1
|
Shao X, Volk L. PICK1 links KIBRA and AMPA receptor subunit GluA2 in coiled-coil-driven supramolecular complexes. J Biol Chem 2025; 301:108397. [PMID: 40074086 PMCID: PMC12136796 DOI: 10.1016/j.jbc.2025.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The human memory-associated protein KIBRA regulates synaptic plasticity and trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors, and is implicated in multiple neuropsychiatric and cognitive disorders. How KIBRA forms complexes with and regulates AMPA receptors remains unclear. Here, we show that KIBRA does not interact directly with the AMPA receptor subunit GluA2, but that protein interacting with C kinase 1 (PICK1), a key regulator of AMPA receptor trafficking, can serve as a bridge between KIBRA and GluA2. In contrast, KIBRA can form a complex with GluA1 independent of PICK1. We identified structural determinants of KIBRA-PICK1-AMPAR complexes by investigating interactions and cellular expression patterns of different combinations of KIBRA and PICK1 domain mutants. We find that the PICK1 BAR domain, a coiled-coil structure, is sufficient for interaction with KIBRA, whereas mutation of the PICK1 BAR domain disrupts KIBRA-PICK1-GluA2 complex formation. In addition, KIBRA recruits PICK1 into large supramolecular complexes, a process which requires KIBRA coiled-coil domains. These findings reveal molecular mechanisms by which KIBRA can organize key synaptic signaling complexes.
Collapse
Affiliation(s)
- Xin Shao
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lenora Volk
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA; Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA; Peter O'Donnell Jr Brain Institute Investigator, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
2
|
Chen KH, Yang J, Liu B, Jiang C, Koylass N, Zhang Z, Sun S, Huganir R, Qiu Z. Loss of the proton-activated chloride channel in neurons impairs AMPA receptor endocytosis and LTD via endosomal hyper-acidification. Cell Rep 2025; 44:115302. [PMID: 39946237 PMCID: PMC11938102 DOI: 10.1016/j.celrep.2025.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/16/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025] Open
Abstract
Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are forms of synaptic plasticity, thought to be the molecular basis of learning and memory, dependent on dynamic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking. Alteration of endosomal pH negatively affects synaptic transmission and neural development, but it is unclear how pH is involved in AMPAR trafficking. We show that the proton-activated chloride (PAC) channel localizes to early and recycling endosomes in neurons and prevents endosome hyper-acidification. Loss of PAC reduces AMPAR endocytosis during chemical LTD in primary neurons, while basal trafficking and LTP are unaffected. Pyramidal neuron-specific PAC knockout mice have impaired hippocampal LTD, but not LTP, and perform poorly in the Morris water maze reversal test, exhibiting impaired behavioral adaptation. We conclude that proper maintenance of endosomal pH by PAC in neurons is important during LTD to regulate AMPAR trafficking in a manner critical for animal physiology and behavior.
Collapse
Affiliation(s)
- Kevin H Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Bian Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chaohua Jiang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas Koylass
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhe Zhang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Ritter AJ, Wallace A, Ronaghi N, Sanford J. junctionCounts: comprehensive alternative splicing analysis and prediction of isoform-level impacts to the coding sequence. NAR Genom Bioinform 2024; 6:lqae093. [PMID: 39131822 PMCID: PMC11310779 DOI: 10.1093/nargab/lqae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Alternative splicing (AS) is emerging as an important regulatory process for complex biological processes. Transcriptomic studies therefore commonly involve the identification and quantification of alternative processing events, but the need for predicting the functional consequences of changes to the relative inclusion of alternative events remains largely unaddressed. Many tools exist for the former task, albeit each constrained to its own event type definitions. Few tools exist for the latter task; each with significant limitations. To address these issues we developed junctionCounts, which captures both simple and complex pairwise AS events and quantifies them with straightforward exon-exon and exon-intron junction reads in RNA-seq data, performing competitively among similar tools in terms of sensitivity, false discovery rate and quantification accuracy. Its partner utility, cdsInsertion, identifies transcript coding sequence (CDS) information via in silico translation from annotated start codons, including the presence of premature termination codons. Finally, findSwitchEvents connects AS events with CDS information to predict the impact of individual events to the isoform-level CDS. We used junctionCounts to characterize splicing dynamics and NMD regulation during neuronal differentiation across four primates, demonstrating junctionCounts' capacity to robustly characterize AS in a variety of organisms and to predict its effect on mRNA isoform fate.
Collapse
Affiliation(s)
- Alexander J Ritter
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew Wallace
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Neda Ronaghi
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Prinkey K, Thompson E, Saikia J, Cid T, Dore K. Fluorescence lifetime imaging of AMPA receptor endocytosis in living neurons: effects of Aβ and PP1. Front Mol Neurosci 2024; 17:1409401. [PMID: 38915938 PMCID: PMC11194458 DOI: 10.3389/fnmol.2024.1409401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
The relative amount of AMPA receptors expressed at the surface of neurons can be measured using superecliptic pHluorin (SEP) labeling at their N-terminus. However, the high signal variability resulting from protein overexpression in neurons and the low signal observed in intracellular vesicles make quantitative characterization of receptor trafficking difficult. Here, we establish a real-time live-cell assay of AMPAR trafficking based on fluorescence lifetime imaging (FLIM), which allows for simultaneous visualization of both surface and intracellular receptors. Using this assay, we found that elevating amyloid-beta (Aβ) levels leads to a strong increase in intracellular GluA1 and GluA2-containing receptors, indicating that Aβ triggers the endocytosis of these AMPARs. In APP/PS1 Alzheimer's disease model mouse neurons, FLIM revealed strikingly different AMPAR trafficking properties for GluA1- and GluA3-containing receptors, suggesting that chronic Aβ exposure triggered the loss of both surface and intracellular GluA3-containing receptors. Interestingly, overexpression of protein phosphatase 1 (PP1) also resulted in GluA1 endocytosis as well as depressed synaptic transmission, confirming the important role of phosphorylation in regulating AMPAR trafficking. This new approach allows for the quantitative measurement of extracellular pH, small changes in receptor trafficking, as well as simultaneous measurement of surface and internalized AMPARs in living neurons, and could therefore be applied to several different studies in the future.
Collapse
Affiliation(s)
| | | | | | | | - Kim Dore
- Center for Neural Circuits and Behavior, Department of Neuroscience, School of Medicine, University of California at San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Liu Z, Li X, Muhammad A, Sun Q, Zhang Q, Wang Y, Wang Y, Ren J, Wang D. PACSIN1 promotes immunosuppression in gastric cancer by degrading MHC-I. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1473-1482. [PMID: 38826133 PMCID: PMC11532212 DOI: 10.3724/abbs.2024059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/07/2024] [Indexed: 06/04/2024] Open
Abstract
Gastric cancer (GC) is a common gastrointestinal system malignancy. PACSIN1 functions as an oncogene in various cancers. This study aims to investigate the potential of PACSIN1 as a target in GC treatment. Gene expression is determined by RT-qPCR, immunofluorescence staining, and immunohistochemistry assay. FISH is performed to determine the colocalization of PACSIN1 and the major histocompatibility complex (MHC-I). Cytokine release and cell functions are analyzed by flow cytometry. In vivo assays are also conducted. Histological analysis is performed using H&E staining. The results show that PACSIN1 is overexpressed in GC patients, especially in those with immunologically-cold tumors. A high level of PACSIN1 is associated with poor prognosis. PACSIN1 deficiency inhibits autophagy but increases antigen presentation in GC cells. Moreover, PACSIN1 deficiency inhibits the lysosomal fusion and selective autophagy of MHC-I, increases CD8 + T-cell infiltration, and suppresses tumor growth and liver metastasis in vivo. Additionally, PACSIN1 knockout enhances the chemosensitivity of cells to immune checkpoint blockade. In summary, PACSIN1 mediates lysosomal fusion and selective autophagy of MHC-I and suppresses antigen presentation and CD8 + T-cell infiltration, thus inhibiting antitumor immunity in GC.
Collapse
Affiliation(s)
- Zhu Liu
- The Yangzhou School of Clinical Medicine of Nanjing Medical UniversityYangzhou225001China
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Xin Li
- Northern Jiangsu People’s HospitalYangzhou225001China
- Department of PharmacyClinical Medical CollegeYangzhou UniversityNorthern Jiangsu People’s HospitalYangzhou225001China
| | - Ali Muhammad
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Qiannan Sun
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Qi Zhang
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Yang Wang
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Yong Wang
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Jun Ren
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Daorong Wang
- The Yangzhou School of Clinical Medicine of Nanjing Medical UniversityYangzhou225001China
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| |
Collapse
|
6
|
Uzungil V, Luza S, Opazo CM, Mees I, Li S, Ang CS, Williamson NA, Bush AI, Hannan AJ, Renoir T. Phosphoproteomics implicates glutamatergic and dopaminergic signalling in the antidepressant-like properties of the iron chelator deferiprone. Neuropharmacology 2024; 246:109837. [PMID: 38184274 DOI: 10.1016/j.neuropharm.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Current antidepressants have limitations due to insufficient efficacy and delay before improvement in symptoms. Polymorphisms of the serotonin transporter (5-HTT) gene have been linked to depression (when combined with stressful life events) and altered response to selective serotonergic reuptake inhibitors. We have previously revealed the antidepressant-like properties of the iron chelator deferiprone in the 5-HTT knock-out (KO) mouse model of depression. Furthermore, deferiprone was found to alter neural activity in the prefrontal cortex of both wild-type (WT) and 5-HTT KO mice. METHODS In the current study, we examined the molecular effects of acute deferiprone treatment in the prefrontal cortex of both genotypes via phosphoproteomics analysis. RESULTS In WT mice treated with deferiprone, there were 22 differentially expressed phosphosites, with gene ontology analysis implicating cytoskeletal proteins. In 5-HTT KO mice treated with deferiprone, we found 33 differentially expressed phosphosites. Gene ontology analyses revealed phosphoproteins that were predominantly involved in synaptic and glutamatergic signalling. In a drug-naïve cohort (without deferiprone administration), the analysis revealed 21 differentially expressed phosphosites in 5-HTT KO compared to WT mice. We confirmed the deferiprone-induced increase in tyrosine hydroxylase serine 40 residue phosphorylation (pTH-Ser40) (initially revealed in our phosphoproteomics study) by Western blot analysis, with deferiprone increasing pTH-Ser40 expression in WT and 5-HTT KO mice. CONCLUSION As glutamatergic and synaptic signalling are dysfunctional in 5-HTT KO mice (and are the target of fast-acting antidepressant drugs such as ketamine), these molecular effects may underpin deferiprone's antidepressant-like properties. Furthermore, dopaminergic signalling may also be involved in deferiprone's antidepressant-like properties.
Collapse
Affiliation(s)
- Volkan Uzungil
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Sandra Luza
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Isaline Mees
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Shanshan Li
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
7
|
Shao X, Volk L. PICK1 links KIBRA and AMPA receptors in coiled-coil-driven supramolecular complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584494. [PMID: 38558978 PMCID: PMC10980033 DOI: 10.1101/2024.03.12.584494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human memory-associated protein KIBRA regulates synaptic plasticity and trafficking of AMPA-type glutamate receptors, and is implicated in multiple neuropsychiatric and cognitive disorders. How KIBRA forms complexes with and regulates AMPA receptors remains unclear. Here, we show that KIBRA does not interact directly with the AMPA receptor subunit GluA2, but that PICK1, a key regulator of AMPA receptor trafficking, can serve as a bridge between KIBRA and GluA2. We identified structural determinants of KIBRA-PICK1-AMPAR complexes by investigating interactions and cellular expression patterns of different combinations of KIBRA and PICK1 domain mutants. We find that the PICK1 BAR domain, a coiled-coil structure, is sufficient for interaction with KIBRA, whereas mutation of the BAR domain disrupts KIBRA-PICK1-GluA2 complex formation. In addition, KIBRA recruits PICK1 into large supramolecular complexes, a process which requires KIBRA coiled-coil domains. These findings reveal molecular mechanisms by which KIBRA can organize key synaptic signaling complexes.
Collapse
|
8
|
Miao S, Fourgeaud L, Burrola PG, Stern S, Zhang Y, Happonen KE, Novak SW, Gage FH, Lemke G. Tyro3 promotes the maturation of glutamatergic synapses. Front Neurosci 2024; 18:1327423. [PMID: 38410160 PMCID: PMC10894971 DOI: 10.3389/fnins.2024.1327423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
The receptor tyrosine kinase Tyro3 is abundantly expressed in neurons of the neocortex, hippocampus, and striatum, but its role in these cells is unknown. We found that neuronal expression of this receptor was markedly up-regulated in the postnatal mouse neocortex immediately prior to the final development of glutamatergic synapses. In the absence of Tyro3, cortical and hippocampal synapses never completed end-stage differentiation and remained electrophysiologically and ultrastructurally immature. Tyro3-/- cortical neurons also exhibited diminished plasma membrane expression of the GluA2 subunits of AMPA-type glutamate receptors, which are essential to mature synaptic function. Correspondingly, GluA2 membrane insertion in wild-type neurons was stimulated by Gas6, a Tyro3 ligand widely expressed in the postnatal brain. Behaviorally, Tyro3-/- mice displayed learning enhancements in spatial recognition and fear-conditioning assays. Together, these results demonstrate that Tyro3 promotes the functional maturation of glutamatergic synapses by driving plasma membrane translocation of GluA2 AMPA receptor subunits.
Collapse
Affiliation(s)
- Sheng Miao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Lawrence Fourgeaud
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Patrick G Burrola
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Shani Stern
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Yuhan Zhang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kaisa E Happonen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
9
|
Wei M, Yang L, Su F, Liu Y, Zhao X, Luo L, Sun X, Liu S, Dong Z, Zhang Y, Shi YS, Liang J, Zhang C. ABHD6 drives endocytosis of AMPA receptors to regulate synaptic plasticity and learning flexibility. Prog Neurobiol 2024; 233:102559. [PMID: 38159878 DOI: 10.1016/j.pneurobio.2023.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/26/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Trafficking of α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs), mediated by AMPAR interacting proteins, enabled neurons to maintain tuning capabilities at rest or active state. α/β-Hydrolase domain-containing 6 (ABHD6), an endocannabinoid hydrolase, was an AMPAR auxiliary subunit found to negatively regulate the surface delivery of AMPARs. While ABHD6 was found to prevent AMPAR tetramerization in endoplasmic reticulum, ABHD6 was also reported to localize at postsynaptic site. Yet, the role of ABHD6 interacting with AMPAR at postsynaptic site, and the physiological significance of ABHD6 regulating AMPAR trafficking remains elusive. Here, we generated the ABHD6 knockout (ABHD6KO) mice and found that deletion of ABHD6 selectively enhanced AMPAR-mediated basal synaptic responses and the surface expression of postsynaptic AMPARs. Furthermore, we found that loss of ABHD6 impaired hippocampal long-term depression (LTD) and synaptic downscaling in hippocampal synapses. AMPAR internalization assays revealed that ABHD6 was essential for neuronal activity-dependent endocytosis of surface AMPARs, which is independent of ABHD6's hydrolase activity. The defects of AMPAR endocytosis and LTD are expressed as deficits in learning flexibility in ABHD6KO mice. Collectively, we demonstrated that ABHD6 is an endocytic accessory protein promoting AMPAR endocytosis, thereby contributes to the formation of LTD, synaptic downscaling and reversal learning.
Collapse
Affiliation(s)
- Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Lei Yang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Feng Su
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyi Zhao
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Lin Luo
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Xinyue Sun
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Zhaoqi Dong
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission of the PR China, IDG/McGovern Institute for Brain Research at PKU, Peking University, Beijing 100083, China
| | - Yun Stone Shi
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing 210032, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
10
|
Chiu SL, Chen CM, Huganir RL. ICA69 regulates activity-dependent synaptic strengthening and learning and memory. Front Mol Neurosci 2023; 16:1171432. [PMID: 37251649 PMCID: PMC10213502 DOI: 10.3389/fnmol.2023.1171432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Long-term potentiation (LTP) is one of the major cellular mechanisms for learning and memory. Activity-dependent increases in surface AMPA receptors (AMPARs) are important for enhanced synaptic efficacy during LTP. Here, we report a novel function of a secretory trafficking protein, ICA69, in AMPAR trafficking, synaptic plasticity, and animal cognition. ICA69 is first identified as a diabetes-associated protein well characterized for its function in the biogenesis of secretory vesicles and trafficking of insulin from ER, Golgi to post-Golgi in pancreatic beta cells. In the brain, ICA69 is found in the AMPAR protein complex through its interaction with PICK1, which binds directly to GluA2 or GluA3 AMPAR subunits. Here, we showed that ICA69 regulates PICK1's distribution in neurons and stability in the mouse hippocampus, which in turn can impact AMPAR function in the brain. Biochemical analysis of postsynaptic density (PSD) proteins from hippocampi of mice lacking ICA69 (Ica1 knockout) and their wild-type littermates revealed comparable AMPAR protein levels. Electrophysiological recording and morphological analysis of CA1 pyramidal neurons from Ica1 knockout also showed normal AMPAR-mediated currents and dendrite architecture, indicating that ICA69 does not regulate synaptic AMPAR function and neuron morphology at the basal state. However, genetic deletion of ICA69 in mice selectively impairs NMDA receptor (NMDAR)-dependent LTP but not LTD at Schaffer collateral to CA1 synapses, which correlates with behavioral deficits in tests of spatial and associative learning and memory. Together, we identified a critical and selective role of ICA69 in LTP, linking ICA69-mediated synaptic strengthening to hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Shu-Ling Chiu
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica (NPAS), Academia Sinica, Taipei, Taiwan
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chih-Ming Chen
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Eagleson KL, Levitt P. Alterations in the Proteome of Developing Neocortical Synaptosomes in the Absence of MET Signaling Revealed by Comparative Proteomics. Dev Neurosci 2023; 45:126-138. [PMID: 36882009 PMCID: PMC10239366 DOI: 10.1159/000529981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Alterations in the expression of genes encoding proteins involved in synapse formation, maturation, and function are a hallmark of many neurodevelopmental and psychiatric disorders. For example, there is reduced neocortical expression of the MET receptor tyrosine kinase (MET) transcript and protein in Autism Spectrum Disorder (ASD) and Rett syndrome. Preclinical in vivo and in vitro models manipulating MET signaling reveal that the receptor modulates excitatory synapse development and maturation in select forebrain circuits. The molecular adaptations underlying the altered synaptic development remain unknown. We performed a comparative mass spectrometry analysis of synaptosomes generated from the neocortex of wild type and Met null mice during the peak of synaptogenesis (postnatal day 14; data are available from ProteomeXchange with identifier PXD033204). The analyses revealed broad disruption of the developing synaptic proteome in the absence of MET, consistent with the localization of MET protein in pre- and postsynaptic compartments, including proteins associated with the neocortical synaptic MET interactome and those encoded by syndromic and ASD risk genes. In addition to an overrepresentation of altered proteins associated with the SNARE complex, multiple proteins in the ubiquitin-proteasome system and associated with the synaptic vesicle, as well as proteins that regulate actin filament organization and synaptic vesicle exocytosis/endocytosis, were disrupted. Taken together, the proteomic changes are consistent with structural and functional changes observed following alterations in MET signaling. We hypothesize that the molecular adaptations following Met deletion may reflect a general mechanism that produces circuit-specific molecular changes due to loss or reduction of synaptic signaling proteins.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Department of Pediatrics and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Pat Levitt
- Department of Pediatrics and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,
| |
Collapse
|
12
|
Vitrac A, Leblond CS, Rolland T, Cliquet F, Mathieu A, Maruani A, Delorme R, Schön M, Grabrucker AM, van Ravenswaaij-Arts C, Phelan K, Tabet AC, Bourgeron T. Dissecting the 22q13 region to explore the genetic and phenotypic diversity of patients with Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104732. [PMID: 36822569 DOI: 10.1016/j.ejmg.2023.104732] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
SHANK3-related Phelan-McDermid syndrome (PMS) is caused by a loss of the distal part of chromosome 22, including SHANK3, or by a pathological SHANK3 variant. There is an important genetic and phenotypic diversity among patients who can present with developmental delay, language impairments, autism, epilepsy, and other symptoms. SHANK3, encoding a synaptic scaffolding protein, is deleted in the majority of patients with PMS and is considered a major gene involved in the neurological impairments of the patients. However, differences in deletion size can influence clinical features, and in some rare cases, deletions at the 22q13 locus in individuals with SHANK3-unrelated PMS do not encompass SHANK3. These individuals with SHANK3-unrelated PMS still display a PMS-like phenotype. This suggests the participation of other 22q13 genes in the pathogenesis of PMS. Here, we review the biological function and potential implication in PMS symptoms of 110 genes located in the 22q13 region, focusing on 35 genes with evidence for association with neurodevelopmental disorders, including 13 genes for epilepsy and 11 genes for microcephaly and/or macrocephaly. Our review is restricted to the 22q13 region, but future large-scale studies using whole genome sequencing and deep-phenotyping are warranted to develop predictive models of clinical trajectories and to target specific medical and educational care for each individual with PMS.
Collapse
Affiliation(s)
- Aline Vitrac
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France.
| | - Claire S Leblond
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Thomas Rolland
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Freddy Cliquet
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Alexandre Mathieu
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Anna Maruani
- Department of Child and Adolescent Psychiatry, Hôpital Robert Debré, APHP, Paris, France
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Hôpital Robert Debré, APHP, Paris, France
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, Ireland; Dept. of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute HRI, University of Limerick, Limerick, Ireland
| | - Conny van Ravenswaaij-Arts
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists & Research Institute, Fort Myers, FL, 33916, USA
| | | | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France.
| |
Collapse
|
13
|
Widagdo J, Udagedara S, Bhembre N, Tan JZA, Neureiter L, Huang J, Anggono V, Lee M. Familial ALS-associated SFPQ variants promote the formation of SFPQ cytoplasmic aggregates in primary neurons. Open Biol 2022; 12:220187. [PMID: 36168806 PMCID: PMC9516340 DOI: 10.1098/rsob.220187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Splicing factor proline- and glutamine-rich (SFPQ) is a nuclear RNA-binding protein that is involved in a wide range of physiological processes including neuronal development and homeostasis. However, the mislocalization and cytoplasmic aggregation of SFPQ are associated with the pathophysiology of amyotrophic lateral sclerosis (ALS). We have previously reported that zinc mediates SFPQ polymerization and promotes the formation of cytoplasmic aggregates in neurons. Here we characterize two familial ALS (fALS)-associated SFPQ variants, which cause amino acid substitutions in the proximity of the SFPQ zinc-coordinating centre (N533H and L534I). Both mutants display increased zinc-binding affinities, which can be explained by the presence of a second zinc-binding site revealed by the 1.83 Å crystal structure of the human SFPQ L534I mutant. Overexpression of these fALS-associated mutants significantly increases the number of SFPQ cytoplasmic aggregates in primary neurons. Although they do not affect the density of dendritic spines, the presence of SFPQ cytoplasmic aggregates causes a marked reduction in the levels of the GluA1, but not the GluA2 subunit of AMPA-type glutamate receptors on the neuronal surface. Taken together, our data demonstrate that fALS-associated mutations enhance the propensity of SFPQ to bind zinc and form aggregates, leading to the dysregulation of AMPA receptor subunit composition, which may contribute to neuronal dysfunction in ALS.
Collapse
Affiliation(s)
- Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Saumya Udagedara
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nishita Bhembre
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jing Zhi Anson Tan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lara Neureiter
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jie Huang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mihwa Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
14
|
Oe Y, Kakuda K, Yoshimura SI, Hara N, Hasegawa J, Terawaki S, Kimura Y, Ikenaka K, Suetsugu S, Mochizuki H, Yoshimori T, Nakamura S. PACSIN1 is indispensable for amphisome-lysosome fusion during basal autophagy and subsets of selective autophagy. PLoS Genet 2022; 18:e1010264. [PMID: 35771772 PMCID: PMC9246181 DOI: 10.1371/journal.pgen.1010264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/19/2022] [Indexed: 12/09/2022] Open
Abstract
Autophagy is an indispensable process that degrades cytoplasmic materials to maintain cellular homeostasis. During autophagy, double-membrane autophagosomes surround cytoplasmic materials and either fuse with endosomes (called amphisomes) and then lysosomes, or directly fuse with lysosomes, in both cases generating autolysosomes that degrade their contents by lysosomal hydrolases. However, it remains unclear if there are specific mechanisms and/or conditions which distinguish these alternate routes. Here, we identified PACSIN1 as a novel autophagy regulator. PACSIN1 deletion markedly decreased autophagic activity under basal nutrient-rich conditions but not starvation conditions, and led to amphisome accumulation as demonstrated by electron microscopic and co-localization analysis, indicating inhibition of lysosome fusion. PACSIN1 interacted with SNAP29, an autophagic SNARE, and was required for proper assembly of the STX17 and YKT6 complexes. Moreover, PACSIN1 was required for lysophagy, aggrephagy but not mitophagy, suggesting cargo-specific fusion mechanisms. In C. elegans, deletion of sdpn-1, a homolog of PACSINs, inhibited basal autophagy and impaired clearance of aggregated protein, implying a conserved role of PACSIN1. Taken together, our results demonstrate the amphisome-lysosome fusion process is preferentially regulated in response to nutrient state and stress, and PACSIN1 is a key to specificity during autophagy.
Collapse
Affiliation(s)
- Yukako Oe
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keita Kakuda
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shin-ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naohiro Hara
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junya Hasegawa
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seigo Terawaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Okayama, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- * E-mail: (TY); (SN)
| | - Shuhei Nakamura
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
- * E-mail: (TY); (SN)
| |
Collapse
|
15
|
He JG, Zhou HY, Wang F, Chen JG. Dysfunction of Glutamatergic Synaptic Transmission in Depression: Focus on AMPA Receptor Trafficking. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:187-196. [PMID: 37124348 PMCID: PMC10140449 DOI: 10.1016/j.bpsgos.2022.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Pharmacological and anatomical evidence suggests that abnormal glutamatergic neurotransmission may be associated with the pathophysiology of depression. Compounds that act as NMDA receptor antagonists may be a potential treatment for depression, notably the rapid-acting agent ketamine. The rapid-acting and sustained antidepressant effects of ketamine rely on the activation of AMPA receptors (AMPARs). As the key elements of fast excitatory neurotransmission in the brain, AMPARs are crucially involved in synaptic plasticity and memory. Recent efforts have been directed toward investigating the bidirectional dysregulation of AMPAR-mediated synaptic transmission in depression. Here, we summarize the published evidence relevant to the dysfunction of AMPAR in stress conditions and review the recent progress toward the understanding of the involvement of AMPAR trafficking in the pathophysiology of depression, focusing on the roles of AMPAR auxiliary subunits, key AMPAR-interacting proteins, and posttranslational regulation of AMPARs. We also discuss new prospects for the development of improved therapeutics for depression.
Collapse
|
16
|
Dumont V, Lehtonen S. PACSIN proteins in vivo: Roles in development and physiology. Acta Physiol (Oxf) 2022; 234:e13783. [PMID: 34990060 PMCID: PMC9285741 DOI: 10.1111/apha.13783] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/15/2021] [Accepted: 01/01/2022] [Indexed: 12/22/2022]
Abstract
Protein kinase C and casein kinase substrate in neurons (PACSINs), or syndapins (synaptic dynamin‐associated proteins), are a family of proteins involved in the regulation of cell cytoskeleton, intracellular trafficking and signalling. Over the last twenty years, PACSINs have been mostly studied in the in vitro and ex vivo settings, and only in the last decade reports on their function in vivo have emerged. We first summarize the identification, structure and cellular functions of PACSINs, and then focus on the relevance of PACSINs in vivo. During development in various model organisms, PACSINs participate in diverse processes, such as neural crest cell development, gastrulation, laterality development and neuromuscular junction formation. In mouse, PACSIN2 regulates angiogenesis during retinal development and in human, PACSIN2 associates with monosomy and embryonic implantation. In adulthood, PACSIN1 has been extensively studied in the brain and shown to regulate neuromorphogenesis, receptor trafficking and synaptic plasticity. Several genetic studies suggest a role for PACSIN1 in the development of schizophrenia, which is also supported by the phenotype of mice depleted of PACSIN1. PACSIN2 plays an essential role in the maintenance of intestinal homeostasis and participates in kidney repair processes after injury. PACSIN3 is abundant in muscle tissue and necessary for caveolar biogenesis to create membrane reservoirs, thus controlling muscle function, and has been linked to certain genetic muscular disorders. The above examples illustrate the importance of PACSINs in diverse physiological or tissue repair processes in various organs, and associations to diseases when their functions are disturbed.
Collapse
Affiliation(s)
- Vincent Dumont
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
- Department of Pathology University of Helsinki Helsinki Finland
| |
Collapse
|
17
|
Leite DM, Seifi M, Ruiz-Perez L, Nguemo F, Plomann M, Swinny JD, Battaglia G. Syndapin-2 mediated transcytosis of amyloid-ß across the blood-brain barrier. Brain Commun 2022; 4:fcac039. [PMID: 35233527 PMCID: PMC8882007 DOI: 10.1093/braincomms/fcac039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/31/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022] Open
Abstract
A deficient transport of amyloid-β across the blood–brain barrier, and its diminished clearance from the brain, contribute to neurodegenerative and vascular pathologies, such as Alzheimer’s disease and cerebral amyloid angiopathy, respectively. At the blood–brain barrier, amyloid-β efflux transport is associated with the low-density lipoprotein receptor-related protein 1. However, the precise mechanisms governing amyloid-β transport across the blood–brain barrier, in health and disease, remain to be fully understood. Recent evidence indicates that the low-density lipoprotein receptor-related protein 1 transcytosis occurs through a tubulation-mediated mechanism stabilized by syndapin-2. Here, we show that syndapin-2 is associated with amyloid-β clearance via low-density lipoprotein receptor-related protein 1 across the blood–brain barrier. We further demonstrate that risk factors for Alzheimer’s disease, amyloid-β expression and ageing, are associated with a decline in the native expression of syndapin-2 within the brain endothelium. Our data reveals that syndapin-2-mediated pathway, and its balance with the endosomal sorting, are important for amyloid-β clearance proposing a measure to evaluate Alzheimer’s disease and ageing, as well as a target for counteracting amyloid-β build-up. Moreover, we provide evidence for the impact of the avidity of amyloid-β assemblies in their trafficking across the brain endothelium and in low-density lipoprotein receptor-related protein 1 expression levels, which may affect the overall clearance of amyloid-β across the blood–brain barrier.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Mohsen Seifi
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Lorena Ruiz-Perez
- Department of Chemistry, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Filomain Nguemo
- Institute for Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Plomann
- Institute of Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jerome D. Swinny
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
18
|
Pedrero-Prieto CM, Frontiñán-Rubio J, Alcaín FJ, Durán-Prado M, Peinado JR, Rabanal-Ruiz Y. Biological Significance of the Protein Changes Occurring in the Cerebrospinal Fluid of Alzheimer's Disease Patients: Getting Clues from Proteomic Studies. Diagnostics (Basel) 2021; 11:1655. [PMID: 34573996 PMCID: PMC8467255 DOI: 10.3390/diagnostics11091655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
The fact that cerebrospinal fluid (CSF) deeply irrigates the brain together with the relative simplicity of sample extraction from patients make this biological fluid the best target for biomarker discovery in neurodegenerative diseases. During the last decade, biomarker discovery has been especially fruitful for the identification new proteins that appear in the CSF of Alzheimer's disease (AD) patients together with amyloid-β (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau). Thus, several proteins have been already stablished as important biomarkers, due to an increase (i.e., CHI3L1) or a decrease (i.e., VGF) in AD patients' CSF. Notwithstanding this, only a deep analysis of a database generated with all the changes observed in CSF across multiple proteomic studies, and especially those using state-of-the-art methodologies, may expose those components or metabolic pathways disrupted at different levels in AD. Deep comparative analysis of all the up- and down-regulated proteins across these studies revealed that 66% of the most consistent protein changes in CSF correspond to intracellular proteins. Interestingly, processes such as those associated to glucose metabolism or RXR signaling appeared inversely represented in CSF from AD patients in a significant manner. Herein, we discuss whether certain cellular processes constitute accurate indicators of AD progression by examining CSF. Furthermore, we uncover new CSF AD markers, such as ITAM, PTPRZ or CXL16, identified by this study.
Collapse
Affiliation(s)
- Cristina M. Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha (UCLM), 13005 Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Francisco J. Alcaín
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Mario Durán-Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Juan R. Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Yoana Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| |
Collapse
|
19
|
Zimu Z, Jia Z, Xian F, Rui M, Yuting R, Yuan W, Tianhong W, Mian M, Yinlong L, Enfang S. Decreased Expression of PACSIN1 in Brain Glioma Samples Predicts Poor Prognosis. Front Mol Biosci 2021; 8:696072. [PMID: 34422904 PMCID: PMC8375027 DOI: 10.3389/fmolb.2021.696072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Gliomas are the most severe brain tumours with a poor prognosis. Although surgery, postoperative radiotherapy and chemotherapy can improve the survival rate of glioma patients, the prognosis of most glioma patients is still poor. In recent years, the influence of gene-targeted therapy on gliomas has been gradually discovered, and intervening the occurrence and development of brain gliomas from the perspective of the gene will significantly improve treatment prognosis. Protein Kinase C and Casein Kinase Substrate in Neurons 1 (PACSIN1) is a member of the conserved peripheral membrane protein family in eukaryotes. Improper expression of PACSIN1 can lead to neurological diseases such as Huntington’s disease and schizophrenia. However, its relationship with tumours or even gliomas has not been explored. The study aims to explore PACSIN1 as a prognostic factor that can predict overall survival (OS) for gliomas. We collected the data from CGGA, TCGA, GEO databases and the pathological glioma tissue specimens from 15 clinical glioma patients surgically resected. The differential expression of PACSIN1 in various clinical indicators, the genes related to PACSIN1 expression, the prognostic value of PACSIN1 and the functional annotations and pathway analysis of differently expressed genes (DEGs) were analysed. The results revealed that PACSIN1 had low expression levels in grade IV, IDH1 wild-type and 1p/19q non-codel group gliomas, and PACSIN1 was considered a mesenchymal molecular subtype marker. PACSIN1 expression is positively correlated with OS in all gliomas and it was found that PACSIN1 influenced the occurrence and development of gliomas through synaptic transmission. The PACSIN1 expression is negatively correlated with the malignant degree of gliomas and positively associated with the OS, indicating that PACSIN1 would play an essential role in the occurrence and development of gliomas and might be a potential new biomarker and targeted therapy site for gliomas.
Collapse
Affiliation(s)
- Zhou Zimu
- School of Nursing, Nanjing Medical University, Nanjing, China.,Cancer Nursing Research Branch, Nursing Research Center, Nanjing Medical University, Nanjing, China
| | - Zhang Jia
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Fu Xian
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ma Rui
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Ren Yuting
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Wei Yuan
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Wen Tianhong
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Ma Mian
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Liu Yinlong
- Department of Neurosurgery, The Affiliated Huashan Hospital, Fudan University, Shanghai, China.,Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shan Enfang
- School of Nursing, Nanjing Medical University, Nanjing, China.,Cancer Nursing Research Branch, Nursing Research Center, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Yong XLH, Zhang L, Yang L, Chen X, Tan JZA, Yu X, Chandra M, Livingstone E, Widagdo J, Vieira MM, Roche KW, Lynch JW, Keramidas A, Collins BM, Anggono V. Regulation of NMDA receptor trafficking and gating by activity-dependent CaMKIIα phosphorylation of the GluN2A subunit. Cell Rep 2021; 36:109338. [PMID: 34233182 PMCID: PMC8313361 DOI: 10.1016/j.celrep.2021.109338] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/19/2021] [Accepted: 06/11/2021] [Indexed: 01/23/2023] Open
Abstract
NMDA receptor (NMDAR)-dependent Ca2+ influx underpins multiple forms of synaptic plasticity. Most synaptic NMDAR currents in the adult forebrain are mediated by GluN2A-containing receptors, which are rapidly inserted into synapses during long-term potentiation (LTP); however, the underlying molecular mechanisms remain poorly understood. In this study, we show that GluN2A is phosphorylated at Ser-1459 by Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) in response to glycine stimulation that mimics LTP in primary neurons. Phosphorylation of Ser-1459 promotes GluN2A interaction with the sorting nexin 27 (SNX27)-retromer complex, thereby enhancing the endosomal recycling of NMDARs. Loss of SNX27 or CaMKIIα function blocks the glycine-induced increase in GluN2A-NMDARs on the neuronal membrane. Interestingly, mutations of Ser-1459, including the rare S1459G human epilepsy variant, prolong the decay times of NMDAR-mediated synaptic currents in heterosynapses by increasing the duration of channel opening. These findings not only identify a critical role of Ser-1459 phosphorylation in regulating the function of NMDARs, but they also explain how the S1459G variant dysregulates NMDAR function.
Collapse
Affiliation(s)
- Xuan Ling Hilary Yong
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lingrui Zhang
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Liming Yang
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiumin Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Zhi Anson Tan
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaojun Yu
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mintu Chandra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma Livingstone
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marta M Vieira
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
21
|
Zhang T, Tang Y, Yang X, Wang X, Ding S, Huang K, Liu Y, Lang B. Expression of GSK3β, PICK1, NEFL, C4, NKCC1 and Synaptophysin in peripheral blood mononuclear cells of the first-episode schizophrenia patients. Asian J Psychiatr 2021; 55:102520. [PMID: 33373836 DOI: 10.1016/j.ajp.2020.102520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/26/2020] [Accepted: 12/10/2020] [Indexed: 01/22/2023]
Abstract
Schizophrenia (SZ) is a severe neurodevelopmental disease with unknown pathogenic mechanisms characterized with impaired cognitive function. The disturbed synaptic plasticity and synaptic loss have been widely reported in SZ. In this study, 41 first-episode schizophrenia (FES) patients and 44 healthy controls (HC) were recruited and the expression of six genes commonly relevant to synaptic functions was examined in the peripheral blood mononuclear cells (PBMCs). These genes were glycogen synthase kinase 3β (GSK3β), protein interacting with C-kinase 1 (PICK1), synaptophysin (SYP), neurofilament light (NEFL), complement component 4 (C4) and Na+-K--2Cl- cotransporter 1 (NKCC1). Real-time quantitative polymerase chain reaction (qPCR) was performed to determine the quantity of individual mRNA template. Compared to HC, the expression of PICK1 and NKCC1 genes in FES patients was relatively lower whereas the expression of NEFL was higher. No difference for the mRNA expression of GSK3β, SYP and C4 genes was detected between FES patients and HC, nor was the gender difference; Interestingly, the mRNA expression of PICK1 in female FES patients was significantly decreased compared to female HC, but not in males; and the NEFL gene was up-regulated in male FES patients but not in females. Our findings support an abnormal expression profile of synapse-related genes in the PBMCs of FES patients.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yamei Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiudeng Yang
- Department of Laboratory Medicine, The First Affifiliated Hospital of Shaoyang University, Shaoyang, Hunan, 422001, China
| | - Xuyi Wang
- National Clinical Research Center for Mental Disorders, Department of Psychaitry, The Second Xiangya Hospital of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha 410011, Hunan, China
| | - Shan Ding
- National Clinical Research Center for Mental Disorders, Department of Psychaitry, The Second Xiangya Hospital of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha 410011, Hunan, China
| | - Kai Huang
- National Clinical Research Center for Mental Disorders, Department of Psychaitry, The Second Xiangya Hospital of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha 410011, Hunan, China
| | - Yong Liu
- National Clinical Research Center for Mental Disorders, Department of Psychaitry, The Second Xiangya Hospital of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha 410011, Hunan, China.
| | - Bing Lang
- National Clinical Research Center for Mental Disorders, Department of Psychaitry, The Second Xiangya Hospital of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha 410011, Hunan, China.
| |
Collapse
|
22
|
Leite DM, Matias D, Battaglia G. The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells 2020; 9:E2685. [PMID: 33327645 PMCID: PMC7765129 DOI: 10.3390/cells9122685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
| | - Diana Matias
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Samantha Dickson Brain Cancer Unit, Cancer Institute, University College London, London WC1E 06DD, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies, 08010 Barcelona, Spain
| |
Collapse
|
23
|
van Gelder CAGH, Penning R, Veth TS, Catsburg LAE, Hoogenraad CC, MacGillavry HD, Altelaar M. Temporal Quantitative Proteomics of mGluR-induced Protein Translation and Phosphorylation in Neurons. Mol Cell Proteomics 2020; 19:1952-1968. [PMID: 32912969 PMCID: PMC7710149 DOI: 10.1074/mcp.ra120.002199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Indexed: 01/12/2023] Open
Abstract
At neuronal synapses, activation of group I metabotropic glutamate receptors (mGluR1/5) triggers a form of long-term depression (mGluR-LTD) that relies on new protein synthesis and the internalization of AMPA-type glutamate receptors. Dysregulation of these processes has been implicated in the development of mental disorders such as autism spectrum disorders and therefore merit a better understanding on a molecular level. Here, to study mGluR-induced signaling pathways, we integrated quantitative phosphoproteomics with the analyses of newly synthesized proteins via bio-orthogonal amino acids (azidohomoalanine) in a pulsed labeling strategy in cultured hippocampal neurons stimulated with DHPG, a specific agonist for group I mGluRs. We identified several kinases with important roles in DHPG-induced mGluR activation, which we confirmed using small molecule kinase inhibitors. Furthermore, changes in the AMPA receptor endocytosis pathway in both protein synthesis and protein phosphorylation were identified, whereby Intersectin-1 was validated as a novel player in this pathway. This study revealed several new insights into the molecular pathways downstream of group I mGluR activation in hippocampal neurons, and provides a rich resource for further analyses.
Collapse
Affiliation(s)
- Charlotte A G H van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Renske Penning
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Lisa A E Catsburg
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Harold D MacGillavry
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Widagdo J, Kerk JW, Guntupalli S, Huganir RL, Anggono V. Subunit-Specific Augmentation of AMPA Receptor Ubiquitination by Phorbol Ester. Cell Mol Neurobiol 2020; 40:1213-1222. [PMID: 32052226 PMCID: PMC7423626 DOI: 10.1007/s10571-020-00809-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
Excitatory neurotransmission relies on the precise targeting of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors to the neuronal plasma membrane. Activity-dependent ubiquitination of AMPA receptor (AMPAR) subunits sorts internalised receptors to late endosomes for degradation, which ultimately determines the number of AMPARs on neuronal membrane. Our recent study has demonstrated a functional cross-talk between the phosphorylation and ubiquitination of the GluA1 subunit in mammalian central neurons. However, the existence of such a cross modulation for the GluA2 subunit remains unknown. Here, we have shown that bicuculline induced GluA2 ubiquitination on the same lysine residues (Lys-870 and Lys-882) in the C-terminal as those elicited by the AMPA treatment. Interestingly, bicuculline-induced ubiquitination was markedly enhanced by the phospho-mimetic GluA2 S880E mutant. Pharmacological activation of protein kinase C (PKC) by phorbol ester, which mediates the phosphorylation of GluA2 at Ser-880, augmented bicuculline-induced ubiquitination of GluA2 in cultured neurons. This effect was specific for the GluA2 subunit because phorbol ester did not alter the level of GluA1 ubiquitination. However, phorbol ester-induced enhancement of GluA2 ubiquitination did not require Ser-880 phosphorylation. This suggests that pseudo-phosphorylation of Ser-880 is sufficient but is not necessary for the augmentation of bicuculline-induced GluA2 ubiquitination. Collectively, these data provide the first demonstration of subunit-specific modulation of AMPAR ubiquitination by the PKC-dependent signalling pathway in mammalian central neurons.
Collapse
Affiliation(s)
- Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jun Wei Kerk
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sumasri Guntupalli
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Richard L Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
25
|
Yong XLH, Cousin MA, Anggono V. PICK1 Controls Activity-Dependent Synaptic Vesicle Cargo Retrieval. Cell Rep 2020; 33:108312. [PMID: 33113376 DOI: 10.1016/j.celrep.2020.108312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
Efficient retrieval of synaptic vesicles (SVs) is crucial to sustain synaptic transmission. Protein interacting with C-kinase 1 (PICK1) is a unique PDZ (postsynaptic density-95/disc-large/zona-occluden-1)- and BAR (Bin-Amphiphysin-Rvs )-domain-containing protein that regulates the trafficking of postsynaptic glutamate receptors. It is also expressed in presynaptic terminals and is associated with the SVs; however, its role in regulating SV recycling remains unknown. Here, we show that PICK1 loss of function selectively slows the kinetics of SV endocytosis in primary hippocampal neurons during high-frequency stimulation. PICK1 knockdown also causes surface stranding and mislocalization of major SV proteins, synaptophysin and vGlut1, along the axon. A functional PDZ domain of PICK1 and its interaction with the core endocytic adaptor protein (AP)-2 are required for the proper targeting and clustering of synaptophysin. Furthermore, PICK1 and its interaction with AP-2 are required for efficient SV endocytosis and sustained glutamate release. Our findings, therefore, identify PICK1 as a key regulator of presynaptic vesicle recycling in central synapses.
Collapse
Affiliation(s)
- Xuan Ling Hilary Yong
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
26
|
Altered Expression of the m6A Methyltransferase METTL3 in Alzheimer's Disease. eNeuro 2020; 7:ENEURO.0125-20.2020. [PMID: 32847866 PMCID: PMC7540926 DOI: 10.1523/eneuro.0125-20.2020] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cognitive impairment in Alzheimer’s disease (AD) is associated with dysregulation of the RNA and protein expression profiles in the brain. Recent studies have highlighted the importance of RNA post-transcriptional regulation (epitranscriptomics) in higher order brain functions. Specifically, N6-methyladenosine (m6A), which controls RNA stability, splicing, translation and trafficking, plays an important role in learning and memory. This raises the question of whether m6A signaling is perturbed in AD. To address this, we investigated the expression profile of known m6A-regulatory genes using a public RNA-seq dataset and identified a subset of genes which were significantly dysregulated in the human AD brain. Among these, genes encoding the m6A methyltransferase, METTL3, and a member of the m6A methyltransferase complex (MACOM), RBM15B, were downregulated and upregulated in the hippocampus, respectively. These findings were validated at the protein level using an independent cohort of postmortem human brain samples. Unexpectedly, we observed an accumulation of methyltransferase-like 3 (METTL3), but not RBM15B, in the insoluble fractions, which positively correlated with the levels of insoluble Tau protein in the postmortem human AD samples. Aberrant expression and distribution of METTL3 in the hippocampus of the AD brain may therefore represent an epitranscriptomic mechanism underlying the altered gene expression patterns associated with disease pathogenesis.
Collapse
|
27
|
Koch N, Koch D, Krueger S, Tröger J, Sabanov V, Ahmed T, McMillan LE, Wolf D, Montag D, Kessels MM, Balschun D, Qualmann B. Syndapin I Loss-of-Function in Mice Leads to Schizophrenia-Like Symptoms. Cereb Cortex 2020; 30:4306-4324. [DOI: 10.1093/cercor/bhaa013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Schizophrenia is associated with cognitive and behavioral dysfunctions thought to reflect imbalances in neurotransmission systems. Recent screenings suggested that lack of (functional) syndapin I (PACSIN1) may be linked to schizophrenia. We therefore studied syndapin I KO mice to address the suggested causal relationship to schizophrenia and to analyze associated molecular, cellular, and neurophysiological defects. Syndapin I knockout (KO) mice developed schizophrenia-related behaviors, such as hyperactivity, reduced anxiety, reduced response to social novelty, and an exaggerated novel object response and exhibited defects in dendritic arborization in the cortex. Neuromorphogenic deficits were also observed for a schizophrenia-associated syndapin I mutant in cultured neurons and coincided with a lack of syndapin I–mediated membrane recruitment of cytoskeletal effectors. Syndapin I KO furthermore caused glutamatergic hypofunctions. Syndapin I regulated both AMPAR and NMDAR availabilities at synapses during basal synaptic activity and during synaptic plasticity—particularly striking were a complete lack of long-term potentiation and defects in long-term depression in syndapin I KO mice. These synaptic plasticity defects coincided with alterations of postsynaptic actin dynamics, synaptic GluA1 clustering, and GluA1 mobility. Both GluA1 and GluA2 were not appropriately internalized. Summarized, syndapin I KO led to schizophrenia-like behavior, and our analyses uncovered associated molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Nicole Koch
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Dennis Koch
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sarah Krueger
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jessica Tröger
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Victor Sabanov
- Laboratory of Biological Psychology, Brain & Cognition, University of Leuven, 3000 Leuven, Belgium
| | - Tariq Ahmed
- Laboratory of Biological Psychology, Brain & Cognition, University of Leuven, 3000 Leuven, Belgium
| | - Laura E McMillan
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, 07743 Jena, Germany
| | - David Wolf
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Dirk Montag
- Neurogenetics Lab, Leibniz Institute for Neurobiology, 39116 Magdeburg, Germany
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Detlef Balschun
- Laboratory of Biological Psychology, Brain & Cognition, University of Leuven, 3000 Leuven, Belgium
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
28
|
Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, Clemmensen LS, Haugaard‐Kedström LM, Strømgaard K. PDZ Domains as Drug Targets. ADVANCED THERAPEUTICS 2019; 2:1800143. [PMID: 32313833 PMCID: PMC7161847 DOI: 10.1002/adtp.201800143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions within protein networks shape the human interactome, which often is promoted by specialized protein interaction modules, such as the postsynaptic density-95 (PSD-95), discs-large, zona occludens 1 (ZO-1) (PDZ) domains. PDZ domains play a role in several cellular functions, from cell-cell communication and polarization, to regulation of protein transport and protein metabolism. PDZ domain proteins are also crucial in the formation and stability of protein complexes, establishing an important bridge between extracellular stimuli detected by transmembrane receptors and intracellular responses. PDZ domains have been suggested as promising drug targets in several diseases, ranging from neurological and oncological disorders to viral infections. In this review, the authors describe structural and genetic aspects of PDZ-containing proteins and discuss the current status of the development of small-molecule and peptide modulators of PDZ domains. An overview of potential new therapeutic interventions in PDZ-mediated protein networks is also provided.
Collapse
Affiliation(s)
- Nikolaj R. Christensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jelena Čalyševa
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitMeyerhofstraße 169117HeidelbergGermany
- EMBL International PhD ProgrammeFaculty of BiosciencesEMBL–Heidelberg UniversityGermany
| | - Eduardo F. A. Fernandes
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Susanne Lüchow
- Department of Chemistry – BMCUppsala UniversityBox 576SE75123UppsalaSweden
| | - Louise S. Clemmensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Linda M. Haugaard‐Kedström
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
29
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Sohn H, Park M. Palmitoylation-mediated synaptic regulation of AMPA receptor trafficking and function. Arch Pharm Res 2019; 42:426-435. [PMID: 30838509 PMCID: PMC6505502 DOI: 10.1007/s12272-019-01134-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is a major glutamate-gated ion channel in the brain and is important for synaptic transmission, synaptic plasticity, and learning. Palmitoylation, a post-translational modification, is a critical process regulating AMPAR trafficking, synaptic function and plasticity, and learning and memory in health and diseases. In this review, we discuss current knowledge on the palmitoylation-dependent regulation of AMPAR trafficking and functions. We focus on the palmitoylation of AMPARs and other synaptic proteins that directly or indirectly interact with AMPARs, including postsynaptic density 95, glutamate receptor-interacting protein/AMPAR-binding protein, A-kinase anchoring protein 79/150, and protein interacting with C kinase 1. Finally, we discuss what future studies should address in the field of palmitoylation-dependent AMPAR trafficking and function with regard to physiology and neurodegenerative diseases.
Collapse
Affiliation(s)
- Heesung Sohn
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.,Department of Life Sciences, School of Natural Science, Hanyang University, Seoul, 04763, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea. .,Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
31
|
Côme E, Heubl M, Schwartz EJ, Poncer JC, Lévi S. Reciprocal Regulation of KCC2 Trafficking and Synaptic Activity. Front Cell Neurosci 2019; 13:48. [PMID: 30842727 PMCID: PMC6391895 DOI: 10.3389/fncel.2019.00048] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter receptors in the adult central nervous system (CNS) are type A γ-aminobutyric acid receptors (GABAARs) and glycine receptors (GlyRs). Synaptic responses mediated by GlyR and GABAAR display a hyperpolarizing shift during development. This shift relies mainly on the developmental up-regulation of the K+-Cl- co-transporter KCC2 responsible for the extrusion of Cl-. In mature neurons, altered KCC2 function-mainly through increased endocytosis-leads to the re-emergence of depolarizing GABAergic and glycinergic signaling, which promotes hyperexcitability and pathological activities. Identifying signaling pathways and molecular partners that control KCC2 surface stability thus represents a key step in the development of novel therapeutic strategies. Here, we present our current knowledge on the cellular and molecular mechanisms governing the plasma membrane turnover rate of the transporter under resting conditions and in response to synaptic activity. We also discuss the notion that KCC2 lateral diffusion is one of the first parameters modulating the transporter membrane stability, allowing for rapid adaptation of Cl- transport to changes in neuronal activity.
Collapse
Affiliation(s)
- Etienne Côme
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Martin Heubl
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Eric J Schwartz
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
32
|
Park DI, Turck CW. Interactome Studies of Psychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:163-173. [PMID: 30747422 DOI: 10.1007/978-3-030-05542-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High comorbidity and complexity have precluded reliable diagnostic assessment and treatment of psychiatric disorders. Impaired molecular interactions may be relevant for underlying mechanisms of psychiatric disorders but by and large remain unknown. With the help of a number of publicly available databases and various technological tools, recent research has filled the paucity of information by generating a novel dataset of psychiatric interactomes. Different technological platforms including yeast two-hybrid screen, co-immunoprecipitation-coupled with mass spectrometry-based proteomics, and transcriptomics have been widely used in combination with cellular and molecular techniques to interrogate the psychiatric interactome. Novel molecular interactions have been identified in association with different psychiatric disorders including autism spectrum disorders, schizophrenia, bipolar disorder, and major depressive disorder. However, more extensive and sophisticated interactome research needs to be conducted to overcome the current limitations such as incomplete interactome databases and a lack of functional information among components. Ultimately, integrated psychiatric interactome databases will contribute to the implementation of biomarkers and therapeutic intervention.
Collapse
Affiliation(s)
- Dong Ik Park
- Danish Research Institute of Translational Neuroscience (DANDRITE), Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Christoph W Turck
- Proteomics and Biomarkers, Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
33
|
Parkinson GT, Hanley JG. Mechanisms of AMPA Receptor Endosomal Sorting. Front Mol Neurosci 2018; 11:440. [PMID: 30568574 PMCID: PMC6289981 DOI: 10.3389/fnmol.2018.00440] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
The regulation of synaptic AMPA receptors (AMPARs) is critical for excitatory synaptic transmission, synaptic plasticity and the consequent formation of neural circuits during brain development and their modification during learning and memory processes. The number of synaptic AMPARs is regulated through endocytosis, exocytosis and endosomal sorting that results in recycling back to the plasma membrane or degradation in the lysosome. Hence, endo-lysosomal sorting is vitally important in maintaining AMPAR expression at the synapse, and the dynamic regulation of these trafficking events is a key component of synaptic plasticity. A reduction in synaptic strength such as in long-term depression (LTD) involves AMPAR sorting to lysosomes to reduce synaptic AMPAR number, whereas long-term potentiation (LTP) involves an increase in AMPAR recycling to increase the number of AMPARs at synapses. Here, we review our current understanding of the endosomal trafficking routes taken by AMPARs, and the mechanisms involved in AMPAR endosomal sorting, focussing on the numerous AMPAR associated proteins that have been implicated in this complex process. We also discuss how these events are dysregulated in brain disorders.
Collapse
Affiliation(s)
- Gabrielle T Parkinson
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Jonathan G Hanley
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
34
|
Hanley JG. The Regulation of AMPA Receptor Endocytosis by Dynamic Protein-Protein Interactions. Front Cell Neurosci 2018; 12:362. [PMID: 30364226 PMCID: PMC6193100 DOI: 10.3389/fncel.2018.00362] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
The precise regulation of AMPA receptor (AMPAR) trafficking in neurons is crucial for excitatory neurotransmission, synaptic plasticity and the consequent formation and modification of neural circuits during brain development and learning. Clathrin-mediated endocytosis (CME) is an essential trafficking event for the activity-dependent removal of AMPARs from the neuronal plasma membrane, resulting in a reduction in synaptic strength known as long-term depression (LTD). The regulated AMPAR endocytosis that underlies LTD is caused by specific modes of synaptic activity, most notably stimulation of NMDA receptors (NMDARs) and metabotropic glutamate receptors (mGluRs). Numerous proteins associate with AMPAR subunits, directly or indirectly, to control their trafficking, and therefore the regulation of these protein-protein interactions in response to NMDAR or mGluR signaling is a critical feature of synaptic plasticity. This article reviews the protein-protein interactions that are dynamically regulated during synaptic plasticity to modulate AMPAR endocytosis, focussing on AMPAR binding proteins and proteins that bind the core endocytic machinery. In addition, the mechanisms for the regulation of protein-protein interactions are considered, as well as the functional consequences of these dynamic interactions on AMPAR endocytosis.
Collapse
Affiliation(s)
- Jonathan G Hanley
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
35
|
Zalucki O, Harris L, Harvey TJ, Harkins D, Widagdo J, Oishi S, Matuzelski E, Yong XLH, Schmidt H, Anggono V, Burne THJ, Gronostajski RM, Piper M. NFIX-Mediated Inhibition of Neuroblast Branching Regulates Migration Within the Adult Mouse Ventricular–Subventricular Zone. Cereb Cortex 2018; 29:3590-3604. [DOI: 10.1093/cercor/bhy233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Abstract
Understanding the migration of newborn neurons within the brain presents a major challenge in contemporary biology. Neuronal migration is widespread within the developing brain but is also important within the adult brain. For instance, stem cells within the ventricular–subventricular zone (V-SVZ) and the subgranular zone of dentate gyrus of the adult rodent brain produce neuroblasts that migrate to the olfactory bulb and granule cell layer of the dentate gyrus, respectively, where they regulate key brain functions including innate olfactory responses, learning, and memory. Critically, our understanding of the factors mediating neuroblast migration remains limited. The transcription factor nuclear factor I X (NFIX) has previously been implicated in embryonic cortical development. Here, we employed conditional ablation of Nfix from the adult mouse brain and demonstrated that the removal of this gene from either neural stem and progenitor cells, or neuroblasts, within the V-SVZ culminated in neuroblast migration defects. Mechanistically, we identified aberrant neuroblast branching, due in part to increased expression of the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), as a factor contributing to abnormal migration in Nfix-deficient adult mice. Collectively, these data provide new insights into how neuroblast migration is regulated at a transcriptional level within the adult brain.
Collapse
Affiliation(s)
- Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danyon Harkins
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jocelyn Widagdo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD, Australia
| | - Sabrina Oishi
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Elise Matuzelski
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Xuan Ling Hilary Yong
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD, Australia
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Victor Anggono
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
36
|
Moretto E, Passafaro M. Recent Findings on AMPA Receptor Recycling. Front Cell Neurosci 2018; 12:286. [PMID: 30233324 PMCID: PMC6129582 DOI: 10.3389/fncel.2018.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/10/2018] [Indexed: 02/04/2023] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs) are tetrameric protein complexes that mediate most of the fast-excitatory transmission in response to the neurotransmitter glutamate in neurons. The abundance of AMPA-Rs at the surface of excitatory synapses establishes the strength of the response to glutamate. It is thus evident that neurons need to tightly regulate this feature, particularly in the context of all synaptic plasticity events, which are considered the biological correlates of higher cognitive functions such as learning and memory. AMPA-R levels at the synapse are regulated by insertion of newly synthesized receptors, lateral diffusion on the plasma membrane and endosomal cycling. The latter is likely the most important especially for synaptic plasticity. This process starts with the endocytosis of the receptor from the cell surface and is followed by either degradation, if the receptor is directed to the lysosomal compartment, or reinsertion at the cell surface through a specialized endosomal compartment called recycling endosomes. Although the basic steps of this process have been discovered, the details and participation of additional regulatory proteins are still being discovered. In this review article, we describe the most recent findings shedding light on this crucial mechanism of synaptic regulation.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Maria Passafaro
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| |
Collapse
|
37
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
38
|
Smidak R, Sialana FJ, Kristofova M, Stojanovic T, Rajcic D, Malikovic J, Feyissa DD, Korz V, Hoeger H, Wackerlig J, Mechtcheriakova D, Lubec G. Reduced Levels of the Synaptic Functional Regulator FMRP in Dentate Gyrus of the Aging Sprague-Dawley Rat. Front Aging Neurosci 2017; 9:384. [PMID: 29218006 PMCID: PMC5703695 DOI: 10.3389/fnagi.2017.00384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/09/2017] [Indexed: 11/15/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) encoded by Fragile X mental retardation 1 (FMR1) gene is a RNA-binding regulator of mRNA translation, transport and stability with multiple targets responsible for proper synaptic function. Epigenetic silencing of FMR1 gene expression leads to the development of Fragile X syndrome (FXS) that is characterized by intellectual disability and other behavioral problems including autism. In the rat FXS model, the lack of FMRP caused a deficit in hippocampal-dependent memory. However, the hippocampal changes of FMRP in aging rats are not fully elucidated. The current study addresses the changes in FMRP levels in dentate gyrus (DG) from young (17 weeks) and aging (22 months) Sprague – Dawley rats. The aging animal group showed significant decline in spatial reference memory. Protein samples from five rats per each group were analyzed by quantitative proteomic analysis resulting in 153 significantly changed proteins. FMRP showed significant reduction in aging animals which was confirmed by immunoblotting and immunofluorescence microscopy. Furthermore, bioinformatic analysis of the differential protein dataset revealed several functionally related protein groups with individual interactions with FMRP. These include high representation of the RNA translation and processing machinery connected to FMRP and other RNA-binding regulators including CAPRIN1, the members of Pumilio (PUM) and CUG-BP, Elav-like (CELF) family, and YTH N(6)-methyladenosine RNA-binding proteins (YTHDF). The results of the current study point to the important role of FMRP and regulation of RNA processing in the rat DG and memory decline during the aging process.
Collapse
Affiliation(s)
- Roman Smidak
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Martina Kristofova
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Tamara Stojanovic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Jovana Malikovic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Daniel D Feyissa
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Volker Korz
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Harald Hoeger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Judit Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| |
Collapse
|
39
|
Semmler J, Kormann J, Srinivasan SP, Köster A, Sälzer D, Reppel M, Hescheler J, Plomann M, Nguemo F. Pacsin 2 is required for the maintenance of a normal cardiac function in the developing mouse heart. Pharmacol Res 2017; 128:200-210. [PMID: 29107716 DOI: 10.1016/j.phrs.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/26/2017] [Accepted: 10/15/2017] [Indexed: 11/27/2022]
Abstract
The Pacsin proteins (Pacsin 1, 2 and 3) play an important role in intracellular trafficking and thereby signal transduction in many cells types. This study was designed to examine the role of Pacsin 2 in cardiac development and function. We investigated the development and electrophysiological properties of Pacsin 2 knockout (P2KO) hearts and single cardiomyocytes isolated from 11.5 and 15.5days old fetal mice. Immunofluorescence experiments confirmed the lack of Pacsin 2 protein expression in P2KO cardiac myocytes in comparison to wildtype (WT). Western blotting demonstrates low expression levels of connexin 43 and T-box 3 proteins in P2KO compared to wildtype (WT). Electrophysiology measurements including online Multi-Electrode Array (MEA) based field potential (FP) recordings on isolated whole heart of P2KO mice showed a prolonged AV-conduction time. Patch clamp measurements of P2KO cardiomyocytes revealed differences in action potential (AP) parameters and decreased pacemaker funny channel (If), as well as L-type Ca2+ channel (ICaL), and sodium channel (INa). These findings demonstrate that Pacsin 2 is necessary for cardiac development and function in mouse embryos, which will enhance our knowledge to better understand the genesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Judith Semmler
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Jan Kormann
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | | | - Annette Köster
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Daniel Sälzer
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Michael Reppel
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany; Department of Cardiology, University of Lübeck, Lübeck, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Markus Plomann
- Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Filomain Nguemo
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
40
|
Mahadevan V, Khademullah CS, Dargaei Z, Chevrier J, Uvarov P, Kwan J, Bagshaw RD, Pawson T, Emili A, De Koninck Y, Anggono V, Airaksinen M, Woodin MA. Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition. eLife 2017; 6:e28270. [PMID: 29028184 PMCID: PMC5640428 DOI: 10.7554/elife.28270] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
KCC2 is a neuron-specific K+-Cl- cotransporter essential for establishing the Cl- gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl-. Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | | | - Zahra Dargaei
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Jonah Chevrier
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Pavel Uvarov
- Department of Anatomy, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Julian Kwan
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Richard D Bagshaw
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Andrew Emili
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Yves De Koninck
- Institut Universitaire en Santé Mentale de QuébecQuébecCanada
- Department of Psychiatry and NeuroscienceUniversité LavalQuébecCanada
| | - Victor Anggono
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia ResearchThe University of QueenslandBrisbaneAustralia
| | - Matti Airaksinen
- Department of Anatomy, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Melanie A Woodin
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| |
Collapse
|
41
|
Fiuza M, Rostosky CM, Parkinson GT, Bygrave AM, Halemani N, Baptista M, Milosevic I, Hanley JG. PICK1 regulates AMPA receptor endocytosis via direct interactions with AP2 α-appendage and dynamin. J Cell Biol 2017; 216:3323-3338. [PMID: 28855251 PMCID: PMC5626541 DOI: 10.1083/jcb.201701034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/09/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is used to internalize a diverse range of cargo proteins from the cell surface, often in response to specific signals. In neurons, the rapid endocytosis of GluA2-containing AMPA receptors (AMPARs) in response to NMDA receptor (NMDAR) stimulation causes a reduction in synaptic strength and is the central mechanism for long-term depression, which underlies certain forms of learning. The mechanisms that link NMDAR activation to CME of AMPARs remain elusive. PICK1 is a BAR domain protein required for NMDAR-dependent reductions in surface GluA2; however, the molecular mechanisms involved are unclear. In this study, we show that PICK1 makes direct, NMDAR-dependent interactions with the core endocytic proteins AP2 and dynamin. PICK1-AP2 interactions are required for clustering AMPARs at endocytic zones in dendrites in response to NMDAR stimulation and for consequent AMPAR internalization. We further show that PICK1 stimulates dynamin polymerization. We propose that PICK1 is a cargo-specific endocytic accessory protein required for efficient, activity-dependent AMPAR endocytosis.
Collapse
Affiliation(s)
- Maria Fiuza
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Christine M Rostosky
- European Neuroscience Institute, University Medical Center Göttingen, Göttingen, Germany
| | - Gabrielle T Parkinson
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Alexei M Bygrave
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Nagaraj Halemani
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Marcio Baptista
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Ira Milosevic
- European Neuroscience Institute, University Medical Center Göttingen, Göttingen, Germany
| | - Jonathan G Hanley
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, England, UK
| |
Collapse
|
42
|
Experience-Dependent Accumulation of N6-Methyladenosine in the Prefrontal Cortex Is Associated with Memory Processes in Mice. J Neurosci 2017; 36:6771-7. [PMID: 27335407 DOI: 10.1523/jneurosci.4053-15.2016] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/18/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The RNA modification N(6)-methyladenosine (m(6)A) influences mRNA stability and cell-type-specific developmental programming, and is highly abundant in the adult brain. However, it has not been determined whether m(6)A is dynamically regulated by experience. Based on transcriptome-wide profiling of m(6)A, we report that the level of m(6)A increases in the medial prefrontal cortex (mPFC) of mice in response to behavioral experience. The modulation was enriched near the stop codon of mRNAs, including genes related to neuronal plasticity. In primary cortical neurons, in vitro, modulation of m(6)A by the RNA demethylase FTO influenced the degradation profiles of a subset of transcripts with modulated sites. In vivo, the expression of Fto and the m(6)A methyltransferase, Mettl3 correlated with the observed increase in m(6)A levels post-training. Furthermore, targeted knockdown of FTO in the mPFC led to enhanced consolidation of cued fear memory. Thus, together with its role in early development, the dynamic regulation of m(6)A in the adult brain serves as an important epitranscriptomic mechanism associated with behavioral adaptation. SIGNIFICANCE STATEMENT N(6)-methyladenosine (m(6)A) is the most prevalent internal modification on RNA, however, its cellular dynamics in vivo remains elusive. Here we provide the first demonstration of m(6)A upregulation in the mouse medial prefrontal cortex (mPFC) following behavioral training. Knocking down the m(6)A demethylase FTO in the mPFC, which increases total m(6)A level, results in enhanced consolidation of fear memory. Our findings suggest that m(6)A is regulated in an activity-dependent manner in the adult brain, and may function to fine-tune mRNA turnover during memory-related processes.
Collapse
|
43
|
Guntupalli S, Jang SE, Zhu T, Huganir RL, Widagdo J, Anggono V. GluA1 subunit ubiquitination mediates amyloid-β-induced loss of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. J Biol Chem 2017; 292:8186-8194. [PMID: 28377502 PMCID: PMC5437227 DOI: 10.1074/jbc.m116.774554] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/20/2017] [Indexed: 12/24/2022] Open
Abstract
The accumulation of soluble amyloid-β (Aβ) peptides produces profound neuronal changes in the brain during the pathogenesis of Alzheimer's disease. Excessive levels of Aβ disrupt excitatory synaptic transmission by promoting the removal of synaptic AMPA receptors (AMPARs), dendritic spine loss, and synaptic depression. Recently, activity-dependent ubiquitination of the GluA1 subunit has been shown to regulate the intracellular sorting of AMPARs toward late endosomes for degradation. However, whether this ubiquitin signaling pathway mediates Aβ-induced loss of surface AMPARs is unknown. In this study, we demonstrate that acute exposure of cultured neurons to soluble Aβ oligomers induces AMPAR ubiquitination concomitant with the removal of AMPARs from the plasma membrane. Importantly, expression of the GluA1 ubiquitin-deficient mutants inhibited the adverse effects of Aβ on the surface expression of AMPARs in neurons. Furthermore, we revealed the cross-talk between GluA1 ubiquitination and phosphorylation, in particular phosphorylation at Ser-845, which is crucial for AMPAR recycling and is known to be dephosphorylated in the presence of Aβ. Our data showed that the GluA1 ubiquitin-deficient mutant enhances GluA1 phosphorylation on Ser-845. Conversely, the GluA1 S845D phosphomimetic mutant reduced binding with Nedd4-1 and hence the ubiquitination of AMPARs. Importantly, the GluA1 S845D mutant also prevented Aβ-induced removal of surface AMPARs. Taken together, these findings provide the first demonstration of the dynamic cross-modulation of GluA1 ubiquitination and phosphorylation, a process that is perturbed by Aβ, in regulating the membrane sorting decision that ultimately determines the number of AMPARs on the cell surface.
Collapse
Affiliation(s)
- Sumasri Guntupalli
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Se Eun Jang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tianyi Zhu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard L Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
44
|
Tan MC, Widagdo J, Chau YQ, Zhu T, Wong JJL, Cheung A, Anggono V. The Activity-Induced Long Non-Coding RNA Meg3 Modulates AMPA Receptor Surface Expression in Primary Cortical Neurons. Front Cell Neurosci 2017; 11:124. [PMID: 28515681 PMCID: PMC5413565 DOI: 10.3389/fncel.2017.00124] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
Transcription of new RNA is crucial for maintaining synaptic plasticity, learning and memory. Although the importance of synaptic plasticity-related messenger RNAs (mRNAs) is well established, the role of a large group of long non-coding RNAs (lncRNAs) in long-term potentiation (LTP) is not known. In this study, we demonstrated the expression of a lncRNA cluster, namely maternally expressed gene 3 (Meg3), retrotransposon-like gene 1-anti-sense (Rtl1-AS), Meg8 and Meg9, which is located in the maternally imprinted Dlk1-Dio3 region on mouse chromosome 12qF1, in primary cortical neurons following glycine stimulation in an N-Methyl-D-aspartate receptor (NMDAR)-dependent manner. Importantly, we also validated the expression of Meg3, Meg8 and Meg9 in the hippocampus of mice following cued fear conditioning in vivo. Interestingly, Meg3 is the only lncRNA that is expressed in the nucleus and cytoplasm. Further analysis revealed that Meg3 loss of function blocked the glycine-induced increase of the GluA1 subunit of AMPA receptors on the plasma membrane, a major hallmark of LTP. This aberrant trafficking of AMPA receptors correlated with the dysregulation of the phosphatidylinoside-3-kinase (PI3K)/AKT signaling pathway and the downregulation of the lipid phosphatase and tensin homolog (PTEN). These findings provide the first evidence for a functional role of the lncRNA Meg3 in the intricate regulation of the PTEN/PI3K/AKT signaling cascade during synaptic plasticity in neurons.
Collapse
Affiliation(s)
- Men C Tan
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Yu Q Chau
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Tianyi Zhu
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Justin J-L Wong
- Gene and Stem Cell Therapy Program, Centenary InstituteSydney, NSW, Australia.,Sydney Medical School, University of SydneySydney, NSW, Australia
| | - Allen Cheung
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
45
|
Epilepsy-associated gene Nedd4-2 mediates neuronal activity and seizure susceptibility through AMPA receptors. PLoS Genet 2017; 13:e1006634. [PMID: 28212375 PMCID: PMC5338825 DOI: 10.1371/journal.pgen.1006634] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/06/2017] [Accepted: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
The neural precursor cell expressed developmentally down-regulated gene 4–2, Nedd4-2, is an epilepsy-associated gene with at least three missense mutations identified in epileptic patients. Nedd4-2 encodes a ubiquitin E3 ligase that has high affinity toward binding and ubiquitinating membrane proteins. It is currently unknown how Nedd4-2 mediates neuronal circuit activity and how its dysfunction leads to seizures or epilepsies. In this study, we provide evidence to show that Nedd4-2 mediates neuronal activity and seizure susceptibility through ubiquitination of GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, (AMPAR). Using a mouse model, termed Nedd4-2andi, in which one of the major forms of Nedd4-2 in the brain is selectively deficient, we found that the spontaneous neuronal activity in Nedd4-2andi cortical neuron cultures, measured by a multiunit extracellular electrophysiology system, was basally elevated, less responsive to AMPAR activation, and much more sensitive to AMPAR blockade when compared with wild-type cultures. When performing kainic acid-induced seizures in vivo, we showed that elevated seizure susceptibility in Nedd4-2andi mice was normalized when GluA1 is genetically reduced. Furthermore, when studying epilepsy-associated missense mutations of Nedd4-2, we found that all three mutations disrupt the ubiquitination of GluA1 and fail to reduce surface GluA1 and spontaneous neuronal activity when compared with wild-type Nedd4-2. Collectively, our data suggest that impaired GluA1 ubiquitination contributes to Nedd4-2-dependent neuronal hyperactivity and seizures. Our findings provide critical information to the future development of therapeutic strategies for patients who carry mutations of Nedd4-2. Many patients with neurological disorders suffer from an imbalance in neuronal and circuit excitability and present with seizure or epilepsy as the common comorbidity. Human genetic studies have identified many epilepsy-associated genes, but the pathways by which those genes are connected to brain circuit excitability are largely unknown. Our study focused on one of the epilepsy-associated genes, Nedd4-2, and aimed to dissect the molecular mechanism underlying Nedd4-2-associated epilepsy. Nedd4-2 encodes a ubiquitin E3 ligase. Several neuronal ion channels have been identified as its substrates, including the GluA1 subunit of AMPAR. Our results first demonstrate up-regulation of spontaneous neuronal activity and seizure susceptibility when Nedd4-2 is reduced in a mouse model. These deficits can be corrected when GluA1/AMPAR is pharmacologically or genetically inhibited. In addition, we found that three epilepsy-associated missense mutations of Nedd4-2 inhibit the ubiquitination of GluA1 and fail to reduce GluA1 surface expression or spontaneous neuronal activity when compared to wild-type Nedd4-2. These findings suggest the reduction of GluA1 ubiquitination as a crucial deficit underlying insufficient function of Nedd4-2 and provide critical information to the development of therapies for patients who carry mutations of Nedd4-2.
Collapse
|
46
|
Cheron G, Márquez-Ruiz J, Dan B. Oscillations, Timing, Plasticity, and Learning in the Cerebellum. THE CEREBELLUM 2016; 15:122-38. [PMID: 25808751 DOI: 10.1007/s12311-015-0665-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.
Collapse
Affiliation(s)
- G Cheron
- Laboratory of Electrophysiology, Université de Mons, 7000, Mons, Belgium. .,Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, CP640, 1070, Brussels, Belgium.
| | - J Márquez-Ruiz
- División de Neurociencias, Universidad Pablo de Olavide, 41013, Seville, Spain
| | - B Dan
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, CP640, 1070, Brussels, Belgium.,Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020, Brussels, Belgium
| |
Collapse
|
47
|
A molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat Struct Mol Biol 2016; 23:921-932. [PMID: 27595347 DOI: 10.1038/nsmb.3290] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022]
Abstract
Recycling of internalized receptors from endosomal compartments is essential for the receptors' cell-surface homeostasis. Sorting nexin 27 (SNX27) cooperates with the retromer complex in the recycling of proteins containing type I PSD95-Dlg-ZO1 (PDZ)-binding motifs. Here we define specific acidic amino acid sequences upstream of the PDZ-binding motif required for high-affinity engagement of the human SNX27 PDZ domain. However, a subset of SNX27 ligands, such as the β2 adrenergic receptor and N-methyl-D-aspartate (NMDA) receptor, lack these sequence determinants. Instead, we identified conserved sites of phosphorylation that substitute for acidic residues and dramatically enhance SNX27 interactions. This newly identified mechanism suggests a likely regulatory switch for PDZ interaction and protein transport by the SNX27-retromer complex. Defining this SNX27 binding code allowed us to classify more than 400 potential SNX27 ligands with broad functional implications in signal transduction, neuronal plasticity and metabolite transport.
Collapse
|
48
|
Multiple faces of protein interacting with C kinase 1 (PICK1): Structure, function, and diseases. Neurochem Int 2016; 98:115-21. [DOI: 10.1016/j.neuint.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
|
49
|
PACSIN1 regulates the dynamics of AMPA receptor trafficking. Sci Rep 2016; 6:31070. [PMID: 27488904 PMCID: PMC4973260 DOI: 10.1038/srep31070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/14/2016] [Indexed: 01/29/2023] Open
Abstract
Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons.
Collapse
|
50
|
Stochastic Induction of Long-Term Potentiation and Long-Term Depression. Sci Rep 2016; 6:30899. [PMID: 27485552 PMCID: PMC4971485 DOI: 10.1038/srep30899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/10/2016] [Indexed: 01/23/2023] Open
Abstract
Long-term depression (LTD) and long-term potentiation (LTP) of granule-Purkinje cell synapses are persistent synaptic alterations induced by high and low rises of the intracellular calcium ion concentration ([Ca2+]), respectively. The occurrence of LTD involves the activation of a positive feedback loop formed by protein kinase C, phospholipase A2, and the extracellular signal-regulated protein kinase pathway, and its expression comprises the reduction of the population of synaptic AMPA receptors. Recently, a stochastic computational model of these signalling processes demonstrated that, in single synapses, LTD is probabilistic and bistable. Here, we expanded this model to simulate LTP, which requires protein phosphatases and the increase in the population of synaptic AMPA receptors. Our results indicated that, in single synapses, while LTD is bistable, LTP is gradual. Ca2+ induced both processes stochastically. The magnitudes of the Ca2+ signals and the states of the signalling network regulated the likelihood of LTP and LTD and defined dynamic macroscopic Ca2+ thresholds for the synaptic modifications in populations of synapses according to an inverse Bienenstock, Cooper and Munro (BCM) rule or a sigmoidal function. In conclusion, our model presents a unifying mechanism that explains the macroscopic properties of LTP and LTD from their dynamics in single synapses.
Collapse
|