascular diseases (CVDs), putatively via inflammasome activation. We pursued an inflammatory gene modifier scan for CHIP-associated CVD risk among 424,651 UK Biobank participants. We identified CHIP using whole-exome sequencing data of blood DNA and modeled as a composite, considering all driver genes together, as well as separately for common drivers (DNMT3A, TET2, ASXL1, and JAK2). We developed predicted gene expression scores for 26 inflammasome-related genes and assessed how they modify CHIP-associated CVD risk. We identified IL1RAP as a potential key molecule for CHIP-associated CVD risk across genes and increased AIM2 gene expression leading to heightened JAK2- and ASXL1-associated CVD risk. We show that CRISPR-induced Asxl1-mutated murine macrophages had a particularly heightened inflammatory response to AIM2 agonism, associated with an increased DNA damage response, as well as increased IL-10 secretion, mirroring a CVD-protective effect of IL10 expression in ASXL1 CHIP. Our study supports the role of inflammasomes in CHIP-associated CVD and provides evidence to support gene-specific strategies to address CHIP-associated CVD risk.
Collapse
Affiliation(s)
- Zhi Yu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Trevor P. Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Yunfeng Ruan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Tetsushi Nakao
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Md Mesbah Uddin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Taralynn Mack
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - J. Brett Heimlich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seyedeh M. Zekavat
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Institute, Boston, Massachusetts, USA
| | - Christopher J. Gibson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gabriel K. Griffin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Nancy Heard-Costa
- Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, Massachusetts, USA
- Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Ramachandran S. Vasan
- Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Siddhartha Jaiswal
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin L. Ebert
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alexander G. Bick
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Quiroga EF, Connor PR, Rooper L, Moreno MA, Nix JS. Loss of BAP1 Protein Expression by Immunohistochemistry in the Salivary Duct Carcinoma Component of an Intracapsular Carcinoma ex Pleomorphic Adenoma of the Parotid Gland. Head Neck Pathol 2023; 17:851-854. [PMID: 37594632 PMCID: PMC10514007 DOI: 10.1007/s12105-023-01579-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that is altered in a variety of neoplasms as well as in BAP1 tumor predisposition syndrome. BAP1 alterations are associated with aggressive behavior in some malignancies and may have treatment implications in future. We present the first documented case of loss of BAP1 protein expression by immunohistochemistry in the salivary duct carcinoma (SDC) component of an intracapsular carcinoma ex pleomorphic adenoma (CXPA) in the context of molecular loss of function of BAP1 in the neoplasm. METHODS A woman of approximately 55 years of age presented with a deep parotid lobe mass, which was resected and found to be CXPA. BAP1 immunohistochemistry and next-generation sequencing was performed to further characterize the neoplasm. RESULTS The neoplasm showed loss of BAP1 protein expression in the SDC component but retention in the residual pleomorphic adenoma (PA). Next-generation sequencing confirmed a BAP1 loss of function alteration in the neoplasm. CONCLUSION This is the first documented case report of BAP1 protein expression loss in the SDC component of a CXPA. Future studies are needed to investigate the relevance of BAP1 alterations in SDC and CXPA, which may have prognostic and treatment implications.
Collapse
Affiliation(s)
| | - Patricia R. Connor
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Lisa Rooper
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD 21287 USA
| | - Mauricio A. Moreno
- Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - J. Stephen Nix
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| |
Collapse
|
40
|
Wang Q, Xu C, Wang W, Zhang Y, Li Z, Song Z, Wang J, Yu J, Liu J, Zhang S, Cai X, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Li J, Liu B, Yuan J, Jiang Z, Lin G, Chen X, Pu X, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Guo H, Chu Q, Meng R, Liu X, Wu J, Hu X, Zhou J, Zhu Z, Chen X, Pan W, Pang F, Zhang W, Jian Q, Wang K, Wang L, Zhu Y, Yang G, Lin X, Cai J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Wang X, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yu J, Kang J, Zhang J, Zhang C, Wu L, Shi L, Ye L, Wang G, Wang Y, Gao F, Huang J, Wang G, Wei J, Huang L, Li B, Zhang Z, Li Z, Liu Y, Li Y, Liu Z, Yang N, Wu L, Wang Q, Huang W, Hong Z, Wang G, Qu F, Fang M, Fang Y, Zhu X, et alWang Q, Xu C, Wang W, Zhang Y, Li Z, Song Z, Wang J, Yu J, Liu J, Zhang S, Cai X, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Li J, Liu B, Yuan J, Jiang Z, Lin G, Chen X, Pu X, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Guo H, Chu Q, Meng R, Liu X, Wu J, Hu X, Zhou J, Zhu Z, Chen X, Pan W, Pang F, Zhang W, Jian Q, Wang K, Wang L, Zhu Y, Yang G, Lin X, Cai J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Wang X, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yu J, Kang J, Zhang J, Zhang C, Wu L, Shi L, Ye L, Wang G, Wang Y, Gao F, Huang J, Wang G, Wei J, Huang L, Li B, Zhang Z, Li Z, Liu Y, Li Y, Liu Z, Yang N, Wu L, Wang Q, Huang W, Hong Z, Wang G, Qu F, Fang M, Fang Y, Zhu X, Du K, Ji J, Shen Y, Chen J, Zhang Y, Ma S, Lu Y, Song Y, Liu A, Zhong W, Fang W. Chinese expert consensus on the diagnosis and treatment of malignant pleural mesothelioma. Thorac Cancer 2023; 14:2715-2731. [PMID: 37461124 PMCID: PMC10493492 DOI: 10.1111/1759-7714.15022] [Show More Authors] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a malignant tumor originating from the pleura, and its incidence has been increasing in recent years. Due to the insidious onset and strong local invasiveness of MPM, most patients are diagnosed in the late stage and early screening and treatment for high-risk populations are crucial. The treatment of MPM mainly includes surgery, chemotherapy, and radiotherapy. Immunotherapy and electric field therapy have also been applied, leading to further improvements in patient survival. The Mesothelioma Group of the Yangtze River Delta Lung Cancer Cooperation Group (East China LUng caNcer Group, ECLUNG; Youth Committee) developed a national consensus on the clinical diagnosis and treatment of MPM based on existing clinical research evidence and the opinions of national experts. This consensus aims to promote the homogenization and standardization of MPM diagnosis and treatment in China, covering epidemiology, diagnosis, treatment, and follow-up.
Collapse
Affiliation(s)
- Qian Wang
- Department of Respiratory MedicineAffiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese MedicineNanjingChina
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Wenxian Wang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Zhengbo Song
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Jiandong Wang
- Department of PathologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics CoreTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Jingjing Liu
- Department of Thoracic CancerJilin Cancer HospitalChangchunChina
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer CenterZhejiang University School of MedicineHangzhouChina
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yet‐Sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer CenterZhejiang UniversityHangzhouChina
| | - Ping Zhan
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Hongbing Liu
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Tangfeng Lv
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Lingfeng Min
- Department of Respiratory MedicineClinical Medical School of Yangzhou University, Subei People's Hospital of Jiangsu ProvinceYangzhouChina
| | - Jiancheng Li
- Department of Radiation OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Baogang Liu
- Department of OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Jingping Yuan
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhansheng Jiang
- Department of Integrative OncologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Gen Lin
- Department of Medical OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Xiaohui Chen
- Department of Thoracic SurgeryFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Xingxiang Pu
- Department of Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Dongqing Lv
- Department of Pulmonary MedicineTaizhou Hospital of Wenzhou Medical UniversityTaizhouChina
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900th Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital)Fujian Medical UniversityFuzhouChina
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chuanhao Tang
- Department of Medical OncologyPeking University International HospitalBeijingChina
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University(The First Affiliated Hospital of Guangzhou Medical University)GuangzhouChina
| | - Junping Zhang
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Hui Guo
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of MedicineXiamen UniversityXiamenChina
| | - Xiao Hu
- Zhejiang Key Laboratory of Radiation OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouChina
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and TechnologyChengduChina
| | - Zhengfei Zhu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaofeng Chen
- Department of OncologyJiangsu Province Hospital and Nanjing Medical University First Affiliated HospitalNanjingChina
| | - Weiwei Pan
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| | - Fei Pang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Wenpan Zhang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Qijie Jian
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Kai Wang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Liping Wang
- Department of OncologyBaotou Cancer HospitalBaotouChina
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Guocai Yang
- Department of Thoracic Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanChina
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University(The First Affiliated Hospital of Guangzhou Medical University)GuangzhouChina
| | - Jing Cai
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Huijing Feng
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Lin Wang
- Department of PathologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Yingying Du
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wang Yao
- Department of Interventional OncologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Dongmei Yuan
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yanwen Yao
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jianhui Huang
- Department of OncologyLishui Municipal Central HospitalLishuiChina
| | - Xiaomin Wang
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| | - Yinbin Zhang
- Department of Oncologythe Second Affiliated Hospital of Medical College, Xi'an Jiaotong UniversityXi'anChina
| | - Pingli Sun
- Department of PathologyThe Second Hospital of Jilin UniversityChangchunChina
| | - Hong Wang
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingChina
| | - Mingxiang Ye
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Dong Wang
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Zhaofeng Wang
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yue Hao
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Zhen Wang
- Department of Radiation OncologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Bing Wan
- Department of Respiratory MedicineThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingChina
| | - Donglai Lv
- Department of Clinical OncologyThe 901 Hospital of Joint Logistics Support Force of People Liberation ArmyHefeiChina
| | - Jianwei Yu
- Department of Respiratory MedicineAffiliated Hospital of Jiangxi University of Chinese Medicine, Jiangxi Province Hospital of Chinese MedicineNanchangChina
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Lixin Wu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Lin Shi
- Department of Respiratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Leiguang Ye
- Department of OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Gaoming Wang
- Department of Thoracic Surgery, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Feng Gao
- Department of Thoracic SurgeryThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jianfei Huang
- Department of Clinical BiobankAffiliated Hospital of Nantong UniversityNantongChina
| | - Guifang Wang
- Department of Respiratory MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jianguo Wei
- Department of PathologyShaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine)ShaoxingChina
| | - Long Huang
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Bihui Li
- Department of OncologyThe Second Affiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of PharmacyJinan UniversityGuangzhouChina
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of PathologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yueping Liu
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yuan Li
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Zhefeng Liu
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingChina
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Lin Wu
- Department of Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Qiming Wang
- Department of Internal MedicineThe Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Wenbin Huang
- Department of Pathologythe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Zhuan Hong
- Department of Medical Oncology, Jiangsu Cancer HospitalNanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinjian HospitalThird Military Medical UniversityChongqingChina
| | - Fengli Qu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina
| | - Meiyu Fang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | - Xixu Zhu
- Department of Radiation OncologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Kaiqi Du
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Jiansong Ji
- Department of RadiologyLishui Municipal Central HospitalLishuiChina
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yiping Zhang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer CenterZhejiang University School of MedicineHangzhouChina
| | - Yuanzhi Lu
- Department of Clinical PathologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yong Song
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Anwen Liu
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
41
|
Dagogo-Jack I. Targeted Approaches to Treatment of Pleural Mesothelioma: A Review. JCO Precis Oncol 2023; 7:e2300344. [PMID: 37992257 PMCID: PMC10681489 DOI: 10.1200/po.23.00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Pleural mesothelioma is an aggressive disease that is enriched for inactivating alterations in tumor suppressor genes. Systemic therapeutic strategies for pleural mesothelioma generally involve chemotherapies and immunotherapies that are chosen without consideration of the tumor's molecular profile. As this generalized approach to treatment rarely yields durable responses, alternative therapeutic regimens are urgently indicated. Preclinical studies have identified synthetic lethal protein and metabolic interactions, recurrently overexpressed proteins, and frequent pathway perturbations that may be therapeutically exploited in mesothelioma. This review discusses the mechanism of action of emerging investigational therapies and summarizes findings from phase I-II clinical trials exploring selective, biomarker-driven therapeutic strategies for mesothelioma, with a focus on five common targets. Finally, using lessons learned from these clinical trials, imperatives for successful implementation of targeted therapy in mesothelioma are discussed.
Collapse
Affiliation(s)
- Ibiayi Dagogo-Jack
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Dietz MV, van Kooten JP, Paats MS, Aerts JGVJ, Verhoef C, Madsen EVE, Dubbink HJ, von der Thüsen JH. Molecular alterations and potential actionable mutations in peritoneal mesothelioma: a scoping review of high-throughput sequencing studies. ESMO Open 2023; 8:101600. [PMID: 37453150 PMCID: PMC10368826 DOI: 10.1016/j.esmoop.2023.101600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Peritoneal mesothelioma (PeM) is a rare malignancy with a poor prognosis. Currently there is a lack of effective systemic therapies. Due to the rarity of PeM, it is challenging to study new treatment options. Off-label use of targeted drugs could be an effective approach. This scoping review aims to explore the genomic landscape of PeM to identify potential therapeutic targets. MATERIALS AND METHODS A systematic literature search of Embase, Medline, Web of Science, the Cochrane Library, and Google Scholar was carried out up to 1 November 2022. Studies that reported on molecular alterations in PeM detected by high-throughput sequencing techniques were included. Genes that were altered in ≥1% of PeMs were selected for the identification of potential targeted therapies. RESULTS Thirteen articles were included, comprising 824 PeM patients. In total, 142 genes were altered in ≥1% of patients, of which 7 genes were altered in ≥10%. BAP1 was the most commonly altered gene (50%). Other commonly altered genes were NF2 (25%), CDKN2A (23%), CDKN2B (17%), PBRM1 (15%), TP53 (14%), and SETD2 (13%). In total, 17% of PeM patients were carriers of a germline mutation, mainly in BAP1 (7%). CONCLUSIONS This scoping review provides an overview of the mutational landscape of PeM. Germline mutations might be a larger contributor to the incidence of PeM than previously thought. Currently available targeted therapy options are limited, but several targeted agents [such as poly (ADP-ribose) polymerase (PARP), enhancer of zeste homolog 2 (EZH2), and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors] were identified that might provide new targeted therapy options in the future.
Collapse
Affiliation(s)
| | | | - M S Paats
- Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam
| | - J G V J Aerts
- Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam
| | | | | | - H J Dubbink
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
43
|
Yue X, Liu T, Wang X, Wu W, Wen G, Yi Y, Wu J, Wang Z, Zhan W, Wu R, Meng Y, Cao Z, Le L, Qiu W, Zhang X, Li Z, Chen Y, Wan G, Bu X, Peng Z, Liu RY. Pharmacological inhibition of BAP1 recruits HERC2 to competitively dissociate BRCA1-BARD1, suppresses DNA repair and sensitizes CRC to radiotherapy. Acta Pharm Sin B 2023; 13:3382-3399. [PMID: 37655321 PMCID: PMC10466008 DOI: 10.1016/j.apsb.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Radiotherapy is widely used in the management of advanced colorectal cancer (CRC). However, the clinical efficacy is limited by the safe irradiated dose. Sensitizing tumor cells to radiotherapy via interrupting DNA repair is a promising approach to conquering the limitation. The BRCA1-BARD1 complex has been demonstrated to play a critical role in homologous recombination (HR) DSB repair, and its functions may be affected by HERC2 or BAP1. Accumulated evidence illustrates that the ubiquitination-deubiquitination balance is involved in these processes; however, the precise mechanism for the cross-talk among these proteins in HR repair following radiation hasn't been defined. Through activity-based profiling, we identified PT33 as an active entity for HR repair suppression. Subsequently, we revealed that BAP1 serves as a novel molecular target of PT33 via a CRISPR-based deubiquitinase screen. Mechanistically, pharmacological covalent inhibition of BAP1 with PT33 recruits HERC2 to compete with BARD1 for BRCA1 interaction, interrupting HR repair. Consequently, PT33 treatment can substantially enhance the sensitivity of CRC cells to radiotherapy in vitro and in vivo. Overall, these findings provide a mechanistic basis for PT33-induced HR suppression and may guide an effective strategy to improve therapeutic gain.
Collapse
Affiliation(s)
- Xin Yue
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tingyu Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xuecen Wang
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gesi Wen
- Department of Clinical Research, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yang Yi
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaxin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weixiang Zhan
- Department of Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ruirui Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuan Meng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhirui Cao
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Liyuan Le
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenyan Qiu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyue Zhang
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenyu Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yong Chen
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Guohui Wan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhenwei Peng
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ran-yi Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
44
|
Kumar-Sinha C, Vats P, Tran N, Robinson DR, Gunchick V, Wu YM, Cao X, Ning Y, Wang R, Rabban E, Bell J, Shankar S, Mannan R, Zhang Y, Zalupski MM, Chinnaiyan AM, Sahai V. Genomics driven precision oncology in advanced biliary tract cancer improves survival. Neoplasia 2023; 42:100910. [PMID: 37267699 PMCID: PMC10245336 DOI: 10.1016/j.neo.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Biliary tract cancers (BTCs) including intrahepatic, perihilar, and distal cholangiocarcinoma as well as gallbladder cancer, are rare but aggressive malignancies with few effective standard of care therapies. METHODS We implemented integrative clinical sequencing of advanced BTC tumors from 124 consecutive patients who progressed on standard therapies (N=92 with MI-ONCOSEQ and N=32 with commercial gene panels) enrolled between 2011-2020. RESULTS Genomic profiling of paired tumor and normal DNA and tumor transcriptome (RNA) sequencing identified actionable somatic and germline genomic alterations in 54 patients (43.5%), and potentially actionable alterations in 79 (63.7%) of the cohort. Of these, patients who received matched targeted therapy (22; 40.7%) had a median overall survival of 28.1 months compared to 13.3 months in those who did not receive matched targeted therapy (32; P < 0.01), or 13.9 months in those without actionable mutations (70; P < 0.01). Additionally, we discovered recurrent activating mutations in FGFR2, and a novel association between KRAS and BRAF mutant tumors with high expression of immune modulatory protein NT5E (CD73) that may represent novel therapeutic avenues. CONCLUSIONS Overall, the identification of actionable/ potentially actionable aberrations in a large proportion of cases, and improvement in survival with precision oncology supports molecular analysis and clinical sequencing for all patients with advanced BTC.
Collapse
Affiliation(s)
- Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nguyen Tran
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Valerie Gunchick
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu Ning
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erica Rabban
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janice Bell
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark M Zalupski
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
45
|
Schraml P, Aimi F, Zoche M, Aguilera‐Garcia D, Arnold F, Moch H, Hottiger MO. Altered cytoplasmic and nuclear ADP-ribosylation levels analyzed with an improved ADP-ribose binder are a prognostic factor in renal cell carcinoma. J Pathol Clin Res 2023; 9:273-284. [PMID: 36999983 PMCID: PMC10240151 DOI: 10.1002/cjp2.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
ADP-ribosylation (ADPR) of proteins is catalyzed by ADP-ribosyltransferases, which are targeted by inhibitors (i.e. poly(ADP-ribose) polymerase inhibitors [PARPi]). Although renal cell carcinoma (RCC) cells are sensitive in vitro to PARPi, studies on the association between ADPR levels and somatic loss of function mutations in DNA damage repair genes are currently missing. Here we observed, in two clear cell RCC (ccRCC) patient cohorts (n = 257 and n = 241) stained with an engineered ADP-ribose binding macrodomain (eAf1521), that decreased cytoplasmic ADPR (cyADPR) levels significantly correlated with late tumor stage, high-ISUP (the International Society of Urological Pathology) grade, presence of necrosis, dense lymphocyte infiltration, and worse patient survival (p < 0.01 each). cyADPR proved to be an independent prognostic factor (p = 0.001). Comparably, absence of nuclear ADPR staining in ccRCC correlated with absence of PARP1 staining (p < 0.01) and worse patient outcome (p < 0.05). In papillary RCC the absence of cyADPR was also significantly associated with tumor progression and worse patient outcome (p < 0.05 each). To interrogate whether the ADPR status could be associated with genetic alterations in DNA repair, chromatin remodeling, and histone modulation, we performed DNA sequence analysis and identified a significant association of increased ARID1A mutations in ccRCCcyADPR+++/PARP1+ compared with ccRCCcyADPR-/PARP1- (31% versus 4%; p < 0.05). Collectively, our data suggest the prognostic value of nuclear and cytoplasmic ADPR levels in RCC that might be further influenced by genetic alterations.
Collapse
Affiliation(s)
- Peter Schraml
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Fabio Aimi
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
- Department of Molecular Mechanism of Disease (DMMD)University of Zurich (UZH)ZurichSwitzerland
| | - Martin Zoche
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Domingo Aguilera‐Garcia
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Fabian Arnold
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Michael O Hottiger
- Department of Molecular Mechanism of Disease (DMMD)University of Zurich (UZH)ZurichSwitzerland
| |
Collapse
|
46
|
Rüland L, Andreatta F, Massalini S, Chuva de Sousa Lopes S, Clevers H, Hendriks D, Artegiani B. Organoid models of fibrolamellar carcinoma mutations reveal hepatocyte transdifferentiation through cooperative BAP1 and PRKAR2A loss. Nat Commun 2023; 14:2377. [PMID: 37137901 PMCID: PMC10156813 DOI: 10.1038/s41467-023-37951-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Fibrolamellar carcinoma (FLC) is a lethal primary liver cancer, affecting young patients in absence of chronic liver disease. Molecular understanding of FLC tumorigenesis is limited, partly due to the scarcity of experimental models. Here, we CRISPR-engineer human hepatocyte organoids to recreate different FLC backgrounds, including the predominant genetic alteration, the DNAJB1-PRKACA fusion, as well as a recently reported background of FLC-like tumors, encompassing inactivating mutations of BAP1 and PRKAR2A. Phenotypic characterizations and comparisons with primary FLC tumor samples revealed mutant organoid-tumor similarities. All FLC mutations caused hepatocyte dedifferentiation, yet only combined loss of BAP1 and PRKAR2A resulted in hepatocyte transdifferentiation into liver ductal/progenitor-like cells that could exclusively grow in a ductal cell environment. BAP1-mutant hepatocytes represent primed cells attempting to proliferate in this cAMP-stimulating environment, but require concomitant PRKAR2A loss to overcome cell cycle arrest. In all analyses, DNAJB1-PRKACAfus organoids presented with milder phenotypes, suggesting differences between FLC genetic backgrounds, or for example the need for additional mutations, interactions with niche cells, or a different cell-of-origin. These engineered human organoid models facilitate the study of FLC.
Collapse
Affiliation(s)
- Laura Rüland
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Simone Massalini
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
47
|
Barnett SE, Kenyani J, Tripari M, Butt Z, Grosman R, Querques F, Shaw L, Silva LC, Goate Z, Marciniak SJ, Rassl DM, Jackson R, Lian LY, Szlosarek PW, Sacco JJ, Coulson JM. BAP1 Loss Is Associated with Higher ASS1 Expression in Epithelioid Mesothelioma: Implications for Therapeutic Stratification. Mol Cancer Res 2023; 21:411-427. [PMID: 36669126 PMCID: PMC10150242 DOI: 10.1158/1541-7786.mcr-22-0635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
The nuclear deubiquitylase BRCA1-associated protein 1 (BAP1) is frequently inactivated in malignant pleural mesothelioma (MPM) and germline BAP1 mutation predisposes to cancers including MPM. To explore the influence on cell physiology and drug sensitivity, we sequentially edited a predisposition mutation (w-) and a promoter trap (KO) into human mesothelial cells. BAP1w-/KO MeT5A cells express less BAP1 protein and phenocopy key aspects of BAP1 loss in MPM. Stable isotope labeling with amino acids in cell culture-mass spectrometry revealed evidence of metabolic adaptation, with concomitant alteration of cellular metabolites. In MeT5A, BAP1 deficiency reduces glycolytic enzyme levels but increases enzymes involved in the tricarboxylic acid cycle and anaplerotic pathways. Notably both argininosuccinate synthase 1 (ASS1), essential for cellular synthesis of arginine, and its substrate aspartate, are elevated in BAP1w-/KO MeT5A cells. Likewise, ASS1 expression is higher in BAP1-altered MPM cell lines, and inversely correlates with BAP1 in The Cancer Genome Atlas MESO dataset. Elevated ASS1 is also evident by IHC staining in epithelioid MPM lacking nuclear BAP1 expression, with improved survival among patients with BAP1-negative/ASS1-expressing tumors. Alterations in arginine metabolism may sensitize cells to metabolic drugs and we find that BAP1-negative/ASS1-expressing MPM cell lines are more sensitive to ASS1 inhibition, although not to inhibition of purine synthesis by mizoribine. Importantly, BAP1w-/KO MeT5A become desensitized to arginine deprivation by pegylated arginine deiminase (ADI-PEG20), phenocopying BAP1-negative/ASS1-expressing MPM cell lines. IMPLICATIONS Our data reveal an interrelationship between BAP1 and arginine metabolism, providing a potential means of identifying patients with epithelioid MPM likely to benefit from ADI-PEG20.
Collapse
Affiliation(s)
- Sarah E. Barnett
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Jenna Kenyani
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Martina Tripari
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Zohra Butt
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Rudi Grosman
- Biochemistry and Systems Biology, University of Liverpool, Liverpool, United Kingdom
| | - Francesca Querques
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Liam Shaw
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Luisa C. Silva
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Zoe Goate
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Doris M. Rassl
- Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Richard Jackson
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, United Kingdom
| | - Lu-Yun Lian
- Biochemistry and Systems Biology, University of Liverpool, Liverpool, United Kingdom
| | - Peter W. Szlosarek
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Joseph J. Sacco
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, United Kingdom
| | - Judy M. Coulson
- Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
48
|
Kwon J, Lee D, Lee SA. BAP1 as a guardian of genome stability: implications in human cancer. Exp Mol Med 2023; 55:745-754. [PMID: 37009801 PMCID: PMC10167335 DOI: 10.1038/s12276-023-00979-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 04/04/2023] Open
Abstract
BAP1 is a ubiquitin C-terminal hydrolase domain-containing deubiquitinase with a wide array of biological activities. Studies in which advanced sequencing technologies were used have uncovered a link between BAP1 and human cancer. Somatic and germline mutations of the BAP1 gene have been identified in multiple human cancers, with a particularly high frequency in mesothelioma, uveal melanoma and clear cell renal cell carcinoma. BAP1 cancer syndrome highlights that all carriers of inherited BAP1-inactivating mutations develop at least one and often multiple cancers with high penetrance during their lifetime. These findings, together with substantial evidence indicating the involvement of BAP1 in many cancer-related biological activities, strongly suggest that BAP1 functions as a tumor suppressor. Nonetheless, the mechanisms that account for the tumor suppressor function of BAP1 have only begun to be elucidated. Recently, the roles of BAP1 in genome stability and apoptosis have drawn considerable attention, and they are compelling candidates for key mechanistic factors. In this review, we focus on genome stability and summarize the details of the cellular and molecular functions of BAP1 in DNA repair and replication, which are crucial for genome integrity, and discuss the implications for BAP1-associated cancer and relevant therapeutic strategies. We also highlight some unresolved issues and potential future research directions.
Collapse
Affiliation(s)
- Jongbum Kwon
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Daye Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 1068, Bethesda, MD, 20892-4263, USA
| |
Collapse
|
49
|
Kowalik A, Karpinski P, Markiewicz A, Orlowska-Heitzman J, Romanowska-Dixon B, Donizy P, Hoang MP. Molecular profiling of primary uveal melanoma: results of a Polish cohort. Melanoma Res 2023; 33:104-115. [PMID: 36719926 DOI: 10.1097/cmr.0000000000000874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There is no published data regarding the molecular alterations of Polish patients with primary uveal melanoma. We performed whole exome sequencing of 20 primary uveal melanomas (UMs), 10 metastasizing and 10 non-metastasizing cases to identify significant molecular alterations. We detected mutations and copy number variants in the BAP1 gene in 50% (10 cases) of the cases. GNA11 mutations were detected in 50% (10 cases) including nine p.Q209L and one p.R183C. GNAQ mutations gene were detected in 40% (8 cases) and all were p.Q209P. SF3B1, EIF1AX, PLCB4 , and PALB2 mutations were detected in one case each. Genetic aberrations of FBXW7 were detected in 55% of cases, with copy number loss of 10 and missense mutation in one. Gain or loss of copy number was observed in 60%, 60%, and 10% of cases in MYC, MLH1 , and CDKN2A genes, respectively. BAP1 and GNAQ tumor suppressor genes are more often mutated in UM with metastasis, while GNA11 mutations are more frequently detected in non-metastasizing tumors. MYC copy gain was present twice as frequently (80% versus 40%) in cases with versus those without metastases. BAP1 mutation correlated with worse overall survival; while GNA11 mutation and CDKN2A loss correlated with better and worse progression-free survival, respectively. We have confirmed BAP1 prognostic potential and documented frequent MYC amplification in metastasizing cases. Although GNA11 mutation and CDKN2A loss significantly correlated with progression-free survival in our study, our sample size is small. The prognostic significance of GNAQ/GNA11 mutation and CDKN2A loss would require further investigation.
Collapse
Affiliation(s)
- Artur Kowalik
- Department of Molecular Diagnostics, Holy Cross Cancer Center
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce
| | | | - Anna Markiewicz
- Department of Ophthalmology and Ocular Oncology, Faculty of Medicine, Jagiellonian University Medical College, Krakow
| | | | - Bozena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology, Faculty of Medicine, Jagiellonian University Medical College, Krakow
| | - Piotr Donizy
- Division of Clinical Pathology, Department of Clinical and Experimental Pathology, Wroclaw Medical University
- Department of Pathology and Clinical Cytology, Jan Mikulicz-Radecki University Hospital, Wroclaw, Poland
| | - Mai P Hoang
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|