1
|
Seo C, Song J, Choi Y, Kim T, Lee D, Jon S. A Cross-Linked Cyclosiloxane Polymer Matrix as a Platform Enabling Long-Term Culture of Human Induced Pluripotent Stem Cells with Naïve-Like Features. Biomater Res 2025; 29:0197. [PMID: 40296880 PMCID: PMC12034926 DOI: 10.34133/bmr.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Culture platforms for human induced pluripotent stem cells (hiPSCs) that rely on feeder cells or extracellular matrices (ECMs) face substantial limitations for practical regenerative medicine applications, including undefined components, high costs, and a tendency to maintain hiPSCs in the primed pluripotent state, which has lower differentiation potential than the naïve state. To overcome these challenges, we developed a long-term hiPSC culture platform based on a cross-linked cyclosiloxane polymer matrix that preserves pluripotency with naïve-like characteristics. Through optimization, we identified an ideal cyclosiloxane polymer matrix, designated as poly-Z, which supported the growth of hiPSCs as spheroids. Even after 60 d of continuous culture, hiPSC spheroids maintained on poly-Z retained pluripotency markers and normal karyotypes at levels comparable to those of hiPSC colonies cultured on conventional vitronectin (VN)-coated plates. Furthermore, mRNA sequencing revealed that hiPSC spheroids cultured on poly-Z not only exhibited up-regulation of typical pluripotency-related genes but also showed increased expression of genes associated with the naïve pluripotent state, in contrast to the primed state observed in hiPSCs cultured on VN-coated plates or in suspension culture. Gene ontology (GO) analysis and gene set enrichment analysis (GSEA) further suggested that the down-regulation of genes involved in cell-ECM interactions contributed to the induction of naïve-like features in poly-Z-cultured hiPSC spheroids. These findings highlight the potential of cross-linked cyclosiloxane-based polymer matrices as an innovative platform for human pluripotent stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Changjin Seo
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhyuk Song
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | | | - Taemook Kim
- Deargen Inc., Daejeon 35220, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Wu X, Yang Y, Pan Y, Wang Y, Lian X, Dong C, Wang S, Wang A, Lei Y. Collagen Nanofiber Reinforced Alginate Hydrogel Tube Microbioreactors for Cell Culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.23.650245. [PMID: 40313920 PMCID: PMC12045347 DOI: 10.1101/2025.04.23.650245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The large-scale production of mammalian cells is pivotal for various applications; however, current bioreactor technologies encounter significant technical and economic challenges. Scaling up cell cultures remains problematic due to excessive cell aggregation, shear stress-induced cell death, batch-to-batch inconsistencies, and limited scalability. We propose that engineering a cell-friendly microenvironment can enhance culture efficiency. Previously, we developed alginate hydrogel microtubes (AlgTubes) that significantly improved cell density and growth rates. Nevertheless, AlgTubes lack adhesion sites essential for anchorage-dependent cells and frequently break, causing cell leakage and production inconsistencies. To address these limitations, this study reinforced AlgTubes with collagen nanofibers, creating collagen-alginate hybrid hydrogel microtubes (ColAlgTubes). Utilizing a novel micro-extruder, we efficiently produced cell-loaded ColAlgTubes. Collagen formed a dense nanofiber network interwoven with the alginate mesh, enhancing the hydrogel's mechanical properties while providing cell adhesion sites. ColAlgTubes protected cells from hydrodynamic stress and maintained cell mass within a 400 μm diameter, ensuring efficient nutrient exchange and waste removal. This optimized microenvironment resulted in high cell viability, rapid proliferation, and exceptional yields of 5×10 8 cells/mL - 200 times higher than conventional culture methods. With their scalability, cost-effectiveness, and efficiency, ColAlgTubes offers a transformative solution for large-scale cell production with broad applications in biotechnology, regenerative medicine, and therapeutic manufacturing.
Collapse
|
3
|
Yang W, Wang X, Zheng D, Feng J, Kong W, Li Y, Ma G, Wei W, Tao Y. Catalytic neural stem cell exosomes for multi-stage targeting and synergistical therapy of retinal ischemia-reperfusion injury. Cell Rep Med 2025; 6:102052. [PMID: 40239632 PMCID: PMC12047469 DOI: 10.1016/j.xcrm.2025.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Neuronal damage of the retina is a leading cause of visual impairment in patients with retinal ischemia-reperfusion injury (RIRI). Building on our clinical and experimental findings, the substantial decrease in catalase activity correlates with increased hydrogen peroxide (H2O2)-mediated oxidative stress that is primarily localized to the outer nuclear layer (ONL) situated in the posterior segment of the retina. Accordingly, we design a neural stem cell exosome with polylysine (K10) decoration and catalase expression, named CataKNexo, which reaches the ONL and exerts synergistic antioxidant and neuroprotective therapy. Utilizing an in vitro retinal model recapitulating the layered architecture of the retina, we confirm that CataKNexo reaches the ONL through K10-mediated transcytosis. In RIRI model mice, CataKNexo prevents the retina from H2O2-induced cell death, exerts neuroprotection, and restores vision function to near-normal levels. Moreover, CataKNexo shows promising antioxidative, neuroprotective, and safety profiles in RIRI model Bama miniature pigs, highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Weiqiang Yang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xiaojun Wang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China.
| | - Diwei Zheng
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wenjun Kong
- Department of Ophthalmology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yue Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| | - Wei Wei
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China; Joint laboratory of Drug Delivery & Innovative Therapy built by Beijing Chaoyang Hospital & State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; National Engineering Research Center for Ophthalmology, Beijing, P.R. China; Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijjing, P.R. China.
| |
Collapse
|
4
|
Mulero-Russe A, Mora-Boza A, Marquez EN, Ziegelski M, Helmrath M, García AJ. Synthetic hydrogel substrate for human induced pluripotent stem cell definitive endoderm differentiation. Biomaterials 2025; 315:122920. [PMID: 39504708 PMCID: PMC11625597 DOI: 10.1016/j.biomaterials.2024.122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
Human induced pluripotent stem cells (hiPSCs) can give rise to multiple lineages derived from three germ layers, endoderm, mesoderm and ectoderm. Definitive endoderm (DE) cell types and tissues have great potential for regenerative medicine applications. Current hiPSC differentiation protocols focus on the addition of soluble factors; however, extracellular matrix properties are known to also play a role in dictating cell fate. Matrigel™ is the gold standard for DE differentiation, but this xenogeneic, poorly defined basement membrane extract limits the clinical translatability of DE-derived tissues. Here we present a fully defined PEG-based hydrogel substrate to support hiPSC-derived DE differentiation. We screened hydrogel formulations presenting different adhesive peptides and matrix stiffness. Our results demonstrate that presenting a short peptide, cyclic RGD, on the engineered PEG hydrogel supports the transition from undifferentiated hiPSCs to DE using a serum-free, commercially available kit. We show that increasing substrate stiffness (G' = 1.0-4.0 kPa) results in an increased linear response in DE differentiation efficiency. We also include a temporal analysis of the expression of integrin and syndecan receptors as the hiPSCs undergo specification towards DE lineage. Finally, we show that focal adhesion kinase activity regulates hiPSC growth and DE differentiation efficiency. Overall, we present a fully defined matrix as a synthetic alternative for Matrigel™ supporting DE differentiation.
Collapse
Affiliation(s)
- Adriana Mulero-Russe
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ana Mora-Boza
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Elijah N Marquez
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Morgan Ziegelski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael Helmrath
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
5
|
Lee E, Lim GH, An JH, Ryu MO, Seo KW, Youn HY. Enhanced immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells in 3D culture. Front Vet Sci 2025; 12:1500267. [PMID: 40206260 PMCID: PMC11979191 DOI: 10.3389/fvets.2025.1500267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) have been introduced as a treatment for dogs owing to their immunomodulatory effects. In humans, 3D-cultured MSCs have recently been applied in treating various conditions, including myocardial infarction, liver disease, and kidney disease. This study aimed to evaluate whether the immunomodulatory effects of canine adipose tissue-derived MSCs (cAT-MSCs) are enhanced when cultured in a 3D environment compared to conventional 2D culture. Methods cAT-MSC spheroids were generated using ultra-low-adhesion plates. The structural and hypoxic characteristics of these spheroids were assessed via confocal imaging. The expression levels of the stemness markers SOX2 and OCT4 were examined through western blotting. Additionally, the expression of inflammatory factors within the cAT-MSC spheroids was analyzed using RT-PCR and ELISA. The immunomodulatory effects were further evaluated in canine macrophages (DH82) treated with conditioned media (CM) from cAT-MSC spheroids, using RT-PCR and flow cytometry. Results 3D culture induced hypoxic conditions within the cAT-MSC spheroids and significantly increased the expression of SOX2 and OCT4 (p < 0.05). Moreover, the expression of inflammation-associated factors, including TGF-β1, TSG-6, COX-2, PGE2, and IL-10, was upregulated in the 3D culture (p < 0.05). Treatment of DH82 cells with CM from the cAT-MSC spheroids led to a significant reduction in the expression of pro-inflammatory factors such as TNF-α, IL-1β, and IL-6 (p < 0.01). Additionally, M1 polarization was diminished in DH82 cells exposed to the CM from the cAT-MSC spheroids (p < 0.0001). And M2 polarization was increased in DH82 cells exposed to the CM from the cAT-MSC spheroids (p < 0.0001). Conclusion This study confirms that the immunomodulatory effects of MSCs are enhanced in 3D culture. Therefore, 3D cultured MSCs may offer a more effective therapeutic approach than conventional 2D-cultured MSCs for treating canine inflammatory diseases.
Collapse
Affiliation(s)
- Eunbi Lee
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- VIP Animal Medical Center, Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Min-Ok Ryu
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Grigoreva TA, Kindt DN, Sagaidak AV, Novikova DS, Tribulovich VG. Cellular Systems for Colorectal Stem Cancer Cell Research. Cells 2025; 14:170. [PMID: 39936962 PMCID: PMC11817814 DOI: 10.3390/cells14030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Oncological diseases consistently occupy leading positions among the most life-threatening diseases, including in highly developed countries. At the same time, the second most common cause of cancer death is colorectal cancer. The current level of research shows that the development of effective therapy, in this case, requires a new grade of understanding processes during the emergence and development of a tumor. In particular, the concept of cancer stem cells that ensure the survival of chemoresistant cells capable of giving rise to new tumors is becoming widespread. To provide adequate conditions that reproduce natural processes typical for tumor development, approaches based on increasingly complex cellular systems are being improved. This review discusses the main strategies that allow for the study of the properties of tumor cells with an emphasis on colorectal cancer stem cells. The features of working with tumor cells and the advantages and disadvantages of 2D and 3D culture systems are considered.
Collapse
Affiliation(s)
- Tatyana A. Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia (V.G.T.)
| | | | | | | | | |
Collapse
|
7
|
Ghorbani M, Prince E. Radical Ring-Opening Polymerization: Unlocking the Potential of Vinyl Polymers for Drug Delivery, Tissue Engineering, and More. Biomacromolecules 2025; 26:118-139. [PMID: 39733344 DOI: 10.1021/acs.biomac.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Synthetic vinyl polymers have long been recognized for their potential to be utilized in drug delivery, tissue engineering, and other biomedical applications. The synthetic control that chemists have over their structure and properties is unmatched, allowing vinyl polymer-based materials to be precisely engineered for a range of therapeutic applications. Yet, their lack of biodegradability compromises the biocompatibility of vinyl polymers and has held back their translation into clinically used treatments for disease thus far. In recent years, radical ring-opening polymerization (rROP) has emerged as a promising strategy to render synthetic vinyl polymers biodegradable and bioresorbable. While rROP has long been touted as a strategy for preparing biodegradable vinyl polymers for biomedical applications, the translation of rROP into clinically approved treatments for disease has not yet been realized. This review highlights the opportunities for leveraging rROP to render vinyl polymers biodegradable and unlock their potential for use in biomedical applications.
Collapse
Affiliation(s)
- Mina Ghorbani
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| | - Elisabeth Prince
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada
| |
Collapse
|
8
|
Yang Y, Wu X, Pan Y, Wang Y, Lian X, Dong C, Liu W, Wang S, Lei Y. Collagen Hydrogel Tube Microbioreactors for Cell and Tissue Manufacturing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631570. [PMID: 39829742 PMCID: PMC11741382 DOI: 10.1101/2025.01.08.631570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The production of mammalian cells in large quantities is essential for various applications. However, scaling up cell culture using existing bioreactors poses significant technical challenges and high costs. To address this, we previously developed an innovative 3D culture system, known as the AlgTube cell culture system, for high-density cell cultivation. This system involves processing cells into microscale alginate hydrogel tubes, which are suspended in the culture medium within a vessel. These hydrogel tubes shield cells from hydrodynamic stress and maintain the cell mass below 400 µm in diameter, facilitating efficient mass transport and creating a favorable microenvironment for cell growth. Under optimized conditions, AlgTubes supported long-term culture with high cell viability, rapid expansion (1000-fold increase over 9 days per passage), and high yield (5×10⁸ cells/mL), offering significant advantages over conventional methods. Despite these benefits, AlgTubes have critical drawbacks. They are mechanically fragile, with frequent breakage during culture leading to cell leakage and production failures. Additionally, many cell types exhibit poor growth due to the inability to adhere to the alginate surface, making alginate hydrogel microtubes unsuitable for industrial-scale cell production. To overcome these challenges, we developed a novel collagen hydrogel tube-based microbioreactor system in this work. This system provides enhanced robustness and adhesion, enabling scalable, cost-effective, and efficient cell production for a wide range of applications.
Collapse
|
9
|
Komosa ER, Lin WH, Ogle BM. Toward robust and reproducible pluripotent stem cell expansion in bioprinted GelMA constructs. Int J Bioprint 2024; 11:363-381. [PMID: 40330989 PMCID: PMC12052315 DOI: 10.36922/ijb.4633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Combining the technologies of 3D bioprinting and human induced pluripotent stem cells (hiPSCs) has allowed for the creation of tissues with organ-level function in the lab, a promising technique for disease modeling and regenerative medicine. Expanding the stem cells in bioprinted tissues prior to differentiation allows for high cell density, which is important for the formation of cell-cell junctions necessary for macroscale function upon differentiation. Yet, stem cell expansion, critical to successful in situ differentiation, depends heavily on the composition of the bioprinted scaffold. Here, we demonstrate how a common bioink component, gelatin methacryloyl (GelMA), varies depending on the vendor and degree of functionalization. We found that the vendor/GelMA production technique played a greater role in dictating the mechanical properties of the bioprinted constructs than the degree of functionalization, emphasizing the importance of reporting detailed characterization of GelMA scaffolds. Furthermore, the ability of singularized hiPSCs to survive and expand in GelMA scaffolds greatly varied across batches from different vendors and degrees of functionalization, where expansion correlated with the mechanical properties of the scaffold. Yet, we found that using a commercial cloning supplement could restore the ability of single hiPSCs to survive and expand across GelMA types, thus compensating for the varied mechanical properties of the scaffolds. These findings provide a practical guide for the expansion of hiPSCs in GelMA constructs with various mechanical properties as required for successful in situ differentiation.
Collapse
Affiliation(s)
- Elizabeth R. Komosa
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Han Lin
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brenda M. Ogle
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
10
|
Li H, Chen H, Du C, Liu Y, Wan L, Ai F, Zhou K. Effect of Hydroxyapatite Nanowires on Formation and Bioactivity of Osteoblastic Cell Spheroid. ACS Biomater Sci Eng 2024; 10:7413-7428. [PMID: 39403768 DOI: 10.1021/acsbiomaterials.4c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Compared with traditional high-density cell spheroids, which are more prone to core necrosis, nanowires effectively improve the biological activity of core cells in spheroids, emanating more innovations for optimizing the internal cell survival environment and providing differentiation signals. In this study, hydroxyapatite nanowires (HAW), which provide numerous material exchange channels for internal cells by interpenetrating into cell spheroids, were added to osteoblast precursor (MC3T3-E1) cell spheroids. HAW, synthesized using the hydrothermal method, was used as a regulatory material to prepare uniformly sized 3D composite spheroids with good biological activity. Subsequently, material characterization and biocompatibility tests were performed on HAW, and the biological activity and osteogenic differentiation ability of the cell spheroids were tested. Notably, in 2D coculture, HAW displayed a certain attraction to MC3T3-E1 cells and promoted cell aggregation toward it. The content of HAW determined whether composite cell spheroids can form aggregated spherical structures, and incorporation of HAW alleviated core necrosis and enhanced the osteogenic phenotype. In summary, these findings indicate that the prepared HAW-bone cell composite spheroids can potentially be used as building blocks for the construction of large high-density biomimetic tissues and organoids using 3D bioprinting technology.
Collapse
Affiliation(s)
- Hanjing Li
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hongwei Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Chunyuan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yucheng Liu
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Li Wan
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
- Nanchang Municipal Key Laboratory of 3D Bioprinting Technology and Equipment, Nanchang University, Nanchang 330031, People's Republic of China
| | - Kui Zhou
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
- Nanchang Municipal Key Laboratory of 3D Bioprinting Technology and Equipment, Nanchang University, Nanchang 330031, People's Republic of China
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
11
|
Tsukamoto M, Kawasaki T, Vemuri MC, Umezawa A, Akutsu H. A passage-free, simplified, and scalable novel method for iPSC generation in three-dimensional culture. Regen Ther 2024; 27:39-47. [PMID: 38496009 PMCID: PMC10940796 DOI: 10.1016/j.reth.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) have immense potential for use in disease modeling, etiological studies, and drug discovery. However, the current workflow for iPSC generation and maintenance poses challenges particularly during the establishment phase when specialized skills are required. Although three-dimensional culture systems offer scalability for maintaining established iPSCs, the enzymatic dissociation step is complex and time-consuming. In this study, a novel approach was developed to address these challenges by enabling iPSC generation, maintenance, and differentiation without the need for two-dimensional culture or enzymatic dissociation. This streamlined method offers a more convenient workflow, reduces variability and labor for technicians, and opens up avenues for advancements in iPSC research and broader applications.
Collapse
Affiliation(s)
- Masaya Tsukamoto
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Mohan C. Vemuri
- Thermo Fisher Scientific, 7335 Executive Way, Frederick, MD 21702, USA
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
12
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
13
|
Cordeiro S, Oliveira BB, Valente R, Ferreira D, Luz A, Baptista PV, Fernandes AR. Breaking the mold: 3D cell cultures reshaping the future of cancer research. Front Cell Dev Biol 2024; 12:1507388. [PMID: 39659521 PMCID: PMC11628512 DOI: 10.3389/fcell.2024.1507388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Despite extensive efforts to unravel tumor behavior and develop anticancer therapies, most treatments fail when advanced to clinical trials. The main challenge in cancer research has been the absence of predictive cancer models, accurately mimicking the tumoral processes and response to treatments. The tumor microenvironment (TME) shows several human-specific physical and chemical properties, which cannot be fully recapitulated by the conventional 2D cell cultures or the in vivo animal models. These limitations have driven the development of novel in vitro cancer models, that get one step closer to the typical features of in vivo systems while showing better species relevance. This review introduces the main considerations required for developing and exploiting tumor spheroids and organoids as cancer models. We also detailed their applications in drug screening and personalized medicine. Further, we show the transition of these models into novel microfluidic platforms, for improved control over physiological parameters and high-throughput screening. 3D culture models have provided key insights into tumor biology, more closely resembling the in vivo TME and tumor characteristics, while enabling the development of more reliable and precise anticancer therapies.
Collapse
Affiliation(s)
- Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Beatriz B. Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - André Luz
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
14
|
Tsukamoto M, Kawasaki T, Umezawa A, Akutsu H. Alternative Method for Obtaining Human-Induced Pluripotent Stem Cell Lines and Three-Dimensional Growth: A Simplified, Passage-Free Approach that Minimizes Labor. Bio Protoc 2024; 14:e5081. [PMID: 39399592 PMCID: PMC11470374 DOI: 10.21769/bioprotoc.5081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 10/15/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold significant promise for numerous applications in regenerative medicine, disease modeling, and drug discovery. However, the conventional workflow for iPSC generation, with cells grown under two-dimensional conditions, presents several challenges, including the need for specialized scientific skills such as morphologically assessing and picking colonies and removing differentiated cells during the establishment phase. Furthermore, maintaining established iPSCs in three-dimensional culture systems, while offering scalability, necessitates an enzymatic dissociation step for their further growth in a complex and time-consuming protocol. In this study, we introduce a novel approach to address these challenges by reprogramming somatic cells grown under three-dimensional conditions as spheres using a bioreactor, thereby eliminating the need for two-dimensional culture and colony picking. The iPSCs generated in this study were maintained under three-dimensional conditions simply by transferring spheres to the next bioreactor, without the need for an enzymatic dissociation step. This streamlined method simplifies the workflow, reduces technical variability and labor, and paves the way for future advancements in iPSC research and its wider applications. Key features • Establishment of induced pluripotent stem cells in a three-dimensional environment. • Maintenance and cryopreservation of iPSCs without the need for a dissociation step.
Collapse
Affiliation(s)
- Masaya Tsukamoto
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, Japan
| |
Collapse
|
15
|
Nakashima Y, Tsukahara M. Atelocollagen supports three-dimensional culture of human induced pluripotent stem cells. Mol Ther Methods Clin Dev 2024; 32:101302. [PMID: 39185274 PMCID: PMC11342089 DOI: 10.1016/j.omtm.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
As autologous induced pluripotent stem cell (iPSC) therapy requires a custom-made small-lot cell production line, and the cell production method differs significantly from the existing processes for producing allogeneic iPSC stocks for clinical use. Specifically, mass culture to produce stock is no longer necessary; instead, a series of operations from iPSC production to induction of differentiation of therapeutic cells must be performed continuously. A three-dimensional (3D) culture method using small, closed-cell manufacturing devices is suitable for autologous iPSC therapy. The use of such devices avoids the need to handle many patient-derived specimens in a single clean room; handling of cell cultures in an open system in a cell processing facility increases the risk of infection. In this study, atelocollagen beads were evaluated as a 3D biomaterial to assist 3D culture in the establishment, expansion culture, and induction of differentiation of iPSCs. It was found that iPSCs can be handled in a closed-cell device with the same ease as use of a two-dimensional (2D) culture when laminin-511 is added to the medium. In conclusion, atelocollagen beads enable 3D culture of iPSCs, and the quality of the obtained cells is at the same level as those derived from 2D culture.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- CiRA Foundation, Research and Development Center, Nakanoshima Qross, Osaka 530-005, Japan
| | - Masayoshi Tsukahara
- CiRA Foundation, Research and Development Center, Nakanoshima Qross, Osaka 530-005, Japan
| |
Collapse
|
16
|
Seitz M, Song Y, Lian XL, Ma Z, Jain E. Soft Polyethylene Glycol Hydrogels Support Human PSC Pluripotency and Morphogenesis. ACS Biomater Sci Eng 2024; 10:4525-4540. [PMID: 38973308 PMCID: PMC11234337 DOI: 10.1021/acsbiomaterials.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Lumenogenesis within the epiblast represents a critical step in early human development, priming the embryo for future specification and patterning events. However, little is known about the specific mechanisms that drive this process due to the inability to study the early embryo in vivo. While human pluripotent stem cell (hPSC)-based models recapitulate many aspects of the human epiblast, most approaches for generating these 3D structures rely on ill-defined, reconstituted basement membrane matrices. Here, we designed synthetic, nonadhesive polyethylene glycol (PEG) hydrogel matrices to better understand the role of matrix mechanical cues in iPSC morphogenesis, specifically elastic modulus. First, we identified a narrow range of hydrogel moduli that were conducive to the hPSC viability, pluripotency, and differentiation. We then used this platform to investigate the effects of the hydrogel modulus on lumenogenesis, finding that matrices of intermediate stiffness yielded the most epiblast-like aggregates. Conversely, stiffer matrices impeded lumen formation and apico-basal polarization, while the softest matrices yielded polarized but aberrant structures. Our approach offers a simple, modular platform for modeling the human epiblast and investigating the role of matrix cues in its morphogenesis.
Collapse
Affiliation(s)
- Michael
P. Seitz
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Yuanhui Song
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Xiaojun Lance Lian
- Department
of Biomedical Engineering, The Huck Institutes of the Life Sciences,
Department of Biology, Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Zhen Ma
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Era Jain
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
17
|
Kim E, Cai L, Choi H, Kim M, Hyun SH. Distinct properties of putative trophoblast stem cells established from somatic cell nuclear-transferred pig blastocysts. Biol Res 2024; 57:35. [PMID: 38812008 PMCID: PMC11137969 DOI: 10.1186/s40659-024-00516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Genetically modified pigs are considered ideal models for studying human diseases and potential sources for xenotransplantation research. However, the somatic cell nuclear transfer (SCNT) technique utilized to generate these cloned pig models has low efficiency, and fetal development is limited due to placental abnormalities. RESULTS In this study, we unprecedentedly established putative porcine trophoblast stem cells (TSCs) using SCNT and in vitro-fertilized (IVF) blastocysts through the activation of Wing-less/Integrated (Wnt) and epidermal growth factor (EGF) pathways, inhibition of transforming growth factor-β (TGFβ) and Rho-associated protein kinase (ROCK) pathways, and supplementation with ascorbic acid. We also compared the transcripts of putative TSCs originating from SCNT and IVF embryos and their differentiated lineages. A total of 19 porcine TSCs exhibiting typical characteristics were established from SCNT and IVF blastocysts (TSCsNT and TSCsIVF). Compared with the TSCsIVF, TSCsNT showed distinct expression patterns suggesting unique TSCsNT characteristics, including decreased mRNA expression of genes related to apposition, steroid hormone biosynthesis, angiopoiesis, and RNA stability. CONCLUSION This study provides valuable information and a powerful model for studying the abnormal development and dysfunction of trophoblasts and placentas in cloned pigs.
Collapse
Affiliation(s)
- Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, 28644, Republic of Korea.
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Lab. of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
18
|
Sun C, Serra C, Kalicharan BH, Harding J, Rao M. Challenges and Considerations of Preclinical Development for iPSC-Based Myogenic Cell Therapy. Cells 2024; 13:596. [PMID: 38607035 PMCID: PMC11011706 DOI: 10.3390/cells13070596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Cell therapies derived from induced pluripotent stem cells (iPSCs) offer a promising avenue in the field of regenerative medicine due to iPSCs' expandability, immune compatibility, and pluripotent potential. An increasing number of preclinical and clinical trials have been carried out, exploring the application of iPSC-based therapies for challenging diseases, such as muscular dystrophies. The unique syncytial nature of skeletal muscle allows stem/progenitor cells to integrate, forming new myonuclei and restoring the expression of genes affected by myopathies. This characteristic makes genome-editing techniques especially attractive in these therapies. With genetic modification and iPSC lineage specification methodologies, immune-compatible healthy iPSC-derived muscle cells can be manufactured to reverse the progression of muscle diseases or facilitate tissue regeneration. Despite this exciting advancement, much of the development of iPSC-based therapies for muscle diseases and tissue regeneration is limited to academic settings, with no successful clinical translation reported. The unknown differentiation process in vivo, potential tumorigenicity, and epigenetic abnormality of transplanted cells are preventing their clinical application. In this review, we give an overview on preclinical development of iPSC-derived myogenic cell transplantation therapies including processes related to iPSC-derived myogenic cells such as differentiation, scaling-up, delivery, and cGMP compliance. And we discuss the potential challenges of each step of clinical translation. Additionally, preclinical model systems for testing myogenic cells intended for clinical applications are described.
Collapse
Affiliation(s)
- Congshan Sun
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| | - Carlo Serra
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Mahendra Rao
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| |
Collapse
|
19
|
Hung HC, Mao TL, Fan MH, Huang GZ, Minhalina AP, Chen CL, Liu CL. Enhancement of Tumorigenicity, Spheroid Niche, and Drug Resistance of Pancreatic Cancer Cells in Three-Dimensional Culture System. J Cancer 2024; 15:2292-2305. [PMID: 38495500 PMCID: PMC10937281 DOI: 10.7150/jca.87494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/27/2024] [Indexed: 03/19/2024] Open
Abstract
The three-dimensional (3D) cell culture technique has been applied comprehensively as a variable platform for medical research, biochemical signal pathway analysis, and evaluation of anti-tumor treatment response due to an excellent recapitulation of a tumor microenvironment (TME) in the in vitro cultured cancer cells. Pancreatic cancer (PaC) is one of the toughest malignancies with a complex TME and refractory treatment response. To comprehensively study the TME of PaC, there is an eager need to develop a 3D culture model to decompose the cellular components and their cross interactions. Herein, we establish a 3D PaC culture system with cancer stem cell (CSC) and scalability properties. To validate our model, we tested the individual PaC cell and the combined effects with cancer-associated fibroblasts (CAFs) on cancer tumorigenicity, the cellular interaction through the CXCR3/CXCL10 axis, and cellular responses reflection of anti-cancer treatments. With the help of our 3D technology, a simulated malignant spheroid with important stromal populations and TME physiochemical properties may be successfully recreated. It can be used in a wide range of preclinical research and helpful in advancing basic and translational cancer biology.
Collapse
Affiliation(s)
- Hao-Chien Hung
- Department of General Surgery, Chang-Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Tsui-Lien Mao
- Department of Pathology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Ming-Huei Fan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Guan-Zhi Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ainani Priza Minhalina
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
20
|
Budi HS, Jameel Al-azzawi MF, Al-Dolaimy F, Alahmari MM, Abullais SS, Ebrahimi S, Khlewee IH, Alawady AHR, Alsaalamy AH, Shayan FK. Injectable and 3D-printed hydrogels: State-of-the-art platform for bone regeneration in dentistry. INORG CHEM COMMUN 2024; 161:112026. [DOI: 10.1016/j.inoche.2024.112026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
|
21
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
22
|
Netsrithong R, Garcia-Perez L, Themeli M. Engineered T cells from induced pluripotent stem cells: from research towards clinical implementation. Front Immunol 2024; 14:1325209. [PMID: 38283344 PMCID: PMC10811463 DOI: 10.3389/fimmu.2023.1325209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived T (iT) cells represent a groundbreaking frontier in adoptive cell therapies with engineered T cells, poised to overcome pivotal limitations associated with conventional manufacturing methods. iPSCs offer an off-the-shelf source of therapeutic T cells with the potential for infinite expansion and straightforward genetic manipulation to ensure hypo-immunogenicity and introduce specific therapeutic functions, such as antigen specificity through a chimeric antigen receptor (CAR). Importantly, genetic engineering of iPSC offers the benefit of generating fully modified clonal lines that are amenable to rigorous safety assessments. Critical to harnessing the potential of iT cells is the development of a robust and clinically compatible production process. Current protocols for genetic engineering as well as differentiation protocols designed to mirror human hematopoiesis and T cell development, vary in efficiency and often contain non-compliant components, thereby rendering them unsuitable for clinical implementation. This comprehensive review centers on the remarkable progress made over the last decade in generating functional engineered T cells from iPSCs. Emphasis is placed on alignment with good manufacturing practice (GMP) standards, scalability, safety measures and quality controls, which constitute the fundamental prerequisites for clinical application. In conclusion, the focus on iPSC as a source promises standardized, scalable, clinically relevant, and potentially safer production of engineered T cells. This groundbreaking approach holds the potential to extend hope to a broader spectrum of patients and diseases, leading in a new era in adoptive T cell therapy.
Collapse
Affiliation(s)
- Ratchapong Netsrithong
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Laura Garcia-Perez
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Maria Themeli
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Yuan H, Su H, Wu C, Ji Y, Zhou L, Wang L, Zhang H, Zhang X, Tian X, Zhu F. Scalable expansion of human pluripotent stem cells under suspension culture condition with human platelet lysate supplementation. Front Cell Dev Biol 2023; 11:1280682. [PMID: 37900272 PMCID: PMC10601454 DOI: 10.3389/fcell.2023.1280682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
The large-scale production of human pluripotent stem cells (hPSCs), including both embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), shows potential for advancing the translational realization of hPSC technology. Among multiple cell culture methods, suspension culture, also known as three-dimensional (3D) culture, stands out as a promising method to fulfill the large-scale production requirements. Under this 3D culture condition, cell expansion and the preservation of pluripotency and identity during long-term culture heavily relies on the culture medium. However, the xenogeneic supplements in culture medium remains an obstacle for the translation of cell and gene therapy applications from bench to bedside. Here, we tested human platelet lysate (hPL), a xeno-free and serum-free biological material, as a supplement in the 3D culture of hPSCs. We observed reduced intercellular variability and enhanced proliferation in both hESC and hiPSC lines. These cells, after extended culture in the hPL-supplemented system, maintained pluripotency marker expression, the capacity to differentiate into cells of all three germ layers, and normal karyotype, confirming the practicability and safety of hPL supplementation. Furthermore, through RNA-sequencing analysis, we found an upregulation of genes associated with cell cycle regulations in hPL-treated cells, consistent with the improved cellular division efficiency. Taken together, our findings underscore the potential of hPL as a xeno-free and serum-free supplement for the large-scale production of hPSCs, which holds promise for advancing clinical applications of these cells.
Collapse
Affiliation(s)
- Haitao Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Su
- HemaCell Biotechnology Inc., Suzhou, China
| | - Chen Wu
- HemaCell Biotechnology Inc., Suzhou, China
| | - Yibing Ji
- HemaCell Biotechnology Inc., Suzhou, China
| | - Lili Zhou
- HemaCell Biotechnology Inc., Suzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | - Xin Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaopeng Tian
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- HemaCell Biotechnology Inc., Suzhou, China
| |
Collapse
|
24
|
Alsobaie S, Alsobaie T, Alshammary AF, Abudawood M, Mantalaris A. Alginate Beads as a Promising Tool for Successful Production of Viable and Pluripotent Human-Induced Pluripotent Stem Cells in a 3D Culture System. Stem Cells Cloning 2023; 16:61-73. [PMID: 37790697 PMCID: PMC10544263 DOI: 10.2147/sccaa.s409139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/13/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose Two-dimensional (2D)-based cell culture systems, limited by their inherent heterogeneity and scalability, are a bottleneck in the production of high-quality cells for downstream biomedical applications. Finding the optimal conditions for large-scale stem cell culture while maintaining good cellular status is challenging. The aim of this study was to assess the effects of three-dimensional (3D) culture on the viability, proliferation, self-renewal, and differentiation of human induced pluripotent stem cells (IPSCs). Patients and Methods Various culture conditions were evaluated to determine the optimal conditions to maintain the viability and proliferation of human IPSCs in a 3D environment: static versus dynamic culture, type of adhesion protein added to alginate (Matrigel™ versus gelatin), and the addition of Y-27632t on long-term 3D culture. The proliferation ability of the cells was evaluated via the MTS proliferation assay; the expression levels of the pluripotency markers Nanog and Oct3/4, PAX6 as an ectoderm marker, and laminin-5 and fibronectin as markers of extracellular matrix synthesis were assessed; and HIF1α and HIF2α levels were measured using quantitative reverse transcription polymerase chain reaction. Results Using a high-aspect-ratio vessel bioreactor with a gentle, low-sheer, and low-turbulence environment with sufficient oxygenation and effective mass transfer of nutrients and waste, we verified its ability to promote cell proliferation and self-renewal. The findings showed that human IPSCs have the ability to maintain pluripotency in a feeder-free system and by inhibiting ROCK signaling and using hypoxia to improve single-cell viability in 3D culture. Furthermore, these cells demonstrated increased self-renewal and proliferation when inoculated as single cells in 3D alginate beads by adding RI during the culture period. Conclusion Dynamic 3D culture is desirable for the large-scale expansion of undifferentiated human IPSCs.
Collapse
Affiliation(s)
- Sarah Alsobaie
- Department of Clinical Laboratory Science, King Saud University, Riyadh, Saudi Arabia
| | - Tamador Alsobaie
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London, UK
| | - Amal F Alshammary
- Department of Clinical Laboratory Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Science, King Saud University, Riyadh, Saudi Arabia
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
25
|
Wen Y, Chen Y, Wu W, Zhang H, Peng Z, Yao X, Zhang X, Jiang W, Liao Y, Xie Y, Shen X, Sun H, Hu J, Liu H, Chen X, Chen J, Ouyang H. Hyperplastic Human Macromass Cartilage for Joint Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301833. [PMID: 37395375 PMCID: PMC10502860 DOI: 10.1002/advs.202301833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Cartilage damage affects millions of people worldwide. Tissue engineering strategies hold the promise to provide off-the-shelf cartilage analogs for tissue transplantation in cartilage repair. However, current strategies hardly generate sufficient grafts, as tissues cannot maintain size growth and cartilaginous phenotypes simultaneously. Herein, a step-wise strategy is developed for fabricating expandable human macromass cartilage (macro-cartilage) in a 3D condition by employing human polydactyly chondrocytes and a screen-defined serum-free customized culture (CC). CC-induced chondrocytes demonstrate improved cell plasticity, expressing chondrogenic biomarkers after a 14.59-times expansion. Crucially, CC-chondrocytes form large-size cartilage tissues with average diameters of 3.25 ± 0.05 mm, exhibiting abundant homogenous matrix and intact structure without a necrotic core. Compared with typical culture, the cell yield in CC increases 2.57 times, and the expression of cartilage marker collagen type II increases 4.70 times. Transcriptomics reveal that this step-wise culture drives a proliferation-to-differentiation process through an intermediate plastic stage, and CC-chondrocytes undergo a chondral lineage-specific differentiation with an activated metabolism. Animal studies show that CC macro-cartilage maintains a hyaline-like cartilage phenotype in vivo and significantly promotes the healing of large cartilage defects. Overall, an efficient expansion of human macro-cartilage with superior regenerative plasticity is achieved, providing a promising strategy for joint regeneration.
Collapse
|
26
|
Zhu F, Nie G, Liu C. Engineered biomaterials in stem cell-based regenerative medicine. LIFE MEDICINE 2023; 2:lnad027. [PMID: 39872549 PMCID: PMC11749850 DOI: 10.1093/lifemedi/lnad027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/17/2023] [Indexed: 01/30/2025]
Abstract
Stem cell-based regenerative therapies, which harness the self-renewal and differentiation properties of stem cells, have been in the spotlight due to their widespread applications in treating degenerative, aging, and other, generally intractable diseases. Therapeutically effective hematopoietic stem cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells have been used in numerous basic and translational studies with exciting results. However, pre-/post-transplantation issues of poor cell survival and retention, uncontrolled differentiation, and insufficient numbers of cells engrafted into host tissues are the major challenges in stem cell-based regenerative therapies. Engineered biomaterials have adjustable biochemical and biophysical properties that significantly affect cell behaviors, such as cell engraftment, survival, migration, and differentiation outcomes, thereby enhancing the engraftment of implanted stem cells and guiding tissue regeneration. Therefore, the combination of stem cell biology with bioengineered materials is a promising strategy to improve the therapeutic outcomes of stem cell-based regenerative therapy. In this review, we summarize the advances in the modulation of behaviors of stem cells via engineered biomaterials. We then present different approaches to harnessing bioengineered materials to enhance the transplantation of stem cells. Finally, we will provide future directions in regenerative therapy using stem cells.
Collapse
Affiliation(s)
- Fei Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
27
|
Xu S, Qi G, Durrett TP, Li Y, Liu X, Bai J, Chen MS, Sun XS, Wang W. High Nutritional Quality of Human-Induced Pluripotent Stem Cell-Generated Proteins through an Advanced Scalable Peptide Hydrogel 3D Suspension System. Foods 2023; 12:2713. [PMID: 37509805 PMCID: PMC10380007 DOI: 10.3390/foods12142713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cell-cultured protein technology has become increasingly attractive due to its sustainability and climate benefits. The aim of this study is to determine the nutritional quality of the human-induced pluripotent stem cell (hiPSC)-cultured proteins in an advanced 3D peptide hydrogel system for the highly efficient production of cell-cultured proteins. Our previous study demonstrated a PGmatrix peptide hydrogel for the 3D embedded culture of long-term hiPSC maintenance and expansion (PGmatrix-hiPSC (PG-3D)), which showed significantly superior pluripotency when compared with traditional 2D cell culture on Matrigel and/or Vitronectin and other existing 3D scaffolding systems such as Polyethylene glycol (PEG)-based hydrogels. In this study, we designed a PGmatrix 3D suspension (PG-3DSUSP) system from the PG-3D embedded system that allows scaling up a hiPSC 3D culture volume by 20 times (e.g., from 0.5 mL to 10 mL). The results indicated that the PG-3DSUSP was a competitive system compared to the well-established PG-3D embedded method in terms of cell growth performance and cell pluripotency. hiPSCs cultured in PG-3DSUSP consistently presented a 15-20-fold increase in growth and a 95-99% increase in viability across multiple passages with spheroids with a size range of 30-50 μm. The expression of pluripotency-related genes, including NANOG, OCT4, hTERT, REX1, and UTF1, in PG-3DSUSP-cultured hiPSCs was similar to or higher than that observed in a PG-3D system, suggesting continuous pluripotent maintenance. The nutritional value of the hiPSC-generated proteins from the PG-3DSUSP system was further evaluated for amino acid composition and in vitro protein digestibility. The amino acid composition of the hiPSC-generated proteins demonstrated a significantly higher essential amino acid content (39.0%) than human skeletal muscle protein (31.8%). In vitro protein digestibility of hiPSC-generated proteins was significantly higher (78.0 ± 0.7%) than that of the commercial beef protein isolate (75.7 ± 0.6%). Taken together, this is the first study to report an advanced PG-3DSUSP culture system to produce highly efficient hiPSC-generated proteins that possess more essential amino acids and better digestibility. The hiPSC-generated proteins with superior nutrition quality may be of particular significance as novel alternative proteins in food engineering and industries for future food, beverage, and supplement applications.
Collapse
Affiliation(s)
- Shan Xu
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| | - Guangyan Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Xuming Liu
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Ming-Shun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
28
|
Lee DH, Yun DW, Kim YH, Im GB, Hyun J, Park HS, Bhang SH, Choi SH. Various Three-Dimensional Culture Methods and Cell Types for Exosome Production. Tissue Eng Regen Med 2023; 20:621-635. [PMID: 37269439 PMCID: PMC10313642 DOI: 10.1007/s13770-023-00551-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 06/05/2023] Open
Abstract
Cell-based therapies have been used as promising treatments for several untreatable diseases. However, cell-based therapies have side effects such as tumorigenesis and immune responses. To overcome these side effects, therapeutic effects of exosomes have been researched as replacements for cell-based therapies. In addition, exosomes reduced the risk that can be induced by cell-based therapies. Exosomes contain biomolecules such as proteins, lipids, and nucleic acids that play an essential role in cell-cell and cell-matrix interactions during biological processes. Since the introduction of exosomes, those have been proven perpetually as one of the most effective and therapeutic methods for incurable diseases. Much research has been conducted to enhance the properties of exosomes, including immune regulation, tissue repair, and regeneration. However, yield rate of exosomes is the critical obstacle that should be overcome for practical cell-free therapy. Three-dimensional (3D) culture methods are introduced as a breakthrough to get higher production yields of exosomes. For example, hanging drop and microwell were well known 3D culture methods and easy to use without invasiveness. However, these methods have limitation in mass production of exosomes. Therefore, a scaffold, spinner flask, and fiber bioreactor were introduced for mass production of exosomes isolated from various cell types. Furthermore, exosomes treatments derived from 3D cultured cells showed enhanced cell proliferation, angiogenesis, and immunosuppressive properties. This review provides therapeutic applications of exosomes using 3D culture methods.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Dae Won Yun
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea.
| | - Sang Hyoun Choi
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Cuesta-Gomez N, Verhoeff K, Dadheech N, Dang T, Jasra IT, de Leon MB, Pawlick R, Marfil-Garza B, Anwar P, Razavy H, Zapata-Morin PA, Jickling G, Thiesen A, O'Gorman D, Kallos MS, Shapiro AMJ. Suspension culture improves iPSC expansion and pluripotency phenotype. Stem Cell Res Ther 2023; 14:154. [PMID: 37280707 DOI: 10.1186/s13287-023-03382-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) offer potential to revolutionize regenerative medicine as a renewable source for islets, dopaminergic neurons, retinal cells, and cardiomyocytes. However, translation of these regenerative cell therapies requires cost-efficient mass manufacturing of high-quality human iPSCs. This study presents an improved three-dimensional Vertical-Wheel® bioreactor (3D suspension) cell expansion protocol with comparison to a two-dimensional (2D planar) protocol. METHODS Sendai virus transfection of human peripheral blood mononuclear cells was used to establish mycoplasma and virus free iPSC lines without common genetic duplications or deletions. iPSCs were then expanded under 2D planar and 3D suspension culture conditions. We comparatively evaluated cell expansion capacity, genetic integrity, pluripotency phenotype, and in vitro and in vivo pluripotency potential of iPSCs. RESULTS Expansion of iPSCs using Vertical-Wheel® bioreactors achieved 93.8-fold (IQR 30.2) growth compared to 19.1 (IQR 4.0) in 2D (p < 0.0022), the largest expansion potential reported to date over 5 days. 0.5 L Vertical-Wheel® bioreactors achieved similar expansion and further reduced iPSC production cost. 3D suspension expanded cells had increased proliferation, measured as Ki67+ expression using flow cytometry (3D: 69.4% [IQR 5.5%] vs. 2D: 57.4% [IQR 10.9%], p = 0.0022), and had a higher frequency of pluripotency marker (Oct4+Nanog+Sox2+) expression (3D: 94.3 [IQR 1.4] vs. 2D: 52.5% [IQR 5.6], p = 0.0079). q-PCR genetic analysis demonstrated a lack of duplications or deletions at the 8 most commonly mutated regions within iPSC lines after long-term passaging (> 25). 2D-cultured cells displayed a primed pluripotency phenotype, which transitioned to naïve after 3D-culture. Both 2D and 3D cells were capable of trilineage differentiation and following teratoma, 2D-expanded cells generated predominantly solid teratomas, while 3D-expanded cells produced more mature and predominantly cystic teratomas with lower Ki67+ expression within teratomas (3D: 16.7% [IQR 3.2%] vs.. 2D: 45.3% [IQR 3.0%], p = 0.002) in keeping with a naïve phenotype. CONCLUSION This study demonstrates nearly 100-fold iPSC expansion over 5-days using our 3D suspension culture protocol in Vertical-Wheel® bioreactors, the largest cell growth reported to date. 3D expanded cells showed enhanced in vitro and in vivo pluripotency phenotype that may support more efficient scale-up strategies and safer clinical implementation.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Kevin Verhoeff
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Nidheesh Dadheech
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada.
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada.
| | - Tiffany Dang
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Ila Tewari Jasra
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Mario Bermudez de Leon
- Department of Molecular Biology, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo Leon, Mexico
| | - Rena Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Braulio Marfil-Garza
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, 14080, Mexico City, Mexico
- CHRISTUS-LatAm Hub - Excellence and Innovation Center, 66260, Monterrey, Mexico
| | - Perveen Anwar
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Haide Razavy
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Patricio Adrián Zapata-Morin
- Laboratory of Mycology and Phytopathology, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, San Nicolás de los Garza, Nuevo León, Mexico
| | - Glen Jickling
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Doug O'Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, T6G 2J3, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - A M James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2T9, Canada.
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2B7, Canada.
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, T6G 2J3, Canada.
| |
Collapse
|
30
|
Gaitán-Salvatella I, González-Alva P, Montesinos JJ, Alvarez-Perez MA. In Vitro Bone Differentiation of 3D Microsphere from Dental Pulp-Mesenchymal Stem Cells. Bioengineering (Basel) 2023; 10:bioengineering10050571. [PMID: 37237641 DOI: 10.3390/bioengineering10050571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Bone defects lead to the structural loss of normal architecture, and those in the field of bone tissue engineering are searching for new alternatives to aid bone regeneration. Dental pulp-mesenchymal stem cells (DP-MSC) could provide a promising alternative to repair bone defects, principally due to their multipotency and capacity to fabricate three-dimensional (3D) spheroids. The present study aimed to characterize the 3D DP-MSC microsphere and the osteogenic differentiation capacity potential cultured by a magnetic levitation system. To achieve this, the 3D DP-MSC microsphere was grown for 7, 14, and 21 days in an osteoinductive medium and compared to 3D human fetal osteoblast (hFOB) microspheres by examining the morphology, proliferation, osteogenesis, and colonization onto PLA fiber spun membrane. Our results showed good cell viability for both 3D microspheres with an average diameter of 350 μm. The osteogenesis examination of the 3D DP-MSC microsphere revealed the lineage commitment, such as the hFOB microsphere, as evidenced by ALP activity, the calcium content, and the expression of osteoblastic markers. Finally, the evaluation of the surface colonization exhibited similar patterns of cell-spreading over the fibrillar membrane. Our study demonstrated the feasibility of forming a 3D DP-MSC microsphere structure and the cell-behavior response as a strategy for the applications of bone tissue guiding.
Collapse
Affiliation(s)
- Iñigo Gaitán-Salvatella
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), POST, Mexico City 06720, Mexico
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
31
|
Hao J, Chen Y, Zhu M, Zhao Y, Zhang K, Xu X. Spatial-Temporal Heterogeneity in Large Three-Dimensional Nanofibrillar Cellulose Hydrogel for Human Pluripotent Stem Cell Culture. Gels 2023; 9:gels9040324. [PMID: 37102936 PMCID: PMC10138276 DOI: 10.3390/gels9040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
One approach to cell expansion is to use large hydrogel for growing a large number of cells. Nanofibrillar cellulose (NFC) hydrogel has been used for human induced pluripotent stem cell (hiPSCs) expansion. However, little is known about the status of hiPSCs at the single cell level inside large NFC hydrogel during culture. To understand the effect of NFC hydrogel property on temporal-spatial heterogeneity, hiPSCs were cultured in 0.8 wt% NFC hydrogel with different thicknesses with the top surface exposed to the culture medium. The prepared hydrogel exhibits less restriction in mass transfer due to the presence of macropores and micropores interconnecting the macropores. More than 85% of cells at different depths survive after 5 days of culture inside 3.5 mm thick hydrogel. Biological compositions at different zones inside the NFC gel were examined over time at a single-cell level. A dramatic concentration gradient of growth factors estimated in the simulation along 3.5 mm NFC hydrogel could be a reason for the spatial-temporal heterogeneity in protein secondary structure and protein glycosylation and pluripotency loss at the bottom zone. pH change caused by the lactic acid accumulation over time leads to changes in cellulose charge and growth factor potential, probably another reason for the heterogeneity in biochemical compositions. This study may help to develop optimal conditions for producing high-quality hiPSCs in large nanofibrillar cellulose hydrogel at scale.
Collapse
Affiliation(s)
- Jin Hao
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Ying Chen
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Mingjian Zhu
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Yingqing Zhao
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Kai Zhang
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Xia Xu
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| |
Collapse
|
32
|
Cohen PJR, Luquet E, Pletenka J, Leonard A, Warter E, Gurchenkov B, Carrere J, Rieu C, Hardouin J, Moncaubeig F, Lanero M, Quelennec E, Wurtz H, Jamet E, Demarco M, Banal C, Van Liedekerke P, Nassoy P, Feyeux M, Lefort N, Alessandri K. Engineering 3D micro-compartments for highly efficient and scale-independent expansion of human pluripotent stem cells in bioreactors. Biomaterials 2023; 295:122033. [PMID: 36764194 DOI: 10.1016/j.biomaterials.2023.122033] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Human pluripotent stem cells (hPSCs) have emerged as the most promising cellular source for cell therapies. To overcome the scale-up limitations of classical 2D culture systems, suspension cultures have been developed to meet the need for large-scale culture in regenerative medicine. Despite constant improvements, current protocols that use microcarriers or generate cell aggregates only achieve moderate amplification performance. Here, guided by reports showing that hPSCs can self-organize in vitro into cysts reminiscent of the epiblast stage in embryo development, we developed a physio-mimetic approach for hPSC culture. We engineered stem cell niche microenvironments inside microfluidics-assisted core-shell microcapsules. We demonstrate that lumenized three-dimensional colonies significantly improve viability and expansion rates while maintaining pluripotency compared to standard hPSC culture platforms such as 2D cultures, microcarriers, and aggregates. By further tuning capsule size and culture conditions, we scale up this method to industrial-scale stirred tank bioreactors and achieve an unprecedented hPSC amplification rate of 277-fold in 6.5 days. In brief, our findings indicate that our 3D culture system offers a suitable strategy both for basic stem cell biology experiments and for clinical applications.
Collapse
Affiliation(s)
- Philippe J R Cohen
- Université Paris Cité, Imagine Institute, IPSC Core Facility, INSERM UMR U1163, F-75015, Paris, France; Treefrog Therapeutics, F-33600, Pessac, France.
| | | | | | | | | | | | | | | | | | | | | | - Eddy Quelennec
- Université Paris Cité, Imagine Institute, IPSC Core Facility, INSERM UMR U1163, F-75015, Paris, France; Treefrog Therapeutics, F-33600, Pessac, France
| | | | | | | | - Celine Banal
- Université Paris Cité, Imagine Institute, IPSC Core Facility, INSERM UMR U1163, F-75015, Paris, France
| | - Paul Van Liedekerke
- Inria Paris & Sorbonne Université LJLL, 2 Rue Simone IFF, F-75012, Paris, France
| | - Pierre Nassoy
- LP2N, Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, F-33400, Talence, France; Institut D'Optique Graduate School & CNRS UMR 5298, F-33400, Talence, France
| | | | - Nathalie Lefort
- Université Paris Cité, Imagine Institute, IPSC Core Facility, INSERM UMR U1163, F-75015, Paris, France
| | | |
Collapse
|
33
|
Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater 2023; 19:50-74. [PMID: 35441116 PMCID: PMC8987319 DOI: 10.1016/j.bioactmat.2022.03.039] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) stem cell culture systems have attracted considerable attention as a way to better mimic the complex interactions between individual cells and the extracellular matrix (ECM) that occur in vivo. Moreover, 3D cell culture systems have unique properties that help guide specific functions, growth, and processes of stem cells (e.g., embryogenesis, morphogenesis, and organogenesis). Thus, 3D stem cell culture systems that mimic in vivo environments enable basic research about various tissues and organs. In this review, we focus on the advanced therapeutic applications of stem cell-based 3D culture systems generated using different engineering techniques. Specifically, we summarize the historical advancements of 3D cell culture systems and discuss the therapeutic applications of stem cell-based spheroids and organoids, including engineering techniques for tissue repair and regeneration.
Collapse
Affiliation(s)
- Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
34
|
Liu Q, Liu Z, Gu H, Ge Y, Wu X, Zuo F, Du Q, Lei Y, Wang Z, Lin H. Comparative study of differentiating human pluripotent stem cells into vascular smooth muscle cells in hydrogel-based culture methods. Regen Ther 2022; 22:39-49. [PMID: 36618488 PMCID: PMC9798140 DOI: 10.1016/j.reth.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs), which provides structural integrity and regulates the diameter of vasculature, are of great potential for modeling vascular-associated diseases and tissue engineering. Here, we presented a detailed comparison of differentiating human pluripotent stem cells (hPSCs) into VSMCs (hPSCs-VSMCs) in four different culture methods, including 2-dimensional (2D) culture, 3-dimensional (3D) PNIPAAm-PEG hydrogel culture, 3-dimensional (3D) alginate hydrogel culture, and transferring 3-dimensional alginate hydrogel culture to 2-dimensional (2D) culture. Both hydrogel-based culture methods could mimic in vivo microenvironment to protect cells from shear force, and avoid cells agglomeration, resulting in the extremely high culture efficiency (e.g., high viability, high purity and high yield) compared with 2D culture. We demonstrated hPSC-VSMCs produced from hydrogel-based culture methods had better contractile phenotypes and the potential of vasculature formation. The transcriptome analysis showed the hPSC-VSMCs derived from hydrogel-based culture methods displayed more upregulated genes in vasculature development, angiogenesis and blood vessel development, extracellular matrix compared with 2D culture. Taken together, hPSC-VSMCs produced from hydrogel-based culture system could be applied in various biomedical fields, and further indicated the suitable development of alginate hydrogel for industrial production by taking all aspects into consideration.
Collapse
Affiliation(s)
- Qing Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China
| | - Zhen Liu
- Department of Neurosurgery, Beijing Shunyi District Hospital, Beijing, 101300, China
| | - Hongyu Gu
- Department of Thoracic Surgery Ward 3, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Yuxia Ge
- Department of Neurology, The Second Hospital of Harbin, Harbin, 150056, China
| | - Xuesheng Wu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fuxing Zuo
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qian Du
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yuguo Lei
- Department of Biomedical Engineering, Huck Life Science Institute, Pennsylvania State University, University Park, PA, 16802, USA,Corresponding author.
| | - Zhanqi Wang
- Department of Vascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China,Corresponding author.
| | - Haishuang Lin
- Department of Neurology, The Second Hospital of Harbin, Harbin, 150056, China,Corresponding author.
| |
Collapse
|
35
|
Wang O, Han L, Lin H, Tian M, Zhang S, Duan B, Chung S, Zhang C, Lian X, Wang Y, Lei Y. Fabricating 3-dimensional human brown adipose microtissues for transplantation studies. Bioact Mater 2022; 22:518-534. [PMID: 36330162 PMCID: PMC9619153 DOI: 10.1016/j.bioactmat.2022.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Transplanting cell cultured brown adipocytes (BAs) represents a promising approach to prevent and treat obesity (OB) and its associated metabolic disorders, including type 2 diabetes mellitus (T2DM). However, transplanted BAs have a very low survival rate in vivo. The enzymatic dissociation during the harvest of fully differentiated BAs also loses significant cells. There is a critical need for novel methods that can avoid cell death during cell preparation, transplantation, and in vivo. Here, we reported that preparing BAs as injectable microtissues could overcome the problem. We found that 3D culture promoted BA differentiation and UCP-1 expression, and the optimal initial cell aggregate size was 100 μm. The microtissues could be produced at large scales via 3D suspension assisted with a PEG hydrogel and could be cryopreserved. Fabricated microtissues could survive in vivo for long term. They alleviated body weight and fat gain and improved glucose tolerance and insulin sensitivity in high-fat diet (HFD)-induced OB and T2DM mice. Transplanted microtissues impacted multiple organs, secreted protein factors, and influenced the secretion of endogenous adipokines. To our best knowledge, this is the first report on fabricating human BA microtissues and showing their safety and efficacy in T2DM mice. The proposal of transplanting fabricated BA microtissues, the microtissue fabrication method, and the demonstration of efficacy in T2DM mice are all new. Our results show that engineered 3D human BA microtissues have considerable advantages in product scalability, storage, purity, safety, dosage, survival, and efficacy.
Collapse
Affiliation(s)
- Ou Wang
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, USA
- Biomedical Engineering Program, University of Nebraska-Lincoln, NE, USA
| | - Li Han
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
| | - Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, USA
| | - Mingmei Tian
- China Novartis Institutes for BioMedical Research Co., Ltd., Beijing, China
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska-Lincoln, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts, Amherst, MA, USA
| | - Chi Zhang
- School of Biological Science, University of Nebraska-Lincoln, NE, USA
| | - Xiaojun Lian
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, USA
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, PA, USA
- Corresponding author. The Pennsylvania State University, PA, USA.
| |
Collapse
|
36
|
Advance of Mesenchymal Stem Cells in Chronic End-Stage Liver Disease Control. Stem Cells Int 2022; 2022:1526217. [PMID: 36248254 PMCID: PMC9568364 DOI: 10.1155/2022/1526217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022] Open
Abstract
The chronic liver diseases will slowly develop into liver fibrosis, cirrhosis, and even liver cancer if no proper control is performed with high efficiency. Up to now, the most effective treatment for end-stage liver diseases is liver transplantation. However, liver transplantation has the problems of donor deficiency, low matching rate, surgical complications, high cost, and immune rejection. These problems indicate that novel therapeutic strategies are urgently required. Mesenchymal stem cells (MSCs) are somatic stem cells with multidirectional differentiation potential and self-renewal ability. MSCs can secrete a large number of cytokines, chemokines, immunomodulatory molecules, and hepatotrophic factors, as well as produce extracellular vesicles. They alleviate liver diseases by differentiating to hepatocyte-like cells, immunomodulation, homing to the injured site, regulating cell ferroptosis, regulating cell autophagy, paracrine effects, and MSC-mitochondrial transfer. In this review, we focus on the main resources of MSCs, underlying therapeutic mechanisms, clinical applications, and efforts made to improve MSC-based cell therapy efficiency.
Collapse
|
37
|
Lamparelli EP, Ciardulli MC, Giudice V, Scala P, Vitolo R, Dale TP, Selleri C, Forsyth NR, Maffulli N, Della Porta G. 3D in-vitro cultures of human bone marrow and Wharton’s jelly derived mesenchymal stromal cells show high chondrogenic potential. Front Bioeng Biotechnol 2022; 10:986310. [PMID: 36225603 PMCID: PMC9549977 DOI: 10.3389/fbioe.2022.986310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, chondrogenic potentials of 3D high-density cultures of Bone Marrow (BM) and Wharton’s Jelly (WJ)-derived mesenchymal stromal cells (MSCs) was investigated by chondrogenesis- and cytokine-related gene expression over a 16-day culture period supplemented with human transforming growth factor (hTGF)-β1 at 10 ng/ml. In BM-MSC 3D models, a marked upregulation of chondrogenesis-related genes, such as SOX9, COL2A1, and ACAN (all p < 0.05) and formation of spherical pellets with structured type II collagen fibers were observed. Similarly, WJ-based high-density culture appeared higher in size and more regular in shape, with a significant overexpression of COL2A1 and ACAN (all p < 0.05) at day 16. Moreover, a similar upregulation trend was documented for IL-6 and IL-10 expression in both BM and WJ 3D systems. In conclusion, MSC-based high-density cultures can be considered a promising in vitro model of cartilage regeneration and tissue engineering. Moreover, our data support the use of WJ-MSCs as a valid alternative for chondrogenic commitment of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | | | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, SA, Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Rosa Vitolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Tina Patricia Dale
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, SA, Italy
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Research Centre for Biomaterials BIONAM, Università di Salerno, Fisciano, SA, Italy
- *Correspondence: Giovanna Della Porta,
| |
Collapse
|
38
|
Recent Advances in Extracellular Vesicle-Based Therapies Using Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells. Biomedicines 2022; 10:biomedicines10092281. [PMID: 36140386 PMCID: PMC9496279 DOI: 10.3390/biomedicines10092281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022] Open
Abstract
Extracellular vesicles (EVs) are being widely investigated as acellular therapeutics in regenerative medicine applications. EVs isolated from mesenchymal stromal cells (MSCs) are by far the most frequently used in preclinical models for diverse therapeutic applications, including inflammatory, degenerative, or acute diseases. Although they represent promising tools as cell-free therapeutic agents, one limitation to their use is related to the batch-to-batch unreliability that may arise from the heterogeneity between MSC donors. Isolating EVs from MSCs derived from induced pluripotent stem cells (iMSCs) might allow unlimited access to cells with a more stable phenotype and function. In the present review, we first present the latest findings regarding the functional aspects of EVs isolated from iMSCs and their interest in regenerative medicine for the treatment of various diseases. We will then discuss future directions for their translation to clinics with good manufacturing practice implementation.
Collapse
|
39
|
Arkenberg MR, Koehler K, Lin CC. Heparinized Gelatin-Based Hydrogels for Differentiation of Induced Pluripotent Stem Cells. Biomacromolecules 2022; 23:4141-4152. [PMID: 36074748 PMCID: PMC9554908 DOI: 10.1021/acs.biomac.2c00585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chemically defined
hydrogels are increasingly utilized to define
the effects of extracellular matrix (ECM) components on cellular fate
determination of human embryonic and induced pluripotent stem cell
(hESC and hiPSCs). In particular, hydrogels cross-linked by orthogonal
click chemistry, including thiol-norbornene photopolymerization and
inverse electron demand Diels–Alder (iEDDA) reactions, are
explored for 3D culture of hESC/hiPSCs owing to the specificity, efficiency,
cytocompatibility, and modularity of the cross-linking reactions.
In this work, we exploited the modularity of thiol-norbornene photopolymerization
to create a biomimetic hydrogel platform for 3D culture and differentiation
of hiPSCs. A cell-adhesive, protease-labile, and cross-linkable gelatin
derivative, gelatin-norbornene (GelNB), was used as the backbone polymer
for constructing hiPSC-laden biomimetic hydrogels. GelNB was further
heparinized via the iEDDA click reaction using tetrazine-modified
heparin (HepTz), creating GelNB-Hep. GelNB or GelNB-Hep was modularly
cross-linked with either inert macromer poly(ethylene glycol)-tetra-thiol
(PEG4SH) or another bioactive macromer-thiolated hyaluronic acid (THA).
The formulations of these hydrogels were modularly tuned to afford
biomimetic matrices with similar elastic moduli but varying bioactive
components, enabling the understanding of each bioactive component
on supporting hiPSC growth and ectodermal, mesodermal, and endodermal
fate commitment under identical soluble differentiation cues.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Karl Koehler
- Departments of Otolaryngology and Plastic and Oral Surgery, F.M. Kirby Neurobiology Center, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
40
|
Johnson HJ, Chakraborty S, Muckom RJ, Balsara NP, Schaffer DV. A scalable and tunable thermoreversible polymer for 3D human pluripotent stem cell biomanufacturing. iScience 2022; 25:104971. [PMID: 36147944 PMCID: PMC9485071 DOI: 10.1016/j.isci.2022.104971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are an exciting and promising source to enable cell replacement therapies for a variety of unmet medical needs. Though hPSCs can be successfully derived into numerous physiologically relevant cell types, effective translation to the clinic is limited by challenges in scalable production of high-quality cells, cellular immaturity following the differentiation process, and the use of animal-derived components in culture. To address these limitations, we have developed a fully defined, reproducible, and tunable thermoreversible polymer for high-quality, scalable 3D cell production. Our reproducible synthesis method enables precise control of gelation temperature (24°C–32°C), hydrogel stiffness (100–4000 Pa), and the prevention of any unintended covalent crosslinking. After material optimization, we demonstrated hPSC expansion, pluripotency maintenance, and differentiation into numerous lineages within the hydrogel. Overall, this 3D thermoreversible hydrogel platform has broad applications in scalable, high-quality cell production to overcome the biomanufacturing burden of stem cell therapy. Synthesis of a scalable, tunable, and reproducible thermoreversible hydrogel Optimization of hydrogel properties including stiffness, LCST, and viscosity Expansion and pluripotency maintenance of hESCs in the hydrogel platform Differentiation of neurons, cardiomyocytes, and hepatocytes in the hydrogel platform
Collapse
|
41
|
Cacciamali A, Villa R, Dotti S. 3D Cell Cultures: Evolution of an Ancient Tool for New Applications. Front Physiol 2022; 13:836480. [PMID: 35936888 PMCID: PMC9353320 DOI: 10.3389/fphys.2022.836480] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, research is undergoing a drastic change in the application of the animal model as a unique investigation strategy, considering an alternative approach for the development of science for the future. Although conventional monolayer cell cultures represent an established and widely used in vitro method, the lack of tissue architecture and the complexity of such a model fails to inform true biological processes in vivo. Recent advances in cell culture techniques have revolutionized in vitro culture tools for biomedical research by creating powerful three-dimensional (3D) models to recapitulate cell heterogeneity, structure and functions of primary tissues. These models also bridge the gap between traditional two-dimensional (2D) single-layer cultures and animal models. 3D culture systems allow researchers to recreate human organs and diseases in one dish and thus holds great promise for many applications such as regenerative medicine, drug discovery, precision medicine, and cancer research, and gene expression studies. Bioengineering has made an important contribution in the context of 3D systems using scaffolds that help mimic the microenvironments in which cells naturally reside, supporting the mechanical, physical and biochemical requirements for cellular growth and function. We therefore speak of models based on organoids, bioreactors, organ-on-a-chip up to bioprinting and each of these systems provides its own advantages and applications. All of these techniques prove to be excellent candidates for the development of alternative methods for animal testing, as well as revolutionizing cell culture technology. 3D systems will therefore be able to provide new ideas for the study of cellular interactions both in basic and more specialized research, in compliance with the 3R principle. In this review, we provide a comparison of 2D cell culture with 3D cell culture, provide details of some of the different 3D culture techniques currently available by discussing their strengths as well as their potential applications.
Collapse
Affiliation(s)
| | | | - Silvia Dotti
- *Correspondence: Andrea Cacciamali, ; Silvia Dotti,
| |
Collapse
|
42
|
Gaudeaux P, Moirangthem RD, Bauquet A, Simons L, Joshi A, Cavazzana M, Nègre O, Soheili S, André I. T-Cell Progenitors As A New Immunotherapy to Bypass Hurdles of Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:956919. [PMID: 35874778 PMCID: PMC9300856 DOI: 10.3389/fimmu.2022.956919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of preference for numerous malignant and non-malignant hemopathies. The outcome of this approach is significantly hampered by not only graft-versus-host disease (GvHD), but also infections and relapses that may occur because of persistent T-cell immunodeficiency following transplantation. Reconstitution of a functional T-cell repertoire can take more than 1 year. Thus, the major challenge in the management of allogeneic HSCT relies on the possibility of shortening the window of immune deficiency through the acceleration of T-cell recovery, with diverse, self-tolerant, and naïve T cells resulting from de novo thymopoiesis from the donor cells. In this context, adoptive transfer of cell populations that can give rise to mature T cells faster than HSCs while maintaining a safety profile compatible with clinical use is of major interest. In this review, we summarize current advances in the characterization of thymus seeding progenitors, and their ex vivo generated counterparts, T-cell progenitors. Transplantation of the latter has been identified as a worthwhile approach to shorten the period of immune deficiency in patients following allogeneic HSCT, and to fulfill the clinical objective of reducing morbimortality due to infections and relapses. We further discuss current opportunities for T-cell progenitor-based therapy manufacturing, including iPSC cell sources and off-the-shelf strategies. These opportunities will be analyzed in the light of results from ongoing clinical studies involving T-cell progenitors.
Collapse
Affiliation(s)
- Pierre Gaudeaux
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Smart Immune, Paris, France
| | - Ranjita Devi Moirangthem
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | | | - Laura Simons
- Smart Immune, Paris, France
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Akshay Joshi
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Marina Cavazzana
- Smart Immune, Paris, France
- Department of Biotherapy, Hôpital Universitaire Necker-Enfants Malades, Groupe Hospitalier Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Paris Cité, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | | | | | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| |
Collapse
|
43
|
Scaffold-free 3D culturing enhance pluripotency, immunomodulatory factors, and differentiation potential of Wharton's jelly-mesenchymal stem cells. Eur J Cell Biol 2022; 101:151245. [PMID: 35667339 DOI: 10.1016/j.ejcb.2022.151245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) show a decline in pluripotency and differentiation with increased cell culture passages in 2D cultures. The 2D monolayer culture fails to correctly imitate the architecture and microenvironments of in-vivo cell models. Alternatively, 3D culture may improve the simulations of in-vivo cell microenvironments with wide applications in cell culture and drug discovery. In the present study, we compared various 3D culturing techniques such as 3D micro-well (3D-S), hanging drop (HD), and ultra-low attachment (ULA) plate-based spheroid culture to study their effect on morphology, viability, pluripotency, cell surface markers, immunomodulatory factors, and differentiation capabilities of Wharton's jelly-mesenchymal stem cells (WJ-MSCs). The cell morphology, viability, and senescence of 3D cultured WJ-MSCs were comparable to cells in 2D culture. The expression of pluripotency markers (OCT4, SOX2, and NANOG) was enhanced upto 2-8 fold in 3D cultured WJ-MSCs when compared to 2D culture. Moreover, the immunomodulatory factors (IDO, IL-10, LIF, ANG1, and VEGF) were significantly elevated in ULA based 3D cultured WJ-MSCs. Furthermore, significant enhancement in the differentiation potential of WJ-MSCs towards adipocyte (ADP and C/EBP-α), osteocyte (OPN and RUNX2), and definitive endodermal (SOX17, FOXA2, and CXCR4) lineages in 3D culture conditions were observed. Additionally, the osteogenic and adipogenic differentiation potential of WJ-MSCs over the time points 7 days, 14 days, and 28 days was also significantly increased in 3D culture groups. Our study demonstrates that stemness properties of WJ-MSCs were significantly enhanced in 3D cultures and ULA-based culture outperformed other methods with high pluripotency gene expression and enhanced differentiation potential. This study indicates the efficacy of 3D cultures to bridge the gap between 2D cell culture and animal models in regenerative medicine.
Collapse
|
44
|
Wu H, Tang X, Wang Y, Wang N, Chen Q, Xie J, Liu S, Zhong Z, Qiu Y, Situ P, Zern MA, Wang J, Chen H, Duan Y. Dextran sulfate prevents excess aggregation of human pluripotent stem cells in 3D culture by inhibiting ICAM1 expression coupled with down-regulating E-cadherin through activating the Wnt signaling pathway. Stem Cell Res Ther 2022; 13:218. [PMID: 35619172 PMCID: PMC9137216 DOI: 10.1186/s13287-022-02890-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Human pluripotent stem cells (hPSCs) have great potential in applications for regenerative medicine and drug development. However, 3D suspension culture systems for clinical-grade hPSC large-scale production have been a major challenge. Accumulating evidence has demonstrated that the addition of dextran sulfate (DS) could prevent excessive adhesion of hPSCs from forming larger aggregates in 3D suspension culture. However, the signaling and molecular mechanisms underlying this phenomenon remain elusive. Methods By using a cell aggregate culture assay and separating big and small aggregates in suspension culture systems, the potential mechanism and downstream target genes of DS were investigated by mRNA sequence analysis, qRT-PCR validation, colony formation assay, and interference assay. Results Since cellular adhesion molecules (CAMs) play important roles in hPSC adhesion and aggregation, we assumed that DS might prevent excess adhesion through affecting the expression of CAMs in hPSCs. As expected, after DS treatment, we found that the expression of CAMs was significantly down-regulated, especially E-cadherin (E-cad) and intercellular adhesion molecule 1 (ICAM1), two highly expressed CAMs in hPSCs. The role of E-cad in the adhesion of hPSCs has been widely investigated, but the function of ICAM1 in hPSCs is hardly understood. In the present study, we demonstrated that ICAM1 exhibited the capacity to promote the adhesion in hPSCs, and this adhesion was suppressed by the treatment with DS. Furthermore, transcriptomic analysis of RNA-seq revealed that DS treatment up-regulated genes related to Wnt signaling resulting in the activation of Wnt signaling in which SLUG, TWIST, and MMP3/7 were highly expressed, and further inhibited the expression of E-cad. Conclusion Our results demonstrated that DS played an important role in controlling the size of hPSC aggregates in 3D suspension culture by inhibiting the expression of ICAM1 coupled with the down-regulation of E-cad through the activation of the Wnt signaling pathway. These results represent a significant step toward developing the expansion of hPSCs under 3D suspension condition in large-scale cultures. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02890-4.
Collapse
Affiliation(s)
- Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Xianglian Tang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China.,Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, Guangxi, People's Republic of China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, 530003, Guangxi, People's Republic of China
| | - Yiyu Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China
| | - Qicong Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China
| | - Jinghe Xie
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Zhiyong Zhong
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China
| | - Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Ping Situ
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510180, People's Republic of China. .,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510180, People's Republic of China. .,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510180, People's Republic of China.
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510180, People's Republic of China. .,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510180, People's Republic of China. .,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510180, People's Republic of China.
| |
Collapse
|
45
|
In vitro proliferation and long-term preservation of functional primary rat hepatocytes in cell fibers. Sci Rep 2022; 12:8813. [PMID: 35614100 PMCID: PMC9133069 DOI: 10.1038/s41598-022-12679-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 05/11/2022] [Indexed: 11/15/2022] Open
Abstract
Primary hepatocytes are essential cellular resources for drug screening and medical transplantation. While culture systems have already succeeded in reconstituting the biomimetic microenvironment of primary hepatocytes, acquiring additional capabilities to handle them easily as well as to expand them remains unmet needs. This paper describes a culture system for primary rat hepatocytes, based on cell fiber technology, that brings scalability and handleability. Cell fibers are cell-laden core–shell hydrogel microfibers; in the core regions, cells are embedded in extracellular matrix proteins, cultured three-dimensionally, and exposed to soluble growth factors in the culture medium via the hydrogel shells. By encapsulating primary rat hepatocytes within cell fibers, we first demonstrated their proliferation while maintaining their viability and their hepatic specific functions for up to thirty days of subsequent culture. We then demonstrated the efficiency of proliferating primary rat hepatocytes in cell fibers not only as cell-based sensors to detect drugs that damage hepatic functions and hepatocellular processes but also as transplants to improve the plasma albumin concentrations of congenital analbuminemia. Our culture system could therefore be included in innovative strategies and promising developments in applying primary hepatocytes to both pharmaceutical and medical fields.
Collapse
|
46
|
Tan LS, Chen JT, Lim LY, Teo AKK. Manufacturing clinical-grade human induced pluripotent stem cell-derived beta cells for diabetes treatment. Cell Prolif 2022; 55:e13232. [PMID: 35474596 PMCID: PMC9357357 DOI: 10.1111/cpr.13232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
The unlimited proliferative capacity of human pluripotent stem cells (hPSCs) fortifies it as one of the most attractive sources for cell therapy application in diabetes. In the past two decades, vast research efforts have been invested in developing strategies to differentiate hPSCs into clinically suitable insulin‐producing endocrine cells or functional beta cells (β cells). With the end goal being clinical translation, it is critical for hPSCs and insulin‐producing β cells to be derived, handled, stored, maintained and expanded with clinical compliance. This review focuses on the key processes and guidelines for clinical translation of human induced pluripotent stem cell (hiPSC)‐derived β cells for diabetes cell therapy. Here, we discuss the (1) key considerations of manufacturing clinical‐grade hiPSCs, (2) scale‐up and differentiation of clinical‐grade hiPSCs into β cells in clinically compliant conditions and (3) mandatory quality control and product release criteria necessitated by various regulatory bodies to approve the use of the cell‐based products.
Collapse
Affiliation(s)
- Lay Shuen Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juin Ting Chen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lillian Yuxian Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
47
|
Preparation of Spheroids from Primary Pig Cells in a Mid-Scale Bioreactor Retaining Their Myogenic Potential. Cells 2022; 11:cells11091453. [PMID: 35563757 PMCID: PMC9103977 DOI: 10.3390/cells11091453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023] Open
Abstract
Three-dimensional cell culture techniques mimic the in vivo cell environment more adequately than flat surfaces. Spheroids are multicellular aggregates and we aimed to produce scaffold-free spheroids of myogenic origin, called myospheres, using a mid-scale incubator and bioreactor hybrid. For the first time, we obtained spheroids from primary porcine muscle cells (PMCs) with this technology and compared their morphology and growth parameters, marker expression, and myogenic potential to C2C12-derived spheroids. Both cell types were able to form round-shaped spheroids in the bioreactor already after 24 h. The mean diameter of the C2C12 spheroids (44.6 µm) was larger than that of the PMCs (32.7 µm), and the maximum diameter exceeded 1 mm. C2C12 cells formed less aggregates than PMCs with a higher packing density (cell nuclei/mm2). After dissociation from the spheroids, C2C12 cells and PMCs started to proliferate again and were able to differentiate into the myogenic lineage, as shown by myotube formation and the expression of F-Actin, Desmin, MyoG, and Myosin. For C2C12, multinucleated syncytia and Myosin expression were observed in spheroids, pointing to accelerated myogenic differentiation. In conclusion, the mid-scale incubator and bioreactor system is suitable for spheroid formation and cultivation from primary muscle cells while preserving their myogenic potential.
Collapse
|
48
|
Toward in Vitro Production of Platelet from Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2022; 18:2376-2387. [PMID: 35397051 DOI: 10.1007/s12015-022-10366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Platelets (PLTs) are small anucleate blood cells that release from polyploidy megakaryocytes(MKs). PLT transfusion is standard therapy to prevent hemorrhage. PLT transfusion is donor-dependent way which have limitations including the inadequate donor blood supply, poor quality, and issues related to infection and immunity. Overcoming these obstacles is possible with in vitro production of human PLTs. Currently several cells have been considered as source to in vitro production of PLTs such as hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). However, HSCs are a limited source for PLT production and large-scale expansion of HSC-derived PLT remains difficult. Alternative sources can be ESCs which have unlimited expansion capacity. But ESCs have ethical issues related to destroying human embryos. iPSCs are considered as an ideal unlimited source for PLT production. They are able to differentiate into any cells and have the capacity of self-renewal. Moreover, iPSCs can be acquired from any donor and easily manipulated. Due to new advances in development of MK cell lines, bioreactors, feeder cell-free production and the ability of large scale generation, iPSC-based PLTs are moving toward clinical applicability and considering the minimal risk of alloimmunization and tumorigenesis of these products, there is great hopefulness they will become the standard source for blood transfusions in the future. This review will focus on how to progress of in vitro generation of PLT from stem cell especially iPSCs and some of the successful strategies that can be easily used in clinic will be described.
Collapse
|
49
|
Martinelli I, Tayebati SK, Tomassoni D, Nittari G, Roy P, Amenta F. Brain and Retinal Organoids for Disease Modeling: The Importance of In Vitro Blood–Brain and Retinal Barriers Studies. Cells 2022; 11:cells11071120. [PMID: 35406683 PMCID: PMC8997725 DOI: 10.3390/cells11071120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Brain and retinal organoids are functional and dynamic in vitro three-dimensional (3D) structures derived from pluripotent stem cells that spontaneously organize themselves to their in vivo counterparts. Here, we review the main literature data of how these organoids have been developed through different protocols and how they have been technically analyzed. Moreover, this paper reviews recent advances in using organoids to model neurological and retinal diseases, considering their potential for translational applications but also pointing out their limitations. Since the blood–brain barrier (BBB) and blood–retinal barrier (BRB) are understood to play a fundamental role respectively in brain and eye functions, both in health and in disease, we provide an overview of the progress in the development techniques of in vitro models as reliable and predictive screening tools for BBB and BRB-penetrating compounds. Furthermore, we propose potential future directions for brain and retinal organoids, in which dedicated biobanks will represent a novel tool for neuroscience and ophthalmology research.
Collapse
Affiliation(s)
- Ilenia Martinelli
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
- Correspondence:
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Giulio Nittari
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| |
Collapse
|
50
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. Monitoring the induction of ferroptosis following dissociation in human embryonic stem cells. J Biol Chem 2022; 298:101855. [PMID: 35337799 PMCID: PMC9034286 DOI: 10.1016/j.jbc.2022.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/18/2023] Open
Abstract
Human embryonic stem cells (hESCs) are vulnerable to cell death upon dissociation. Thus, dissociation is an obstacle in culturing, maintaining, and differentiating of hESCs. To date, apoptosis has become the focus of research into the nature of cell death triggered by cellular detachment; it remains baffling whether another form of cell death can occur upon dissociation in hESCs. Here, we demonstrate that iron accumulation and subsequently lipid peroxidation are responsible for dissociation-mediated hESC death. Moreover, we found that a decrease of glutathione peroxidase 4 because of iron accumulation promotes ferroptosis. Inhibition of lipid peroxidation (ferrostatin-1) or chelating iron (deferoxamine) largely suppresses iron accumulation-induced ferroptosis in dissociated hESCs. The results show that P53 mediates the dissociation-induced ferroptosis in hESCs, which is suppressed by pifithrin α. Multiple genes involved in ferroptosis are regulated by the nuclear factor erythroid 2-related factor 2 (Nrf2). In this study, solute carrier family 7 member 11 and glutathione peroxidase 4 are involved in GSH synthesis decreased upon dissociation as a target of Nrf2. In conclusion, our study demonstrates that iron accumulation as a consequence of cytoskeleton disruption appears as a pivotal factor in the initiation of ferroptosis in dissociated hESCs. Nrf2 inhibits ferroptosis via its downstream targets. Our study suggests that the antiferroptotic target might be a good candidate for the maintenance of hESCs.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|